Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040024371 A1
Publication typeApplication
Application numberUS 10/622,644
Publication dateFeb 5, 2004
Filing dateJul 21, 2003
Priority dateDec 14, 1998
Also published asDE69917484D1, DE69917484T2, EP1140278A1, EP1140278B1, US6620139, WO2000035531A1
Publication number10622644, 622644, US 2004/0024371 A1, US 2004/024371 A1, US 20040024371 A1, US 20040024371A1, US 2004024371 A1, US 2004024371A1, US-A1-20040024371, US-A1-2004024371, US2004/0024371A1, US2004/024371A1, US20040024371 A1, US20040024371A1, US2004024371 A1, US2004024371A1
InventorsGianni Plicchi, Tonino Bombardini, Emanuela Marcelli
Original AssigneeGianni Plicchi, Tonino Bombardini, Emanuela Marcelli
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Catheter system for performing intramyocardiac therapeutic treatment
US 20040024371 A1
Abstract
The multilumen catheter (2) is provided at one end with a needle system (9, 9′) formed by two or more single-lumen needles which are provided with respective discharge openings (110, 111) and which, via their longitudinal lumina (10, 11), are connected to corresponding lumina (3, 4) of the catheter for separate release of a tracer fluid for external image diagnostics systems and therapeutic fluids, for example DNA plasmids. The needles may be both straight or both helical or one of these needles may be straight and the other needle may be helical.
Images(5)
Previous page
Next page
Claims(39)
1. Catheter system for performing intramyocardiac therapeutic treatment comprising:
a catheter having a hollow catheter body provided on its terminal end with a needle system for the injection of fluids through said catheter;
the body of the catheter having at least two longitudinal lumina which are connected at one end to external means for administering fluids;
the needle system having at least two longitudinal lumina connected to the corresponding lumina of the catheter;
wherein said longitudinal lumina are provided with respective lateral discharge openings.
2. Catheter system according to claim 1, in which the terminal end needle system of the catheter consists of a multilumen needle.
3. Catheter system according to claim 1, in which the at least one of said longitudinal lumina of the needle system is obtained in a needle of helical type.
4. Catheter system according to claim 2, in which the multilumen needle is of the helical type.
5. Catheter system according to claim 1, in which the terminal end needle system of the catheter is formed by at least two single-lumen needles.
6. Catheter system according to claim 5, in which the needles which form the needle system are of different lengths.
7. Catheter system according to claim 1, in which the discharge openings of the lumina of the needle system are in different longitudinal positions of the needle itself.
10. Catheter system according to claim 6, in which the shorter needle is provided with several lateral discharge openings.
11. Catheter system according to claim 5, in which the needle system is formed by two helical needles of different length which are centered with respect to the axis of the catheter.
12. Catheter system according to claim 11, in which the helical needles are arranged alongside each other and fixed with welds, the tip of the shorter needle being integral with and connected to the body of the longer needle.
13. Catheter system according to claim 12, in which the helical needles have a cross section which is flattened and such that the needle system formed by it has a substantially round cross section.
14. Catheter system according to claim 12, in which the helical needles enter into the catheter with straight sections arranged along the axis of the said catheter.
16. Catheter system according to claim 1, in which the needle system is formed by a straight needle aligned with the axis of the catheter and by a helical needle arranged concentrically around said central needle.
17. Catheter system according to claim 16, in which the central straight needle is shorter than the helical needle.
18. Catheter system according to claim 16, in which the central straight needle is longer than the helical needle so as to act as a centering device and rotational pivot for said helical needle.
19. Catheter system according to claim 16, in which the helical needle enters into the catheter with a section located alongside the central needle.
20. Catheter system according to claim 16, in which the helical needle enters into the catheter with a section distant from the central needle so as to prevent the rotation of the catheter when this section comes into contact with the wall of the myocardium.
22. Catheter system according to claim 1, in which the needle system is electrically conducting.
23. Catheter system according to claim 22, in which the electrically conducting needle system is lined with a thin film of electrically insulating material over nearly the whole of its length, except for a suitable tip section which remains electrically conducting.
24. Catheter system according to claim 23, in which the electrically insulating material which partly lines the needle system comprises material known as “Parylene”.
25. Catheter system according to claim 22, in which the body of the catheter comprises a first longitudinal electrical conductor connected at one end to the needle system and designed for connection at the external end to an external electrical apparatus.
26. Catheter system according to claim 1, characterized in that the body of the catheter has an internal longitudinal structure of meshwork braiding, which allows a twisting torque to be applied to the external end of the catheter and to ensure that this causes a corresponding rotation of the multilumen needle system fixed onto the terminal end of said catheter.
27. Catheter system according to claim, 25 in which the body of the catheter is provided with a second longitudinal electrical conductor which is electrically insulated from the conductor connected to the needle system and designed for connection of the external end to an external electrical apparatus and for connection of its terminal end to an electrically conducting ring located on the terminal end of the catheter and having the function of a reference electrode for all the operations where the needle system performs the function of a conductor of electrical impulses.
28. Catheter system according to claim 27, in which the said first and second electrical conductors are seated, with suitable mutual insulation, in at least one longitudinal secondary lumen in the body of the catheter.
29. Catheter system according to claim 28, in which any one of the said electrical conductors may be constituted by the said twisting braiding if made of electrically conducting material.
30. Catheter system according to claim 25, in which the external electrical apparatus comprises a source of electric energy and electrical impulses.
31. Catheter system according to claim 25, in which the external electrical apparatus comprises an apparatus for monitoring electro-physiological signals.
32. Catheter system according to claim 25, in which the external electrical apparatus comprises an apparatus for measuring the electrical impedance.
33. Catheter system according to claim 1, in which the body of the catheter comprises at least one filament-like, longitudinally extending, flexible conductor of ultrasound energy which is acoustically coupled to the needle system and designed for connection at its external end to an external apparatus supplying ultrasounds.
34. Catheter system according to claim 1, in which the body of the catheter comprises on its terminal end, at the base of the needle system, a stopping device of the retractable type, with an external activating and deactivating control device, for limiting the penetration of said needle system into the myocardium.
35. Catheter system according to claim 34, in which the stopping system comprises a torus-shaped balloon which is made of flexible and impermeable material and which, via a connection duct of its internal chamber, is connected to the terminal end of a secondary longitudinal lumen in the body of the catheter, the external end of which is designed for connection to an external system for supplying and drawing fluid into and from said balloon, respectively so as to fill it and activate it for the end-of-travel function which it must perform, or so as to neutralize it and ensure that it remains in the retracted condition, which is useful during insertion and extraction of the catheter.
36. Catheter system according to claim 35, in which the main lumina in the body of the catheter are intended to convey the tracer fluid, have the form of a circle segment and are arranged opposite each other in specular fashion, these lumina having, arranged between them in a symmetrical manner, a first axial secondary lumen for receiving the spindle guiding the catheter during use and there being provided, laterally with respect to this lumen, on the one hand a second secondary lumen for conveying the fluid filling and emptying the end-of-travel balloon (13) and, on the other hand, a third secondary lumen for receiving the electrical conductors, the ends of which are connected to the needle system and to the annular reference electrode.
37. Catheter system according to claim 36, in which the lumina of the catheter, except for the first axial lumen, are closed at the external front end and the front section of the said catheter having, mounted on it without the possibility of axial displacement, a rotating distributor or header provided around the said catheter with annular chambers which are isolated from each other and with respect to the exterior by annular sealing gaskets and into which chambers there lead, via respective radial holes, the two main lumina which are connected to the base connecting sections of the needle system and the secondary lumen leading to the end-of-travel balloon, these chambers being provided with respective hollow connectors for connection to flexible pipes and to syringes containing respectively the fluid for filling and emptying said balloon, the tracer fluid and the therapeutic fluid.
38. Catheter system according to claim 37, in which the distributor or header is made of electrically insulating material and is provided with electrical conductors having brushes which allow an external electrical apparatus to be connected to the electrical conductors which are connected to the needle system and to the annular reference electrode, the said brushes making contact with electrically conducting rings which are fixed onto the body of the catheter, arranged at a suitable distance from each other and insulated and fixed to the terminals of the said electrical conductors which emerge from the associated guide lumen through lateral holes.
39. Catheter system according to claim 5, characterized in that, an ultrasound generator is mounted on the terminal end of the catheter, said ultrasound generator being integral with the base of one or both the needles of the needle system and connected to an electrical circuit which passes through a secondary lumen of the catheter for connection to external power supply systems.
40. Catheter system according to claim 1, in which the body of the catheter has, an external diameter of about 7 French, that is about 2.1 mm.
41. Catheter system according to claim 1, in which the diameter of the helix of the needle system with at least one helical needle is about 2 mm.
42. Catheter system according to claim 6, in which the length of the projecting section of the longer needle of the needle system does not exceed, 5 mm, while the length of the projecting section of the shorter needle is about 2.5 mm.
43. Catheter system according to claim 5, in which the external diameter of each of the needles which form the needle system is about 0.30 mm.
Description
    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a divisional or of application Ser. No. 09/831,493, which is the National Stage of International Application No. PCT/ep99/08686, filed Nov. 11, 1999.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The invention relates to a method and the associated apparatus for performing intramyocardiac therapeutic treatment by means of the controlled infusion, in this anatomical location, of therapeutic fluids of varying nature and composition. With this method and apparatus it is possible to treat patients who suffer from cardiac ischaemia and who are not able to tolerate surgical therapy involving a coronary bypass or coronary angioplasty using catheters. At present there are many patients suffering from heart disease which is advanced to the point where it can no longer be treated using the solutions mentioned. Complete re-vascularization is not possible in 20% of the patients who undergo bypass surgery. The patients who cannot be treated with the abovementioned solutions belong, for example, to the following categories: patients with extensive heart disease affecting the distal vessels; patients with symptomatic ischaemia resulting from a diseased vessel which is too small to be bypassed; patients who do not have adequate ducts for bypassing; patients with total chronic occlusion and with distal vessels which are small and/or cannot be viewed.
  • [0003]
    A new therapy which is currently becoming more widespread for the treatment of this type of patient consists in the percutaneous injection, into the cardiac muscle, of genic substances, for example DNA plasmids, which induce the formation of new blood vessels. At least six different carrier systems have been used for genic transfer to the heart muscle cells, namely: DNA devoid of viral or physical adjuvants which increase the genic release; DNA encapsulated in modified liposomes; DNA complexed with cationic liposomes; retroviral carriers; adeno-associated viral carriers. This therapy is currently performed by making a small incision in the chest in order to inject the abovementioned plasmids into the myocardium, continuously monitoring the patient by means of transoesophageal echocardiography in order to check the movement of the cardiac wall during the percutaneous injection, in order to prevent the plasmid being injected into the blood, inside the cavity of the left-hand ventricle. The recent clinical experiments involving injection of plasmids into the myocardium, during surgical treatment or a mini-thoracotomy, are very interesting, but are unable to solve many problems when this procedure is used as the one and only therapy, in particular problems relating to optimization of the most suitable site for injection and the number and dosing of the intramyocardial injections. It is also obvious that the surgical solution limits very much the possibility of performing multiple treatment or treatment which is repeated over time.
  • [0004]
    It was thought that a catheter system suitable for the intramyocardiac injection of plasmids may be able to overcome the limitations of the present surgical solution indicated above.
  • [0005]
    According to the publication “Percutaneous Transluminal Gene Transfer into Canine Myocardium in Vivo by Replication-Defective Adenovirus” Jian Jun Li et. al. (Cardiovascular Research 1995; 30: 97-105), previous experiments involving the percutaneous injection of genes into the myocardium of dogs, by means of adenovirus, were performed using an injection catheter composed of a catheter guide and a guided catheter, with a needle at its terminal end, inserted into the left-hand ventricle of the heart. Under a fluoroscope, the needle was inserted into the myocardium and its correct position of insertion was confirmed by suction of the blood. If the needle is inserted into the wall of the cardiac muscle, its lumen is closed by the muscle itself and therefore the suction of blood is prevented.
  • [0006]
    Various injection catheters have been studied in order to improve the injection of a drug into an area inside the human body. Injection catheters have for example been produced by Wilson Cook Medical Inc. (Cook Italia Srl), said catheters being specifically designed for the sclerotherapeutic endoscopic treatment of oesophageal varices. The Boston Scientific Corporation markets needles for liquid injection therapy using a dedicated twin-lumen catheter and associated extendable and retractable needle with an ample washing lumen for ensuring vision with an endoscope in bleeding conditions.
  • [0007]
    None of the catheters with injection needles proposed by the current technology has been specifically developed and can neither be adapted to solve the problem of percutaneous and transvascular injection of plasmids into the human myocardium. With a needle catheter of the known type it is difficult to maintain a fixed position inside the moving wall of the myocardium and it is therefore difficult to inject, in a reliable manner, plasmids into the said wall. Similar difficulties have been encountered with the catheters of pacemakers when they have to be positioned in a different point of the apex of the right-hand ventricle, for example in the interatrial or interventricular septum. In these cases, a helical electrode screwed into the wall of the endocardium, in order to ensure immediate stability of the implant pending the growth of tissue thereon, is used. The use of a helical and hollow electrode for the injection of liquids into the human body has been described in U.S. Pat. No. 5,431,649 for a purpose different from that of the present invention, namely for the hyperthermic treatment of neoplasia of the prostate and for treatment of myocardiac ablation by means of radiofrequency, using a perfusion of saline solution through the cavity of the helical electrode.
  • [0008]
    An important factor which prevents the use of the abovementioned catheter perfusion systems for the function in question is the fact that they are not able to provide a safe, reproducible and recordable method for demonstrating that the injection of the plasmids is performed in a selected area of the myocardium and not in the blood stream; in fact the aforementioned solution of confirming the position of the needle by suction is not suitable for this purpose on account of the high risk of false situations created by the closure of the needle lumen by blood clots.
  • [0009]
    A recent publication “Transcatheter Subendocardial Infusion. A Novel Technique for Mapping and Ablation of Ventricular Myocardium”, Andreas Goette et. al. (Circulation 1996; 94: 1149-1455) described an infusion catheter equipped with an electrode corresponding to the injection needle located on the distal end of said catheter and provided with a second ring electrode in the vicinity of the same needle. Two lumina which are formed inside the catheter and by means of which it is possible to perform a sequential administration of fluid mixtures converge towards this needle. A tracer substance is injected via a lumen of the catheter in order to map, by means of fluoroscopy, the point of injection of the needle into the myocardium of the left-hand ventricle, while a fluid mixture with ethanol is subsequently injected through the second lumen of the catheter in order to perform a chemical ablation of a volume of the myocardium. By means of this method, with the associated catheter, it is possible to identify with reasonable certainty the area of the myocardium into which the needle is inserted, but the problems, as described in the abovementioned publication, resulting from the difficulty of keeping a straight needle in the correct position in a beating myocardium and preventing remixing between the fluids introduced through the two catheter lumina, the latter intercommunicating via the common lumen of the injection needle, cannot be solved. Owing to the inherent elasticity of the material from which the lumina of the catheter may be made and the notable curvature to which the catheter itself is subject during insertion into the human body, it cannot be ruled out that the pressure exerted on a fluid which is to be injected may cause a partial transfer of this fluid from its lumen under pressure to the other lumen which is at a lower pressure, with the result of unexpected and constant mixing of the two fluids and possible limitation of the volume of,the fluid actually injected into the myocardium, since a part of this fluid, instead of being discharged from the needle, flows back into the lumen of the catheter which is at a pressure less than that of the active lumen.
  • [0010]
    U.S. Pat. No. 5,354,279 (“Plural Needle Injection Catheter”) envisages a catheter provided at its terminal end with a plurality of thin pre-formed metal needles emerging in a ray-like arrangement and designed to release pharmaceutical substances onto the arteries. The lumina of these needles communicate, however, with a single lumen of the catheter so that this apparatus may not be used for the purposes of the present invention, either.
  • [0011]
    Document U.S. Pat. No. 5,322,510 A (Lindner et al), which constitutes the closest prior art, discloses a catheter system for performing a therapeutic treatment, comprising
  • [0012]
    a hollow catheter body provided on its terminal end with a needle system for the injection of fluids through the said catheter,
  • [0013]
    said body of the catheter having at least two longitudinal lumina which are connected at one end to external means for administering fluids,
  • [0014]
    the needle system having at least two longitudinal lumina connected to the corresponding lumina of the catheter.
  • [0015]
    By way of conclusion, the known art, with the procedures and the devices described based on a catheter system with injection needle, does not allow the practical realization of an apparatus and a method for injecting plasmids solely using the intramyocardiac method, owing to problems associated with the movement of the endocardium and the impossibility of separating completely injection of the therapeutic fluids from injection of the tracer fluid.
  • SUMMARY OF THE INVENTION
  • [0016]
    The object of the invention is to solve these and other problems of the already known art by means of a catheter provided with two or more longitudinal lumina and provided at its terminal end with a multilumen needle system, each lumen of this needle system having its own discharge opening and being connected to a corresponding lumen of the catheter. The lumina of the catheter are connected to external systems for releasing separately tracer fluids for external image diagnostics systems by means of which it is possible to verify the correct position of the needle in the cardium tissue and release therapeutic fluids, for example DNA plasmids. The needle system in question may be formed by a multilumen needle or by several single-lumen needles arranged alongside each other and each connected to a corresponding lumen of the catheter.
  • [0017]
    More particularly, the present invention relates to a catheter system of the type as disclosed above with reference to the cited document U.S. Pat. No. 5,322,510 A, further characterised by the fact that the said longitudinal lumina are provided with respective lateral discharge openings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    Further characteristic features and advantages arising therefrom will appear more clearly from the following description of certain preferred embodiments thereof, illustrated purely by way of a non-limiting example in the accompanying sheets of drawings, in which:
  • [0019]
    [0019]FIG. 1 is an overall side view, with parts shown in cross section, of the catheter system according to a preferred embodiment of the invention;
  • [0020]
    [0020]FIG. 2 shows a cross section through the middle of the catheter, along the line II-II of FIG. 1;
  • [0021]
    [0021]FIGS. 3 and 4 show further details of the end part of the catheter with a multilumen needle, which is sectioned respectively along the lines III-III and IV-IV of FIG. 2 and with parts being visible;
  • [0022]
    [0022]FIG. 3a is a variation of embodiment of the straight needle;
  • [0023]
    [0023]FIGS. 5 and 6 are cross sections through the multilumen needle along the lines V-V and VI-VI of FIG. 3, respectively;
  • [0024]
    [0024]FIG. 7 shows, longitudinally sectioned, the end part of a multilumen catheter, with the multilumen needle system being formed by two single-lumen and straight needles arranged alongside each other;
  • [0025]
    [0025]FIGS. 8 and 9 show possible cross sections through the needles of the needle system according to FIG. 7, sectioned along the line VIII-VIII;
  • [0026]
    [0026]FIG. 10 shows, cross sectioned and with parts visible, a needle system formed by two straight and coaxial needles;
  • [0027]
    [0027]FIGS. 11 and 12 show details of the needle system according to FIG. 10, sectioned along the lines XI-XI and XII-XII, respectively;
  • [0028]
    [0028]FIG. 13 shows, cross sectioned and with parts visible, a needle system formed by two helical needles arranged alongside each other;
  • [0029]
    [0029]FIG. 14 shows, cross sectioned and with parts visible, a needle system formed by two straight needles coaxial with each other and of different length and with the projecting needle portion having a helical shape;
  • [0030]
    [0030]FIGS. 15 and 16 show, cross sectioned and with parts visible, further needle systems formed by a straight axial needle circumscribed by a helical needle which may be, respectively, projecting or retracted with respect to the said axial needle.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0031]
    In FIGS. 1 and 2 the numeral 1 designates schematically a catheter guide of the known type which is pre-formed or steerable and which is inserted into the blood circulation which leads to the left ventricle of the heart and inside which the catheter system in question is then inserted, said catheter system comprising a catheter 2 which has a suitable length and cross section and is made of any material suitable for this purpose, for example Polyimide, and is provided internally with a meshwork braiding 102 and/or other suitable means (see also FIG. 3) which allow a twisting torque to be applied to the said catheter, without the latter being deformed, such that a rotation applied to the front end of the catheter results in an identical rotation of the terminal end of this catheter. The catheter 2 is provided internally with several longitudinal lumina, for example a pair of main and opposite lumina 3 and 4, for example having a cross section in the form of a circle segment, and has between said lumina, in a symmetrical arrangement, arranged alongside each other and aligned along the diametral plane of the catheter, three secondary lumina 5, 6 and 7, for example with a round cross section, one of which is located preferably coaxially in the catheter, for receiving the guide spindle 8 which is of the type usually used for operating traditional pacing catheters.
  • [0032]
    A multilumen needle system is fixed onto the terminal end of the catheter 2 by means of a special insert 12, in a position of longitudinal alignment with the said catheter, said needle system being formed by a needle which may be straight as indicated by 9′ in FIG. 3a or may preferably have a cylindrical helical shape, as indicated for example by 9 in FIGS. 3 and 4. It is understood that the scope of the invention also includes helical needles other than that illustrated, for example which are of the straight type and have one or more external helices, for example similar to wood screws. From FIG. 5 it can be seen that the needle has two longitudinal lumina 10 and 11 which are arranged closely alongside each other and divided by a common wall 309 over the whole length of the body of this needle. The base of the needle has a fork-shaped configuration and the corresponding branches 109 and 209, which form a continuation of the respective lumina 10 and 11 of the said needle, are engaged in the corresponding lumina 3 and 4 of the catheter.
  • [0033]
    Both in the case of FIG. 3 and in the case of FIG. 3a, the internal lumina of the needle are provided with respective lateral discharge openings, one of which is indicated by 110 and is located at a short distance from the needle tip, while the other one indicated by 111 is located further upstream, in the middle part or at the base of the said needle (see also FIG. 6).
  • [0034]
    The terminal end of the catheter is provided with a retractable device, which is useful as an end-of-travel stop, for stopping penetration of the needle 9 or 9′ into the wall of the myocardium which has to be treated. For this purpose it may be possible to use a torus-shaped balloon 13 which is made of impermeable and flexible material and which is fixed laterally onto the terminal end of the catheter 2 and has at least one internal duct 113 which passes through the insert 12 and is designed to engage into one of the secondary lumina of the catheter, for example into the lumen 6 (FIG. 2).
  • [0035]
    From FIG. 4 it can be seen that the end of an electrical conductor 14 which runs along the whole length of the catheter and is housed inside one of the secondary lumina, for example the lumen 7 in FIG. 2, is connected to the body of the needle 9 or 9′, together with an optional additional electrical conductor 15 connected to an optional ring 16 which is made of electrically conducting material and is fixed on the outside of the terminal end of the catheter and is useful as a reference electrode for the various operations where the needle acts as a conductor of electrical impulses. The conductors 14 and 15 are suitably insulated from each other. If the braiding 102 of the catheter is made of an electrically conducting material, it may replace either one of the said electrical conductors 14 or 15. It is understood that the function of reference electrode may be performed by means other than the ring 16 mentioned above, for example using solutions known in the sector of cardiac electro-stimulation.
  • [0036]
    From FIG. 1 it can be seen that the initial section of the catheter passes through the body of a distributor 17 with respect to which the said catheter may rotate, but not move axially, for example owing to the presence of end stops 18 and 19. The knob 20 by means of which a rotation may be imparted to the said catheter is fixed onto the front end of the catheter, whereas, with regard to that stated above, the distributor 17 may remain at a standstill. The front ends of the electrical conductors 14 and 15 are connected to small electrically conducting rings 21 and 22 which are fixed externally to different points of the catheter body, are insulated with respect to each other and with which brushes 23 and 24 of the distributor 17 co-operate, said brushes being in turn connected via respective conductors to a composite, external, fixed apparatus 25, which will be described in greater detail below.
  • [0037]
    The lumina 3, 4 and 6 of the catheter are closed at the outer front end and are provided along the section which passes through the distributor 17 with respective radial openings which are situated at mutually distant points of the catheter and lead into respective annular chambers 26, 27 and 28 of said distributor and which are insulated from each other and from the exterior by annular sealing gaskets 29, 30, 31 and 32. These chambers lead to cable connectors 33, 34 and 35 to which flexible pipes 36, 37, 38 may be connected, said flexible pipes being provided at the other end with Luer connectors to which syringes 39, 40, 41 may be connected, the first thereof being useful, for example, for injecting or drawing liquid into/from the balloon 13, i.e. for filling it and activating it as shown in FIG. 4 or for reducing it into the collapsed condition as shown in FIG. 3, while the syringe 40 is useful for example for injecting tracer liquid which will emerge, for example, from the opening 111 of the needle 9 or 9′, and the syringe 41 is used, for example, for injecting DNA plasmids which for example will be discharged from the end opening 110 of the said needle.
  • [0038]
    The catheter system as described functions and is used in the following manner. After positioning the catheter guide 1 in the patient, the catheter 2 is inserted inside said guide by means of the special guide spindle 8. The end balloon 13 is in the collapsed condition. After insertion of the catheter, the balloon 13 is activated by means of the syringe 39 and, by means of the external knob 20, the catheter itself is rotated in the direction for screwing of the helical needle 9 into the myocardium, until this needle has been completely screwed in. The correct position of the needle may be verified from the outside by means of the apparatus 25 which detects, for example, a bioelectrical impedance and/or ECG, using the electrical conductor 14 connected to the needle and the conductor 15 connected to the annular reference electrode 16. In order to improve the results of this test, the needle 9 or 9′ may be advantageously lined with a thin layer of electrically insulating material, for example, Parylene, over practically the whole length, as schematically indicated by the broken lines and by 45 in FIGS. 3a and 4, except for an appropriate tip portion which remains electrically conducting.
  • [0039]
    Once screwing of the needle into the myocardium has been performed, via the syringe 40, a correct quantity of tracer is injected into this wall and, if the needle is correctly inserted, remains for a relatively long period of time in the said wall and may be easily detected by external image diagnostics systems of the known type, in the form of a persistent spherical-shaped mark. Should the needle not be correctly inserted into the myocardium, the injected tracer would become dispersed in the blood stream. The injected tracer may for example be of the type which is useful for detection by means of X-rays or using ultrasound image or magnetic nuclear resonance systems. If a dual-lumen needle as shown in FIGS. 3 and 3a is used, the tracer fluid is preferably discharged from the orifice 111 of the needle itself since, if it is subsequently established using the abovementioned procedure that the needle is correctly inserted in the myocardium, there is the absolute certainty that the other discharge orifice 110, intended for the discharge of therapeutic fluid, is also correctly inserted into the myocardium itself.
  • [0040]
    After verifying and documenting with appropriate means that the needle has been correctly inserted, DNA plasmids are injected into the myocardium via the syringe 41. In order to reinforce the transfer of the abovementioned plasmids into the cells of the cardiac tissue, the external apparatus 25 may be arranged so as to transmit into the tissue itself, via the electrical circuit connected to the needle 9, electrical impulses which have suitable characteristics and are synchronized with the beat R of the spontaneous activity of the heart. Again for this purpose, the external apparatus 25 may be designed to generate ultrasounds which are conveyed to the needle 9 and therefore to the perfused zone of the myocardium, via a conductor with suitable characteristics, which is indicated schematically in FIG. 1 by 42 and which is for example connected to the needle via the axial lumen 5, after removal of the guide spindle 8. It is understood that the catheter may have a secondary lumen specifically designed to contain an ultrasound conductor connected to the needle 9 or 9′.
  • [0041]
    With reference to FIGS. 7 to 16, variations of embodiment of the needle system mounted on the catheter will now be described, said catheter, unlike the one previously considered, being composed of two single-lumen needles. The catheter 2 illustrated in FIG. 7 is identical to the multilumen catheter illustrated in FIG. 1 and its lumina 3 and 4, which are respectively connected to the external systems for injection of the therapeutic fluid and the tracer fluid, are joined to the end sections 109, 209 of respective straight and single-lumen needles 9a and 9b which are preferably of different length, preferably arranged in axial alignment with the catheter and preferably fixed together by means of welds 43, as can be seen from FIG. 8. 10 and 11 indicate the lumina of the needles which terminate in respective openings 110, 111 for discharging the fluids conveyed by said lumina. The tip of the shorter needle is preferably shaped in the manner of a flute mouth-piece and is suitably connected to the side surface of the adjacent needle in order to facilitate penetration, into the myocardium, of the needle system 9′ thus formed. FIG. 9 illustrates a variation according to which the needles 9a and 9b have a flattened—for example semi-circular—cross section so that the needle system 9′ formed by them can be made to assume a substantially round cross section.
  • [0042]
    In the solution according to FIGS. 10, 11 and 12, again relating to a needle system 9′ of the straight type, the longer needle 9a is partly inside and coaxial with the shorter needle 9b, the end part of which is closed, converging onto the needle 9a, and may be provided with several lateral openings 111 for discharging the tracer fluid. The needle 9a emerges in a sealed manner from the needle 9b at the start of the bifurcation which forms the end sections 109 and 209 for connection to the lumina 3 and 4 of the catheter.
  • [0043]
    The solution according to FIG. 13 is equivalent to that of FIG. 7, but envisages a needle system 9 which is formed by two helical needles 9 a and 9 b which are arranged alongside each other and preferably fixed by means of welding and which extend around the axis of the catheter 2. The comments made with reference to FIGS. 8 and 9 for the solution of FIG. 7 are also applicable here. The needles enter preferably into the catheter being closely arranged around its axis and then diverge away from each other and engage into the lumina 3, 4 with the end sections 109, 209. It is understood that the scope of the invention also includes the variant, not shown, whereby the helical needles 9 a and 9 b are staggered and distant from each other, with the tip of the shorter needle being distant from the body of the longer needle. In this case the needles may enter into the catheter with sections which are distant from the axis of the said catheter.
  • [0044]
    The solution according to FIG. 14 is derived from that of FIG. 10 and envisages a needle system 9 formed by a short needle 9b of the straight type from which a needle 9 a terminating in a helical shape projects coaxially.
  • [0045]
    The solution according to FIG. 15 illustrates a needle system 9 formed by a straight short needle 9b which is aligned axially with the catheter and by a long helically shaped needle 9 a which extends concentrically around the said central needle 9b.
  • [0046]
    The solution according to FIG. 16 is a variation of the solution according to FIG. 15 and envisages a needle system 9 formed by a long straight central needle 9a and by a helically shaped external needle 9 b which extends concentrically around the said central needle. This solution could be preferred to that of FIG. 15 since the straight central needle 9a is inserted firstly into the myocardium and acts as a centring element and a rotational pivot for the helical needle 9 b. In both solutions according to FIGS. 15 and 16, the helical needle is able to enter into the catheter with an arrangement close to the straight needle, as illustrated by continuous lines, or is able to enter into the catheter with an arrangement offset from the axis of the straight central needle, as indicated by A and B, in order to favour, if necessary, automatic stopping of the screwing action of the needle system.
  • [0047]
    In FIGS. 7 to 16, 44 denotes in broken lines the location, if necessary, on the terminal end, of the catheter, of an ultrasound generator which is integral with the base of one or both needles and connected to an electrical supply circuit, not shown, which passes through a secondary longitudinal lumen of the catheter for connection to an external power supply unit. With this solution it is possible to transmit to the needle system, and therefore to the perfused zone of the myocardium, the ultrasounds which are necessary for reinforcing the transfer of the therapeutic fluid into the cells of the myocardium tissue. It is understood that the same comments made in respect of the preceding solutions are applicable to the variations according to FIGS. 7 to 16, with regard to the possibility of electrical connection of the needle system to external apparatus and partial insulation of the said needle system, except for a suitable section of its terminal part, using electrical insulation material, for example based on “Parylene”. The catheter will also be provided on the terminal end with the electrically conducting ring 16 having the function of a reference electrode for all the operations which the needle system performs as a conductor of electrical impulses. The catheter will also be provided with the internal anti-twisting braiding 102 and on the terminal end of the said catheter the already mentioned retractable device 13, with external activation and deactivation controls, for stopping penetration of the needle system into the myocardium will be provided.
  • [0048]
    It is understood that the dimensions and the proportions indicated in the drawings are purely exemplary and do not limit the scope of the invention. Purely by way of a non-limiting example, some dimensional characteristics for the construction of the apparatus according to the invention are now described. The catheter 2 may, for example, have an external diameter of about 7 French, that is to say about 2.1 mm, while the external diameter of the helix of the needle system with at least one helical needle, may for example be about 2 mm. The projecting part of the longer needle must not, for example, exceed the length of about 5 mm, while the projecting part of the shorter needle will have for example a length of about 2.5-3 mm. The needles which form the needle system may for example each have an external diameter of about 0.30 mm.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4134402 *Jul 5, 1977Jan 16, 1979Mahurkar Sakharam DDouble lumen hemodialysis catheter
US5464395 *Apr 5, 1994Nov 7, 1995Faxon; David P.Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway
US5891114 *Sep 30, 1997Apr 6, 1999Target Therapeutics, Inc.Soft-tip high performance braided catheter
US6280441 *Dec 15, 1997Aug 28, 2001Sherwood Services AgApparatus and method for RF lesioning
US6309370 *Feb 5, 1998Oct 30, 2001Biosense, Inc.Intracardiac drug delivery
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7691086Jun 14, 2005Apr 6, 2010Tengiz TkebuchavaCatheter for introduction of medications to the tissues of a heart or other organ
US7736346Oct 18, 2005Jun 15, 2010Biocardia, Inc.Bio-interventional therapeutic treatments for cardiovascular diseases
US7794402May 15, 2006Sep 14, 2010Advanced Cardiovascular Systems, Inc.Echogenic needle catheter configured to produce an improved ultrasound image
US7811294 *Mar 8, 2004Oct 12, 2010Mediguide Ltd.Automatic guidewire maneuvering system and method
US7867169 *Dec 2, 2005Jan 11, 2011Abbott Cardiovascular Systems Inc.Echogenic needle catheter configured to produce an improved ultrasound image
US7879011Nov 18, 2005Feb 1, 2011Silk Road Medical, Inc.Endoluminal delivery of anesthesia
US8055327Sep 14, 2004Nov 8, 2011Mediguide Ltd.Automatic guidewire maneuvering system and method
US8275468Jun 23, 2009Sep 25, 2012Cardiac Pacemakers, Inc.Helical fixation member with chemical elution capabilities
US8303509Sep 14, 2010Nov 6, 2012Abbott Cardiovascular Systems Inc.Echogenic needle catheter configured to produce an improved ultrasound image
US8308709Jan 31, 2011Nov 13, 2012Silk Road Medical, Inc.Endoluminal delivery of anesthesia
US8382674Mar 7, 2008Feb 26, 2013Abbott Cardiovascular Systems Inc.Visualization of a catheter viewed under ultrasound imaging
US8430863Jan 20, 2009Apr 30, 2013Abbott Cardiovascular Systems Inc.Visualization of a catheter viewed under ultrasound imaging
US8506492Apr 26, 2006Aug 13, 2013Siemens AktiengesellschaftUltrasound catheter and imaging device for recording ultra-sound images
US8512796Jun 27, 2011Aug 20, 2013Si02 Medical Products, Inc.Vessel inspection apparatus and methods
US8795712May 7, 2013Aug 5, 2014Forsight Vision4, Inc.Posterior segment drug delivery
US8808727Mar 15, 2013Aug 19, 2014Forsight Vision4, Inc.Posterior segment drug delivery
US8834954Jul 12, 2013Sep 16, 2014Sio2 Medical Products, Inc.Vessel inspection apparatus and methods
US8858490Jul 12, 2010Oct 14, 2014Silk Road Medical, Inc.Systems and methods for treating a carotid artery
US8880185Jun 25, 2013Nov 4, 2014Boston Scientific Scimed, Inc.Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8905963 *May 7, 2013Dec 9, 2014Forsight Vision4, Inc.Injector apparatus and method for drug delivery
US8939970Feb 29, 2012Jan 27, 2015Vessix Vascular, Inc.Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251Nov 7, 2012Feb 10, 2015Boston Scientific Scimed, Inc.Ostial renal nerve ablation
US8974451Oct 25, 2011Mar 10, 2015Boston Scientific Scimed, Inc.Renal nerve ablation using conductive fluid jet and RF energy
US9011380Mar 12, 2010Apr 21, 2015Tengiz TkebuchavaCatheter for introduction of medications to the tissues of a heart or other organ
US9023034Nov 22, 2011May 5, 2015Boston Scientific Scimed, Inc.Renal ablation electrode with force-activatable conduction apparatus
US9028472Dec 21, 2012May 12, 2015Vessix Vascular, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028485Sep 23, 2011May 12, 2015Boston Scientific Scimed, Inc.Self-expanding cooling electrode for renal nerve ablation
US9033911Aug 5, 2011May 19, 2015Forsight Vision4, Inc.Injector apparatus and method for drug delivery
US9037259Dec 21, 2012May 19, 2015Vessix Vascular, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9050106Dec 21, 2012Jun 9, 2015Boston Scientific Scimed, Inc.Off-wall electrode device and methods for nerve modulation
US9060761Nov 9, 2011Jun 23, 2015Boston Scientific Scime, Inc.Catheter-focused magnetic field induced renal nerve ablation
US9072902Dec 21, 2012Jul 7, 2015Vessix Vascular, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9079000Oct 16, 2012Jul 14, 2015Boston Scientific Scimed, Inc.Integrated crossing balloon catheter
US9084609Jul 18, 2011Jul 21, 2015Boston Scientific Scime, Inc.Spiral balloon catheter for renal nerve ablation
US9089350Nov 9, 2011Jul 28, 2015Boston Scientific Scimed, Inc.Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119600Nov 15, 2012Sep 1, 2015Boston Scientific Scimed, Inc.Device and methods for renal nerve modulation monitoring
US9119632Nov 16, 2012Sep 1, 2015Boston Scientific Scimed, Inc.Deflectable renal nerve ablation catheter
US9125666Sep 28, 2007Sep 8, 2015Vessix Vascular, Inc.Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9125667Oct 18, 2007Sep 8, 2015Vessix Vascular, Inc.System for inducing desirable temperature effects on body tissue
US9155589Jul 22, 2011Oct 13, 2015Boston Scientific Scimed, Inc.Sequential activation RF electrode set for renal nerve ablation
US9162046Sep 28, 2012Oct 20, 2015Boston Scientific Scimed, Inc.Deflectable medical devices
US9173696Sep 17, 2013Nov 3, 2015Boston Scientific Scimed, Inc.Self-positioning electrode system and method for renal nerve modulation
US9174050Dec 21, 2012Nov 3, 2015Vessix Vascular, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9180046Jul 15, 2013Nov 10, 2015The Johns Hopkins University School Of MedicineReservoir device for intraocular drug delivery
US9186209Jul 20, 2012Nov 17, 2015Boston Scientific Scimed, Inc.Nerve modulation system having helical guide
US9186210Oct 10, 2012Nov 17, 2015Boston Scientific Scimed, Inc.Medical devices including ablation electrodes
US9186211Jan 25, 2013Nov 17, 2015Boston Scientific Scimed, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9192435Nov 22, 2011Nov 24, 2015Boston Scientific Scimed, Inc.Renal denervation catheter with cooled RF electrode
US9192790Apr 13, 2011Nov 24, 2015Boston Scientific Scimed, Inc.Focused ultrasonic renal denervation
US9205251 *Feb 12, 2014Dec 8, 2015Boston Scientific Neuromodulation CorporationSystems and methods for inputting fluid into a lead of an electrical stimulation system
US9220558Oct 26, 2011Dec 29, 2015Boston Scientific Scimed, Inc.RF renal denervation catheter with multiple independent electrodes
US9220561Jan 19, 2012Dec 29, 2015Boston Scientific Scimed, Inc.Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9259215Oct 10, 2014Feb 16, 2016Silk Road Medical, Inc.Systems and methods for treating a carotid artery
US9265969Dec 10, 2012Feb 23, 2016Cardiac Pacemakers, Inc.Methods for modulating cell function
US9272095Mar 30, 2012Mar 1, 2016Sio2 Medical Products, Inc.Vessels, contact surfaces, and coating and inspection apparatus and methods
US9277955Apr 11, 2011Mar 8, 2016Vessix Vascular, Inc.Power generating and control apparatus for the treatment of tissue
US9289255Mar 3, 2015Mar 22, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for renal neuromodulation
US9295817Nov 12, 2012Mar 29, 2016Silk Road Medical, Inc.Endoluminal delivery of anesthesia
US9297845Mar 4, 2014Mar 29, 2016Boston Scientific Scimed, Inc.Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9326751Nov 14, 2011May 3, 2016Boston Scientific Scimed, Inc.Catheter guidance of external energy for renal denervation
US9327100Mar 12, 2013May 3, 2016Vessix Vascular, Inc.Selective drug delivery in a lumen
US9358365Jul 30, 2011Jun 7, 2016Boston Scientific Scimed, Inc.Precision electrode movement control for renal nerve ablation
US9364284Oct 10, 2012Jun 14, 2016Boston Scientific Scimed, Inc.Method of making an off-wall spacer cage
US9402684Feb 6, 2013Aug 2, 2016Boston Scientific Scimed, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9408661Jul 18, 2011Aug 9, 2016Patrick A. HaverkostRF electrodes on multiple flexible wires for renal nerve ablation
US9417238Nov 14, 2013Aug 16, 2016Forsight Vision4, Inc.Posterior segment drug delivery
US9420955Oct 8, 2012Aug 23, 2016Boston Scientific Scimed, Inc.Intravascular temperature monitoring system and method
US9433760Dec 11, 2012Sep 6, 2016Boston Scientific Scimed, Inc.Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9452017Aug 12, 2015Sep 27, 2016Medtronic Ardian Luxembourg S.A.R.L.Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US9458536Oct 12, 2012Oct 4, 2016Sio2 Medical Products, Inc.PECVD coating methods for capped syringes, cartridges and other articles
US9463062Jul 22, 2011Oct 11, 2016Boston Scientific Scimed, Inc.Cooled conductive balloon RF catheter for renal nerve ablation
US9474756Aug 6, 2015Oct 25, 2016Forsight Vision4, Inc.Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof
US9486270Aug 3, 2015Nov 8, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for bilateral renal neuromodulation
US9486355Jan 7, 2013Nov 8, 2016Vessix Vascular, Inc.Selective accumulation of energy with or without knowledge of tissue topography
US9492103Sep 2, 2010Nov 15, 2016Mediguide Ltd.Automatic guidewire maneuvering system and method
US9510901Nov 7, 2012Dec 6, 2016Vessix Vascular, Inc.Selectable eccentric remodeling and/or ablation
US9522082Mar 3, 2016Dec 20, 2016The Johns Hopkins UniversityReservoir device for intraocular drug delivery
US9526654Mar 27, 2014Dec 27, 2016Forsight Vision4, Inc.Ophthalmic implant for delivering therapeutic substances
US9545360May 9, 2013Jan 17, 2017Sio2 Medical Products, Inc.Saccharide protective coating for pharmaceutical package
US9554848Nov 26, 2013Jan 31, 2017Medtronic, Inc.Ablation catheters and associated systems and methods
US9554968Mar 11, 2014Jan 31, 2017Sio2 Medical Products, Inc.Trilayer coated pharmaceutical packaging
US9572526Jun 16, 2014Feb 21, 2017Sio2 Medical Products, Inc.Apparatus and method for transporting a vessel to and from a PECVD processing station
US9579030Jul 20, 2012Feb 28, 2017Boston Scientific Scimed, Inc.Percutaneous devices and methods to visualize, target and ablate nerves
US9592386Dec 21, 2012Mar 14, 2017Vessix Vascular, Inc.Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US20050197557 *Mar 8, 2004Sep 8, 2005Mediguide Ltd.Automatic guidewire maneuvering system and method
US20050197566 *Sep 14, 2004Sep 8, 2005Mediguide Ltd.Automatic guidewire maneuvering system and method
US20060106338 *Nov 18, 2005May 18, 2006Chang David WEndoluminal delivery of anesthesia
US20060264757 *Apr 26, 2006Nov 23, 2006Michael MaschkeUltrasound catheter and imaging device for recording ultra-sound images
US20070005018 *Jun 14, 2005Jan 4, 2007Tengiz TekbuchavaCatheter for introduction of medications to the tissues of a heart or other organ
US20070088244 *Oct 18, 2005Apr 19, 2007Biocardia, Inc.Bio-interventional therapeutic treatments for cardiovascular diseases
US20070167822 *Dec 2, 2005Jul 19, 2007Webler William EEchogenic needle catheter configured to produce an improved ultrasound image
US20070265516 *May 15, 2006Nov 15, 2007Wang Edwin YEchogenic needle catheter configured to produce an improved ultrasound image
US20090131910 *Jan 20, 2009May 21, 2009Abbott Cardiovascular Systems Inc.Visualization of a catheter viewed under ultrasound imaging
US20100004723 *Jun 23, 2009Jan 7, 2010Foster Arthur JHelical fixation member with chemical elution capabilities
US20100168713 *Mar 12, 2010Jul 1, 2010Tengiz TkebuchavaCatheter for introduction of medications to the tissues of a heart or other organ
US20100174243 *Jan 5, 2009Jul 8, 2010Warsaw Orthopedic, Inc.Apparatus for Delivery of Therapeutic Material to an Intervertebral Disc and Method of Use
US20100331670 *Sep 2, 2010Dec 30, 2010Gera StrommerAutomatic guidewire maneuvering system and method
US20100331697 *Sep 14, 2010Dec 30, 2010Webler William EEchogenic needle catheter configured to produce an improved ultrasound image
US20110034986 *Jul 12, 2010Feb 10, 2011Chou Tony MSystems and methods for treating a carotid artery
US20110125131 *Jan 31, 2011May 26, 2011Silk Road Medical, Inc.Endoluminal delivery of anesthesia
US20130165860 *Sep 13, 2012Jun 27, 2013Darren DoudFluid exchange apparatus and methods
US20140277314 *Feb 12, 2014Sep 18, 2014Boston Scientific Neuromodulation CorporationSystems and methods for inputting fluid into a lead of an electrical stimulation system
DE102005019371A1 *Apr 26, 2005Nov 9, 2006Siemens AgUltrasonic catheter, comprises integrated ducts dispensing contrast media for ultrasonic inspection as well as for X-raying
DE102005019371B4 *Apr 26, 2005Apr 9, 2009Siemens AgBildaufnahmeeinrichtung zur Aufnahme von Ultraschallbildern
EP1827555A2 *Nov 18, 2005Sep 5, 2007David W. ChangEndoluminal delivery of anesthesia
EP1827555A4 *Nov 18, 2005Mar 10, 2010David W ChangEndoluminal delivery of anesthesia
WO2006138109A1 *Jun 5, 2006Dec 28, 2006Tengiz TkebuchavaCatheter for introduction of medications to the tissues of a heart or other organ
WO2007067324A1 *Nov 15, 2006Jun 14, 2007Abbott Cardiovascular Systems Inc.Echogenic needle catheter configured to produce an improved ultrasound image
WO2010002633A1 *Jun 23, 2009Jan 7, 2010Cardiac Pacemakers, Inc.Helical fixation member with chemical elution capabilities
WO2010078406A3 *Dec 30, 2009Sep 30, 2010Warsaw Orthopedic, Inc.Apparatus for delivery of therapeutic material to an intervertebral disc and method of use
Classifications
U.S. Classification604/264, 604/44, 604/272
International ClassificationA61B18/14, A61N1/05, A61B17/34, A61M25/00, A61M25/14
Cooperative ClassificationA61M25/0084, A61B2018/1435, A61B18/1477, A61N1/0575, A61M2025/0089, A61B17/3478
European ClassificationA61M25/00T40A, A61N1/05N4A2, A61B18/14N