Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040052739 A1
Publication typeApplication
Application numberUS 10/463,523
Publication dateMar 18, 2004
Filing dateJun 18, 2003
Priority dateJun 20, 2002
Also published asCN1243537C, CN1323654C, CN1466939A, CN1468594A, DE60302009D1, DE60302009T2, DE60302389D1, DE60302389T2, DE60303429D1, DE60303429T2, DE60304133D1, DE60304133T2, DE60304626D1, DE60304626T2, EP1374849A1, EP1374849B1, EP1374850A1, EP1374850B1, EP1374851A1, EP1374851B1, EP1374852A1, EP1374852B1, EP1374853A1, EP1374853B1, US7691903, US7803354, US20040001792, US20040042990, US20040047824, US20040175342
Publication number10463523, 463523, US 2004/0052739 A1, US 2004/052739 A1, US 20040052739 A1, US 20040052739A1, US 2004052739 A1, US 2004052739A1, US-A1-20040052739, US-A1-2004052739, US2004/0052739A1, US2004/052739A1, US20040052739 A1, US20040052739A1, US2004052739 A1, US2004052739A1
InventorsBruno Biatry
Original AssigneeL'oreal
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cosmetic and/or dermatological use of a composition containing at least one oxidation-sensitive hydrophilic active principle stabilized by at least one maleic anhydride copolymer
US 20040052739 A1
Abstract
The invention relates to the cosmetic and/or dermatological use of a composition for preventing or combating the harmful effects of UV radiation and/or of pollution on the skin, in particular loss of firmness and/or of elasticity of the skin, the composition containing at least one oxidation-sensitive hydrophilic active principle selected from ascorbic acid and its derivatives and at least one maleic anhydride copolymer comprising one or more maleic anhydride comonomers and one or more comonomers selected from the group consisting of vinyl acetate, vinyl alcohol, vinylpyrrolidone, olefins comprising from 2 to 20 carbon atoms, and styrene in a physiologically acceptable medium containing an aqueous phase.
Images(10)
Previous page
Next page
Claims(19)
1. A method of preventing or combating the harmful effects of UV radiation and/or of pollution on the skin, or for preventing or combating loss of firmness and/or of elasticity of the skin, or for soothing sunburn, comprising applying to skin in need thereof a composition comprising at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and at least one maleic anhydride copolymer comprising one or more maleic anhydride comonomer units and one or more comonomer units selected from the group consisting of vinyl acetate, vinyl alcohol, vinylpyrrolidone, olefins comprising from 2 to 20 carbon atoms, and styrene in a physiologically acceptable medium comprising an aqueous phase.
2. A method as claimed in claim 1, wherein said method is a method of preventing or combating the harmful effects of UV radiation and/or of pollution on the skin.
3. A method as claimed in claim 1, wherein said method is a method for preventing or combating loss of firmness and/or of elasticity of the skin.
4. A method as claimed in claim 1, wherein said method is a method for soothing sunburn.
5. A method as claimed in claim 1, wherein said copolymer is present at a concentration of between 0.1 and 10% by weight of the aqueous phase.
6. A method as claimed in claim 1, wherein said hydrophilic active principle is selected from the group consisting of 5,6-di-O-dimethylsilylascorbate, the dl-α-tocopheryl dl-ascorbyl phosphate potassium salt of ascorbic acid, magnesium ascorbyl phosphate, sodium ascorbyl phosphate and ascorbyl glucoside.
7. A method as claimed in claim 1, wherein said oxidation-sensitive hydrophilic active principle is ascorbic acid.
8. A method as claimed in claim 1, wherein said maleic anhydride units of the copolymer are in the hydrolysed form and in the form of alkaline salts.
9. A method as claimed in claim 1, wherein said oxidation-sensitive active principle and the copolymer are both in the aqueous phase.
10. A method as claimed in claim 1, wherein said copolymer has a molar fraction of maleic anhydride units of between 0.1 and 1.
11. A method as claimed in claim 1, wherein said copolymer has a molar fraction of maleic anhydride units of between 0.4 and 0.9.
12. A method as claimed in claim 1, wherein said copolymer is a copolymer of styrene and of maleic anhydride in a 50/50 ratio.
13. A method as claimed in claim 1, wherein said copolymer is a copolymer of styrene and of maleic anhydride in a 50/50 ratio in the form of an ammonium or sodium salt.
14. A method as claimed in claim 1, wherein said the molar ratio of the maleic anhydride unit equivalent to the oxidation-sensitive hydrophilic active principle is from 0.005 to 10.
15. A method as claimed in claim 14, wherein said molar ratio of the maleic anhydride unit equivalent to the oxidation-sensitive hydrophilic active principle varies between 0.01 and 1.
16. A method as claimed in claim 1, wherein said copolymer is present at a concentration of between 0.1 and 40% by weight of the aqueous phase.
17. A method as claimed in claim 1, wherein a molar ratio of the maleic anhydride unit equivalent to the oxidation-sensitive hydrophilic active principle varies between 0.01 and 1 and wherein said copolymer is present at a concentration of between 0.1 and 40% by weight of the aqueous phase.
18. A method as claimed in claim 1, wherein said composition further comprises an agent other than ascorbic acid and its derivatives selected from the group consisting of scavengers for ozone, scavengers for heavy metals and agents for combating free radicals.
19. A cosmetic treatment process for preventing or combating the harmful effects of UV radiation and/or of pollution on the skin or mucous membranes, or for preventing or combating loss of firmness and/or of elasticity on the skin or mucous membranes, comprising the application, to the skin or mucous membranes, of a composition comprising at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and at least one maleic anhydride copolymer comprising one or more maleic anhydride comonomer units and one or more comonomer units selected from the group consisting of vinyl acetate, vinyl alcohol, vinylpyrrolidone, olefins comprising from 2 to 20 carbon atoms, and styrene.
Description
    REFERENCE TO PRIOR APPLICATIONS
  • [0001]
    This application claims priority to U.S. provisional application No. 60/394,255, filed Jul. 9, 2002, and to French patent application 0207638, filed Jun. 20, 2002, both of which are incorporated herein by reference.
  • SUMMARY OF THE INVENTION
  • [0002]
    The present invention relates to the cosmetic and/or dermatological use of a composition comprising at least one oxidation-sensitive hydrophilic active principle and at least one maleic anhydride copolymer in a physiologically acceptable medium comprising an aqueous phase.
  • BACKGROUND OF THE INVENTION
  • [0003]
    It is known to introduce, into cosmetic compositions, various active principles intended to contribute specific treatments to the skin and/or hair. However, some of these active principles exhibit the disadvantage of being unstable in an aqueous medium and of easily decomposing on contact with water, in particular because of oxidation phenomena. They thus rapidly lose their activity over time and this instability conflicts with the desired effectiveness.
  • [0004]
    Attempts have thus been made for a long time to formulate ascorbic acid or vitamin C because of its numerous beneficial properties. In particular, ascorbic acid stimulates the synthesis of the connective tissue and in particular of collagen, strengthens the defences of the cutaneous tissue against external attacks, such as ultraviolet radiation and pollution, compensates for vitamin E deficiency of the skin, depigments the skin and has a role in combating free radicals. These last two properties make it an excellent candidate as cosmetic or dermatological active principle for combating ageing of the skin or for preventing ageing of the skin. Unfortunately, because of its chemical structure (of α-ketolactone), ascorbic acid is highly sensitive to certain environmental parameters and in particular to oxidation phenomena. There thus ensues rapid decomposition of formulated ascorbic acid in the presence of these parameters and in particular in the presence of oxygen, light or metal ions, as a function of the temperature or under certain pH conditions (Pharm. Acta. Helv., 1969, 44, 611-667; STP Pharma, 1985, 4, 281-286).
  • [0005]
    Several solutions have thus been envisaged in the prior art for reducing and/or slowing down the decomposition of ascorbic acid.
  • [0006]
    Provision has thus been made to use ascorbic acid in the form of a chemical derivative (magnesium ascorbyl phosphate or esters of fatty acids and ascorbic acid), but the bioavailability of these derivatives is very low (J. Am. Acad. Dermatol., 1996, 34, 29-33).
  • [0007]
    The instability of ascorbic acid with respect to oxygen can be improved by using specific packagings, such as twin compartments under an inert atmosphere, as disclosed in Patent U.S. Pat. No. 5,935,584, or alternatively by the use of two-phase emulsions, one phase of which is composed of a dry powder comprising ascorbic acid and the second phase of which is a liquid phase. The mixing of the two phases has to be carried out at the time of use (WO 98/43598). These solutions have disadvantages with regard to the cost and the complexity of the manufacturing operations and significant restrictions with regard to use.
  • [0008]
    Another solution provided in the prior art consists in using a high concentration of glycols or polyols in order to reduce the solubility of oxygen in the formulation, thus protecting the ascorbic acid (WO 96/24325, EP 0 755 674, U.S. Pat. No. 5,981,578). The polyols can optionally be incorporated in liposomes, as disclosed in Patent U.S. Pat. No. 6,020,367. However, these solutions exhibit the disadvantage of resulting in sticky formulations, the cosmetic quality of which is difficult to improve. Furthermore, the presence of a high concentration of these compounds can lead to phenomena of irritation.
  • [0009]
    Ascorbic acid can also be formulated in anhydrous media, such as silicones (U.S. Pat. No. 6,194,452), which are capable of creating an anhydrous barrier around ascorbic acid. A major disadvantage of such solutions results from the lack of freshness on application.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0010]
    The need thus remains for a composition employable in particular in the cosmetics and dermatological fields, in which a hydrophilic active principle which is unstable in an oxidizing medium is stabilized, which is comfortable on application, which does not lead to any skin irritation after application and which is compatible with the constraints of an industrial implementation of its manufacturing process.
  • [0011]
    Cutaneous ageing of physiological nature can be accelerated by environmental factors, such as repeated exposure of the skin to sunlight, in particular to ultraviolet A radiation, or to pollution, in particular to diesel particles or to cigarette smoke. The action of the environment on the constituents of the skin (fibres, cells, enzymes) and on the sebum secreted by the skin results in particular in the formation of oxygen free radicals. In point of fact, these radicals result in significant oxidative damage, in particular in cell membranes (permeability of the membranes), cell nuclei (destruction of DNA), and tissues, in particular connective tissue (decomposition of elastin and collagen fibres). This damage results in particular in the loss of firmness and elasticity of the skin.
  • [0012]
    Ascorbic acid, by trapping free radicals, protects biological molecules. Thus, applied topically, it can accumulate in the skin and can restore the disrupted concentration of ascorbic acid, for example in the case of exposure to UV radiation. It can, moreover, protect the skin from damage induced by UV radiation (British Journal of Dermatology, 127, 1992, p. 247-253) or by environmental stress.
  • [0013]
    In parallel with this activity, ascorbic acid has an inhibitory effect on the secretion of the proinflammatory cytokines IL1□ and IL6 induced by UV radiation (Journal of Investigative Dermatology, 108(3), 1997, p. 302-308). It is therefore of particular advantage as soothing agent for sunburn.
  • [0014]
    The aim of the present invention is to provide a composition comprising an oxidation-sensitive active principle selected from the group consisting of ascorbic acid and its derivatives, which exhibits good cosmetic properties, both with regard to touch and with regard to tolerance, the preservation of which over time does not require specific precautions, and which retains the activity in combating free radicals of the active principle, for preventing or combating the harmful effects of UV radiation and/or of pollution on the skin, in particular the loss of firmness and/or of elasticity of the skin.
  • [0015]
    The inventors have discovered, fortuitously, that the use of maleic anhydride copolymers in compositions in which the aqueous phase includes an oxidation-sensitive active principle, such as ascorbic acid, makes it possible to achieve the abovementioned aim.
  • [0016]
    To the knowledge of the inventors, such polymers comprising maleic anhydride units have never been used in combination with hydrophilic active principles sensitive to decomposition by oxidation for the purpose of improving their stability. This is true in particular in the case of ascorbic acid.
  • [0017]
    A subject-matter of the present invention is therefore the cosmetic and/or dermatological use of a composition for preventing or combating the harmful effects of UV radiation and/or of pollution on the skin, the composition comprising at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and at least one maleic anhydride copolymer in a physiologically acceptable medium comprising an aqueous phase. The copolymer is present in an amount sufficient to stabilize the oxidation-sensitive hydrophilic active principle. Preferably, the oxidation-sensitive active principle and the copolymer are both in the aqueous phase.
  • [0018]
    Another subject-matter of the present invention is the cosmetic and/or dermatological use of a composition for preventing or combating loss of firmness and/or of elasticity of the skin, the composition comprising at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and at least one maleic anhydride copolymer in a physiologically acceptable medium comprising an aqueous phase.
  • [0019]
    Another subject-matter of the present invention is the use of a combination composed of at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and of at least one maleic anhydride copolymer in a cosmetic composition comprising an aqueous phase as agent for combating free radicals.
  • [0020]
    Another subject-matter of the present invention is the use of a combination composed of at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and of at least one maleic anhydride copolymer in a cosmetic composition comprising an aqueous phase as soothing agent for sunburn.
  • [0021]
    Another aspect of the invention relates to the use of at least one oxidation-sensitive hydrophilic active principle selected from the group consisting of ascorbic acid and its derivatives and of at least maleic anhydride copolymer in the preparation of a dermatological composition comprising an aqueous phase which is intended to prevent or combat the harmful effects of UV radiation and/or of pollution on the skin.
  • [0022]
    In another alternative form, the composition according to the invention can be used in the manufacture of a dermatological preparation comprising an aqueous phase which is intended to prevent or combat loss of firmness and/or of elasticity of the skin.
  • [0023]
    The term “pollution” is understood to mean both “external” pollution, for example due to diesel particles, to ozone or to heavy metals, an “internal” pollution, which can in particular be due to emissions of solvents from paints, from fitted carpet adhesives, from insulation or from wallpaper (such as toluene, styrene, xylene or benzaldehyde), or to cigarette smoke. This is because all these pollutants are capable, directly or indirectly, of generating free radicals.
  • [0024]
    According to the invention, the term “hydrophilic active principle” is understood to mean a compound having a solubility in water of at least 0.25% at ambient temperature (25° C).
  • [0025]
    According to the invention, the term “oxidation-sensitive hydrophilic active principle” is understood to mean any active principle of natural or synthetic origin capable of undergoing decomposition by an oxidation mechanism. This oxidation phenomenon can have several causes, in particular the presence of oxygen, of light or of metal ions, a high temperature or certain pH conditions.
  • [0026]
    Mention may be made, among ascorbic acid derivatives, by way of example and without implied limitation, of: the salts or esters, in particular the 5,6-di-O-dimethylsilylascorbate (sold by Exsymol under the reference PRO-AA), the potassium salt of dl-α-tocopheryl dl-ascorbyl phosphate (sold by Senju Pharmaceutical under the reference SEPIVITAL EPC), magnesium ascorbyl phosphate, sodium ascorbyl phosphate (sold by Roche under the reference Stay-C 50) and ascorbyl glucoside (sold by Hayashibara).
  • [0027]
    In a particularly advantageous aspect, the oxidation-sensitive hydrophilic active principle is ascorbic acid.
  • [0028]
    According to the invention, the term “maleic anhydride copolymer” is understood to mean any polymer obtained by copolymerization of one or more maleic anhydride comonomers and of one or more comonomers selected from the group consisting of vinyl acetate, vinyl alcohol, vinylpyrrolidone, olefins comprising from 2 to 20 carbon atoms, such as octadecene, ethylene, isobutylene, diisobutylene or isooctylene, and styrene, the maleic anhydride comonomers optionally being partially or completely hydrolysed. Use will preferably be made of hydrophilic polymers, that is to say polymers having solubility in water of greater than or equal to 2 g/l.
  • [0029]
    Copolymers which are more particularly suitable for the implementation of the invention are copolymers obtained by copolymerization of one or more maleic anhydride units, the maleic anhydride units of which are in the hydrolysed form and preferably in the form of alkaline salts, for example in the form of ammonium, sodium, potassium or lithium salts.
  • [0030]
    In an advantageous aspect of the invention, the copolymer has a molar fraction of maleic anhydride units of between 0.1 and 1, more preferably between 0.4 and 0.9.
  • [0031]
    According to an advantageous aspect of the invention, the molar ratio of the maleic anhydride unit equivalent to the oxidation-sensitive hydrophilic active principle varies between 0.005 and 10 and preferably between 0.01 and 1.
  • [0032]
    The weight-average molar mass (molecular weight) of the maleic anhydride copolymers will advantageously be between 1 000 and 500 000 and preferably between 1 000 and 50 000.
  • [0033]
    Use will preferably be made of a copolymer of styrene and maleic anhydride in a 50/50 ratio.
  • [0034]
    Use may be made, for example, of the styrene/maleic anhydride (50/50) copolymer in the form of a 30% ammonium salt in water sold under the reference SMA1000H® by Atofina or the styrene/maleic anhydride (50/50) copolymer in the form of 40% sodium salt in water sold under the reference SMA1000HNa® by Atofina.
  • [0035]
    The copolymer is present in the composition according to the invention in an amount sufficient to produce the desired effect, that is to say in an amount sufficient to stabilize the oxidation-sensitive hydrophilic active principle. Preferably, the copolymer is present at a concentration of between 0.1 and 40% by weight with respect to the total weight of the aqueous phase and more particularly at a concentration of between 0.1 and 10% by weight with respect to the total weight of the aqueous phase.
  • [0036]
    The compositions used according to the invention are intended for topical application to the skin and/or its superficial body growths and therefore comprise a physiologically acceptable medium, that is to say a medium compatible with cutaneous tissues, such as the skin, scalp, eyelashes, eyebrows, hair, nails and mucous membranes. This physiologically acceptable medium may more particularly be composed of water and optionally of a physiologically acceptable organic solvent chosen, for example, from lower alcohols comprising from 1 to 8 carbon atoms and in particular from 1 to 6 carbon atoms, such as ethanol, isopropanol, propanol or butanol; polyethylene glycols having from 6 to 80 ethylene oxide units; or polyols, such as propylene glycol, isoprene glycol, butylene glycol, glycerol or sorbitol. Application is preferably to areas, regions, etc susceptible to the condition being treated and/or prevented.
  • [0037]
    When the physiologically acceptable medium is an aqueous medium, it generally has a pH which is compatible with the skin, preferably ranging from 3 to 9 and better still from 3.5 to 7.5.
  • [0038]
    The compositions according to the invention can be provided in any form used conventionally for topical application and in particular in the form of aqueous or aqueous/alcoholic solutions, of oil-in-water (O/W) or water-in-oil (W/O) or multiple (triple: W/O/W or O/W/O) emulsions, of aqueous gels or of dispersions of a fatty phase in an aqueous phase using spherules, it being possible for these spherules to be polymeric nanoparticles, such as nanospheres and nanocapsules, or lipid vesicles of ionic and/or nonionic type (liposomes, niosomes or oleosomes). These compositions are prepared according to the usual methods.
  • [0039]
    In addition, the compositions used according to the invention can be more or less fluid and can have the appearance of a white or coloured cream, of an ointment, of a milk, of a lotion, of a serum, of a paste or of a foam. They can optionally be applied to the skin in the form of an aerosol. They can also be provided in a solid form, for example in the form of a stick.
  • [0040]
    When the composition used according to the invention comprises an oily phase, the latter preferably comprises at least one oil. It can additionally comprise other fatty substances.
  • [0041]
    Mention may be made, as oils which can be used in the composition of the invention, of, for example:
  • [0042]
    hydrocarbonaceous oils of animal origin, such as perhydrosqualene;
  • [0043]
    hydrocarbonaceous oils of vegetable origin, such as liquid triglycerides of fatty acids comprising from 4 to 10 carbon atoms, such as triglycerides of heptanoic acid or octanoic acid, or alternatively, for example, sunflower, maize, soybean, gourd, grape seed, sesame, hazelnut, apricot, macadamia, arara, castor or avocado oils, triglycerides of caprylic/capric acids, such as those sold by Stearineries Dubois or those sold under the names Miglyol 810, 812 and 818 by Dynamit Nobel, jojoba oil, or karite butter oil;
  • [0044]
    synthetic esters and ethers, in particular of fatty acids, such as the oils of formulae R1COOR2 and R1OR2 in which R1 represents the residue of a fatty acid comprising from 8 to 29 carbon atoms and R2 represents a branched or unbranched hydrocarbonaceous chain comprising from 3 to 30 carbon atoms, such as, for example, purcellin oil, isononyl isononanoate, isopropyl myristate, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl erucate or isostearyl isostearate; hydroxylated esters, such as isostearyl lactate, octyl hydroxystearate, octyldodecyl hydroxystearate, diisostearyl malate, triisocetyl citrate or heptanoates, octanoates or decanoates of fatty alcohols; polyol esters, such as propylene glycol dioctanoate, neopentyl glycol diheptanoate and diethylene glycol diisononanoate; and pentaerythritol esters, such as pentaerythrityl tetraisostearate;
  • [0045]
    linear or branched hydrocarbons of mineral or synthetic origin, such as volatile or nonvolatile liquid paraffins and their derivatives, liquid petrolatum, polydecenes or hydrogenated polyisobutene, such as parleam oil;
  • [0046]
    fatty alcohols having from 8 to 26 carbon atoms, such as cetyl alcohol, stearyl alcohol and their mixture (cetearyl alcohol), octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol, oleyl alcohol or linoleyl alcohol;
  • [0047]
    partially hydrocarbon-comprising and/or silicone-comprising fluorinated oils, such as those disclosed in the document JP-A-2-295912;
  • [0048]
    silicone oils, such as volatile or nonvolatile polymethylsiloxanes (PDMS) comprising a linear or cyclic silicone chain which are liquid or pasty at ambient temperature, in particular cyclopolydimethylsiloxanes (cyclomethicones), such as cyclohexasiloxane; polydimethylsiloxanes comprising pendent alkyl, alkoxy or phenyl groups or alkyl, alkoxy or phenyl groups at the end of the silicone chain, which groups have from 2 to 24 carbon atoms; or phenylated silicones, such as phenyl trimethicones, phenyl dimethicones, phenyltrimethyl-siloxydiphenylsiloxanes, diphenyl dimethicones, diphenylmethyldiphenyltrisiloxanes, (2-phenylethyl) trimethylsiloxysilicates and polymethylphenylsiloxanes;
  • [0049]
    their mixtures.
  • [0050]
    The term “hydrocarbonaceous oil” is understood to mean, in the list of the oils mentioned above, any oil predominantly comprising carbon and hydrogen atoms and optionally ester, ether, fluorinated, carboxylic acid and/or alcohol groups.
  • [0051]
    The other fatty substances which can be present in the oily phase are, for example, fatty acids comprising from 8 to 30 carbon atoms, such as stearic acid, lauric acid, palmitic acid and oleic acid; waxes, such as lanolin, beeswax, carnauba or candelilla wax, paraffin or lignite waxes or microcrystalline waxes, ceresin or ozokerite, or synthetic waxes, such as-polyethylene waxes or Fischer-Tropsch waxes; silicone resins, such as trifluoromethyl C1-4 alkyl dimethicone and trifluoropropyl dimethicone; and silicone elastomers, such as the products sold under the names “KSG” by Shin-Etsu, under the names “Trefil”, “BY29” or “EPSX” by Dow Corning or under the names “Gransil” by Grant Industries.
  • [0052]
    These fatty substances can be chosen in a way varied by a person skilled in the art in order to prepare a composition having the desired properties, for example of consistency or of texture.
  • [0053]
    According to a specific embodiment of the invention, the composition according to the invention is a water-in-oil (W/O) or oil-in-water (O/W) emulsion. The proportion of the oily phase in the emulsion can range from 5 to 80% by weight and preferably from 5 to 50% by weight with respect to the total weight of the composition.
  • [0054]
    The emulsions generally comprise at least one emulsifier selected from the group consisting of amphoteric, anionic, cationic or nonionic emulsifiers, used alone or as a mixture, and optionally a coemulsifier. The emulsifiers are appropriately chosen according to the emulsion to be obtained (W/O or O/W). The emulsifier and the coemulsifier are generally present in the composition in a proportion ranging from 0.3 to 30% by weight and preferably from 0.5 to 20% by weight with respect to the total weight of the composition.
  • [0055]
    Mention may be made, for the W/O emulsions, for example, as emulsifiers, of dimethicone copolyols, such as the mixture of cyclomethicone and of dimethicone copolyol sold under the name “DC 5225 C” by Dow Corning, and alkyl dimethicone copolyols, such as the laurylmethicone copolyol sold under the name “Dow Corning 5200 Formulation Aid” by Dow Corning and the cetyl dimethicone copolyol sold under the name Abil EM 90R by Goldschmidt. Use may also be made, as surfactant of W/O emulsions, of a crosslinked solid organopolysiloxane elastomer comprising at least one oxyalkylenated group, such as those obtained according to the procedure of Examples 3, 4 and 8 of the document U.S. Pat. No. 5,412,004 and the examples of the document U.S. Pat. No. 5,811,487, in particular the product of Example 3 (synthetic example) of Patent U.S. Pat. No. 5,412,004, and such as that sold under the reference KSG 21 by Shin Etsu.
  • [0056]
    Mention may be made, for the O/W emulsions, for example, as emulsifiers, of nonionic emulsifiers, such as esters of fatty acids and of glycerol which are oxyalkylenated (more particularly polyoxyethylenated); esters of fatty acids and of sorbitan which are oxyalkylenated; esters of fatty acids which are oxyalkylenated (oxyethylenated and/or oxypropylenated); ethers of fatty alcohols which are oxyethylenated (oxyethylenated and/or oxypropylenated); sugar esters, such as sucrose stearate; and their mixtures, such as the mixture of glyceryl stearate and of PEG-40 stearate.
  • [0057]
    In a known way, the cosmetic or dermatological composition of the invention can also comprise adjuvants conventional in the cosmetics or dermatological field, such as hydrophilic or lipophilic gelling agents, preservatives, solvents, fragrances, fillers, UV screening agents, bactericides, odour absorbers, colouring materials, plant extracts or salts. The amounts of these various adjuvants are those conventionally used in the field under consideration, for example from 0.01 to 20% of the total weight of the composition. These adjuvants, depending on their nature, can be introduced into the fatty phase, into the aqueous phase and/or into the lipid spherules.
  • [0058]
    Mention may be made, as fillers which can be used in the composition of the invention, for example, of pigments, silica powder; talc; particles of polyamide and in particular those sold under the name Orgasol by Atochem; polyethylene powders; microspheres based on acrylic copolymers, such as those made of ethylene glycol dimethacrylate/lauryl methacrylate copolymer which are sold by Dow Corning under the name Polytrap; expanded powders, such as hollow microspheres and in particular the microspheres sold under the name Expancel by Kemanord Plast or under the name Micropearl F 80 ED by Matsumoto; silicone resin microbeads, such as those sold under the name Tospearl by Toshiba Silicone; and their mixtures. These fillers can be present in amounts ranging from 0 to 20% by weight- and preferably from 1 to 10% by weight with respect to the total weight of the composition.
  • [0059]
    According to a preferred embodiment, the compositions in accordance with the invention can additionally comprise at least one organic photoprotective agent and/or at least one inorganic photoprotective agent which is active in the UV-A and/or UV-B regions (absorbers), which are soluble in water or in fats or else are insoluble in the cosmetic solvents commonly used, and which are selected from the group consisting of the following agents, denoted below under their INCI names:
  • [0060]
    p-aminobenzoic acid (PABA) derivatives, in particular PABA, ethyl PABA, ethyl dihydroxypropyl PABA, ethylhexyl dimethyl PABA (sold in particular under the name “Escalol 507” by ISP), glyceryl PABA or PEG-25 PABA (sold under the name “Uvinul P25” by BASF),
  • [0061]
    salicylic derivatives, in particular homosalate (sold under the name “Eusolex HMS” by Rona/EM Industries), ethylhexyl salicylate (sold under the name “Neo Heliopan OS” by Haarmann and Reimer), dipropylene glycol salicylate (sold under the name “Dipsal” by Scher), or TEA salicylate (sold under the name “Neo Heliopan TS” by Haarmann and Reimer),
  • [0062]
    dibenzoylmethane derivatives, in particular butyl methoxydibenzoylmethane (sold in particular under the trade name “Parsol 1789” by Hoffmann-LaRoche), or isopropyl dibenzoylmethane,
  • [0063]
    cinnamic derivatives, in particular ethylhexyl methoxycinnamate (sold in particular under the trade name “Parsol MCX” by Hoffmann-LaRoche), isopropyl methoxycinnamate, isoamyl methoxycinnamate (sold under the trade name “Neo Heliopan E 1000” by Haarmann and Reimer), cinoxate, DEA methoxycinnamate, diisopropyl methyl cinnamate, or glyceryl ethylhexanoate dimethoxycinnamate,
  • [0064]
    β, β-diphenylacrylate derivatives, in particular octocrylene (sold in particular under the trade name “Uvinul N539” by BASF) or etocrylene (sold in particular under the trade name “Uvinul N35” by BASF),
  • [0065]
    benzophenone, in particular benzophenone-1 (sold under the trade name “Uvinul 400” by BASF), benzophenone-2 (sold under the trade name “Uvinul D50” by BASF), benzophenone-3 or oxybenzone (sold under the trade name “Uvinul M40” by BASF), benzophenone-6 (sold under the trade name “Helisorb 11” by Norquay), benzophenone-8 (sold under the trade name “Spectra-Sorb UV-24” by American Cyanamid), benzophenone-12, or n-hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate, benzylidene camphor derivatives, in particular 3-benzylidene camphor (manufactured under the name “Mexoryl SD” by Chimex), 4-methylbenzylidene camphor (sold under the name “Eusolex 6300” by Merck), or polyacrylamidomethyl benzylidene camphor (manufactured under the name “Mesoryl SW” by Chimex),
  • [0066]
    triazine derivatives, in particular anisotriazine (sold under the trade name “Tinosorb S” by Ciba Specialty Chemicals), ethylhexyl triazone (sold in particular under the trade name “Uvinul T150” by BASF), diethylhexyl butamido triazone (sold under the trade name “Uvasorb HEB” by Sigma 3V) or 2,4,6-tris(diisobutyl 4′-amino-benzalmalonate)-s-triazine,
  • [0067]
    benzotriazole derivatives, in particular drometrizole trisiloxane (sold under the name “Silatrizole” by Rhodia Chimie) or methylene bisbenzotriazolyl tetramethylbutylphenol (sold in the solid form under the trade name “Mixxim BB/100” by Fairmount Chemical or in the micronized form in aqueous dispersion under the trade name “Tinosorb M” by Ciba Specialty Chemicals),
  • [0068]
    anthranilic derivatives, in particular menthyl anthranilate (sold under the trade name “Neo Heliopan MA” by Haarmann and Reimer),
  • [0069]
    imidazoline derivatives, in particular ethylhexyl dimethoxybenzylidene dioxoimidazoline propionate, benzalmalonate derivatives, in particular polyorganosiloxane comprising benzalmalonate functional groups (sold under the trade name “Parsol SLX” by Hoffmann-LaRoche),
  • [0070]
    and their mixtures,
  • [0071]
    the inorganic photoprotective agents selected from the group consisting of pigments or alternatively nanopigments (mean size of the primary particles: generally between 5 nm and 100 nm, preferably between 10 nm and 50 nm) formed from coated or uncoated metal oxides, such as, for example, titanium oxide (amorphous or crystalline in the rutile and/or anatase form), iron oxide, zinc oxide, zirconium oxide or cerium oxide nanopigments, which are all UV photoprotective agents well known per se; conventional coating agents such as the alumina and/or aluminium stearate; the nanopigments formed from coated or uncoated metal oxides are disclosed in particular in Patent Applications EP 518 772 and EP 518 773.
  • [0072]
    The organic photoprotective agents which are more particularly preferred are selected from the group consisting of ethylhexyl salicylate, ethylhexyl methoxycinnamate, octocrylene, benzophenone-3, 4-methylbenzylidene camphor, 2,4,6-tris(diisobutyl 4-aminobenzalmalonate)-s-triazine, anisotriazine, ethylhexyl triazone, diethylhexyl butamido triazone, methylene bis-benzotriazolyl tetramethylbutylphenol, drometrizole trisiloxane, and their mixtures.
  • [0073]
    The photoprotective agents are generally present in the compositions according to the invention in proportions ranging from 0.1 to 20% by weight with respect to the total weight of the composition and preferably ranging from 0.2 to 15% by weight with respect to the total weight of the composition.
  • [0074]
    In another advantageous aspect of the invention, the composition used can additionally comprise at least one other depigmenting or antipigmentation active principle.
  • [0075]
    In another advantageous aspect of the invention, the composition used can additionally comprise at least one other agent selected from the group consisting of scavengers for ozone, scavengers for heavy metals and agents for combating free radicals.
  • [0076]
    Mention may in particular be made, as scavengers for ozone which can be used in the composition according to the invention, of phenols and polyphenols, in particular tannins, ellagic acid and tannic acid; epigallocatechin and the natural extracts comprising it; olive tree leaf extracts; tea extracts, in particular green tea extracts; anthocyanins; rosemary extracts; phenolic acids, in particular chorogenic acid; stilbenes, in particular resveratrol; sulphur-comprising amino acid derivatives, in particular S-carboxymethylcysteine; ergothioneine; N-acetylcysteine; chelating agents, such as N,N′-bis(3,4,5-trimethoxybenzyl)ethylenediamine or one of its salts, metal complexes or esters; carotenoids, such as crocetin; and various starting materials, such as the mixture of arginine, histidine ribonucleate, mannitol, adenosine triphosphate, pyridoxine, phenylalanine, tyrosine and hydrolysed RNA sold by Laboratoires Serobiologiques under the trade name CPP LS 2633-12F, the water-soluble maize fraction sold by Solabia under the trade name Phytovityl®, the mixture of fumitory extracts and of lemon extracts sold under the name Unicotrozon C-49® by Induchem and the mixture of extracts of ginseng, of apple, of peach, of wheat and of barley sold by Provital under the trade name Pronalen Bioprotect®.
  • [0077]
    Finally, mention may in particular be made, as scavengers for heavy metals which can be used in the composition according to the invention, of chelating agents, such as EDTA, the pentasodium salt of ethylenediaminetetramethylenephosphonic acid, and N,N′-bis(3,4,5-trimethoxybenzyl)ethylenediamine or one of its salts, metal complexes or esters; phytic acid; chitosan derivatives; tea extracts, in particular green tea extracts, tannins, such as ellagic acid; sulphur-comprising amino acids, such as cysteine; water hyacinth (Eichornia crassipes) extracts; and the water-soluble maize fraction sold by Solabia under the trade name Phytovityl®.
  • [0078]
    The agents for combating free radicals which can be used in the composition according to the invention comprise, in addition to certain agents for combating pollution mentioned above, vitamin E and its derivatives, such as tocopheryl acetate; bioflavonoids; coenzyme Q10 or ubiquinone; certain enzymes, such as catalase, superoxide dismutase, lactoperoxidase, glutathione peroxidase and quinone reductases; glutathione; benzylidene camphor; benzylcyclanones; substituted naphthalenones; pidolates; phytantriol; γ-oryzanol; lignans; and melatonin.
  • [0079]
    The composition according to the invention can be applied to the skin or lips. It can thus be used in a cosmetic treatment process for the purpose-of preventing or combating the harmful effects of UV radiation and/or of pollution on the skin or mucous membranes, comprising the application of the composition according to the invention to the skin or mucous membranes.
  • [0080]
    The invention also relates to a cosmetic treatment process for the purpose of preventing or combating loss of firmness and/or of elasticity of the skin or mucous membranes, comprising the application of the composition according to the invention to the skin or mucous membranes.
  • [0081]
    The compositions described herein also make up a part of the invention.
  • [0082]
    The examples which follow serve to illustrate the invention without, however, exhibiting a limiting nature. The compounds are, depending on the situation, cited according to chemical names or according to CTFA (International Cosmetic Ingredient Dictionary and Handbook) names.
  • EXAMPLES Example 1 Accelerated Storage Test
  • [0083]
    The aim of this test is to study the decomposition of an oxidation-sensitive hydrophilic active principle after storing for two months at 45° C. Various solutions were prepared and their compositions are collated in the following table:
    TABLE I
    Compositions Ascorbic
    (in water) acid Polymer 1 Polymer 2
    Solution A 15%
    (Control 1)
    Solution B 15% 1%
    Solution C 15% 1%
    Solution D 5%
    (Control 2)
    Solution E 5% 1%
    Solution F 5% 1%
  • [0084]
    All the solutions are brought to pH 6 with 8.9 mol/l KOH.
  • [0085]
    The percentages of the polymers are given as active material.
  • [0086]
    Polymer 1: Styrene/maleic anhydride (50/50) copolymer in the form of a 30% ammonium salt in water, sold under the reference SMA1000H® by Atofina.
  • [0087]
    Polymer 2: Styrene/maleic anhydride (50/50) copolymer in the form of a sodium salt, sold under the reference SMA1000HNa® by Atofina.
  • [0088]
    The degree of decomposition measured is given by the ratio:
  • (C0-C2 months)/C0
  • [0089]
    with C0 concentration of ascorbic acid at t=0 and C2 months the concentration of ascorbic acid at t=2 months, under the conditions indicated in the above table. The concentration of ascorbic acid is determined by the HPLC technique (LaChrom Merck system). The analytical conditions are as follows:
  • [0090]
    Column: Lichrosphere100 RP18 (250 mm)
  • [0091]
    Eluent: 0.1M phosphate buffer, pH 2.1
  • [0092]
    Flow rate: 1 ml/min
  • [0093]
    Detection at 257 nm
  • [0094]
    Dilution of the sample such that the concentration of ascorbic acid is between 0.05 and 1 mg/ml.
  • [0095]
    The results obtained are collated in the following Table II:
    TABLE II
    Degree of decomposition after 2 months at
    45° C. (in %)
    under air, amber glass under nitrogen,
    bottle aluminium flask
    Solution A 43 19.4
    (Control 1)
    Solution B 16 13.8
    Solution C 17.6 9.7
    Solution D 45.4 29.6
    (Control 2)
    Solution E 13.4 4.1
    Solution F 9 5.1
  • [0096]
    It is found, from Table II, that the stability of ascorbic acid, at a concentration of 5 or 15%, is improved in the presence of Polymer 1 and Polymer 2 of the invention, even in the presence of atmospheric oxygen, in comparison with the control.
  • [0097]
    As the polymers mentioned are hydrophilic, it would be sufficient to add them to an aqueous ascorbic acid solution to stabilize the ascorbic acid.
  • Example 2 Demonstration of the Activity in Combating Free Radicals:
  • [0098]
    I. Principle
  • [0099]
    This test makes it possible to evaluate the effect of a molecule in combating OHo.
  • [0100]
    It is based on the measurement by gas chromatography of the ethylene formed from the oxidation of methionine by the hydroxyl radical. The latter is generated by a ferro-catalysed Fenton reaction maintained by the continuous generation of superoxide anions. The anions O2 o− are produced by photochemical reduction at 365 nm of riboflavin (RBF) by a hydrogen donor, according to the following scheme:
  • [0101]
    The neutralization of the OHo radicals is reflected by inhibition of the production of ethylene.
  • [0102]
    II. Procedure
  • [0103]
    Irradiation equipment: 3 low-pressure mercury vapour tubes.
  • [0104]
    The tested products are dissolved in a phosphate buffer. They are tested at final concentrations in the reaction mixture generally ranging from 0.1 to 3%, according to their solubility. The final volume is 2 ml.
  • [0105]
    The separation distance for exposure under the UV bank is adjusted in order to have an exposure time of approximately 8 minutes for a UV-A dose of 1 joule/cm2 and in order not to adjust this setting throughout the duration of the test.
  • [0106]
    The following are introduced in this order into a head space flask:
  • [0107]
    1.4 ml of phosphate buffer
  • [0108]
    100 μl of 200 mM methionine solution
  • [0109]
    100 μl of 4 mM ferric chloride solution
  • [0110]
    100 μl of phosphate buffer, pH 7.4, (control) or of solution comprising the active principle to be tested
  • [0111]
    100 μl of 4 mM EDTA solution
  • [0112]
    100 μl of 400 mM NADH solution
  • [0113]
    The samples and the blanks are all prepared in succession and are kept sheltered from the light.
  • [0114]
    The UV-A bank is switched on, displaying a number of joules at least equal to the number of samples. The samples are irradiated one by one at intervals of 0.5 joules.
  • [0115]
    Every 0.5 joules:
  • [0116]
    100 μl of riboflavin are added
  • [0117]
    mixing is carried out
  • [0118]
    the sample is irradiated with 1 joule
  • [0119]
    the reaction is halted with 0.5 ml of 1N NaOH
  • [0120]
    the sample is sheltered from the light
  • [0121]
    The flasks are inserted into the sample changer of the chromatograph. The ethylene peak exits at a retention time of approximately 2.00 minutes. A minimum of 3 measurements are carried out per sample.
  • [0122]
    III. Results:
  • [0123]
    The results are expressed as percentage of inhibition of production of ethylene with respect to the control solution.
  • [0124]
    It is apparent that, for the tested samples comprising the combination of ascorbic acid and styrene/maleic anhydride copolymer in the form of a 40% sodium salt in water, inhibition of the production of ethylene is increased with respect to the control, thus demonstrating the activity in combating free radicals of this combination.
  • Example 3 O/W Cream
  • [0125]
    The following composition is prepared in a way conventional to a person skilled in the art.
    Phase A
    Glyceryl stearate and PEG-100 stearate 2.5 g
    PEG-50 stearate 2.5 g
    Cetyl alcohol 1 g
    Stearyl alcohol 1 g
    Hydrogenated polyisobutene 5 g
    Phase B
    Water 12.23 g
    Glycerol 5 g
    Phase C
    Cyclopentasiloxane 15 g
    Carbomer 0.6 g
    Phenoxyethanol 1 g
    Phase D
    Water 42.87 g
    Ascorbic acid 5 g
    Potassium hydroxide (50% solution) 3 g
    Styrene/maleic anhydride copolymer, 3.3 g
    30% ammonium salt in water
    (SMA1000H ®, Atofina
  • [0126]
    A soft cream is obtained, which cream makes it possible to improve the radiance of the complexion of the skin and helps in smoothing out the lines of the face and in which cream ascorbic acid has good stability.
  • Example 4 W/O Emulsion
  • [0127]
    The following composition is prepared in a way conventional to a person skilled in the art.
    Phase A
    Water 53.03 g
    Ascorbic acid 5 g
    Potassium hydroxide (50% solution) 2.97 g
    Styrene/maleic anhydride copolymer, 2.5 g
    40% sodium salt in water
    (SMA1000HNa ®, Atofina)
    Glycerol 3 g
    Phenoxyethanol 1 g
    Phase B
    Cyclopentasiloxane and dimethicone copolyol 20 g
    (Dow Corning ® 5225C)
    Phenyl trimethicone 4 g
    Prunus armeniaca (apricot) kernel oil 3.5 g
    Nylon-12 5 g
  • [0128]
    A white water-in-oil emulsion is obtained, which emulsion is capable of improving the radiance of the complexion of the skin and of smoothing out the lines of the face and in which emulsion ascorbic acid has good stability.
  • [0129]
    All documents, tests, patents, applications, references, articles, publications, etc. mentioned above are incorporated herein by reference. Where a range or limit is expressed all values and subranges therewithin are expressly included as if written out.
  • [0130]
    A preferred stabilizing amount of copolymer is any amount that reduces the amount of decomposition of the active principle after storage at 45C for 2 months (e.g., 0.5, 1, 2, 3%, etc. reduction in decomposition). Preferably the amount of the reduction in decomposition is 5% or greater (e.g., 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, etc. %). The reduction in decomposition is calculated as [(% decomposition without copolymer—% decomposition with copolymer)/% decomposition without copolymer]×100%.
  • [0131]
    The above description sets forth the manner and process of making and using the present invention and enables any person skilled in the art to which it pertains to make and use the same, such enablement being provided in addition for the embodiments of the invention included within the claims recited below.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3242051 *Dec 22, 1958Mar 22, 1966Ncr CoCoating by phase separation
US3714065 *Feb 3, 1971Jan 30, 1973Fuji Photo Film Co LtdProcess for preparing a micro capsule
US4229430 *Aug 21, 1978Oct 21, 1980Fahim Mostafa SOral composition for improving oral health
US4465629 *Mar 17, 1983Aug 14, 1984Maughan Rex GMethod to increase color fastness of stabilized aloe vera
US5032384 *Jan 27, 1989Jul 16, 1991Block Drug Company, Inc.Compositions and method for the treatment of disease
US5081111 *Mar 14, 1988Jan 14, 1992Nippon Oil And Fats Co., Ltd.Controlled release preparations of active materials
US5607692 *Dec 30, 1994Mar 4, 1997L'orealDepigmenting composition for the simultaneous treatment of the surface layers and deep layers of the skin, and use thereof
US5607791 *Jul 8, 1996Mar 4, 1997Motorola, IncBattery interface structure for an electrical device
US5703041 *Jul 24, 1996Dec 30, 1997L'orealStable composition containing a water-sensitive cosmetic and/or dermatological active agent
US5801192 *May 10, 1996Sep 1, 1998Lvmh RechercheUse of vitamin C or derivatives or analogues thereof promoting skin elastin synthesis
US5882658 *Jul 22, 1996Mar 16, 1999L'orealComposition for combatting skin blemishes and/or ageing of the skin, and uses thereof
US5891452 *Jun 30, 1997Apr 6, 1999L'orealCosmetic or dermatological composition containing at least one active principle precursor and a crosslinked poly(2-acrylamido-2-methylpropanesulphonic acid) polymer neutralized to at least 90%
US5945032 *Sep 23, 1997Aug 31, 1999Basf AktiengesellschaftPolymer/hydrogen peroxide complexes
US6008274 *Apr 20, 1993Dec 28, 1999Basf AktiengesellschaftStabilization of copolymers of maleic acid or maleic anhydride and vinyl alkyl ethers
US6024942 *Dec 8, 1997Feb 15, 2000The Procter & Gamble CompanyPhotoprotective compositions
US6068847 *Sep 30, 1997May 30, 2000Johnson & Johnson Consumer Products, Inc.Cosmetic compositions
US6126926 *Jan 15, 1998Oct 3, 2000Kose CorporationWhitening powder
US6162448 *May 28, 1998Dec 19, 2000L'orealCombination of a retinoid with a polyamine polymer
US6191188 *Dec 19, 1997Feb 20, 2001Basf AktiengesellschaftAqueous compositions and their use
US6232373 *Dec 4, 1997May 15, 2001Basf AktiengesellschaftProduction and use of formulations consisting of cellulose, kalium caseinate and cross-linked vinylpyrrolidone homopolymers and/or vinylimidazol/vinylpyrrolidone copolymers
US6531160 *May 7, 2001Mar 11, 2003L′OrealMicrocapsules with an aqueous core containing at least one water-soluble cosmetic or dermatological active principle and cosmetic or dermatological compositions containing them
US6533823 *Mar 5, 2001Mar 18, 2003Kao CorporationDye composition for keratinous fibers
US6596530 *Jan 21, 2000Jul 22, 2003Meiji Dairies CorporationStrain of Lactobacillus gasseri
US6764693 *Dec 11, 1992Jul 20, 2004Amaox, Ltd.Free radical quenching composition and a method to increase intracellular and/or extracellular antioxidants
US20010022038 *Jan 19, 2001Sep 20, 2001Opazo Alfonso Andres SwettMoisture and temperature regulating insole
US20020022038 *May 7, 2001Feb 21, 2002Bruno BiatryMicrocapsules with an aqueous core containing at least one water-soluble cosmetic or dermatological active principle and cosmetic or dermatological compositions containing them
US20030175328 *Mar 6, 2002Sep 18, 2003Adi SheferPatch for the controlled delivery of cosmetic, dermatological, and pharmaceutical active ingredients into the skin
US20030190335 *May 22, 1998Oct 9, 2003Boudiaf BoussouiraCosmetic use of selected polyamino polymers as antioxidants
US20040001792 *Apr 29, 2003Jan 1, 2004L'orealCosmetic and/or dermatological use of a composition comprising at least one oxidation-sensitive hydrophilic active principle stabilized by at least one maleic anhydride copolymer
US20040042990 *Jun 19, 2003Mar 4, 2004L'oreal, Paris, FranceComposition containing oxidation-sensitive hydrophilic active principle and maleic anhydride copolymer, and use thereof
US20040047824 *Jun 18, 2003Mar 11, 2004L'oreal, Paris, FranceOxidation-sensitive hydrophilic active principle containing composition and use thereof
US20040175342 *Jun 19, 2003Sep 9, 2004L'orealProcess of making and using composition containing oxidation-sensitive hydrophilic active principle and maleic anhydride copolymer
US20060051424 *Oct 3, 2002Mar 9, 2006Johns Hopkins UniversityCompositions of oral gene therapy and methods of using same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7084104Aug 28, 2003Aug 1, 2006Johnson & Johnson Consumer Company Inc.Mild and effective cleansing compositions
US7098180Aug 28, 2003Aug 29, 2006Johnson & Johnson Consumer Companies Inc.Mild and effective cleansing compositions
US7119059Aug 28, 2003Oct 10, 2006Johnson & Johnson Consumer Companies, Inc.Mild and effective cleansing compositions
US7157414Aug 19, 2004Jan 2, 2007J&J Consumer Companies, Inc.Methods of reducing irritation in personal care compositions
US7754666Jul 13, 2010Johnson & Johnson Consumer Companies, Inc.Low-irritation compositions and methods of making the same
US7754667May 5, 2006Jul 13, 2010Johnson & Johnson Consumer Companies, Inc.Low-irritation compositions and methods of making the same
US7803403Sep 28, 2010Johnson & Johnson Consumer Companies, Inc.Low-irritation compositions and methods of making the same
US7906475Apr 27, 2010Mar 15, 2011Johnson & Johnson Consumer Companies, Inc.Low-irritation compositions and methods of making the same
US8025902Aug 18, 2010Sep 27, 2011Johnson & Johnson Consumer Companies, Inc.Low-irritation compositions and methods of making the same
US8623414May 31, 2006Jan 7, 2014Malvren Cosmeceutics LimitedCompositions comprising a lipid and copolymer of styrene and maleic acid
US20050049156 *Aug 28, 2003Mar 3, 2005Joseph LibrizziMild and effective cleansing compositions
US20050049171 *Aug 28, 2003Mar 3, 2005Alison MartinMild and effective cleansing compositions
US20050049172 *Aug 28, 2003Mar 3, 2005Lukenbach Elvin R.Mild and effective cleansing compositions
US20050054547 *Aug 28, 2003Mar 10, 2005Irina GanopolskyMild and effective cleansing compositions
US20050070453 *Aug 19, 2004Mar 31, 2005Joseph LibrizziMethods of reducing irritation in personal care compositions
US20050075256 *Oct 6, 2004Apr 7, 2005Joseph LibrizziMethods of reducing irritation associated with personal care compositions
US20050226837 *Apr 6, 2005Oct 13, 2005Botica Comercial Farmaceutica Ltda. Of Av. Rui BarbosaOily cosmetic composition having a suspensory capacity
US20060040399 *Aug 21, 2004Feb 23, 2006Hurt William FProcess for controlling hydrogen partial pressure in single and multiple hydroprocessors
US20060257348 *May 5, 2006Nov 16, 2006Walters Russel MLow-irritation compositions and methods of making the same
US20070111910 *May 5, 2006May 17, 2007Walters Russel MLow-irritation compositions and methods of making the same
US20080112913 *Nov 9, 2006May 15, 2008Librizzi Joseph JLow-irritation compositions and methods of making the same
US20090142285 *Nov 20, 2008Jun 4, 2009Lvmh RechercheCosmetic composition comprising ascorbic acid 2-glucoside and ergothioneine
US20090155375 *May 31, 2006Jun 18, 2009Stephen TongeCompositions comprising a lipid and copolymer of styrene and maleic acid
US20100210497 *Aug 19, 2010Walters Russel MLow-irritation compositions and methods of making the same
US20100311628 *Aug 18, 2010Dec 9, 2010Librizzi Joseph JLow-irritation compositions and methods of making the same
US20110229538 *Sep 22, 2011Arbonne International LlcTopical skin care composition
CN103550217A *Oct 31, 2013Feb 5, 2014四川大学Antituberculous small-molecule compound targeting at bacterium RNA (ribonucleic acid) polymerase
WO2006061627A2 *Dec 7, 2005Jun 15, 2006Oxonica LtdAntiaging composition
WO2006061627A3 *Dec 7, 2005Mar 1, 2007Oxonica LtdAntiaging composition
Classifications
U.S. Classification424/59, 424/70.11
International ClassificationA61K8/37, A61K8/49, A61K8/72, A61K8/33, A61K31/375, A61Q19/02, A61K8/81, A61K45/00, A61K8/98, A61K8/46, C07D307/62, A61K8/68, A61Q17/00, A61K8/42, A61P43/00, A61K8/365, A61K8/97, A61K8/31, A61K8/92, A61K8/34, A61K8/35, A61K8/67, A61K8/96, A61K8/73, A61Q5/00, A61K47/32, A61K8/58, A61P39/06, A61Q5/08, A61Q19/08, A61P17/00, A61P17/16, A61K8/55, A61K8/06, A61K8/00, A61K8/30, A61K8/11, A61K8/368, A61K8/40, A61K8/60, A61K8/44, A61K8/36, A61K8/02, A61K8/41, A61K8/63, A61Q17/04, A61Q19/00
Cooperative ClassificationA61Q5/08, A61K8/8182, A61Q17/00, A61Q19/007, A61K2800/52, A61K8/4973, A61K8/676, A61K2800/522, A61K8/8164, A61Q19/02, A61K8/11, A61K8/347, A61Q17/04, A61Q19/00, A61K2800/412, A61Q19/08
European ClassificationA61Q19/02, A61Q19/08, A61K8/34F, A61K8/81R4, A61K8/49H, A61Q17/00, A61Q5/08, A61Q19/00P, A61K8/11, A61Q19/00, A61K8/67H, A61K8/81M, A61Q17/04
Legal Events
DateCodeEventDescription
Nov 10, 2003ASAssignment
Owner name: L OREAL, FRANCE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIATRY, BRUNO;REEL/FRAME:014678/0160
Effective date: 20030818