Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040004629 A1
Publication typeApplication
Application numberUS 10/401,317
Publication dateJan 8, 2004
Filing dateMar 27, 2003
Priority dateSep 29, 1998
Also published asUS6559860
Publication number10401317, 401317, US 2004/0004629 A1, US 2004/004629 A1, US 20040004629 A1, US 20040004629A1, US 2004004629 A1, US 2004004629A1, US-A1-20040004629, US-A1-2004004629, US2004/0004629A1, US2004/004629A1, US20040004629 A1, US20040004629A1, US2004004629 A1, US2004004629A1
InventorsJeffrey Hamilton, Bret Schlussman
Original AssigneeHamilton Jeffrey L., Schlussman Bret D.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System and methodology providing graphical objects in an industrial automation environment
US 20040004629 A1
Abstract
The present invention relates to a system and methodology providing graphical objects in an industrial automation environment. According to one aspect of the invention, data is received across a network and is associated with an automated process. A property of a graphical object is updated with the data. Graphical objects are operatively connected to one another such that movement of a representation of one of the graphical objects based on changes of the property being updated correspondingly affects the movement of a representation of another graphical object. According to another aspect of the invention, the graphical objects are associated with industrial automation components connected to the network.
Images(13)
Previous page
Next page
Claims(44)
We claim:
1. An industrial control system, comprising:
a network connected to a controller;
first and second graphical objects each having at least one property and being operatively connected to one another;
a server component to receive data across the network associated with the controller and updating the property of at least one of the first and second graphical objects; and
an application component to facilitate the display of representations of the first and second graphical objects, movement of one of the representations of the first and second graphical objects automatically moving a representation of the other when the server component updates the property with the data.
2. The industrial control system of claim 1, wherein the controller is in communication with at least one industrial automation component.
3. The industrial control system of claim 2, wherein the industrial automation component communicates with the controller to provide information corresponding to the data.
4. The industrial control system of claim 2, wherein the representations of the first and second graphical objects mechanically emulate the movement of the industrial automation component.
5. The industrial control system of claim 4, wherein the first and second graphical objects have graphical shapes corresponding to physical attributes of the industrial automation component.
6. The industrial control system of claim 1, wherein the server component communicates through dynamic data exchange.
7. The industrial control system of claim 1, wherein the server component includes a separate processor operating remote from the application component.
8. The industrial control system of claim 1, wherein the server component is part of the application component.
9. The industrial control system of claim 1, wherein the data received by the server exists in raw data form and is processed by an event of a corresponding graphical object.
10. The industrial control system of claim 1, wherein the server component is an OPC server.
11. The industrial control system of claim 1, wherein the server component updates the property of the corresponding graphical object in substantially real time.
12. The industrial control system of claim 1, wherein manipulation by a user of the displayed representation of one of the first and second graphical objects will cause a changed value of the respective property to be communicated to the controller.
13. The industrial control system of claim 12, wherein the controller has a component operatively connected therewith and the changed value that has been communicated to the controller is communicated to the component to control the operation of the component.
14. An industrial control system, comprising:
a network connected to a controller having a memory address;
a first graphical object having at least one property operatively linked to the memory address;
a server component to receive data from across the network associated with the memory address and updating the property of the first graphical object; and
an application component to facilitate the display of a representation of the first graphical object with change in position of the first graphical object automatically moving a representation of a second graphical object operatively connected to the first graphical object.
15. The industrial control system of claim 14, wherein the controller communicates with an industrial automation component and writes information into the memory address associated with the industrial automation component.
16. The industrial control system of claim 14, wherein the server component communicates through dynamic data exchange.
17. The industrial control system of claim 14, wherein the server component includes a separate processor operating remote from the application component.
18. The industrial control system of claim 14, wherein the server component is part of the application component.
19. The industrial control system of claim 14, wherein the data received by the server exists in raw data form and is processed by an event of the graphical object.
20. The industrial control system of claim 14, wherein the server component is an OPC server.
21. The industrial control system of claim 14, wherein the server component updates the property of the corresponding graphical object in substantially real time.
22. The industrial control system of claim 21, wherein manipulation by a user of the displayed representation of the graphical objects will cause a changed value of the property to be communicated to the controller.
23. The industrial control system of claim 22, wherein the controller has an industrial automation component operatively connected therewith and the changed value that has been communicated to the controller is communicated to the industrial automation component to control the operation of same.
24. The industrial control system of claim 15, wherein the representations of the first and second graphical objects mechanically emulate the movement of the industrial automation component during an automation process.
25. The industrial control system of claim 24, wherein the first and second graphical objects have graphical shapes corresponding to physical attributes of the industrial automation component.
26. A method to facilitate data communication within an industrial control system, comprising:
receiving data across a network associated with an automated process;
updating a property of a graphical object with the data; and
moving a representation of the graphical object based on its updated property causing automatic movement of a representation of a second graphical object operatively connected with the graphical object.
27. The method of claim 26, wherein receiving data across a network associated with an automated process includes communicating data from an industrial automation component to a controller and from the controller through a server.
28. The method of claim 26, further comprising manipulating the data received from the network to change it from a raw data form to a processed form.
29. The method of claim 26, wherein the data is manipulated by triggering an event of the graphical object causing the execution of code to process the data from the raw data form to the processed form.
30. The method of claim 26, further comprising receiving a changed value of the property of the graphical object caused by a user manipulation of the representation of the graphical object and communicating the changed value across the network.
31. The method of claim 30, wherein the changed value communicated across the network will cause the automated process to be altered.
32. The method of claim 27, wherein the moving a representation of the graphical object based on its property causing automatic movement of a representation of a second graphical object operatively connected with the graphical object occurs so that the representations mechanically emulate the movement of the industrial automation component during the automation process.
33. A method of controlling graphical objects of an industrial control system, comprising:
providing an automated process including a network connected with a controller and an industrial automation component;
receiving data across the network;
updating a property of a graphical object with the data, the graphical object being operatively associated with the industrial automation component; and
displaying a representation of the graphical object based on its updated property causing automatic movement of a representation of a second graphical object operatively connected with the graphical object.
34. The method of claim 33, wherein the graphical object and second graphical object are operatively connected and displayed in a manner to graphically represent the position of the industrial automation component during the automated process.
35. The method of claim 33, wherein the graphical object and second graphical object are operatively connected and displayed in a manner to graphically represent the state of the industrial automation component during the automated process.
36. The method of claim 33, further comprising manipulating the data received across the network to modify the data into form suitable as a value for the property of the graphical object.
37. The method of claim 36, wherein the data is manipulated by a triggering an event of the graphical object causing the execution of code to modify the data.
38. The method of claim 33, further comprising receiving a changed value of the property of the graphical object caused by a user manipulation of the representation of the graphical object and communicating the changed value across the network to the controller.
39. The method of claim 31, wherein the changed value communicated across the network will cause the industrial automation component to be controlled.
40. The method of claim 33, wherein displaying a representation of the graphical object based on its updated property causing automatic movement of a representation of a second graphical object operatively connected with the graphical object occurs so that the representations mechanically emulate the movement of the industrial automation component during the automation process.
41. A method of controlling graphical objects of an industrial control system, comprising:
providing an automated process including a network connected with an industrial automation component;
receiving data across the network;
updating a property of a graphical object with the data, the graphical object being operatively associated with the industrial automation component; and
displaying a representation of the graphical object based on its updated property causing the appearance of the representation of the graphical object to be altered and altering the appearance of a second graphical object operatively connected with the graphical object.
42. The method of claim 41, wherein the displaying occurs so that the representations mechanically emulate the movement of the industrial automation component during the automation process.
43. The method of claim 41, wherein displaying a representation of the graphical object based on its updated property causes the appearance of the representation of the graphical object to be altered in its color causing the second graphical object operatively connected with the graphical object to become altered in its color.
44. The method of claim 42, further comprising receiving a changed value of the property of the graphical object caused by a user manipulation of the representation of the graphical object and communicating the changed value across the network to control the operation of the industrial automation component.
Description
CROSS REFERENCE TO RELATED APPLICATION

[0001] This is a divisional of application Ser. No. 09/163,929, filed Sep. 29, 1998.

TECHNICAL FIELD

[0002] The present invention relates generally to industrial automation systems. More particularly, the invention pertains to a system and methodology providing graphical objects in an industrial automation environment.

BACKGROUND OF THE INVENTION

[0003] Graphical user interfaces employing an object-oriented programming paradigm are commonly used in application programs such as word processing and database programs, as well as other graphic desktop applications. A graphical user interface provides manipulable graphical objects such as icons, windows, and various controls that can be used to control underlying software or hardware represented by the graphical objects. Typically, a user interacts with the graphical user interface using a graphical pointer that is controlled by a pointing device, such as a mouse or trackball, to accomplish conventional drag and drop techniques and other graphical object manipulations.

[0004] The conventional object-oriented, graphical user interface provides an effective manner to monitor and control underlying components represented by the graphical objects. However, applications that display animation or graphical movement between connected components have required the assistance of computer programmers and specially designed custom software. Examples of such applications are computer simulation programs, mechanical emulation programs, and user display or control applications that graphically display moving components of an automated process. Accordingly, these programs are typically difficult and expensive to develop making them generally unavailable to many industries and possible applications.

SUMMARY OF THE INVENTION

[0005] This invention provides a system and methodology for connecting and manipulating graphical objects in an industrial automation environment.

[0006] In an industrial automation system, a network will be commonly linked to PLC processors, I/O, computers, and other devices or networks. The network can be connected with various devices which may include a machine or robotic device, valve, motor, sensor, or other devices or components. The particular configuration will vary depending on the application.

[0007] According to one aspect of the invention, graphical objects of an industrial automation system are connected to one another such that movement of a representation of one of the graphical objects correspondingly affects the movement of a representation of the other graphical object.

[0008] Other objects, features and advantages of the invention will become more readily apparent upon reference to the following description when taken in conjunction with the accompanying drawings, which drawings illustrate several embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] In the drawings:

[0010]FIG. 1 depicts an exemplary computer system configured in accordance with an aspect of the present invention;

[0011]FIG. 2 is a block diagram of a container application in accordance with an aspect of the present invention;

[0012]FIG. 3 is a block diagram of the container application depicting its hierarchical structure;

[0013]FIG. 4 depicts a grouping function for objects;

[0014]FIG. 5 depicts a graphical object in accordance with an aspect of the present invention;

[0015]FIG. 6 is a flow diagram of graphical object processing;

[0016]FIG. 7 depicts persistence of the objects in accordance with an aspect of the present invention;

[0017]FIG. 8 is a block diagram of server communication in accordance with an aspect of the present invention;

[0018]FIG. 9 is an exemplary embodiment of a communication network connected with remote devices;

[0019]FIG. 10 is a flow diagram of data transmission through the server in accordance with an aspect of the present invention; and

[0020] FIGS. 11-15 depict graphical interface screens in accordance with aspects of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] The present invention pertains to a system and methodology providing graphical objects in an industrial automation environment. The invention may be run on a variety of computers or computing systems including personal computers, mainframe systems, and distributed computing environments.

[0022] In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to one skilled in the art that the present invention may be practiced without many of these specific details. In other instances, well-known structures, circuits, and programming techniques have not been shown in detail in order not to unnecessarily obscure the present invention.

[0023] Referring to FIG. 1, a computer system 10 of an exemplary embodiment of the present invention includes a system unit 12. The system unit 12 includes a system bus 14 to which various components are connected and communicate through. Microprocessor 16 is connected to the system bus 14 along with random access memory (RAM) 18 and read only memory (ROM) 20. The Microprocessor can be any number of conventional processors including the Intel PENTIUM microprocessors, IBM POWERPC microprocessors, or others.

[0024] The RAM 18 is the main memory of the system 10 while the ROM 20 typically includes the BIOS and other basic operating instructions, data and objects used by the system 12 to perform its functions. The operating system 22 and application program 24, when loaded into the system 12, are typically retained within the RAM 18, though portions may be retained on the disk drive or storage medium 26, such as a hard disk drive or CD ROM. One skilled in the art would appreciate that the storage of application programs may extend over various mediums and that during run time it is not uncommon that an application program or portions thereof may be residing in several mediums at once or may even be distributed across a network in several different systems. The keyboard controller 28, pointer or mouse controller 30 and video controller 32 are connected to the system bus 14 and provide hardware control and interconnection for the keyboard 34, pointer or mouse 36, and graphic display 38 which are connected to respective controllers. The graphic display 38 has a display screen 39 for displaying representations of graphical objects thereon. For discussion purposes herein, it should be understood that reference to displaying a particular graphical object refers to displaying a graphic representation of the graphical object and discussion of same may be used interchangeably. I/O module or interface 40 is connected to the system bus 14 and enables communication over a network 42, as described later in more detail.

[0025] The pointer or mouse 36 can be any type of pointing device including, for example, a mouse, trackball, or touch-sensitive pad. The pointer or mouse 36 is well known in the art and is used by a user to generate control signals having two or more dimensions. Th% control signals are transmitted to the microprocessor 16. For example, movement of the mouse 36 across a surface will generate control signals in an x-axis and y-axis. The mouse 36 further includes one or more buttons or actuators that can be selectively actuated by the user to generate further control signals to the microprocessor 16. The use of the mouse or similar pointer device is described later with respect to the features of dragging and dropping of graphical objects displayed on the display 38. The implementation of dragging and dropping in a windows graphical environment by using the control signals generated by the mouse is well known in the art.

[0026] Object oriented programming paradigms and characteristics relating to encapsulation, inheritance, and polymorphism are well known in the computer programming arts. Accordingly, for brevity, various conventional techniques and terminology have been omitted. Further information and details about these subjects, as well as C++ and OLE, may be obtained from “Inside Visual C++” by David J. Kruglinski, 1996, Microsoft Press, and “Inside OLE 2” by Kraig Brockschmidt, 1994, Microsoft Press, both of which are hereby incorporated by reference.

[0027] Referring to FIG. 2, the application 24 in a preferred embodiment is a container application written in C++ capable of managing the graphical objects described below. The container application 24 includes a server application or data addin 44 that manages the data of the graphical objects as later described. Additionally, toolbar addins 46, ActiveX controls 48, and Microsoft Visual Basic Application (MS VBA) 50, all of which are known in the art, are preferably incorporated into the container application 24 to provide additional functionality, usable tools or ease of programmability. It is significant to note that various exemplary and preferred embodiments of the present invention will be described by the C++ programming language, however one skilled in the art would appreciate that other object models and techniques can be defined using other programming languages.

Graphical Objects

[0028] Referring to FIG. 3, the hierarchy structure of the container application 24 is represented. Graphical objects 52 are placed on a graphical page 54, where the page 54 is part of a document 56. In some cases the page is the document, or there is no distinction between a document and the pages in the document.

[0029] Referring to FIG. 4, page 54 of the container application comprises a data structure CDRAWOBJ. All primitives, such as text, rectangles, arcs, ellipses, polygons, and graphical objects are derived from CDRAWOBJ. For illustrative purposes, page 54 includes a rectangle 58, ellipse 60, and graphic 62. As a data structure, each are represented as CDRAWOBJ. When performing a group function 61 on any number of CDRAWOBJs a new CDRAWOBJ is thereby defined as a group having children defined by the selected group items. Window 63 illustrates CDRAWOBJs 58, 60 being grouped into CDRAWOBJ Group2, shown in window 65, having rectangle 58 and ellipse 60 as children. Further groups of still other groups can be grouped to create CDRAWOBJs that could include hundreds or any desired number of primitives. It should be understood that windows 63, 65 are for illustrative purposes to depict the grouping function and do not correspond to visual or graphical display windows.

[0030] Once grouped, a graphical object is formed. It should be noted that the graphical objects will also be referred to herein simply as objects. A graphical object is typically a collection of object primitives. Whatever happens to a graphical object or parent graphical object, as a group, occurs to all its children. In the preferred embodiment, each graphical object is defined as follows:

CDrawObj
CRectObj
CTextObj
CPolyObj
CProgrammable
CComplexObj
CActiveXObj

[0031] The CRectObj is an object defining a rectangle. The CTextObj is an object defining a text-based box or window and CPolyObj is an object defining a polygon type shape. The CRectObj, CTextObj and CPolyObj are configured similarly to those corresponding objects that one would find independently in Windows C++ programming or through the use of MS VBA.

[0032] CProgrammable is an object that includes anchor, spin, and rotation attributes to the CDrawObj and will be described later in more detail. CProgrammable includes CComplexOBj which is an array of CDrawObjs that provides the ability and complexity of allowing the CDrawObj to be comprised of other CDrawObjs or groups thereof. The functionality of CProgrammable with respect to anchor, spin or rotation is an important part of the present invention. In another embodiment, for example, the CDrawObj graphical object could comprise only one or more of these CProgrammable elements without the other text or geometric based objects.

Graphical Object Properties

[0033] Each graphical object 52 includes properties 64 and may also include methods 66, as represented in FIG. 5. The functionality of the Anchor, AnchorLock, AnchorLockAutoReturn, AnchorX, AnchorY, Rotation, RotationX and RotationY properties serve an important role in one preferred embodiment of the present invention where the application of same is used for mechanical emulation purposes later described. In alternative embodiments, one or more of these properties will be provided to serve the emulation or movement characteristics of a particular application. The functionality of these properties 64, along with an exemplary syntax are described below.

[0034] The Anchor property specifies the angle, in degrees, that an object can move relative to its anchor point. Its exemplary syntax is shown as:

Object.Anchor [=double]

[0035] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric value expressing degrees. Preferably, this value is in the range of 0 to 360 degrees.

[0036] The AnchorLock property specifies whether the anchored object maintains its original angle while rotating with its parent object. Its exemplary syntax is shown as:

Object.AnchorLock [=boolean]

[0037] where the Object is a required portion corresponding to the graphical object being evaluated and the boolean portion is an optional boolean expression that specifies whether to lock an anchor point. With the setting of the boolean to true, the anchored object's angle changes relative to its parent object. With the setting of the boolean to false, the anchored object maintains its original angle as it rotates with its parent object.

[0038] The AnchorLockAutoReturn property returns the value of the Anchor property to its original design value. Its exemplary, syntax is shown as:

Object.AnchorLockAutoReturn [=boolean]

[0039] where the Object is a required portion corresponding to the graphical object being evaluated and the boolean portion is an optional boolean expression that specifies whether to reset the original value of the Anchor property. With the setting of the boolean to true, the anchor point position is reset to its original value. With the setting of the boolean to false, the anchor point position remains at its current value.

[0040] The AnchorX property specifies the horizontal distance between the center of the object and its anchor point. Its exemplary syntax is shown as:

Object.AnchorX [=double]

[0041] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric expression specifying distance. The AnchorX property is expressed in twips. If the AnchorX value is positive, the anchor point is set to the right of the object's center point. If the AnchorX value is negative, the anchor point is set to the left of the object's center point. If the object is spun or rotated, or its anchor is moved, the AnchorX value of the object changes accordingly.

[0042] The AnchorY property specifies the vertical distance between the center of the object and its anchor point. Its exemplary syntax is shown as:

Object.AnchorY [=double]

[0043] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric expression specifying distance. The AnchorY property is expressed in twips. If the AnchorY value is positive, the anchor point is set below the object's center point. If the AnchorY value is negative, the anchor point is set above the object's center point. If the object is spun or rotated, or its anchor is moved, the AnchorX value of the object changes accordingly.

[0044] The Rotation property specifies the degree of rotation of an object around its center. Its exemplary syntax is shown as:

Object.Rotation [=double]

[0045] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric expression specifying degree of angle. In a preferred embodiment, the value of the Rotation property can only be set during runtime. The Rotation property is expressed in twips and the value of this property changes as the object is moved left or right by the user or by code. Preferably, this value is in the range of 0 to 360 degrees.

[0046] The RotationX property specifies the distance between the center of the object and its rotation point. Its exemplary syntax is shown as:

Object.RotationX [=double]

[0047] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric expression specifying distance. The RotationX property is expressed in twips. If the RotationX value is positive, the rotation point is set to the right of the object's center point. If the RotationX value is negative, the rotation point is set to the left of the object's center point. If the object is spun or rotated, or its rotation point is moved, the RotationX value of the object changes accordingly.

[0048] The RotationY property specifies the distance between the center of the object and its rotation point. Its exemplary syntax is shown as:

Object.RotationY [=double]

[0049] where the Object is a required portion corresponding to the graphical object being evaluated and the double portion is an optional numeric expression specifying distance. The RotationY property is expressed in twips. If the RotationY value is positive, the rotation point is below the object's center point. If the RotationY value is negative, the rotation point is set above the object's center point. If the object is spun or rotated, or its rotation point is moved, the RotationY value of the object changes accordingly.

[0050] To add further functionality, a graphic object may also include any of the additional properties as follows: BackColor( ) as Color, returns or sets the background color of a graphic, ForeColor( ) as Color, returns or sets the foreground color of a graphic; Height( ) as Double, returns or sets the dimensions of a graphic; HsliderEnd( ) as Double, returns or sets the horizontal end position of a graphics slider of the type known in the art; HsliderEndValue( ) as Double, returns or sets the maximum value of the graphics slider; HsliderMouseEnabled( ) as Boolean, returns or sets a value indicating whether the graphics slider is enabled; HsliderStart( ) as Double, returns or sets the horizontal start position of the graphics slider; HsliderStartValue( ) as Double, returns or sets the minimum value of the graphics slider; HsliderSteps( ) as Double, returns or sets the amount of change to the HsliderValue property setting when the user clicks the area between the scroll graphic and the HsliderEnd property; HsliderValue( ) as Double, returns or sets the current position of the scroll bar, whose return value is between the values for the HsliderEndValue and HsliderStartValue properties; Left( ) as Double, returns or sets the distance between the internal left edge of a graphical object and the left edge of its container; Spin( ) as Double, returns or sets the rotation angle from the center of the graphical object; Top( ) as Double, returns or sets the distance between the internal top edge of a graphic and the top edge of its container, Visible( ) as Boolean; returns or sets a value indicating whether a graphical object is visible or hidden; VsliderEnd( ) as Double, returns or sets the vertical end position of the graphics slider, VsliderEndValue( ) as Double, returns or sets the maximum vertical value of the graphics slider; VsliderMouseEnabled( ) as Boolean, returns or sets a value indicating whether the graphics slider is enabled; VsliderStart( ) as Double, returns or sets the vertical start position of the graphics slider; VsliderStartValue( ) as Double, returns or sets the minimum vertical value of the graphics slider; VsliderSteps( ) as Double, returns or sets the amount of change to the VsliderValue property setting when the user clicks the area between the scroll graphic and the VsliderEnd property; VsliderValue( ) as Double, returns or sets the current position of the scroll bar, whose return value is between the values for the VsliderEndValue and VsliderStartValue properties; and Width( ) as Double, returns or sets the dimensions of a graphical object.

Anchor Partners

[0051] A graphical object may be composed of several other objects anchored together. When one of the several other objects is rotated or moved, it is necessary to execute a process in which the other connected objects are informed of the move and are also moved in accordance with the manner of connection. In a preferred embodiment, this functionality is achieved by a process that scans all aspects of the connections of an object to form a collection. Whenever an action is performed on one part or child of a parent object, that same action is broadcase through the collection of objects that make up that one object. In the preferred embodiment illustrated in FIG. 6, a method referred to herein as AddAnchorPartners performs this function to quickly find all aspects of the relationships to construct the action collection. Using C++ pseudocode, the method definition of AddAnchorPartners is depicted below.

void CProgrammable: :AddAnchorPartners (CDrawObjList& olSelection,
BOOL bChildrenOnly, CDrawObjList* olNonRigidParents)

[0052] It should be understood that all of the C++ pseudocode examples herein could be written in other languages. Further, in the programming arts there are numerous ways that the functionality of object anchoring could be implemented, such as by using different data structures, alternative object linking procedures, lookup tables or linked lists.

[0053] The olNonRigidParents provides a list of items that are connected to an object where the AnchorLock property is turned off. The data structure olSelection provides the list of attached objects in the exemplary embodiment. Referring to FIG. 6, AddAnchorPartners is the method, starting at step 69, to create the olSelection list, which is depicted at step 70. This list is created by reviewing the anchoring relationship defined in each object in relationship to the object being acted on.

[0054] The list olSelection can be built as follows:

CDrawObjList olSelection;
olSelection.AddTail (this);
AddAnchorPartners (olSelection);

[0055] The AddTail function used above adds a new object into a collection at the end of the list. In the preferred embodiment described herein, rigid partners refers to two objects anchored together. The one object that is anchored to another has its AnchorLock flag set to True. If the AnchorLock property of an object is set to True, then it is considered rigid. If it is set to False, it is considered nonridig. Movement of rigid and nonrigid objects with respect to the AnchorLock property occurs differently as will be described later in further detail.

[0056] To find the objects anchored to a particular object at step 72, depicted below is C++ pseudocode illustrating an example thereof.

if( m_pAnchorTo && (!bChildrenOnly) )
{
if(olNonRigidParents==NULL)
{
if( !olSelection.Find(m_pAnchorTo) )
{
// not in selection
olSelection.AddTail (m_pAnchorTo);
m_pAnchorTo->AddAnchorPartners (olSelection,
bChildrenOnly, olNonRigidParents);
}
else
{
// only add rigid object
if (m_bAnchorLock)
{
if( !olSelection.Find(m_pAnchorTo) )
{
// not in selection yet
olSelection.AddTail (m_pAnchorTo);
m13 pAnchorTo->AddAnchorPartners (olSelection,
bChildrenOnly, olNonRigidParents);
}
} else
{
// not rigid! just collect
if( !olNonRigidParents->Find (m_pAnchorTo) )
{
olNonRigidParents->AddTail (m_pAnchorTo);
}
}
}
}

[0057] To find the objects anchored from a particular object at step 74, depicted below is C++ pseudocode illustrating an example thereof.

// check for children
int cnt = m_arAnchorFrom.GetSize( );
for(int i=0; i<cnt; i++)
{
if(olNonRigidParents==NULL)
{
// traditional implementation, collect everything
if( !olSelection.Find(m_arAnchorFrom[i]) )
{
// not in selection yet
olSelection.AddTail (m_arAnchorFrom[i]);
m_arAnchorFrom[i]->AddAnchorPartners (olSelection,
bChildrenOnly, olNonRigidParents);
} else
// only add rigid children
if (m_arAnchorFrom[i]->m_bAnchorLock)
{
if( !olSelection.Find(m_arAnchorFrom[o]) )
{
// not in selection yet
olSelection.AddTail (m_arAnchorFrom[i]);
m_arAnchorFrom[i]->AddAnchorPartners (olSelection,
bChildrenOnly, olNonRigidParents);
}
} else
{
// not rigid! just collect
if( !olNonRigidParents->Find(m_arAnchorFrom[i]) )
{
olNonRigidParents->AddTail (m_arAnchorFrom[i]);
}
}
}
}
}

[0058] In the user interface described later, when a user links two objects, the user will have selected a first object and a second object. After actuating the linking or anchoring process, the first object's m_pAnchorTo is set with the second object, and the first object is added to the second object's m_arAnchrorFrom collection. It should be appreciated that any number of objects could be anchored to one particular item. Accordingly, it should be understood that in the foregoing pseudocode that m_arAnchorFrom[i] refers to the i'th object in the collection.

[0059] As previously discussed, once the connection tree is stored in a collection, the appropriate operations or movements on the sub-parts or objects of a complex object can be performed. Through the use of recursion, the ability to reach the finite atomic object is accomplished. When moving an object, as described later in further detail, all the objects anchored to it are moved accordingly.

[0060] In one preferred embodiment, before performing operations on these objects, the initial design state of the objects is saved at step 76. When an object is rotated, its true shape or definition is lost over time by the action performed on it due to mathematical round-off. To speed up operations when a screen is repainting, the information that makes up a shape is transformed, but its initial design state is saved so that the object will not lose its true appearance as numerous operations are performed on it. This step is depicted below in C++ pseudocode.

pos = olSelection.GetHeadPosition( );
while (pos)
{
pC = (CProgrammable*) olSelection.GetNext(pos);
if( !pC->m_bWasDesignStateSaved)
{
pC->SaveDesignState ( );
pC->m_bWasDesignStateSaved = TRUE;
}
}

[0061] After the design state has been saved, various rotate, spin, and movement functions can be performed to the objects at step 78. The application of these motion functions by themselves for a single unconnected object is known in the art. However, any such movement of an object of the present invention will then require corresponding movement to anchored objects. This is achieved by utilizing the anchor partner functionality previously described so that the movement is broadcast to each anchored object for effectuating a movement that corresponds to the connection therebetween. For example, when an object spins, its position will also move. Accordingly, a calculation of how the object has moved is made and all objects attached to this object are offset by the calculated number of pixels.

[0062] In summary, one embodiment of the foregoing method of manipulating and displaying graphical objects on the computer display device of the system includes the step of first creating a graphical object in an object-oriented environment and storing the graphical object in the memory of the computer system. The graphical object may be comprised of a plurality of child graphical objects where the graphical object and each of the child graphical objects has at least one property corresponding to the orientation of a representation of the respective graphical object, such as the Anchor property. Next, the graphical object is scanned by traversing through each of the child graphical objects to form a connection tree having initial values of each property of the respective graphical objects. The connection tree being preferably stored in the memory of the system. In operation, a value of the property of the graphical object will become altered from the initial value which corresponds to a change in the position of the representation of the graphical object. The representation of the graphical object will be graphically displayed on the display device by traversing through the connection tree to broadcast the altered value of the graphical object to each of the child graphical objects, recalculating the value of each property of the child graphical objects based on its initial value and the altered value of the graphical object, and displaying the representation of the graphical object including its child graphical objects on the display device with the recalculated values.

Persistence

[0063] During operation of the system as previously described, it will be appreciated that the various graphical objects created will change positions relative to one another. When ending a presently running program or application, the graphical objects and the values of their present properties can be retained in the conventional manner of saving the various information to disk. However, the data structures of the graphical objects include linked lists. The pointers of these linked lists existing at the time the application or program is running are not saved to disk. Without this information, objects later reloaded and reassembled would not have the proper orientation of their graphical representations.

[0064] In a preferred embodiment illustrated in FIG. 7, persistence 80 is accomplished by creating a Z-order property of a graphical object. Persistence refers to the permanence of an object, that is, the amount of time for which it is allocated space and remains accessible in the system's memory. When the object is reloaded, individual segments of the object are reassembled accordingly. At step 82, a Z-order array 81 is created and stored in memory 18. When the present state of the graphical objects are to be retained, each graphical object is traversed at step 84 and is provided at step 86 with an indexing number. At step 88, the numbers are saved in the Z-order array 81 which provide the numerical index based on the Z-order. At step 90, the Z-order array 81 is stored to disk drive 26 or other storage medium.

Server and Networking

[0065] The server or data addin 44 is in communication with the network 42 (FIG. 1) to read and write data across the network 42 to a particular node, which may be another device, processor, etc. Further, the server moves the data into the container application to update particular variables with new or changed values. The server 44 can be a separate application or interface coupled with the container application internally or remotely. Alternatively, the two applications could be integrated together. As later described, the server in one embodiment updates the values in the Anchor or Rotation properties to provide mechanical emulation.

[0066] In one embodiment shown in FIG. 8, the server communicates through Dynamic Data Exchange (DDE) and maintains the connection with the communication network. The server uses DDE request strings 92 to access information. The DDE request string, graphically depicted in FIG. 8, is formed of three elements including the application 94, topic 96, and item 98. The application 94 identifies the source of the request. The topic 96 identifies the device to be communicated with and the item 98 is the name of the particular address for which a value is to be returned. For example, a DDE request having an application name DDESERVER, a topic name PLC5, and an item C5:0.ACC, corresponds to returning the value stored in address C5:0.ACC of PLC5 100 to the server DDESERVER 44′.

[0067] It should be appreciated that the server could be configured in a number of manners. The server could include a separate processor operating remote from the container application with the information being transferred across the communication lines. Additionally, the server could be software based, such as RSLinx™ produced by Rockwell Software, Inc. of West Allis, Wis., installed within the same computing device that is operating the container application along with an associated I/O module or card of conventional type. As a further example, the server could be an OLE for Process Control (OPC™) server which provides a standardized mechanism to provide data from a data source, communicate the data to an application, and update the data therebetween.

[0068] An exemplary communication network of conventional design is implemented herein. The choice of network will be typically based on the type of system application. In FIG. 9, a ControlNet™ network is illustrated. The ControlNet™ network meets the demands of real-time, high-throughput applications and is well-suited for industrial automation applications where the network will be linked to PLC processors, I/O, computers, and other devices or networks. For example, in this exemplary embodiment, the network 42, such as the ControlNet™ network, is connected with other computer systems 10 or programmable logic controllers 102. The network 42 may be directly connected with an automation system or device 104 or may be further connected to another network 106 or system. Shown in the FIG. 9, the network 106 is a DeviceNet™ network. The network 106 is connected to network 42 through line 109 in the embodiment shown here. The network 106 is connected with various devices which may include a machine or robotic device 108, valve 110, motor 112, sensor 114, or other devices or components 116. It should be understood that the particular configuration will vary depending on the application.

[0069] In an industrial automation or other time-sensitive applications, the representations or graphical images of the graphical objects are updated in substantially real-time to reflect the changes in position attributes which are represented as values of particular variables. Referring to FIG. 10, the server operates independently from the container application to maintain communication with the network and to update any changed values of the properties, as previously discussed. At step 120, the server operates with a conventional interface technique, such as one operating through DDE, OPC™ or Component Object Model (COM) interface. At the step 122, the interface monitors the condition of the variable to detect a change. If a change occurs, the server will receive the new value of the variable at step 124. If at step 126 the value is to be manipulated for any purpose, then such action occurs at step 128 by executing code residing in a corresponding graphical object in the form of an event that is triggered. For example, the value as received from the server may exist in raw data form that must be processed by the event. In other cases, the value may need to be properly scaled for use in the parameter range that has been previously set for the corresponding property. At step 130, the corresponding property is updated with the new or modified value. A recursive function is executed at step 132 to update the anchor partners, described later in more detail. The representation of the graphical object is updated on the display screen at step 134 to reflect the most recent change.

[0070] Referring now to FIG. 11, a graphical user interface 140 of a preferred embodiment is provided. The interface 140 is generated by the container application 24 on the display screen 39 previously described. The interface 140 incorporates the interface for the MS VBA 50 and accordingly has a similar look and feel. However, the interface 140 includes its own menus, toolbars, and other user interface components and functionality as will be described below.

[0071] The interface 140 illustrated in FIG. 11 includes a toolbar 142, a document or page window 144, a toolbox window 146, a properties window 148, a project explorer window 149, and library window 150. The toolbox window 146 displays icons 152 that represent types of objects that a user can place on the page window 144. These objects include ActiveX controls 48 (FIG. 2) and those of the RSTools program.

[0072] The properties window 148 displays all the properties for a selected object. For example, the properties window 148 shown in FIG. 11 is displaying the properties 64 for Graphic1 154 which is a graphical object 52. The graphical representation of Graphic1 154 is displayed on the page window 144. In the present exemplary embodiment, Graphic1 154 was placed on the page window 144 by first opening a graphical object library 156 having a series of preformed graphical objects 158 shown within the library window 150. One of the preformed graphical objects 158, such as Base3, was selected by the user and dragged and dropped with the pointing device or mouse 36 (FIG. 1) on the page window 144 in a desired location or orientation indicated by arrow 159.

[0073] The project explorer window 149 displays a hierarchical list of the currently open projects and its contents. In the present example illustrated in FIG. 11, the project explorer window 149 displays that the project pertaining to Page1 shown on page window 144 includes Graphic1 154 thereon.

[0074] With respect to creating graphical objects 52, a user can create a graphical object by performing a group function 61 (FIG. 4), as previously discussed, on an existing shape, control, symbol or other graphic. Accordingly, a graphical object 52 could be an imported bitmap, symbol or even an existing control object. As soon as the grouping function is applied, it becomes a graphical object 52 and inherits the properties, methods and events of that object. Accordingly, to perform the grouping function of FIG. 4 using interface 140 of FIG. 11, the user would select the shapes to be grouped and then actuate the group function within the application menu. Some graphics, such as the preformed graphical objects 158 from library 156 previously discussed, automatically become a graphical object as soon as they are dropped onto the page window 144. Once grouped, the individual shapes of the graphic object become joined as a single object. Accordingly, dragging or otherwise moving the graphical object, as later described, will automatically move the individual shapes of the graphical object so that the graphical object retains its original form with respect to the relationships between the individual shapes.

[0075] Referring now to FIG. 12, a second graphical object 52, Graphic2 160, has been added to page window 144. In this exemplary embodiment, Graphic2 160 was placed on the page window 144, similar to Graphic1 154, by accessing the library 156 and selecting one of said preformed graphical objects 158. In this case, object Lwrarm 162, which forms the basis of Graphic2 160, was selected by the user from the library 156 and dragged and dropped with the pointing device or mouse 36 (FIG. 1) on page window 144 in a desired location and orientation relative to the other graphical object, Graphic1 154.

[0076] In this particular example, Graphic2 160 is a lower arm of a robot device and in the physical sense would be mounted to pivot about the base, represented here as Graphic1 154. Accordingly, Graphic2 is positioned on Graphic1 to represent the known physical device. Next, the two graphical objects must be anchored together. Basically, anchoring allows the application to keep the two objects together so that one object can be moved about another.

[0077] In one preferred embodiment, anchoring involves selecting both objects in an appropriate order to designate which object is being anchored to the other. Next, the anchoring function is actuated, such as by clicking the anchor icon 164 on the toolbar 142, as shown in FIG. 12. Once clicked, from an externally displayed user interface standpoint, the objects have been anchored. Internally, the container application 24 will implement the previously discussed anchor partner functionality. Once anchored, an anchor point is created which designates the pivot point corresponding to how the objects will move relative to one another. Referring back to FIG. 12, the anchor point between anchored objects 154, 160 is illustrated graphically as anchor point 166. The anchor point 166 belongs to object 160, the object that is anchored to another, so that anchor point can be changed through the properties of that corresponding object, as discussed below.

[0078] In a preferred embodiment, the anchor point can be changed at design time or at runtime. At design time, the anchor point is changed by changing the value of the horizontal distance by the AnchorX property or the value of the vertical distance by the AnchorY. The AnchorX and AnchorY properties were previously discussed an may be modified directly by the user during design time through access to the properties window 148 for each respective object. Alternatively, by clicking and dragging the anchor point 166 with the mouse 36, the AnchorX and AnchorY properties can be automatically changed. At runtime, the anchor point can be changed by setting the value of the AnchorX or AnchorY properties to a numbered value or to the value of another property.

[0079] Referring to FIG. 13, an exemplary embodiment of a robotic device 168 has been constructed by adding objects Graphic3 170 and Graphic4 172 in manner similar to objects 154, 160 discussed above. In particular, Graphic3 170 has been anchored to Graphic2 160 and has an anchor point 174 corresponding thereto. Graphic4 172 has been anchored to Graphic3 170 and has an anchor point 176 corresponding thereto. It should be understood that the anchoring of objects for movement relative to one another could be applied in numerous applications including machines, such as the robotic device of this exemplary embodiment, automated processes or systems, or any other application where two more objects are displayed such that one of the objects moves relative to another one of the objects.

[0080] Once the graphical objects have been anchored to one another, one can apply the necessary code or use the appropriate controls to move one of those objects at runtime. For example, a slider tool from the toolbox 146 represented by the slider icon 178 (FIG. 13) can be configured to control one of said objects. The slider tool per se could be one such as the RSSlider tool from the RSTools program previously mentioned. The slider tool comprises a slider object, for example RSSlider1, the graphical representation of which resembles a slider switch. By adding code to RSSlider1, the value of the Anchor property of one of the graphical objects could be tied to the value between StartValue and EndValue properties of the RSSlider1 object. Example code for a subroutine of RSSlider1 to achieve the foregoing is as follows:

Private Sub RSSlider1_Change (ByVal Value As Double,
Graphic2.Anchor = Value
End Sub

[0081] Accordingly, during runtime, movement of the graphical slider switch by the user with the mouse 36 will change the value of the RSSlider1 object, which will correspondingly change the Anchor property of Graphic2. Since, as previously described, the Anchor property relates to the angle that an object can move relative to its anchor point, Graphic2 will pivot from its anchor point 166 from Graphic1 relative to the change of the RSSlider1. Further, any other objects anchored to Graphic2, will move with Graphic2. However, whether these other anchored objects maintain their original angle while rotating with its parent object will depend on the setting of the AnchorLock property which was previously described. While the foregoing illustrates one way to move an object, it will be appreciated that using controls from RSTools or Visual Basic, for example, one can apply other mechanical emulation techniques to these objects. Further, the values of the properties of the graphical objects can be tied to other components or even physical objects associated with the graphical objects through the server 44 to provide real-time mechanical emulation, as previously discussed.

[0082] In the preferred embodiment described above, the rotation point of an object can also be changed at design time or at runtime. The rotation point of an object represents the location around which an object is rotated. At design time or runtime, the rotation point can be changed by changing the value of the horizontal distance by the RotationX property or the value of the vertical distance by the RotationY property. These properties were previously discussed and may be modified directly by the user during design time through access to the properties window 148 for each respective object. Alternatively, by clicking and dragging the rotation point with the mouse 36, the RotationX and RotationY properties can be automatically changed. In the exemplary embodiment of the robotic device shown in FIG. 13, the rotation point of Graphic3 is shown for illustrative purposes as point 180. However, it should be appreciated that in this embodiment, each object would have a rotation point that could be graphically represented. At runtime, the rotation point can be changed by setting the value of the RotationX or RotationY properties to a numbered value or to the value of another property. Further, the Rotation property of each object may be changed at design time or runtime as similarly described.

[0083] One can also apply the necessary code or server association to rotate an object at runtime, similar to the Anchor controls previously described. As previously described and illustrated in FIG. 8, the server 44 can be used to update the values of graphical object properties. Referring to FIG. 14, one preferred embodiment of utilizing the server 44 through the user interface 140 is disclosed. FIG. 14 further utilizes the exemplary embodiment of the robotic device 168, however, it should be understood that the underlining technique of linking server variables to particular graphical objects could be accomplished in a variety of forms and with any configuration of graphical objects.

[0084] Interface 140 includes a server window 180 linked to the server 44 (FIG. 8). Defined servers are listed in the server window 180 to facilitate the data linking process by the user. In the embodiment of FIG. 14, server window 180 includes an excel link 182 having a data address rlcl, which, for example, could relate to a particular memory address from a remote device such as a PLC. In the illustrated embodiment of interface 140, the data address rlcl can be linked to a graphical object by dragging and dropping the data address rlcl on the graphical object. In the present example, line 184 illustrates address rlcl being dragged and dropped with the mouse onto Graphic3. Once dropped, a select property window 186 prompts the user to select the property of the object to be linked. In the present example, the Anchor property has been selected for illustrative purposes. A property datalink window 188 designates that the Anchor property for Graphic1 is linked to rlcl in block 190. In this present example, Graphic3 is the upper arm of the robotic device 168. The angle of Graphic3 from Graphic2 is thereby determined by its Anchor property and is displayed in text block 192 where Label1 is associated with the excel link 182.

[0085] Referring to FIG. 15, a Microsoft Excel application 194 produced by the Microsoft Corporation of Redmond, Wash., has been executed. The excel link 182, shown as data link 196 in FIG. 8, is tied to this Excel application 194, except the Excel application 194 serves as the server 44, illustrated here as DDESERVER 44. Since the Excel application 194 uses the DDE, it is being used in this exemplary embodiment to illustrate an application of the server 44. However, it should be understood, as previously described, that the present invention could utilize any one of a number of server protocols or applications including RSLinx™, OPC™ or other data transmission methods. Further, it should be understood that the application and use of a server as described herein, such as the DDESERVER 44, includes any necessary kernel process which manages the resources for the server and completes any interprocess communication that is necessary.

[0086] During execution of Page 1 from the container application 24 (FIG. 3), a runtime window 198 is displayed showing the graphical objects, which were previously configured and anchored, and moving the graphical objects in accordance with updates of values of any properties of the objects. In the present exemplary embodiment, the Anchor property of Graphic3 originally had a value of 0, as shown in block 200 of FIG. 14. During execution, Label1 of the Excel application 194, shown in block 202 of FIG. 15, has been updated to a value of 30. Accordingly, through the DDE and data link process previously described, the Anchor property of Graphic3 has been updated to a value of 30, as also shown in the text block 192. Accordingly, Graphic3 has moved 30 degrees from its original position designated at position 204.

[0087] Since Graphic3 has pivoted from its anchor point 174 (FIG. 13) with Graphic2, Graphic1 and Graphic2 have remained in their original positions. However, where Graphic4 is anchored to Graphic3, Graphic4 has moved with Graphic3. Since the AnchorLock property of Graphic4 was set to true, Graphic4 has maintained its original angled relationship with Graphic3 through their connection at anchor point 176 (FIG. 13). Since at runtime, the various design time graphical representations of anchor points are not typically needed, anchor point 176 is represented in FIG. 15 at position 206 for reference purposes only. If on the other hand, the AnchorLock property of Graphic4 had been set to false, Graphic4 would have moved with Graphic3 since these objects are anchored to one another. However, Graphic4 would not have maintained the same angled relationship with Graphic3. Instead, Graphic4 would remain in a similar orientation represented generally at position 208.

[0088] Through the foregoing example, the mechanical emulation created by the graphical objects can be appreciated. Further, for example, the robotic device 168 could be constructed based on a physical robotic device where the server would then update the robotic device 168 in accordance with all movements of the various components of the physical robotic device where each of the various components are associated with particular graphical objects of the device 168 being represented. Alternatively, since the server can both read or write updates, the reader should appreciate that the graphical objects could equally be used to control an external device or process where the flow of data is simply reversed, as illustrated by the dual data flow representation of network 42 in FIGS. 1 and 8, to allow the server to write data updates across the network to a receiving location. In this case, manipulation of the graphical objects will cause the changed values of the properties to be sent from the server to control the linked components or devices. Additionally, in some applications, the container application 24 may be limited to only displaying the graphical objects in a runtime mode where such a display will serve to monitor or control the particular application that has been modeled.

[0089] Accordingly, it can be seen that the method for joining graphical objects displayed on the graphical window of the display screen of the present invention allows movement of one of the graphical objects to correspondingly move another one of the graphical objects joined or anchored therewith. In the preferred method or system, the computer system is operated in an object-oriented environment. First and second graphical objects are provided with a representation of them being dragged in the graphical window in response to position commands from a user interface coupled with the computer system to position the representations in a desired orientation relative to one another. The first and second graphical objects are operatively joined or anchored at an anchor point. Each graphical object has an anchor property corresponding to the graphical object's position relative to its anchor point.

[0090] The method or system of graphically monitoring an automated process having a plurality of different types of computer-monitored or physical components can be summarized in one preferred embodiment by the following. First and second graphical objects are provided and operatively connected to one another such that movement of a representation of one of the graphical objects on the display screen correspondingly affects the movement of the other representation. Each of the first and second graphical objects are associated or linked with one of the plurality of different types of computer-monitored components. Data is received from the automated process where the data represents position or state changes of the computer-monitored components.

[0091] In another embodiment, the graphical objects are selected from a library database. Further, the representations of the selected objects may have a graphical shape corresponding to physical attributes or a general appearance of the computer-monitored components. Where the system is to provide mechanical emulation for user display or control purposes, during design time the user will determine a relationship between the two computer-monitored components or sub-components thereof based on a physical proximity factor and a physical connection factor. The physical proximity factor corresponds to distance or orientation between the components or the lapped relationship between. The physical connection factor relates to the manner of mechanical connection, such as a pivot point. These relationships may be inherently known by the user, obtained from visual or measured inspection of the components by the user, or among other ways, obtained from review of the component's specifications. Accordingly, once the first and second graphical objects have been created or retrieved, their representations may be graphically displaying on the display device with the physical proximity factor being represented with the orientation of the representations of the first and second graphical objects relative to one another. In some cases this may require positioning the graphical objects in lapped relationship. The physical connection factor is represented with positioning and implementing an anchor point through the anchoring process, as previously discussed, which serves to operatively connect the representations of the first and second graphical objects from that point, as well as provide a pivot point, if desired.

[0092] The physical components may correspond to actual physical components that the user may examine. Alternatively, the physical components may relate to known components having known relationships with one another or may relate only exist in a virtual sense in a proposed design to be modeled or simulated with graphical objects of the present invention.

[0093] Referring back to the previous discussion where data is received from the automated process, predetermined properties of the first and second graphical objects are then updated with the data. These properties are predetermined in the preferred embodiment by nature of their association in the data linking process. The representations of the first and second graphical objects are displayed and then moved in response to updating the predetermined properties with the data as it is received.

[0094] With respect to the use of the term “automated process,” it should be noted that this term used herein refers to those processes or system that are automated with respect to the general meaning of the term, as well as those systems that are automated through the use of some network or computer sharing or distribution of information, but not to say that all human observation, effort, or decision making has been eliminated. For example, a factory automation process may include a conveyor system or production line having a series of workstations. A user display for monitoring the factory automation process may have being configured in accordance with the teachings of the present invention where components of the process are represented and linked with graphical objects. However, the fact that some workstations or aspects of the process are not completely automated in the system does not prevent the ability of the user display from representing some of the process or its state of present operation through mechanical emulation of the accessible components of the process.

[0095] Although the invention has been described by reference to some embodiments it is not intended that the novel device be limited thereby, but that modifications thereof are intended to be included as falling within the broad scope and spirit of the foregoing disclosure, the following claims and the appended drawings.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2151733May 4, 1936Mar 28, 1939American Box Board CoContainer
CH283612A * Title not available
FR1392029A * Title not available
FR2166276A1 * Title not available
GB533718A Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7207027 *Dec 23, 2004Apr 17, 2007Xilinx, Inc.Algorithmic and dataflow graphical representation of MATLAB
US8484250 *Sep 30, 2005Jul 9, 2013Rockwell Automation Technologies, Inc.Data federation with industrial control systems
US8875032 *May 7, 2009Oct 28, 2014Dialogic CorporationSystem and method for dynamic configuration of components of web interfaces
US20090282349 *Nov 12, 2009Dialogic CorporationSystem and method for dynamic configuration of components of web interfaces
US20110246875 *Sep 30, 2010Oct 6, 2011Symantec CorporationDigital whiteboard implementation
US20130111380 *May 2, 2013Symantec CorporationDigital whiteboard implementation
Classifications
U.S. Classification715/700
International ClassificationG09G5/00, G06T11/60
Cooperative ClassificationY10S715/964, G06T11/60
European ClassificationG06T11/60
Legal Events
DateCodeEventDescription
Aug 28, 2003ASAssignment
Owner name: ROCKWELL SOFTWARE INC., WISCONSIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMILTON, JEFFREY L.;SCHLUSSMAN, BRET D.;REEL/FRAME:014441/0319;SIGNING DATES FROM 20030804 TO 20030815