Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040006776 A1
Publication typeApplication
Application numberUS 09/012,904
Publication dateJan 8, 2004
Filing dateJan 23, 1998
Priority dateDec 20, 1993
Also published asCA2178941A1, CA2178941C, DE69433325D1, DE69433325T2, EP0741515A1, EP0741515A4, EP0741515B1, EP1400171A1, US5827690, US5849992, WO1995017085A1
Publication number012904, 09012904, US 2004/0006776 A1, US 2004/006776 A1, US 20040006776 A1, US 20040006776A1, US 2004006776 A1, US 2004006776A1, US-A1-20040006776, US-A1-2004006776, US2004/0006776A1, US2004/006776A1, US20040006776 A1, US20040006776A1, US2004006776 A1, US2004006776A1
InventorsHarry Meade, Paul DiTullio, Daniel Pollock
Original AssigneeGenzyme Transgenics Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Transgenic production of antibodies in milk
US 20040006776 A1
Abstract
A method for the production of monoclonal antibodies in mammal's milk, through the creation of transgenic animals that selectively express foreign antibody genes in mammary epithelial cells.
Images(4)
Previous page
Next page
Claims(18)
What is claimed is:
1. A method for obtaining heterologous immunoglobulin from the milk of a transgenic mammal comprising the steps of:
a. introducing into the germline of said mammal DNA comprising the protein-coding sequences of said immunoglobulin, said DNA operatively linked at its 5′ terminus to a promoter sequence that supports the preferential expression of said genes in mammary gland epithelial cells, and said DNA operatively linked at its 3′ terminus to a sequence containing a polyadenylation site, and
b. obtaining milk from said mammal.
2. The method of claim 1 wherein said mammal is selected from the group consisting of mice, cows, sheep, goats, oxen, camels, and pigs
3. The method of claim 1 wherein said promoter is selected from the group consisting of the casein promoter, the beta lactoglobulin promoter, the whey acid protein promoter, and the lactalbumin promoter.
4. The method of claim 1 wherein said immunoglobulin comprises heavy and light chains.
5. The method of claim 1 wherein said immunoglobulin comprises a single polypeptide chain.
6. The method of claim 1 wherein said immunoglobulin is of human origin.
7. The method of claim 1 wherein said immunoglobulin is purified from the milk of said mammal.
8. A transgenic non-human mammal all of whose germ cells and somatic cells contain recombinant DNA sequences encoding immunoglobulin heavy and light chains, wherein said sequences are operatively linked at their 5′ termini to a promoter sequence that supports the preferential expression of said genes in mammary gland epithelial cells, and operatively linked at their 3′ termini to a sequence containing a polyadenylation site.
9. The transgenic mammal of claim 8 wherein said mammal is selected from the group consisting of mice, cows, sheep, goats, oxen, camels, and pigs.
10. The transgenic mammal of claim 8 wherein said promoter is selected from the group consisting of the casein promoter, the beta lactoglobulin promoter, the whey acid protein promoter, and the lactalbumin promoter.
11. The transgenic mammal of claim 8 wherein said immunoglobulin comprises heavy and light chains.
12. The transgenic mammal of claim 8 wherein said immunoglobulin comprises a single polypeptide chain.
13. The transgenic mammal of claim 8 wherein said immunoglobulin is of human origin.
14. An isolated purified DNA comprising in the 5′ to 3′ direction
a) 5′ promoter sequences from the beta casein gene,
b) a unique Xho I restriction site, and
c) 3′ untranslated sequences from the goat beta casein gene, wherein a) comprises nucleotides −6168 to −1 of the goat beta casein, wherein nucleotide 1 is the first nucleotide of the beta casein translation initation codon, b) comprises the sequence CGCGGATCCTCGAGGACC, and c) comprises the sequence starting at the PpuMI site found at bp648 of the beta casein cDNA sequence, and continuing for 7.1 kb downstream, termininating in the sequence
TAAGGTCCAGAGACCGAGACCCACTCACTAGGCAACTGGTCCGRCCAGCTGTTAAGTGA.
15. The DNA of claim 14 wherein an immunoglobulin cDNA is inserted into b), said DNA directing the mammary-gland-specific expression of said immunoglobulin in transgenic animals.
16. The DNA of claim 15 wherein said immunoglobulin comprises heavy and light chains.
17. The DNA of claim 15 wherein said immunoglobulin comprises a single polypeptide chain.
18. The DNA of claim 15 wherein said immunoglobulin is of human origin.
Description
    FIELD OF THE INVENTION
  • [0001]
    This invention pertains to a method for the production of monoclonal antibodies in mammal's milk, specifically through the creation of transgenic animals that selectively express foreign antibody genes in mammary epithelial cells.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Immunoglobulins are heteropolymeric proteins that are normally synthesized, modified, assembled, and secreted from circulating B lymphocytes. Using recombinant DNA technology, it is possible to program cells other than B-lymphocytes to express immunoglobulin genes. The difficulties encountered in this effort stem from several factors: 1) Both heavy and light chains of immunoglobulins must be co-expressed at appropriate levels; 2) Nascent immunoglobulin polypeptides undergo a variety of co- and post-translational modifications that may not occur with sufficient fidelity or efficiency in heterologous cells; 3) Immunoglobulins require accessory chaperone proteins for their assembly; 4) The synthetic and secretory capacity of the cell may be inadequate to secrete large amounts of heterologous proteins; and 5) The secreted immunoglobulins may be unstable in the extracellular milieu of a foreign cell.
  • [0003]
    Because immunoglobulins have many therapeutic, diagnostic and industrial applications, there is a need in the art for expression systems in which these proteins can be reproducibly manufactured at a high level, in a functional configuration, and in a form that allows them to be easily harvested and purified The development of transgenic animal technology has raised the possibility of using large animals as genetically programmed protein factories. P.C.T. application WO 90/04036 (published Ap. 19, 1990) discloses the use of transgenic technology for immunoglobulin expression. WO 92/03918 (Mar. 19, 1992) and WO 93/12227 (Jun. 24, 1993) teach the introduction of unrearranged immunoglobulin genes into the germline of transgenic animals. The use of intact immunoglobulin genes (including their respective promoter regions) will result in their expression in lymphocytes and secretion into the bloodstream of the host animal; this necessitates a strategy for suppressing the expression of the host's endogenous immunoglobulins, and raises the problem of purifying the immunoglobulins from serum, which contains many other proteins, including proteolytic enzymes. Furthermore, if the transgenic approach is chosen, heavy and light chain genes must both be incorporated into the host genome, in a manner that enables their comcomittant expression.
  • [0004]
    Another option in creating transgenic animals is to link the gene of interest to a heterologous transcriptional promoter that only functions in a defined cell type within the host. In this manner, tissue-specific expression of the transgene may be programmed. U.S. Pat. No. 4,873,316 (issued Oct. 10, 1989) discloses the production of recombinant tissue plasminogen activator (TPA) in the milk of transgenic mice in which the TPA gene is linked to the promoter of the milk protein casein. Other proteins that have been expressed in a similar fashion include cystic fibrosis transmembrane conductance regulator (DiTullio et al., Bio/Technology 10:74, 1992), urokinase (Meade et al., Bio/Technology 8: 443, 1990), interleukin-2 (Buhler et al., Bio/Technology 8:140, 1990), and antihemophilic factor IX (Clark et al., Bio/Technology 7:487, 1989). Notably, these proteins are all simple single-chain polypeptides that do not require multimerization or assembly prior to secretion.
  • [0005]
    It has now been found that when a transgenic mammal is created carrying paired immunoglobulin light and heavy chain genes under the control of the casein promoter, such an animal produces large amounts of assembled immunoglobulins which are secreted in its milk. Using the DNA constructs of the present invention, a surprisingly high efficiency of co-integration of heavy and light chain genes is observed. Using the method and constructs of the present invention, it is possible for the first time to program a mammary epithelial cell to produce and assemble complex tetrameric glycoproteins and secrete them in high quantities.
  • [0006]
    Accordingly, it is an object of the, present, invention to provide methods for the large-scale production of immunoglobulins in the milk of transgenic mammals.
  • [0007]
    Another object of the invention is to provide methods for the design of synthetic immunoglobulins that can be produced in large quantities in milk.
  • [0008]
    Yet another object of the invention is to provide methods for administering therapeutically beneficial antibodies to suckling young, by creating female mammals that excrete such antibodies into their milk.
  • [0009]
    A further object of the invention is a transgenic non-human mammal having germ and somatic cells with recombinant DNA sequences encoding immunoglobulin light and heavy chains, where said sequences are operatively linked at their 5′ termini to a mammary specific promoter and at their 3′ end to a sequence comprising a polyadenylation site.
  • [0010]
    A further object of the invention is a casein promoter cassette comprising in the 5′ to 3′ direction:
  • [0011]
    a) 5′ promoter sequences from the beta casein gene,
  • [0012]
    b) an XhoI restriction site, and
  • [0013]
    c) 3′ untranslated sequences from the goat beta casein gene.
  • [0014]
    These and other objects of the present invention will be apparent to those of ordinary skill in the art in light of the present specification, drawings, and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0015]
    [0015]FIG. 1 is a schematic representation of the Bc62 plasmid, which contains a 13.9 kb Sal I fragment that comprises cDNA encoding immunoglobulin light chain, flanked on its 5′ and 3′ termini by goat beta casein sequences.
  • [0016]
    [0016]FIG. 2 is a schematic representation of the Bc61 plasmid, which contains a 14.6 kb Sal I fragment that comprises cDNA encoding immunoglobulin heavy chain, flanked on its 5′ and 3′ termini by goat beta casein sequences.
  • [0017]
    [0017]FIG. 3 depicts the immunoblot detection of human immunoglobulin heavy chain in the milk, of transgenic mice that were created using the beta casein promoter-linked immunoglobulin genes shown in FIGS. 1 and 2.
  • [0018]
    [0018]FIG. 4 depicts the immunoblot detection of human immunoglobulin light chain in the milk of transgenic mice that were created using the beta casein promoter-linked immunoglobulin genes shown in FIGS. 1 and 2.
  • SUMMARY OF THE INVENTION
  • [0019]
    In one aspect, this invention comprises a method for obtaining heterologous immunoglobulins from the milk of transgenic mammals. Another aspect of the prevent invention comprises the method for creating transgenic mammals by introducing into their germline immunoglobulin cDNA linked to a milk-specific promoter.
  • [0020]
    In another aspect, the present invention comprises transgenic mammals having germ cells and somatic cells having recombinant DNA sequences comprising immunoglobulin cDNA linked to a milk-specific promoter.
  • [0021]
    In still another aspect, the present invention comprises an isolated DNA comprising an expression cassette having 5′ and 3′ non-coding sequences derived from the goat beta casein gene linked via a unique restriction site that serves as a convenient cloning site for immunoglobulin coding sequences.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0022]
    All patent applications, patents and literature cited in this specification are hereby incorporated by reference in their entirety. In the case of inconsistencies, the present disclosure will prevail.
  • [0023]
    The present invention pertains to a method for the production of monoclonal antibodies that are excreted into the milk of transgenic animals and the method for production of such animals. This is achieved by engineering DNA construct's in which DNA segments encoding specific paired immunoglobulin heavy and preferentially expressed in mammary epithelial cells. The recombinant DNAs containing the promoter-linked heavy and light chain genes are then coinjected into preimplantation embryos. The a progeny are screened for the presence of both transgenes.
  • [0024]
    Representative females from these lines are then milked, and the milk is analyzed for the presence of the monoclonal antibody. In order for the antibody to be present, both heavy and light chain genes must be expressed concurrently in the same cell. The antibodies may be purified from the milk, or the milk itself, comprising the immunoglobulins, may be used to deliver the antibodies to a recipient. This is discussed below.
  • [0025]
    The immunoglobulin genes useful in the present invention may be obtained from natural sources e.g. individual B cell clones or hybridomas derived therefrom. Alternately, they may comprise synthetic single-chain antibodies in which the light and heavy variable regions are expressed as part of a single polypeptide. Furthermore, recombinant antibody genes may be used that have been predictively altered by nucleotide substitutions that do or do not change the amino acid sequence, by addition or deletion of sequences, or by creation of hybrid genes in which different regions of the polypeptide are derived from different sources. Antibody genes by their nature are extremely diverse, and thus naturally tolerate a great deal of variation. It will be appreciated by those skilled in the art that the only limitation for producing an antibody by the method of the present invention is that it must assemble into a functional configuration and be secreted in a stable form into the milk.
  • [0026]
    The transcriptional promoters useful in practicing the present invention are those promoters that are preferentially activated in mammary epithelial cells, including promoters that control the genes encoding milk proteins such as caseins, beta lactoglobulin (Clark et al., (1989) Bio/Technolog 7: 487-492), whey acid protein (Gordon et al., (1987) Bio/Technology 5: 1183-1187), and lactalbumin (Soulier et al., (1992) FEBS Letts. 297: 13,) Casein promoters may be derived from the alpha, beta, or kappa casein genes of any mammalian species; a preferred promoter is derived from the goat beta casein gene (DiTullio, (1992) Bio/Technology 10:74-77).
  • [0027]
    For use in the present invention, a unique XhoI restriction site is introduced at the 3′ terminus of the promoter sequence to allow the routine insertion of immunoglobulin coding sequences. Preferably, the inserted immunoglobulin gene is flanked on its 3′ side by cognate genomic sequences from a mammary-specific gene, to provide a polyadenylation site and transcript-stabilizing sequences. Transcription of the construct in vivo results in the production of a stable mRNA containing casein-derived 5′ untranslated sequences upstream of the translational initiator codon of the immunoglobulin gene and 3′ untranslated sequences downstream of the translational termination codon of the immunoglobulin gene. Finally, the entire cassette (i.e. promoter-immunoglobulin-3′ region) is flanked by restriction sites that enable the promoter-cDNA cassette to be easily excised as a single fragment. This facilitates the removal of unwanted prokaryotic vector-derived DNA sequences prior to injection into fertilized eggs.
  • [0028]
    The promoter-linked immunoglobulin heavy and light chain DNAs are then introduced into the germ line of a mammal e.g. cow, sheep, goat, mouse, oxen, camel or pig. Mammals are defined herein as all animals, excluding humans, that have mammary glands and produce milk. Mammalian species that produce milk in large amounts over long periods of time are preferred. Typically, the DNA is injected into the pronuclei of fertilized eggs, which are then implanted into the uterus of a recipient female and allowed to gestate. After birth, the putative transgenic animals are tested for the presence of the introduced DNA This is easily achieved by Southern blot hybridization of DNA extracted from blood cells or other available tissue, using as a probe a segment of the injected gene that shows no cross hybridization with the DNA of the recipient species. Progeny that show evidence of at least one copy of both heavy and light-chain immunoglobulin genes are selected for further analysis.
  • [0029]
    Transgenic females may be tested for immunoglobulin secretion into milk, using any of the immunological techniques that are standard in the art (e.g. Western blot, radioimmunoassay, ELISA) The anti-immunoglobulin antibodies used in this analysis may be polyclonal or monoclonal antibodies that detect isolated heavy or light chains or others that react only with fully assembled (H2L2) immunoglobulins.
  • [0030]
    The recombinant immunoglobulins are also characterized with respect to their functionality, i.e. binding specificity and affinity for a particular antigen. This is achieved using immunological methods that are standard in the art, such as Scatchard analysis, binding to immobilized antigen., etc. The stability characteristics of an immunoglobulin in the milk of a given species are also assayed, by applying the above-described detection methods to milk that has been incubated for increasing times after recovery from the animal.
  • [0031]
    The immunoglobulins produced by the methods of the present invention may be purified from milk, using adsorption to immobilized Protein G, column chromatography, and other methods known to those of ordinary skill in the art of antibody purification.
  • [0032]
    The level of production of recombinant immunoglobulins in is an individual transgenic mammal is primarily determined by the site and manner of integration of the transgene after injection into the fertilized egg. Thus, transgenic progeny derived from different injected eggs may vary with respect to this parameter. The amount of recombinant immunoglobulin in milk is therefore monitored in representative progeny, and the highest-producing females are preferred.
  • [0033]
    Those skilled in the art will recognize that the methods of the present invention can be used to optimize the production of natural and synthetic immunoglobulins. The steps of creating transgenic animal, testing for the presence of both heavy and the milk of female progeny, and, finally, assessing the quality of the resulting antibodies, can be repeated sequentially, without undue experimentation, to establish preferred constructs for different applications.
  • [0034]
    According to the present invention, the nature of the recombinant immunoglobulins and their specific mode of use can vary. In one embodiment, the present invention encompasses high-level expression of antibodies that are harvested and purified from milk and used in purified form. High-level expression is defined herein as the production of about 1 mg/ml of protein. In another embodiment, antibodies are engineered that provide protection to humans against infectious diseases; therapeutic administration is then achieved by drinking the milk. In a still further embodiment, lactating animals are engineered to produce antibodies specifically beneficial to their offspring, which acquire them through suckling. In a still further embodiment, animals produce an antibody that protects the lactating mammal itself against breast pathogens e.g. bacteria that produce mastitis.
  • [0035]
    The unexpectedly high-volume expression of immunoglobulins using the method and constructs of the present invention also allows the use of such immunoglobulins in pharmaceutical and chemical settings. By way of non-limiting example the method of the present invention can be used to produce high levels of tetrameric antibodies directed against various pathogens (e.g. E. coli, Salmonella, hepatitis B virus), biologically active peptides (e.g. erythropoietin, tissue plasminogen activator, gamma interferon) and for use in chemical reactions directed against various enzymes. Monoclonal antibodies that bind to the transition state of a chemical reaction can be used in industrial-scale production. Furthermore, monoclonal antibodies are often immobilized on columns for use in the purification of biopharmaceuticals; in such cases, production of the antibodies represents a significant fraction of the cost of purification. The methods of the present invention-facilitate the production of high volume, low cost antibody stocks for use in these types of applications.
  • [0036]
    The present invention is further described in the following working examples, which are intended to illustrate the invention without limiting its scope.
  • EXAMPLE 1 Construction of a Milk-Specific Promoter Cassette
  • [0037]
    The present invention encompasses a recipient vector into which many different immunoglobulin genes can be interchangeably inserted. The vector contains 5′ milk-specific promoter sequences and 3′ untranslated genomic sequences that flank an XhoI cloning site. This cloning is unique because it is the only one present in the vector. Preferably, the entire expression cassette should be flanked by restriction sites that allow the easy excision of the promoter-linked immunoglobulin gene.
  • [0038]
    In this Example, the promoter and 3′ genomic sequences were derived from the goat beta casein gene. The gene was cloned and characterized as described by Roberts et al., 1992, Gene 121:255-262, which is hereby incorporated by reference.
  • [0039]
    The expression cassette, prior to insertion of immunoglobulin genes, consists of 6.2 kb upstream of the translational start of the beta casein coding sequence and 7.1 kb of genomic sequence downstream of the translational stop of the beta casein gene. The TaqI site just upstream of the translational start codon was changed to an XhoI site. This unique XhoI cloning site is at the junction of the upstream and downstream sequences.
  • [0040]
    It is this XhoI site, included in the sequence CGCGGATCCTCGAGGACC, into which recombinant immunoglobulin genes are inserted. (D. Tullio, (1992) Bio/Technology 10:74-77)
  • [0041]
    The 3′ beta casein region begins at the PpuMI site found in Exon 7 and continues for 7.1 kb downstream. Included in this sequence are the remaining 18 bp of Exon 7, and all of Exon 8 and Exon 9. These encode the 3′ untranslated regions of the goat beta casein gene, and terminate with the sequence:
    TAAGGTCCACAGACCGAGACCCACTCACTAGGCAACTGGTCCGTCCAGCTGTTAAGTGA.
  • [0042]
    To engineer restriction sites flanking the casein cassette, the goat beta casein control sequences were first cloned into the SuperCosl vector (#251301, Stratagene, La Jolla, Calif.) with flanking NotI and SaII sites. This plasmid was then modified by changing the NotI site to a SaII site. This created a 13.3 kb SaIII fragment containing the beta casein expression cassette within the gbc163 vector.
  • EXAMPLE 2 Construction of Promoter-linked Monclonal Antibody Genes
  • [0043]
    In this Example, the genes encoding a human monoclonal antibody directed against a colon cancer cell-surface marker were linked to the casein promoter. cDNAs encoding the light and heavy chains of this antibody were cloned from an antibody-secreting hybridoma cell line into a pUC19-derived vector. The light and heavy chain cDNAs were present on HindIII/EcoRI fragments of 702 bp and 1416 bp, respectively.
  • [0044]
    To adapt the genes for insertion into the casein promoter cassette, XhoI restriction sites were engineered at both ends of each DNA segment as detailed below. In the same step, the region upstream of the immunoglobulin translation initiation codon was modified so that it contained sequences similar to those in the analogous region of the beta casein gene.
  • [0045]
    Light chain gene: The pUC19 plasmid containing the light chain cDNA insert was digested with HindIII, blunt-ended by treatment with the Klenow fragment of DNA Polymerase I, and ligated to an oligonucleotide containing an XhoI recognition sequence (#1030, New England Biolabs, Beverly, Mass.).
  • [0046]
    The region immediately upstream of the initiating ATG was then mutagenized using an oligonucleotide with the following sequence: 5′ AGT GAA TTC ATG CTC GAG AGC CAT GGC CTG GATC 3′. Digestion of the final plasmid with XhoI produced the modified light chain cDNA that was flanked by Xhol cohesive ends
  • [0047]
    The light chain cDNA was then inserted into the unique XhoI cloning site of the gbc163 expression vector described in Example 1, yielding plasmid Bc62 (FIG. 1).
  • [0048]
    Heavy chain gene: The pUC19 plasmid containing the heavy chain cDNA was mutagenized using an oligonucleotide with the following sequence: 5′
    5′
    AGT GAA TTC ATG CTC GAG AGC CAT GGC CTG GATC 3′.
  • [0049]
    3.′ The resulting plasmid contains an XhoI site upstream of the heavy chain translation initiation codon.
  • [0050]
    The downstream HindIII site was converted to an Xhol site using a synthetic adapter with the sequence 5′ AGC TCC TCG AGG CC 3.′ Digestion of the modified plasmid with XhoI produced the the 1.4 kb modified heavy chain cDNA flanked by XhoI cohesive ends. This fragment was then inserted into the unique XhoI cloning site of gbc163 to yield Bc61 (FIG. 2).
  • [0051]
    Prior to injection, promoter-linked light and heavy chain genes were isolated from Bc61 and Bc62, respectively, by digestion with SalI. The fragments were then purified by gel electrophoresis followed by CsCl equilibrium gradient centrifugation The DNA was dialyzed extensively against distilled water prior to quantitation.
  • EXAMPLE 3 Production of Transgenic Mice
  • [0052]
    The casein promoter-linked DNA fragments encoding the immunoglobulin heavy and light chains, obtained as described in Example 2, were injected into fertilized mouse eggs using procedures that are standard in the art, as described in Hogan, B., Constantini, F., and Lacey, E., Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratories, 1986). The resulting progeny were then analyzed for the presence of both antibody gene sequences. DNA was extracted from tail biopsy material and probed using Southern blot analysis. The probes used in the hybridization were the original cDNAs encoding the heavy and light chains. As seen in Table 1, most of the first generation transgenic progeny had incorporated both transgenes.
    TABLE 1
    Summary of Bc61-Bc62 Mice
    Founder Sex Bc61 Bc62 Expression
    1-2  M Pos. Pos.
    1-3  M Pos. Pos. light chain only
    1-9  M Pos. Pos.
    1-15 F Neg. Pos. Low level
    lambda chain
    1-16 F Pos. Neg.
    1-19 F Pos. Pos. N.D
    1-23 F Pos. Pos.   1-3 mg/ml
    1-24 F Pos. Pos. low level
    1-25 M Pos. Neg.
    1-39 M Pos. Pos.
    1-13 F Pos. Pos. N.D.
    1-56 F Pos. Pos. N.D.
    1-64 M Pos. Pos.
    2-76 F Pos. Pos.   1-3 mg/ml
    2-82 F Pos. Pos.   1-3 mg/ml
    1-72 M Pos. Pos.
    2-92 F Pos. Pos. 0.2-0.5 mg/ml
    2-95 F Pos. Pos. 0.2-0.5 mg/ml
  • EXAMPLE 4 Analysis of Recombinant Immunoglobulins in Milk
  • [0053]
    Samples of milk from the transgenic mice obtained as described in Example 3 were analyzed for the presence of the heterologous immunoglobulin by Western blot. The heavy chain of the antibody was detected using a horseradish peroxide-linked polyclonal antibody directed against human gamma heavy chain (Antibody #62-8420, Zymed, South San Francisco, Calif.) as shown in FIG. 3. The light chain was detected using antibodies to the human lambda light chain, (Antibody #05-4120, Zymed, South San Francisco, Calif.) shown in FIG. 4. In these Figures, it can be seen that immunoreactive heavy and light chains can be detected in the milk of several animals, but not in the negative control animal CD-1. Human immunolglobulin can be detected in milk from founder 1-23 and from the progeny of the 1-76 and 1-72 founders. These animals are the second-generation females, 2-76, 2-82, 2-92, and 2-95. The levels of expression range between 0.2 mg/ml to over 1 mg/ml (Table 1).
  • 1 5 18 base pairs nucleic acid single linear cDNA to mRNA Capra hircus beta casein 5′ 1 CGCGGATCCT CGAGGACC 18 59 base pairs nucleic acid single linear cDNA to mRNA Capra hircus beta casein 3 2 TAAGGTCCAC AGACCGAGAC CCACTCACTA GGCAACTGGT CCGTCCAGCT GTTAAGTGA 59 34 base pairs nucleic acid single linear cDNA to mRNA Capra hircus light chain 5′ 3 AGTGAATTCA TGCTCGAGAG CCATGGCCTG GATC 34 34 base pairs nucleic acid single linear cDNA to mRNA Capra hircus Heavy chain 5′ 4 AGTGAATTCA TGCTCGAGAG CCATGAAGCA CCTG 34 14 base pairs nucleic acid single linear cDNA to mRNA Capra hircus HEAVY CHAIN 3′ 5 AGCTCCTCGA GGCC 14
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5824837 *Jul 19, 1994Oct 20, 1998Merck & Co., Inc.Expression of human interleukin-1β in a transgenic animal
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7939317Feb 20, 1992May 10, 2011Genzyme CorporationTransgenic animals secreting desired proteins into milk
US8071364Dec 24, 2004Dec 6, 2011Transgenrx, Inc.Gene therapy using transposon-based vectors
US8236294Nov 8, 2010Aug 7, 2012The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical CollegeGene therapy using transposon-based vectors
US8283518Oct 31, 2007Oct 9, 2012Transgenrx, Inc.Administration of transposon-based vectors to reproductive organs
US9150880Sep 25, 2009Oct 6, 2015Proteovec Holding, L.L.C.Vectors for production of antibodies
US9150881Apr 9, 2010Oct 6, 2015Proteovec Holding, L.L.C.Production of proteins using transposon-based vectors
US9157097Sep 25, 2009Oct 13, 2015Proteovec Holding, L.L.C.Vectors for production of growth hormone
US20040172667 *Dec 24, 2003Sep 2, 2004Cooper Richard K.Administration of transposon-based vectors to reproductive organs
US20040197910 *Jun 26, 2003Oct 7, 2004Cooper Richard K.Gene regulation in transgenic animals using a transposon-based vector
US20040226052 *Jun 8, 2004Nov 11, 2004Meade Harry M.Methods of producing a target molecule in a transgenic animal and purification of the target molecule
US20040226053 *Jun 8, 2004Nov 11, 2004Meade Harry M.Methods of producing a target molecule in a transgenic animal and purification of the target molecule
US20060179500 *Apr 13, 2006Aug 10, 2006Gtc-Biotherapeutics, Inc.Methods and vectors for improving nucleic acid expression
US20080118501 *Oct 23, 2006May 22, 2008Gtc Biotherapeutics, Inc.Antibodies with enhanced antibody-dependent cellular cytotoxicity activity, methods of their production and use
US20080235813 *Oct 31, 2007Sep 25, 2008Cooper Richard KGene regulation in transgenic animals using a transposon-based vector
US20080235815 *Oct 31, 2007Sep 25, 2008Cooper Richard KAdministration of transposon-based vectors to reproductive organs
US20100081789 *Sep 25, 2009Apr 1, 2010Cooper Richard KNovel Vectors for Production of Interferon
US20100093036 *Sep 25, 2009Apr 15, 2010Cooper Richard KNovel Vectors for Production of Growth Hormone
US20100099148 *Sep 25, 2009Apr 22, 2010Cooper Richard KNovel Vectors for Production of Antibodies
US20100199366 *Dec 24, 2004Aug 5, 2010Richard CooperGene therapy using transposon-based vectors
US20100261227 *Apr 9, 2010Oct 14, 2010The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical CollegeProduction of Proteins Using Transposon-Based Vectors
US20110104049 *Feb 26, 2010May 5, 2011Gtc Biotherapeutics, Inc.Method of using an anti-cd137 antibody as an agent for radioimmunotherapy or radioimmunodetection
US20110229460 *Apr 29, 2009Sep 22, 2011Gtc Biotherapeutics, Inc.anti-cd137 antibody as an agent in the treatment of inflammatory conditions
Classifications
U.S. Classification800/4, 435/320.1, 536/23.1, 800/7, 536/23.53, 536/24.1, 435/455, 536/23.5, 514/44.00R
International ClassificationC12N15/13, C07K16/04, C07K16/00, C12P21/08, C12N15/09, A01K67/027, C07K16/30, C12N15/85, C12Q1/68
Cooperative ClassificationY10S530/867, C12N15/8509, A01K2207/15, A01K2267/01, C07K16/3046, A01K2217/00, A01K2227/105, C07K16/04, A01K2217/05, C07K2317/21, A01K67/0278
European ClassificationC12N15/85A, C07K16/04, C07K16/30K, A01K67/027M4
Legal Events
DateCodeEventDescription
Jun 27, 2003ASAssignment
Owner name: GTC BIOTHERAPEUTICS, INC., MASSACHUSETTS
Free format text: CHANGE OF NAME;ASSIGNOR:GENZYME TRANSGENICS CORPORATION;REEL/FRAME:013782/0450
Effective date: 20020522
Dec 22, 2008ASAssignment
Owner name: LFB BIOTECHNOLOGIES S.A.S.U., FRANCE
Free format text: SECURITY AGREEMENT;ASSIGNOR:GTC BIOTHERAPEUTICS, INC.;REEL/FRAME:022019/0205
Effective date: 20081219
Jan 16, 2009ASAssignment
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, CONNECTICUT
Free format text: SECURITY AGREEMENT;ASSIGNOR:GTC BIOTHERAPEUTICS, INC.;REEL/FRAME:022119/0854
Effective date: 20081222
Mar 11, 2014ASAssignment
Owner name: GTC BIOTHERAPEUTICS, INC., MASSACHUSETTS
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:032424/0230
Effective date: 20140311
Mar 14, 2014ASAssignment
Owner name: GTC BIOTHERAPEUTICS, INC., MASSACHUSETTS
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LFB BIOTECHNOLOGIES S.A.S.U.;REEL/FRAME:032448/0045
Effective date: 20140311