Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040085536 A1
Publication typeApplication
Application numberUS 10/286,019
Publication dateMay 6, 2004
Filing dateNov 1, 2002
Priority dateNov 1, 2002
Publication number10286019, 286019, US 2004/0085536 A1, US 2004/085536 A1, US 20040085536 A1, US 20040085536A1, US 2004085536 A1, US 2004085536A1, US-A1-20040085536, US-A1-2004085536, US2004/0085536A1, US2004/085536A1, US20040085536 A1, US20040085536A1, US2004085536 A1, US2004085536A1
InventorsJohn Schotland, Vadim Markel, Joseph O'Sullivan
Original AssigneeSchotland John Carl, Markel Vadim Arkadievich, O'sullivan Joseph Andrew
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tomography system and method using nonlinear reconstruction of scattered radiation
US 20040085536 A1
Abstract
A methodology and concomitant system for the nonlinear reconstruction of an object from measurements of the transmitted intensity of scattered radiation effected by irradiating the object with a source of radiation. The transmitted intensity is related to either the absorption coefficient or diffusion coefficient, or both, of the object by an integral operator. The image is directly reconstructed by executing a prescribed mathematical algorithm, as determined with reference to the integral operator, on the transmitted intensity of the scattered radiation. The mathematical algorithm includes computing a functional series expansion for the coefficient(s) in powers of the transmitted intensity.
Images(13)
Previous page
Next page
Claims(29)
What is claimed is:
1. A method for generating an image of an object comprising
irradiating the object with a source of radiation,
measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator, and
directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity.
2. The method as recited in claim 1 wherein said at least one coefficient is a diffusion coefficient.
3. The method as recited in claim 1 wherein said at least one coefficient is an absorption coefficient.
4. The method as recited in claim 1 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
5. A system for generating an image of an object comprising
radiation source means for irradiating the object,
detector means for measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator, and
means for directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity.
6. The system as recited in claim 5 wherein said at least one coefficient is a diffusion coefficient.
7. The system as recited in claim 5 wherein said at least one coefficient is an absorption coefficient.
8. The system as recited in claim 5 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
9. A method for generating an image of an object comprising
irradiating the object with a source of radiation,
measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to a coefficient characterizing the image by a nonlinear integral operator, and
directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity, said algorithm further relating said at least one coefficient to said transmitted intensity by another nonlinear integral operator.
10. The method as recited in claim 9 wherein said at least one coefficient is a diffusion coefficient.
11. The method as recited in claim 9 wherein said at least one coefficient is an absorption coefficient.
12. The method as recited in claim 9 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
13. A system for generating an image of an object comprising
irradiation means for irradiating the object with a source of radiation,
measurement means, responsive to the means for irradiating, for measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to a coefficient characterizing the image by a nonlinear integral operator, and
reconstruction means, responsive to the means for measuring, for directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity, said algorithm further relating said at least one coefficient to said transmitted coefficient by another nonlinear integral operator.
14. The system as recited in claim 13 wherein said at least one coefficient is a diffusion coefficient.
15. The system as recited in claim 13 wherein said at least one coefficient is an absorption coefficient.
16. The system as recited in claim 13 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
17. A method for generating a tomographic image of an object comprising
irradiating the object with a source of radiation,
measuring a transmitted intensity due predominantly to diffusively scattered radiation wherein the transmitted intensity is related a coefficient characterizing the image by an integral operator, and
directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to the integral operator, on the transmitted intensity, the mathematical algorithm expressed as a functional series expansion for the coefficient in powers of the transmitted intensity.
18. The method as recited in claim 17 wherein said at least one coefficient is a diffusion coefficient.
19. The method as recited in claim 17 wherein said at least one coefficient is an absorption coefficient.
20. The method as recited in claim 17 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
21. A system for generating an image of an object comprising
radiation source means for irradiating the object,
detector means for measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator, and
means for directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity, the mathematical algorithm expressed as a functional series expansion for the coefficient in powers of the transmitted intensity
22. The system as recited in claim 21 wherein said at least one coefficient is a diffusion coefficient.
23. The system as recited in claim 21 wherein said at least one coefficient is an absorption coefficient.
24. The system as recited in claim 21 wherein said at least one coefficient includes both an absorption coefficient and a diffusion coefficient.
25. A method for generating an image of an object comprising
irradiating the object with a source of radiation,
measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to the absorption coefficient and the diffusion coefficient by a nonlinear integral operator, and
directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said nonlinear integral operator, on said transmitted intensity.
26. The method as recited in claim 25 wherein the directly reconstructing includes computing a linear operator and a tensor operator.
27. The method as recited in claim 26 wherein the directly reconstructing includes computing the functional expansion using the linear operator and the tensor operator.
28. The method as recited in claim 25 wherein the integral operator is an integral equation, and the directly reconstructing includes using a linearized solution to the integral equation to determine higher order corrections to the linearized solution.
29. A method for generating a tomographic image of an object comprising
irradiating the object with a continuous wave source of radiation,
measuring a transmitted intensity due predominantly to diffusively scattered radiation wherein the transmitted intensity
computing a linear operator and a tensor operator from a Green's function for a homogenous medium containing the object, and
directly reconstructing the image by computing a functional series expansion for the absorption coefficient and the diffusion coefficient in terms of the linear operator and the tensor operator and powers of the transmitted intensity.
Description
    BACKGROUND OF THE DISCLOSURE
  • [0001]
    1.) Field of the Invention
  • [0002]
    This invention relates to tomography and, more particularly, to method and concomitant system wherein an image of an object is directly reconstructed from measurements of scattered radiation using a nonlinear reconstruction technique.
  • [0003]
    2.) Description of the Background Art
  • [0004]
    There has been considerable interest in the inverse scattering problem (ISP) for diffuse light. The basic physical problem consists of reconstructing the spatial distribution of the optical absorption and diffusion coefficients inside a highly-scattering medium from intensity measurements on the boundary of the medium.
  • [0005]
    The equations describing scattering of diffuse light from fluctuations in the absorption and diffusion coefficients oz and D are, in general, nonlinear. Thus numerical methods for solving the nonlinear inverse problem have been widely studied and are typically based upon Newton's method. A limitation of this approach is its computational complexity which arises from the fact that the forward problem must be solved at each iteration of the algorithm.
  • [0006]
    Approaches to the inverse problem based upon linearization of the forward problem have also been explored. In this method, the integral equations of diffuse light propagation are expanded and linearized in α and D. These equations can then be solved with the use of analytic inversion formulas. The use of inversion formulas is especially attractive due to computational efficiency. Representative of this technique are the disclosures of U.S. Pat. No. 5,905,261, the Background section of which is incorporated herein by reference.
  • [0007]
    The art is devoid of a methodology, and concomitant system, wherein the nonlinear equations describing diffusion and absorption of an image are directly solved to thereby effect direct, but generalized, reconstruction of the image. That is, in the past, only explicit inversion formulas for the case of linearized ISP have been obtained; explicit inversion formulas for nonlinear ISP case have not been devised.
  • SUMMARY OF THE INVENTION
  • [0008]
    These and other shortcomings are obviated in accordance with the present invention via a technique whereby an object is irradiated with a source of radiation and then waves diffusively scattered from the object are processed with a prescribed nonlinear mathematical algorithm to reconstruct the tomographic image.
  • [0009]
    In accordance with one broad method aspect of the present invention, the method for generating a tomographic image of an object includes: (i) irradiating the object with a source of radiation; (ii) measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator; and (iii) directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said integral operator, on said transmitted intensity.
  • [0010]
    In accordance with another broad method aspect of the present invention, the method for generating a tomographic image of an object ineludes: (i) irradiating the object with a source of radiation; (ii) measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator; and (iii) directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said integral operator, on said transmitted intensity, said algorithm further relating said coefficient to said transmitted intensity by another nonlinear integral operator.
  • [0011]
    In accordance with yet another broad method aspect of the present invention, the method for generating a tomographic image of an object includes: (i) irradiating the object with a source of radiation, (ii) measuring a transmitted intensity due to diffusively scattered radiation wherein said transmitted intensity is related to at least one coefficient characterizing the image by a nonlinear integral operator, and (iii) directly reconstructing the image by executing a prescribed mathematical algorithm, determined with reference to said integral operator, on said transmitted intensity, said mathematical algorithm expressed as a functional series expansion for said coefficient in powers of said transmitted intensity.
  • [0012]
    Broad system aspects of the present invention are commensurate with the broad method aspects.
  • [0013]
    The features of the this approach are at least two-fold: (i) the approach provides a formally exact solution to the ISP in diffusion tomography. The approach may be viewed as a nonlinear inversion formula whose first term coincides with the pseudoinverse solution to the linearized ISP. The higher order terms represent systematically improvable nonlinear corrections which, in principle, can be computed to arbitrarily high order. Thus, it is only necessary to solve the linear ISP in order to formally solve the nonlinear ISP; and (ii) the approach to the ISP differs from Newton-type iterative methods. This follows from the fact that such prior methods require the conventional forward problem to be solved for each iteration.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0014]
    [0014]FIG. 1 is a high-level block diagram of a system for directly reconstructing the tomographic image of the scatterer
  • [0015]
    FIGS. 2A-2D depict direct reconstruction results for an exemplary scatterer using different ratios of parameters;
  • [0016]
    FIGS. 3A-3D depict direct reconstruction results for an exemplary scatterer using the same parameters different from FIGS. 2A-2D that exemplify increased resolution with higher-order terms;
  • [0017]
    [0017]FIG. 4 depicts the convergence of the higher order corrections to the true profile;
  • [0018]
    [0018]FIG. 5A is a high-level flow diagram of the methodology for directly reconstructing the tomographic image of the scatterer; and
  • [0019]
    [0019]FIG. 5B is another high-level flow diagram of the methodology for directly reconstructing the tomographic image of the scatterer commensurate with the functional series technique.
  • BACKGROUND OF THE DISCLOSURE
  • [0020]
    1. System
  • [0021]
    As depicted in high-level block diagram form in FIG. 1, system 100 is a tomography system for generating an image of an scatterer/object using measurements of scattered waves emanating from an object in response to waves illuminating the object. In particular, object 105 is shown as being under investigation. System 100 is composed of: source 120 for probing the object 105; data acquisition detector 130 for detecting the scattering data corresponding to the scattered waves from object 105 at one or more locations proximate to object 105; position controller 140 for controlling the locations of detectors 130 and sources 120; and computer processor 150, having associated input device 160 (e.g., a keyboard) and output device 170 (e.g., a graphical display terminal). Computer processor 150 has as its inputs positional information from controller 140 and the measured scattering data from detector 130.
  • [0022]
    Computer 150 stores a computer program which implements the direct reconstruction algorithm; in particular, the stored program processes the measured scattering data to produce the image of the object under study using a prescribed mathematical algorithm. The algorithm is, generally, based upon a functional expansion of the absorption and diffusion coefficients of the object in terms of tensor products of the measured scattering data. The algorithm will be described in detail below.
  • [0023]
    2. Overview of the Underlying Mathematical Formalism
  • [0024]
    We begin by setting forth the relevant mathematical formalism which serves as a backdrop to the point of departure in accordance with the present invention. We assume that the energy density u(r, t) of diffuse light in an inhomogeneous medium obeys the diffusion equation u ( r , t ) t = [ D ( r ) u ( r , t ) ] - α ( r ) u ( r , t ) + S ( r , t ) , ( 1 )
  • [0025]
    where α(r) and D(r) are the position-dependent absorption and diffusion coefficients, and S(r, t) is the power density of the source. We further assume that the source is harmonically modulated with angular frequency ω. In addition to (1), the energy density must satisfy boundary conditions on the surface of the medium (or at infinity in the case of free boundaries) of the general form
  • u+l{circumflex over (n)}∇u=0,  (2)
  • [0026]
    where l is the so-called extrapolation length and {circumflex over (n)} is an outward pointing normal. Note that when l=0 we obtain purely absorbing boundaries and when l→∞ purely reflecting boundaries.
  • [0027]
    In general, the so-called Green's function may be directly related to the intensity measured by a point detector when the medium is illuminated by a point source. The Green's function G(r1, r2) for the frequency-domain diffusion equation obeys the integral equation
  • (r′,r 2)=G 0(r 1 ,r 2)−∫d 3 rG 0(r 1 ,r)V(r)G(r,r 2),  (3)
  • [0028]
    where G0 is the Green's function for a homogeneous medium with absorption α0 and diffusion constant D0. We have also introduced the notation
  • V(r)≡δα(r)−∇δD(r)∇,  (4)
  • [0029]
    where δα(r)=α(r)−α0 and δD(r)=D(r)−D0. The unperturbed Green's function G0(r, r′) obeys the boundary condition (2) and satisfies ( 2 - k 2 ) G 0 ( r , r ) = - 1 D 0 δ ( r - r ) , ( 5 )
  • [0030]
    where the diffuse wave number k is given by k 2 = α 0 - ω D 0 . ( 6 )
  • [0031]
    It can be shown that the change in the intensity of transmitted light (at the modulation frequency ω) due to spatial fluctuations in α(r) and D(r) is given by the integral equation
  • Φ(r 1 ,r 2)=β∫G 0(r 1 ,r)V(r)G(r,r 2)d 3 r.  (7)
  • [0032]
    Here the data function Φ(r1, r2) is proportional to the change in intensity relative to a reference medium with absorption α0 and diffusion constant D0, r1 and r2 denote the coordinates of the source and detector, and β = { 1 for free boundaries ( 1 + l * / l ) 2 for boundary conditions expressed by ( 2 ) ( 8 )
  • [0033]
    with l*=3D0/c.
  • [0034]
    The forward problem in diffusion tomography is defined as the problem of computing the data function Φ from the scattering potential η=(δα, δD). More precisely, the integral equation (7) may be regarded as defining a nonlinear operator K from the Hilbert space of scattering potentials H1 into the Hilbert space of scattering data H2. The fact that K is nonlinear may be understood by examining the perturbation expansion for Φ in powers of V. Using the series expansion for the Green's function G, which can be obtained by iterating the integral equation (3), and the definition of the data function (7) we obtain the required expansion:
  • Φ(r 1 ,r 2)=β∫d 3 rG 0(r 1 ,r)V(r)G 0(r,r 2)+β∫d 3 rd 3 r′G 0(r 1 ,r)V(r)G 0(r,r′)V(r′)G 0(r′,r 2)+  (9)
  • [0035]
    If only the first term in the series is retained we refer to this as the weak-scattering approximation.
  • [0036]
    The inverse problem in diffusion tomography is defined as recovering η from measurements of Φ. The standard numerical approach to this nonlinear problem is to employ a functional Newton's method. This results in an iterative algorithm of the form
  • ηn+1n +M n +(Φ−K{η n}), n=1,2, . . . ,  (10)
  • [0037]
    where Mn +denotes the pseudoinverse of the functional derivative M n = δ K δ η | η = η n . ( 11 )
  • [0038]
    In accordance with the present inventive subject matter, we consider an alternative to the use of Newton's method. In particular, we construct a formally exact analytic solution to the nonlinear ISP. This solution, which we refer to as the inverse scattering series, has the form of a functional series expansion for 7 in powers of the data function 4). The first term in the expansion corresponds to the pseudoinverse solution to the linearized inverse problem. The higher order terms may be interpreted as nonlinear corrections to the singular value decomposition (SVD) inversion formulas of the linearized inverse problem.
  • [0039]
    The remainder of this description is organized as follows. In Section 2 we derive the inverse scattering series for diffusion tomography in its most general form, independent of geometry and the type of boundary conditions.
  • [0040]
    In Section 3 we consider the inverse problem in the biplanar geometry.
  • [0041]
    Section 4 details exemplary numerical results for the nonlinear reconstruction of a spherical inhomogeneity in the biplanar geometry.
  • [0042]
    Section 5 discusses a flow diagram of the process in accordance with the present invention.
  • [0043]
    Section 6 presents mathematical properties of the inverse scattering series and the derivation of the data function for a spherical inhomogeneity in the biplanar geometry with free boundaries.
  • [0044]
    2. INVERSE PROBLEM—Inverse Scattering Series
  • [0045]
    In this section we present the construction of the inverse scattering series for diffusion tomography.
  • [0046]
    The scattering series (9) can be rewritten in the form
  • Φ(r′,r 2)=∫d 3 rK 1 i(r 1 ,r 2 ,ri(r)+∫d 3 rd 3 r′K 2 ij(r 1 ,r 2 ,r,r′i(rj(r′)+. . . ,  (12)
  • [0047]
    where η ( r ) = ( η 1 ( r ) η 2 ( r ) ) = ( δ α ( r ) δ D ( r ) ) , ( 13 )
  • [0048]
    the action of the operator V has been taken into account and summation over repeated indices is implied with i, j=1, 2. The components of the operators K1 and K2 are given by
  • K 1 1(r 1 ,r 2 ;r)=βG 0(r 1 ,r)G 0(r,r 2)  (14)
  • K 1 2(r 1 ,r 2 ;r)=β∇r G 0(r 1 ,r)∇r G 0(r,r 2),  (15)
  • K 2 11(r 1 ,r 2 ;r,r′)=−βG 0(r′,r)G 0(r,r′)G 0(r′,r 2),  (16)
  • K 2 12(r 1 ,r 2 ;r,r′)=−βG 0(r′,r)∇r′ G 0(r,r′)∇r′ G 0(r′,r 2),  (17)
  • K 2 21(r 1 ,r 2 ;r,r′)=−β∇r G 0(r 1 ,r)∇r G 0(r,r′)G 0(r′,r 2),  (18)
  • K 2 22(r 1 ,r 2 ;r,r′)=−β∇r G 0(r 1 ,r)∇r{∇r′ G 0(r,r′)∇r′ G 0(r′,r 2)}  (19)
  • [0049]
    The components of Kn are given by K i 1 n i n ( r 1 , r 2 ; R 1 , , R n ) = ( - 1 ) n α 1 , , α n i 1 - 1 G 0 ( r 1 , R 1 ) R 1 α 1 i 1 - 1 i 1 i 2 - 2 G 0 ( R 1 , R 2 ) R 1 α 1 i 1 - 1 R 2 α 2 i 2 - 1 i n - 1 + i n - 2 G 0 ( R n - 1 , R n ) R n - 1 , α n - 1 i n - 1 - 1 R n α n i n - 1 i n - 1 G 0 ( R n , r 2 ) R n α n i n - 1 , ( 20 )
  • [0050]
    where α1, . . . , αn label Cartesian components of the vectors R1, . . . , Rn and no summation should be performed over indexes which are not explicitly present in the sum (i.e., for ik=1).
  • [0051]
    Observe that (12) is a functional power series expansion each term of which is multilinear in η. Thus we can expand Φ in tensor powers of
  • Φ=K 1 η+K 2ηη+. . . ,  (21)
  • [0052]
    Here K1 is a linear operator which maps the Hilbert space H1 into the Hilbert space H2 and K2 may be interpreted as a tensor operator which maps H1 H1 into H2.
  • [0053]
    If the spatial fluctuations in α and D are sufficiently small, the series (21) may be truncated after its first term. This results in an effective linearization of the forward scattering problem with Φ=K1η. The corresponding linear ISP has the solution η=K1 +Φ, where K1 +denotes the pseudoinverse of K1. To construct the solution to the nonlinear ISP we act on (21) with the pseudoinverse operator K1 +and use the identity K1 +K1=IH1. We thus obtain
  • η=K 1 + Φ−K 1 + K 2ηη+. . . .  (22)
  • [0054]
    Next, by iterating this result we find that
  • η=K 1 + Φ−K 1 + K 2 K 1 + K 1 +Φη+. . . ,  (23)
  • [0055]
    which is a functional expansion for η in tensor powers of Φ. We will refer to (23) as the inverse scattering series for diffusion tomography.
  • [0056]
    Several comments on the above result are necessary. First,
  • [0057]
    (23) provides a formally exact solution to the inverse problem in diffusion tomography. It may be viewed as a nonlinear inversion formula whose first term coincides with the pseudoinverse solution to the linearized ISP. The higher order terms represent systematically improvable nonlinear corrections which, in principle, can be computed to arbitrarily high order. Thus, it is only necessary to solve the linear ISP in order to formally solve the nonlinear ISP. Second, (23) may also be obtained by formal inversion of the functional power series (9). This results in an explicit formula for the coefficient n of the nth term in (23): n = - ( p = 1 n - 1 p i 1 + + i p = n K i 1 K i p ) 1 1 , ( 24 )
  • [0058]
    where 1, =K1 +. See Section 6.1 Third, it may be seen that the coefficients of all the higher order terms in (23) have K1 + as a prefactor. As a result, to any finite order, the spatial resolution of images reconstructed using the nonlinear theory can never exceed the resolution of images reconstructed by linear means alone. Fourth, the short-range propagation of diffusive waves implies that the forward scattering problem in diffusion tomography is weakly nonlinear. This is precisely the condition under which the inverse scattering series may be expected to exhibit fast convergence. Finally, the approach to the ISP based on (23) differs from Newton-type methods. This follows from the fact that such methods require the forward problem to be solved for each iteration.
  • [0059]
    3. Nonlinear Inversion in the Plane Geometry
  • [0060]
    The inverse scattering series was developed in a form which is independent of geometry. We now specialize to the case of the planar geometry. Other cases including the cylindrical and spherical geometries may also be considered.
  • [0061]
    3.1 Inversion Formulas
  • [0062]
    In the planar geometry measurements are taken on two parallel planes. Sources are taken to be located on the z=0 plane and detectors on the plane z=L. The object 105 to be imaged lies between the planes in the region 0<z<L. In this geometry, the unperturbed Green's function is given by the plane-wave decomposition G 0 ( r , r ) = d 2 q ( 2 π ) 2 g ( q ; z , z ) exp [ q ( ρ - ρ ) ] , ( 25 )
  • [0063]
    where we have used the notation r=(ρ, z). In the case of free boundaries, the function g(q; z, z′) is given by g ( q ; z , z ) = exp [ - Q ( q ) z - z ] 2 Q ( q ) D 0 ( 26 )
  • [0064]
    and in the case of boundary conditions of the type expressed by equation (2) g ( q ; z , z ) = l D 0 sinh [ Q ( q ) ( L - z - z ) ] + Q ( q ) l cosh [ Q ( q ) ( L - z - z ) ] sinh ( Q ( q ) L ) + 2 Q ( q ) l cosh ( Q ( q ) L ) + ( Q ( q ) l ) 2 sinh ( Q ( q ) L ) , ( 27 )
  • [0065]
    where
  • Q(q)≡(q 2 +k 2)1/2  (28)
  • [0066]
    and we have assumed that either r or r′ lies on one of the measurement planes.
  • [0067]
    We will find it advantageous to rewrite the inverse scattering series (23) in the form
  • η=η(1)(2)+  (29)
  • η(1) =K 1 +Φ  (30)
  • η(2) =K 1 + K 2η(1) η(1),  (31)
  • [0068]
    where η(1) is the solution to the linearized ISP and η(2) is the first nonlinear correction. In the planar geometry, since the measurement planes have translational symmetry, it is natural to express (30) and (31) in the Fourier basis of two-dimensional plane waves. In this representation (30) and (31) become
  • η(1)(r)=∫d 2 q 1 d 2 q 2 K 1 +(r,q 1 ,q 2)Φ(q 1 ,q 2)  (32)
  • η(2)(r)=∫d 2 q 1 d 2 q 2 ∫d 3 r′d 3 r″K 1 +(r;q 1 ,q 2)K 2(q 1 ,q 2 ;r′,r″(1)(r′)η(1)(r″)  (33)
  • [0069]
    Here
  • Φ(q 1 ,q 2)=∫d 2 p 1 d 2 p 2 exp{i(q 1 p 1 +q 2 p 2)}Φ(p 1 ,z 1 ,p 2 ,z 2),  (34)
  • K(q 1 ,q 2)=∫d 2 q 1 d 2 q 2 exp{i(q 1 p 1 +q 2 p 2)}K(p 1 ,z 1 ,p 2 ,z 2;).  (35)
  • [0070]
    Note that according to (32) and (33), once K1 +(r; q1, q2) is determined the inverse problem is solved, in principle.
  • [0071]
    3.2 Singular Value Decomposition of K1 +
  • [0072]
    The SVD of the pseudoinverse operator K1 +is given by K 1 + ( r ; q 1 , q 2 ) = 1 σ f σ ( r ) g σ * ( q 1 , q 2 ) σ , ( 36 )
  • [0073]
    where σ is the singular value associated with the singular functions fσand gσ. The singular functions are eigenfunctions with eigenvalues σ2 of the positive self-adjoint operators K1*K1 and K1K*1:
  • K 1 * K 1 f σ2 f σ,  (37)
  • K 1 K 1 * g σ2 g σ.  (38)
  • [0074]
    In addition, the singular functions are related by
  • K 1 f σ =σg σ,  (39)
  • K 1 * g σ =σf σ.  (40)
  • [0075]
    To proceed further, we require an explicit expression for K1 (q1, q2; r). This is obtained by using the definitions of G0 from Eq. (25) and K1 from Eqs. (14,15) to carry out the Fourier transformation in Eq. (35):
  • K 1(q 1 ,q 2 ;r)=κ(q 1 ,q 2 ;z)exp{i(q 1 +q 2)p},  (41)
  • [0076]
    where the components of κ are given by κ 1 ( q 1 , q 2 ; z ) = β g ( q 1 ; z 1 , z ) g ( q 2 ; z , z 2 ) , κ 1 ( q 1 , q 2 ; z ) = β ( g ( q 1 ; z 1 , z ) z g ( q 2 ; z , z 2 ) z - q 1 q 2 g ( q 1 ; z 1 , z ) g ( q 2 ; z , z 2 ) ) . ( 42 )
  • [0077]
    Using (41), we find that the matrix elements of the operator K1,K*1 are given by K 1 K 1 * ( q 1 , q 2 ; q 1 , q 2 ) = 2 Q δ ( Q - q 1 - q 2 ) δ ( Q - q 1 - q 2 ) M ( 1 2 ( q 1 - q 2 ) , 1 2 ( q 1 - q 2 ) ; Q ) , ( 44 )
  • [0078]
    where M ( P , P ; Q ) = ( 2 π ) 2 0 L z k ( Q / 2 + P , Q / 2 - P ; z ) k * ( Q / 2 + P , Q / 2 - P ; z ) . ( 45 )
  • [0079]
    To find the singular functions, we make the ansatz
  • g QQ′(q 1 , q 2)∫d 2 PC Q′(P; Q)δ(q 1 −Q/2−P)δ(q 2 −Q/2+P),  (46)
  • [0080]
    where Q and Q′ are two-dimensional wavevectors. Eq. (38) now implies that
  • d 2 P′M(P, P′; Q)C Q′(P′; Q)=σQQ′ C Q′(P; Q),  (47)
  • [0081]
    that is CQ′(P; Q) is an eigenfunction of M(P, P′; Q) labeled by Q′ with eigenvalue σQQ′ 2. Note that since M(Q) is self-adjoint, the CQ′(P; Q) may be taken to be orthonormal. The singular functions fQQ′ may be found from (40) by direct calculation: f QQ ( r ) = 1 σ QQ 2 P exp ( - Q ρ ) κ * ( Q / 2 + P , Q / 2 - P ; z ) C Q ( P ; Q ) . ( 48 )
  • [0082]
    It follows that the SVD of K1 +is given by the expression K 1 + ( r ; q 1 , q 2 ) = 2 Q 2 Q 1 σ QQ f QQ ( r ) g QQ * ( q 1 , q 2 ) . ( 49 )
  • [0083]
    The above expression for the SVD of K1 +may be simplified by using the spectral decomposition M - 1 ( P , P ; Q ) = 2 Q 1 σ QQ 2 C Q ( P ; Q ) C Q * ( P ; Q ) ( 50 )
  • [0084]
    and the explicit expressions for the singular functions. Eq. (49) thus becomes
  • K 1 +(r;q 1 ,q 2)=∫d 2 Qd 2 P′exp(−iQp)M −1(P,P′;Q*(Q/2+P,Q/2−P;z)δ(q 1 −Q/2−P)δ(q 2 −Q/2+P).  (51)
  • [0085]
    Using this result, along with (32), we obtain η(1)(r), the solution to the linearized ISP:
  • η(1)(r)=∫d 2 Qd 2 Pd 2 P′exp(−iQρ)M −1(P,P′;Q*(Q/2+P,Q/2−P;z)Φ(Q/2+P,Q/2−P).  (52)
  • [0086]
    Note that the above inversion formula is based on a direct calculation of the pseudoinverse solution rather than a construction of the SVD of the linearized forward scattering operator.
  • [0087]
    4. Numerical Results
  • [0088]
    We now illustrate the inversion formulas derived with numerical examples. We work in the planar geometry with free boundary conditions. In addition, we assume a priori that there are no inhomogeneities in the diffusion coefficient (δD=0). This allows the use of a single modulation frequency which we set to zero. In this case the linearized inversion formula (52) can be written in the form
  • δα(1)(r)=∫d 2 Qd 2 Pd 2 P′exp(−iQρ)M −1(P,P′;Q1 *(Q/2+P,Q/2−P;z)Φ(Q/2+P,Q/2−P),  (53)
  • [0089]
    where M ( P , P ; Q ) = ( 2 π ) 2 0 L z κ 1 ( Q / 2 + P , Q / 2 - P ; z ) κ 1 * ( Q / 2 + P , Q / 2 - P ; z ) . ( 54 )
  • [0090]
    In practice, this formula must be discretized. Namely, we chose the vectors Q to occupy a square lattice with unit step size Δq=k1=L−1 inside the circle |Q|≦40Δq. The vectors P, P′ were chosen on a one-dimensional lattice coinciding with the x-axis; the spacing was Δp=5Δq=5ΔL−1, and 0≦|P|<40L−1. Thus a total of eight different vectors P were used (including P=0). Note that for numerical calculation of M−1, the operator M becomes a square matrix which can be diagonalized by the methods of linear algebra. In order to avoid numerical instability, the calculation of M−1 must be regularized. In particular, we replace 1/σ by R(σ) where R is a suitable regularizer. The effect of regularization is to limit the contribution of small singular values to the reconstruction. The simplest way to do this is to simply cutoff all σ below some cutoff σc. That is, we set R ( σ ) = 1 σ θ ( σ - σ c ) , ( 55 )
  • [0091]
    θdenoting the usual Heavyside step function.
  • [0092]
    The forward data were calculated for a spherical absorbing inhomogeneity. The data function Φ(q1, q2) is given in the Section 6.2. The diffuse wave numbers are given by k1 20/D0 outside the sphere and k2 2=(α0+a)/D0 inside the sphere. Thus, inside the sphere we have δα=a=D0(k2 2−k1 2) and we have chosen D0=1, k1=L−1. Reconstructions were carried out in the volume −L≦x, y≦L, 0<z<L with the center of absorbing sphere placed at the point (0, 0, L/2). The sphere's radius was taken to be R=0.4L and the corresponding size parameter of the sphere was k1R=0.4.
  • [0093]
    The results of linear reconstruction (δα(1)) are shown in FIGS. 2A-2D for k1=0.99k2, k1=0.8k2, k1=0.8k2, and k1=0.5k2, respectively. Generally, tomographic slices are drawn at different depths z for an absorbing sphere with different values of k2. The solid black circles indicate the physical boundary of the absorbing sphere. The reconstructed images are normalized by the “true” value of δα, D0(k2 2−k1 2). A linear gray scale is employed; white corresponds to 1 and black to 0. In the case k1=0.99k2 (FIG. 2A), the weak scattering approximation is quite accurate. As a result, the quality of reconstructed images is high even to lowest order in δα. As the mismatch of the absorption inside and outside the sphere becomes larger, the quality of the linearized inversion decreases. In particular, a false dark area in the center of the sphere develops. In the case k1=0.5k2 (δα/α0=3) shown in FIG. 2D, only a thin outer shell is reconstructed, while the inside area of the sphere is almost completely black. This is explained by the fact that in the weak scattering approximation the inhomogeneities are probed by the unperturbed incident field. However, the field inside more absorbing areas, such as the absorbing sphere in this numerical example, differs from the incident field. In essence, the field does not penetrate into areas with very high absorption. The linearized reconstruction “interprets” this fact as the absence of inhomogeneity. Note that although linearized inversion is not accurate when δα/α0>1, it still reconstructs the correct shape of an inhomogeneity. Thus, although the internal region of the absorbing sphere in the case k1=0.5k2 is not reconstructed, the overall spherical shape is reconstructed correctly. It is expected that this is a general property of the linearized reconstruction and is not limited to spherical shapes.
  • [0094]
    We now consider the first nonlinear correction δα(2) which is given by
  • δα(2)(r)=∫d 2 Qd 2 Pd 2 P′exp(−i−Qρ)M −1(P,P′;Q)κ*1(Q/2+P,Q/2−P;z(1)(Q/2+P,Q/2−P),  (56)
  • [0095]
    where
  • Φ(1)(q 1 ,q 2)=∫d 3 rd 3 r′K 2 11(q 1 ,q 2 ;r,r′)δα(1)(r)δα(1)(r′).  (57)
  • [0096]
    Here K2 11(q1, q2; r1, r2) is obtained by Fourier transformation of (16): K 2 11 ( q 1 , q 2 ; r , r ) = G 0 ( r , r ) ( 2 π D 0 ) 2 Q ( q 1 ) Q ( q 2 ) exp [ ( q 1 ρ 1 + q 2 ρ 2 ) ] exp [ - Q ( q 1 ) z - z 1 - Q ( q 2 ) z - z 2 ] . ( 58 )
  • [0097]
    The quantity Φ(1)(q1, q2) is calculated by numerical integration using the precomputed function δα(1).
  • [0098]
    The reconstructed absorption coefficient with the first nonlinear correction (δα=δα(1)+δα(2)) is shown in FIGS. 3A-3D for the same k1 values of FIGS. 2A-2D As can be seen by comparing the panels with k1=0.8k2 and k1=0.9k2 in FIGS. 2B and 2C and FIGS. 3B and 3C, the effect of the first nonlinear correction is to fill in the voids that are seen in the linearized reconstruction. To illustrate this point more quantitatively, we plotted the reconstructed function δα, with and without the first non-linear correction, as a function of the x-coordinate on the one-dimensional line determined by z=const, y=0. The results are shown in FIG. 4. In particular, in this figure, the reconstructed function δα(r) is calculated along the line z=const (as indicated by the following legend for z) y=0, x ∈[−L, L]: (a) Long dash: δα=δα(1) (linearized inversion); (b) solid line: δα=δα(1)+δα(2) (first nonlinear correction); and (c) short dash: the true profile of δα. The effect of filling in the void in the center of the sphere is especially well manifested in the case k1=0.9k2.
  • [0099]
    As expected, the first nonlinear correction had no significant effect in the cases k1=0.99k2 and k1=0.5k2 (FIGS. 3A and 3C, respectively). In the first case, the linearized inversion already provides accurate results and all higher-order corrections are small. In the second case, the weak scattering approximation is strongly violated for the forward problem, and very high order corrections must be included to obtain convergence (provided the series converges at all).
  • [0100]
    5. Flow Diagrams
  • [0101]
    An embodiment illustrative of the methodology carried out by the subject matter of the present invention is set forth in high-level flow diagram 500 of FIG. 5A in terms of the illustrative system embodiment shown in FIG. 1. With reference to FIG. 5A, the processing effected by block 510 enables source 120 and data acquisition detector 130 so as to measure the scattering data emanating from scatterer 105 due to illumination from source 120. These measurements are passed to computer processor 150 from data acquisition detector 130 via bus 131. Next, processing block 520 is invoked to formulate the nonlinear operator relating at least one coefficient characterizing an image of the scatterer/object to the measured scattering data (e.g., equation (9)). In turn, processing block 530 is operated to execute the nonlinear reconstruction algorithm using the nonlinear operator formulation. Finally, as depicted by processing block 540, the reconstructed tomographic image corresponding to a is provided to output device 170 in a form determined by the user; device 170 may be, for example, a display monitor or a more sophisticated three-dimensional display device.
  • [0102]
    Another embodiment illustrative of the methodology carried out by the subject matter of the present invention is set forth in high-level flow diagram 550 of FIG. 5B in terms of the illustrative system embodiment shown in FIG. 1. With reference to FIG. 5B, the processing effected by block 560 enables source 120 and data acquisition detector 130 so as to measure the scattering data emanating from scatterer 105 due to illumination from source 120. These measurements are passed to computer processor 150 from data acquisition detector 130 via bus 131. Next, processing block 570 is invoked to compute the linear and tensor operators, that is, the operators given by equations (14) and (15) for the linear operator and equations (16)-(19) for the tensor operator. In turn, processing block 580 is operated to execute the reconstruction algorithm set forth in equation (23), that is, the inverse scattering series, which is a functional expansion for η in tensor products of Φ, is computed. Finally, as depicted by processing block 590, the reconstructed tomographic image corresponding to η is provided to output device 170 in a form determined by the user; device 170 may be, for example, a display monitor or a more sophisticated three-dimensional display device.
  • [0103]
    6.1 Inversion of Series
  • [0104]
    In this Section we show that the inverse scattering series (23) may be obtained by formal inversion of the forward scattering series
  • Φ=K 1 η+K 2 ηη+K 3ηηηη+. . . .  (59)
  • [0105]
    To proceed, we assume that η may be expressed as a functional expansion in Φ:
  • η= 1Φ+ 2ΦΦ+ 3ΦΦΦ+. . . ,  (60)
  • [0106]
    where 1 is a linear operator which maps the Hilbert space H2 into the Hilbert space H1 and n is a tensor operator which maps H2 . . . H2 (n copies) into H1 for n≧2. To find the 's we substitute the expression (59) for Φ into (60) and equate terms with the same tensor power of η. We thus obtain the relations
  • 1K1=I  (61)
  • 2 K 1 K 1+ 1 K 2=0  (62)
  • 3 K 1 K 1 K 1+ 2 K 1 K 2+ 2 K 2 K 1+ 1 K 3=0  (63)
  • [0107]
    [0107] p = 1 n - 1 p i 1 + + i p = n K i 1 K i p + n K 1 K 1 = 0 , ( 64 )
  • [0108]
    which may be solved for the 's with the result
  • 1=K1 +  (65)
  • 2=− 1K2 1 1  (66)
  • 3=−( 2 K 1 K 2+ 2 K 2 K 1+ 1 K 3) 1 1 1  (67)
  • [0109]
    [0109] n = - ( p = 1 n - 1 p i 1 + + i p = n K i 1 K i p ) 1 1 . ( 68 )
  • [0110]
    It can be seen that the above expressions for 1 and 2 agree with (23). In addition, (68) provides a general formula for the coefficients of the higher order terms in (23). We note this formula implies that the nonlinear correction of order n involves all forward operators up to order n.
  • [0111]
    6.2 The Data Function for a Spherical Inhomogeneity
  • [0112]
    In this Section we calculate the data function for an absorbing spherical inhomogeneity in an infinite medium. Note that the scattering of diffusing waves from a sphere is analogous to Mie scattering in electromagnetic theory.
  • [0113]
    Consider a spherical inclusion whose properties differ from the surrounding homogeneous background. We assume that δD=0 and δα=α=const inside a spherical region |r−r0|<R. We will work in a reference frame whose origin coincides with the center of the sphere, ro. In this case, the Green's function can be represented as G ( r , r ) = l = 0 m = - l l g l ( r , r ) Y l m * ( r ^ ) Y l m ( r ^ ) , ( 69 )
  • [0114]
    where the Ylm's are spherical harmonics. If both the sources and detectors are located outside the sphere (r, r′>R) then g l ( r , r ) = 2 k 1 π D 0 [ i l ( k 1 r < ) k l ( k 1 r > ) - F l k l ( k 1 r ) k l ( k 1 r ) ] , ( 70 )
  • [0115]
    where kl (x) and il(x) are the modified spherical Bessel and Hankel functions of the first kind, r< and r> are the lesser and greater of r and r′, the Mie coefficient Fl is given by F l = k 2 i l ( k 1 R ) i l ( k 2 R ) - k 1 i l ( k 2 R ) i l ( k 1 R ) k 2 i l ( k 2 R ) k l ( k 1 R ) - k 1 i l ( k 2 R ) k l ( k 1 R ) , ( 71 )
  • [0116]
    and k1 and k2 are the wavenumbers outside and inside the sphere: k 1 2 = α 0 - ω D 0 , k 2 2 = α 0 + a - ω D 0 . ( 72 )
  • [0117]
    By observing that in an infinite medium the unperturbed Green's function G0(r, r′) can be written as G 0 ( r , r ) = 2 k 1 π D 0 l = 0 m = - l l i l ( k 1 r < ) k l ( k 1 r > ) Y l m * ( r ^ ) Y l m ( r ^ ) , ( 73 )
  • [0118]
    we see that the first term in (70) can be identified as the incident field, while the second term represents the scattered field. Consequently, the data function θ(r1, r2) is given by φ ( r 1 , r 2 ) = 2 k 1 π D 0 l = 0 m = - l l F l k l ( k 1 r 1 ) k l ( k 1 r 2 ) Y l m * ( r ^ 2 ) Y l m ( r ^ 1 ) . ( 74 )
  • [0119]
    The above expression is valid in a reference frame whose origin is at the center of the sphere. The corresponding expression in an arbitrary reference frame is obtained by making the transformation r1,2 →r1,2−r0.
  • [0120]
    We now calculate the Fourier transformed data function Φ(q1, q2) which is defined by
  • Φ(q 1 ,q 2)=∫d 2ρ1 d 2ρ2 exp[i(q 1ρ1 +q 2ρ2)]Φ(ρ1 ,z 12 ,z 2).  (75)
  • [0121]
    We will show that φ ( q 1 , q 2 ) = π 2 2 D 0 k 1 Q ( q 1 ) Q ( q 2 ) exp [ i ( q 2 - q 1 ) ρ c - Q ( q 1 ) z 0 - z 1 - Q ( q 2 ) z 2 - z 0 ] l = 0 ( 2 l + 1 ) F l P l ( q 1 q 2 + γ ( z 1 , z 2 ) Q ( q 1 ) Q ( q 2 ) k 1 2 ) , ( 76 )
  • [0122]
    where Pl(x) are the Legendre polynomials and γ ( z 1 , z 2 ) = { 1 , if z 1 = z 2 - 1 , if z 1 z 2 . ( 77 )
  • [0123]
    Note that the arguments of the Legendre polynomials in (76) can be greater than unity; however the Mie coefficients Fl decay with l faster than exponentially so that the convergence of the series is guaranteed. To derive (76) we start by expanding Φ(r1, r2) in a three-dimensional Fourier integral. To this end we define Ilm 1(p1) and Ilm 2 (p2) such that k l ( k 1 r 1 ) Y lm ( r ^ 1 ) = d 3 p 1 ( 2 π ) 3 I lm 1 ( p 1 ) exp ( - ip 1 r 1 ) , ( 78 ) k l ( k 1 r 2 ) Y lm * ( r ^ 2 ) = d 3 p 2 ( 2 π ) 3 I lm 2 ( p 2 ) exp ( - ip 2 r 2 ) , ( 79 )
  • I lm 1(p 1)=∫k l(k 1 r)Y lm({circumflex over (r)})exp(ip 1 r)d 3 r,  (80)
  • I lm 2(p 2)=∫k l(k 1 r)Y lm *({circumflex over (r)})exp(ip 2 r)d 3 r.  (81)
  • [0124]
    The integrals (80) and (81) are evaluated by using the identity exp ( ip r ) = 4 π l = 0 m = - l l i l j l ( pr ) Y lm * ( p ^ ) Y lm ( r ^ ) , ( 82 )
  • [0125]
    where jl(x) are spherical Bessel functions of the first kind. After expanding the exponents in (80) and (81) according to (82) and integrating over the angular variables we obtain I lm 1 ( p 1 ) = 4 π i l Y lm ( p ^ 1 ) 0 r 2 k l ( k 1 r ) j l ( p 1 r ) r , ( 83 ) I lm 2 ( p 2 ) = 4 π i l Y lm * ( p ^ 2 ) 0 r 2 k l ( k 1 r ) j l ( p 2 r ) r . ( 84 )
  • [0126]
    The one-dimensional integrals are easily calculated using the formula 0 x 2 k l ( ax ) j l ( b x ) x = π 2 a ( b / a ) l a 2 + b 2 . ( 85 )
  • [0127]
    Combining the above results, we can write the three-dimensional Fourier expansion of Φ(r1, r2): φ ( r 1 , r 2 ) = 1 ( 2 π ) 3 D 0 k 1 lm ( - 1 ) l F l d 3 p 1 d 3 p 2 ( p 1 p 2 / k 1 2 ) l ( p 1 2 + k 1 2 ) ( p 2 2 + k 1 2 ) Y lm ( p ^ 1 ) Y lm * ( p ^ 2 ) exp [ - i ( p 1 ( r 1 - r 0 ) + p 2 ( r 2 - r 0 ) ) ] . ( 86 )
  • [0128]
    where we have made the shift r1,2→r1,2−r0. Thus the expression (86) is valid in an arbitrary reference frame
  • [0129]
    Next we decompose the three-dimensional vectors as P1=−q1+t1z, P2=q2+t2z and r00+z0z. Taking into account that p1,2 2=q1,2 2+1,2 2, this immediately leads to the following expression for the two-dimensional Fourier transform of Φ(r1, r2): φ ( q 1 , q 2 ) = 2 πexp [ i ( q 1 + q 2 ) ρ 0 ] D 0 k 1 lm ( - 1 ) l F l J lm 1 ( q 1 ) J lm 2 ( q 2 ) , ( 87 )
  • [0130]
    where J lm 1 ( q 1 ) = - t ( q 1 2 + t 2 / k 1 ) l q 1 2 + t 2 + k 1 2 Y lm ( - q 1 + t e ^ z q 1 2 + t 2 ) exp [ it ( z 0 - z 1 ) ] ( 88 ) J lm 2 ( q 2 ) = - t ( q 2 2 + t 2 / k 1 ) l q 2 2 + t 2 + k 1 2 Y lm * ( q 2 + t e ^ z q 2 2 + t 2 ) exp [ it ( z 0 - z 1 ) ] . ( 89 )
  • [0131]
    Although the integrands in (88) and (89) contain square roots, they are analytic functions of t. This can be seen by examining the explicit expressions for the spherical harmonics in terms of the associated Legendre polynomials and observing that the square roots in question are raised to an even power for any l and m. Therefore, (88) and (89) can be evaluated by analytic continuation of the integrands into the complex plane and contour integration. The result is J lm 1 ( q 1 ) = π i l Q ( q 1 ) Y lm ( - q 1 + i sgn ( z 0 - z 1 ) Q ( q 1 ) e ^ z ik 1 ) exp [ - Q ( q 1 ) z 0 - z 1 ] , ( 90 ) J lm 2 ( q 2 ) = π i l Q ( q 1 ) Y lm * ( q 2 + i sg n ( z 0 - z 2 ) Q ( q 2 ) e ^ z ik 1 ) exp [ - Q ( q 2 ) z 0 - z 2 ] . ( 91 )
  • [0132]
    Note that the spherical harmonic functions in the above expressions are analytically continued to complex angles; the arguments of Ylm in (90) and (91) are complex unit vectors with the property aa=1.
  • [0133]
    Finally, we use the addition theorem to perform the summation over the index m in (87): m = - 1 l Y lm ( - q 1 + i sgn ( z 0 - z 1 ) Q ( q 1 ) e ^ z ik 1 ) Y lm * ( q 2 + i sg n ( z 0 - z 2 ) Q ( q 2 ) e ^ z ik 1 ) = 2 l + 1 4 π P l ( cos θ ) , ( 92 )
  • [0134]
    where θ is the angle between the two complex vector arguments of the spherical harmonic functions in (92). The cosine of this angle is obviously given by cos θ = q 1 q 2 + sgn ( z 0 - z 1 ) sgn ( z 0 - z 2 ) Q ( q 1 ) Q ( q 2 ) k 1 2 . ( 93 )
  • [0135]
    Taking into account that sgn(z0−z1)sgn(z0−Z2)=γ(z1, Z2), we obtain the result (76).
  • [0136]
    Although the present invention has been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings. Thus, the previous description merely illustrates the principles of the invention. It will thus be appreciated that those with ordinary skill in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently know equivalents as well as equivalents developed in the future, that is, any elements developed that perform the function, regardless of structure.
  • [0137]
    In addition, it will be appreciated by those with ordinary skill in the art that the block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5905261 *Sep 25, 1997May 18, 1999Schotland; John CarlImaging system and method using direct reconstruction of scattered radiation
US20030072478 *Oct 12, 2001Apr 17, 2003Claus Bernhard Erich HermannReconstruction method for tomosynthesis
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7298415May 11, 2005Nov 20, 2007Xenogen CorporationStructured light imaging apparatus
US7403812May 17, 2002Jul 22, 2008Xenogen CorporationMethod and apparatus for determining target depth, brightness and size within a body region
US7555332Jun 30, 2009Xenogen CorporationFluorescent light tomography
US7599731Apr 10, 2007Oct 6, 2009Xenogen CorporationFluorescent light tomography
US7603167Jul 29, 2007Oct 13, 2009Xenogen CorporationMethod and apparatus for 3-D imaging of internal light sources
US7764986Jul 29, 2007Jul 27, 2010Xenogen CorporationMethod and apparatus for determining target depth, brightness and size within a body region
US7797034May 11, 2005Sep 14, 2010Xenogen Corporation3-D in-vivo imaging and topography using structured light
US7860549Sep 29, 2009Dec 28, 2010Xenogen CorporationMethod and apparatus for 3-D imaging of internal light sources
US8044996Oct 25, 2011Xenogen CorporationSurface construction using combined photographic and structured light information
US8180435May 15, 2012Xenogen CorporationMethod and apparatus for determining target depth, brightness and size within a body region
US8279334Oct 11, 2007Oct 2, 2012Xenogen CorporationStructured light imaging apparatus
US8825140Feb 15, 2012Sep 2, 2014Xenogen CorporationImaging system
US8909326Nov 16, 2010Dec 9, 2014Xenogen CorporationMethod and apparatus for 3-D imaging of internal light sources
US20040021771 *Jun 25, 2003Feb 5, 2004Xenogen CorporationMethod and apparatus for 3-D imaging of internal light sources
US20050201614 *May 11, 2005Sep 15, 2005Xenogen Corporation3-D in-vivo imaging and topography using structured light
US20070253908 *Apr 10, 2007Nov 1, 2007Xenogen CorporationFluorescent light tomography
US20070270697 *Jul 29, 2007Nov 22, 2007Xenogen CorporationMethod and apparatus for determining target depth, brightness and size within a body region
US20080018899 *Jul 29, 2007Jan 24, 2008Xenogen CorporationMethod and apparatus for 3-d imaging of internal light sources
US20080031494 *Jul 29, 2007Feb 7, 2008Xenogen CorporationFluorescent light tomography
US20080052052 *Aug 24, 2007Feb 28, 2008Xenogen CorporationApparatus and methods for determining optical tissue properties
US20080079802 *Oct 11, 2007Apr 3, 2008Xenogen CorporationStructured light imaging apparatus
US20100022872 *Jan 28, 2010Xenogen CorporationMethod and apparatus for 3-d imaging of internal light sources
US20100262019 *Jun 24, 2010Oct 14, 2010Xenogen CorporationMethod and apparatus for determining target depth, brightness and size within a body region
US20110090316 *Nov 16, 2010Apr 21, 2011Xenogen CorporationMethod and apparatus for 3-d imaging of internal light sources
CN103852695A *Mar 5, 2014Jun 11, 2014中国科学院电工研究所Grounding grid state detection method based on high-frequency impulse reverse-scattering imaging
WO2007072085A1 *Dec 15, 2006Jun 28, 2007Foundation For Research And Technology-HellasRemoval of boundaries in diffuse media
Classifications
U.S. Classification356/340
International ClassificationG01N21/47
Cooperative ClassificationG01N21/4795
European ClassificationG01N21/47S
Legal Events
DateCodeEventDescription
Nov 1, 2002ASAssignment
Owner name: WASHINGTON UNIVERSITY, MISSOURI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHOTLAND, JOHN CARL;MARKEL, VADIM ARKADIEVICH;O SULLIVAN, JOSEPH ANDREW;REEL/FRAME:013454/0308;SIGNING DATES FROM 20021029 TO 20021101