Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040102840 A1
Publication typeApplication
Application numberUS 10/714,462
Publication dateMay 27, 2004
Filing dateNov 13, 2003
Priority dateJun 30, 1999
Also published asCA2434412A1, CA2434412C, DE60128591D1, DE60128591T2, EP1370200A1, EP1370200B1, EP1806111A2, EP1806111A3, US7090695, US7192442, US20010018611, US20030069636, WO2002062270A1
Publication number10714462, 714462, US 2004/0102840 A1, US 2004/102840 A1, US 20040102840 A1, US 20040102840A1, US 2004102840 A1, US 2004102840A1, US-A1-20040102840, US-A1-2004102840, US2004/0102840A1, US2004/102840A1, US20040102840 A1, US20040102840A1, US2004102840 A1, US2004102840A1
InventorsJan Solem, Per Kimblad, Erwin Berger, Michael Schwager
Original AssigneeSolem Jan Otto, Kimblad Per Ola, Erwin Berger, Michael Schwager
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and device for treatment of mitral insufficiency
US 20040102840 A1
Abstract
A device for treatment of mitral annulus dilatation comprises an elongate body having two states. IN a first of these states the elongate body is insertable into the coronary sinus and has a shape adapting to the shape of the coronary sinus. When positioned in the coronary sinus, the elongate body is transferable to the second state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus and the radius of curvature as well as the circumference of the mitral annulus is reduced.
Images(8)
Previous page
Next page
Claims(25)
What is claimed is:
1. An assembly for effecting the condition of a mitral valve annulus of a heart comprising:
a guide wire configured to be advanced to the coronary sinus of the heart; and
a mitral valve annulus device configured to be received on the guide wire and advanced into the coronary sinus of the heart on the guide wire and that reshapes the mitral valve annulus when in the coronary sinus of the heart.
2. The assembly of claim 1 wherein the device is configured to be slidingly received on the guide wire.
3. The assembly of claim 1 wherein the mitral valve annulus device has opposed ends and includes a guide wire engaging structure at at least one of the opposed ends.
4. The assembly of claim 3 wherein the guide wire engaging structure includes a bore dimensioned to permit the guide wire to pass therethrough.
5. The assembly of claim 4 wherein the device further includes a guide wire confining channel extending between the opposed ends.
6. The assembly of claim 4 wherein the bore of the guide wire engaging structure is cylindrical in configuration.
7. The assembly of claim 6 wherein the device further includes a guide wire confining channel extending between the opposed ends and aligned with the bore.
8. The assembly of claim 1 wherein the guide wire is formed of a material visible under X ray.
9. The assembly of claim 1 wherein at least a portion of the device is visible under X ray.
10. The assembly of claim 1 wherein the device is visible under X ray.
11. The assembly of claim 1 further including an elongated introducer configured to be received on the guide wire proximal to the device.
12. The assembly of claim 11 wherein the introducer is configured to be slidingly received on the guide wire.
13. The assembly of claim 11 wherein the assembly further includes a releasable locking mechanism configured to releasably lock the device to the introducer.
14. The assembly of claim 11 further including a guide tube having an inner lumen dimensioned for receiving the guide wire and the device and introducer when the device and introducer are received on the guide wire.
15. A method of deploying a mitral valve annulus constricting device within the coronary sinus of a heart, the method including the steps of:
A. providing an elongated guide wire having a cross sectional dimension;
B. advancing the guide wire to the coronary sinus of the heart;
C. providing a guide tube having an inner lumen, the inner lumen having a cross sectional dimension greater than the cross sectional dimension of the guide wire;
D. advancing the guide tube to the coronary sinus of the heart on the guide wire with the guide wire within the inner lumen of the guide tube;
E. providing a mitral valve annulus device configured to be received on the guide wire and within the inner lumen of the guide tube, the device including a proximal end;
F. providing a flexible elongated introducer configured to be received on the guide wire and within the inner lumen of the guide tube, the introducer having a distal end;
G. placing the device onto the guide wire;
H. placing the introducer onto the guide wire;
I. engaging the introducer with the device;
J. pushing the device with the introducer in a distal direction along the guide wire and within the guide tube until the device is at least partially encircling the mitral valve within the coronary sinus of the heart; and
K. withdrawing the introducer and the guide tube from the heart.
16. The method of claim 15 wherein the engaging step includes the step I(1) of releasably locking the device to the introducer.
17. The method of claim 16 including the further step J(1) of releasing the device from the introducer prior to withdrawing the introducer.
18. A method of deploying a mitral valve annulus reshaping device within the coronary sinus of a heart, the method including the steps of:
advancing a guide wire to the coronary sinus of the heart;
advancing the elongated mitral valve annulus reshaping device on the guide wire and into the coronary sinus into a position such that the device at least partially encircles the mitral valve of the heart.
19. The method of claim 18 wherein the advancing step further includes the steps of mounting an elongated flexible introducer onto the guide wire, engaging the introducer with the device, and pushing the device distally into the coronary sinus with the introducer.
20. The method of claim 19 including the further step of withdrawing the introducer after deploying the device.
21. The method of claim 20 wherein the engaging step includes releasably locking the device to the introducer.
22. The method of claim 21 including the further step of releasing the device from the introducer prior to withdrawing the introducer.
23. The method of claim 19 including the further steps of:
providing an elongated flexible guide tube having an inner lumen, the inner lumen having a cross sectional dimension greater than the cross sectional dimension of the guide wire;
advancing the guide tube to the coronary sinus of the heart over the guide wire with the guide wire within the inner lumen of the guide tube; and
wherein the pushing step includes pushing the device along the guide wire and within the guide tube.
24. The method of claim 23 wherein the engaging step includes releasably locking the device to the introducer.
25. The method of claim 24 including the further steps of releasing the device from the introducer and withdrawing the introducer and the guide tube after deploying the device.
Description
CROSS REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 09/345,475 that was filed on Jun. 30, 1999.

BACKGROUND OF INVENTION

[0002] 1. Technical Field of the Invention

[0003] The present invention generally relates to a device and a method for treatment of mitral insufficiency and, more specifically, for treatment of dilatation of the mitral annulus.

[0004] 2. Description of the Prior Art

[0005] Mitral insufficiency can result from several causes, such as ischemic disease, degenerative disease of the mitral apparatus, rheumatic fever, endocarditis, congenital heart disease and cardiomyopathy. The four major structural components of the mitral valve are the annulus, the two leaflets, the chordae and the papillary muscles. Any one or all of these in different combinations may be injured and create insufficiency. Annular dilatation is a major component in the pathology of mitral insufficiency regardless of cause. Moreover, many patients have a mitral insufficiency primarily or only due to posterior annular dilatation, since the annulus of the anterior leaflet does not dilatate because it is anchored to the fibrous skeleton of the base of the heart.

[0006] Studies of the natural history of mitral insufficiency have found that totally asymptomatic patients with severe mitral insufficiency usually progress to severe disability within five years. At present the treatment consists of either mitral valve replacements or repair, both methods requiring open heart surgery. Replacement can be performed with either mechanical or biological valves.

[0007] The mechanical valve carries the risk of thromboembolism and requires anticoagulation, with all its potential hazards, whereas biological prostheses suffer from limited durability. Another hazard with replacement is the risk of endocarditis. These risks and other valve related complications are greatly diminished with valve repair.

[0008] Mitral valve repair is theoretically possible if an essentially normal anterior leaflet is present. The basic four techniques of repair include the use of an annuloplasty ring, quadrangular segmental resection of diseased posterior leaflet, shortening of elongated chordae, and transposition of posterior leaflet chordae to the anterior leaflet.

[0009] Annuloplasty rings are needed to achieve a durable reduction of the annular dilatation. All the common rings are sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium. The Duran ring encircles the valve completely, whereas the others are open towards the anterior leaflet. The ring can either be rigid, like the original Carpentier ring, or flexible but non-elastic, like the Duran ring or the Cosgrove-Edwards ring.

[0010] Effective treatment of mitral insufficiency currently requires open-heart surgery, by the use of total cardiopulmonary by-pass, aortic cross-clamping and cardioplegic cardiac arrest.

[0011] To certain groups of patient, this is particular hazardous. Elderly patients, patients with a poor left ventricular function, renal disease, severe calcification of the aorta, previous cardiac surgery or other concomitant diseases, would in particular most likely benefit from a less invasive approach, even if repair is not complete. The current trend towards less invasive coronary artery surgery, without cardiopulmonary by-pass, as well as PTCA will also call for a development of a less invasive method for repair of the often concomitant mitral insufficiency.

SUMMARY OF THE INVENTION

[0012] Therefore, a first object of the present invention is to provide a device and a method for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and without opening of the chest and heart.

[0013] A second object of the invention is to provide reduction of the mitral annulus using only catheter based technology.

[0014] According to the present invention, a device for treatment of mitralis insufficiency comprises an elongate body having such dimensions as to be insertable into the coronary sinus and having two states, in a first state of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second state of which the elongate body is transferable from the said first state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus is reduced as well as the circumference of the mitral valve annulus, when the elongate body is positioned in the coronary sinus. More precisely, the elongate body comprises a distal stent section, a proximal stent section and control wires for reducing the distance between the distal and proximal stent sections.

[0015] Thus, means are provided for the transfer of the elongate body to the second stat by shortening it from a larger radius of curvature to a smaller radius of curvature.

[0016] The control wires may comprise a first wire and means for guiding said first wire in a course extending two times between the distal and proximal stent sections, when the distance therebetween is at a maximum, and extending at least three times between the distal and proximal stent sections, when the distance therebetween is at a minimum.

[0017] To accomplish changes in the course, the guiding means preferably comprises a first eyelet fixed to one of the distal and proximal stent sections, a second eyelet fixed to the other of the distal and proximal stent sections, and a third eyelet positioned between the distal and proximal stent sections, said first wire having a first end fixed to said one of the distal and proximal stent section and extending therefrom via the third eyelet, the first eyelet and the second eyelet back to the third eylet where a second end of the first wire is fixed. By this structure the maximum distance between the two stent sections will be about 1.5 times the minimum distance between the two stent sections.

[0018] A larger quotient may be obtained by extending the first wire from the first eyelet at least once more via the third eyelet and the first eyelet before finally extending the first wire via the second eyelet back to the third eylet where the second end of the first wire is fixed.

[0019] In order to reduce the distance beteween the distal stent section and the proximal stent section, said first eyelet is preferably fixed to the distal stent section and said control wires comprise a second wire extending through the third eyelet and as a double wire proximally therefrom out of the coronary sinus and out of the human body. As an alternative to this second wire, a single wire may be used having an end releasably fixed to the third eyelet and extending as a single wire proximally therefrom out of the coronary sinus and out of the human body. However, to be able to also increase the distance between the distal stent section and the proximal stent section, said control wires may comprise a third wire extending through the third eyelet and as a double wire distally to and through the first eyelet and then as a double wire proximally therefrom out of the coronary sinus and out of the human body.

[0020] Alternatively, the distance between the distal stent section and the proximal stent section may be reduced by fixing the first eyelet to the proximal stent section. Then, said control wires should comprise a second wire extending through the third eyelet and as a double wire distally to and through the first eyelet and then as a double wire proximally therefrom out of the coronary sinus and out of the human body. In order to be able to increase the distance between the distal stent section and the proximal stent section in this case, the control wires should comprise a third wire extending through the third eyelet and as a double wire proximally therefrom out of the coronary sinus and out of the human body.

[0021] It should be noted that when the proximal and distal stent sections have been fixed relative to the coronary sinus and the distance between them thererafter has been finaly adjusted to a desired value, the second and the third wires may in both the described alternatives be withdrawn from the coronary sinus by pulling one of their ends positioned outside of the coronary sinus and outside of the human body.

[0022] In preferred embodiments of the device, a cover encloses the wires in their courses between the distal and proximal stent sections so as to eliminate the risk that the wires will injure the coronary sinus by cutting into its internal surfaces.

[0023] The cover may comprise one or more plastic sheaths and may also comprise one or more helical wires.

[0024] In an alternative embodiment, the device for treatment of mitral annulus dilatation comprises an elongate body having such dimensions as to be insertable into the coronary sinus and having two states, in a first of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second of which the elongate body is transferable from said first state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus is reduced as well as the circumference of the mitral valve annulus, when the elongate body is positioned in the coronary sinus, said elongate body comprising at least one stent section at a distance from each end of the elongate body, said stent section providing a reduction of its length when expanded in situ in the coronary sinus, whereby the elongate body is shortened and bent to a smaller radius of curvature.

[0025] Preferably, the elongate body of this embodiment comprises a proximal stent section, a distal stent section and a central stent section, the distal and proximal stent sections being expandable prior to the central stent section. Obviosly, this will result in a reduction of the distance between the proximal and distal stent sections. Further, the proximal and distal stent sections should be expandable without substantial length reduction.

[0026] Thus, the present invention takes advantage of the position of the coronary sinus being close to the mitral annulus. This makes repair possible by the use of current catheter-guided techniques.

[0027] The coronary veins drain blood from the myocardium to the right atrium. The smaller veins drain blood directly into the atrial cavity, and the larger veins accompany the major arteries and run into the coronary sinus which substantially encircles the mitral orifice and annulus. It runs in the posterior atrioventricular groove, lying in the fatty tissue between the left atrial wall and the ventricular myocardium, before draining into the right atrium between the atrial septum and the post-Eustachian sinus.

[0028] In an adult, the course of the coronary sinus may approach within 5-15 mm of the medial attachment of the posterior leaflet of the mitral valve. Preliminary measurements performed at autopsies of adults of normal weight show similar results, with a distance of 5.30.6 mm at the medial attachment and about 10 mm at the lateral aspect of the posterior leaflet. The circumference of the coronary sinus was 18.32.9 mm at its ostium (giving a sinus diameter of the septal aspect or the posterior leaflet of 5.80.9 mm) and 9.70.6 mm along the lateral aspect of the posterior leaflet (corresponding to a sinus diameter of 3.10.2 mm).

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The invention will be better understood by the following description of preferred embodiments referring to the appended drawings, in which

[0030]FIG. 1 is a cross-sectional view of a part of a heart,

[0031]FIGS. 2 and 3 are schematic views of a first embodiment of a device according to the present invention,

[0032] FIGS. 4-6 are schematic views illustrating an instrument, which may be used when positioning the device shown in FIGS. 2 and 3 in the coronary sinus,

[0033]FIG. 7 is a partial, enlarged view of the first embodiment shown in FIG. 2.

[0034]FIGS. 8 and 9 are schematic views illustrating the positioning of the device of FIGS. 2 and 3 in the coronary sinus,

[0035]FIGS. 10 and 11 are schematic views illustrating the positioning of a second embodiment of the device according to the present invention in the coronary sinus,

[0036]FIGS. 12 and 13 are schematic views illustrating the positioning of a third embodiment of the device according to the present invention in the coronary sinus.

[0037]FIG. 14 illustrates a fourth embodiment of the device according to the present invention.

[0038]FIG. 15 is a schematic view illustrating a preferred operation of the fourth embodiment.

[0039]FIG. 16 is a schematic view illustrating the operation of a fifth embodiment of the device according to the present invention.

[0040]FIG. 17 illustrates a sixth embodiment of the device according to the present invention.

[0041]FIG. 18 illustrates a further modification of the embodiments of FIGS. 14-17.

[0042]FIGS. 19 and 20 illustrate a seventh embodiment of the device according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0043]FIG. 1 is a cross-sectional view through the heart area of the posterior atrioventricular groove 1, which is filled with fatty tissue. It shows the posterior leaflet of the mitral valve and the adjoining parts 3, 4 of the atrial myocardium and the ventricular myocardium. The coronary sinus 5 is shown close to the mitral annulus 6 and behind the attachment 7 of the posterior leaflet 2. Since the coronary sinus 5 substantially encircles the mitral annulus 6, a reduction of the radius of curvature of the bent coronary sinus 5 also will result in a diameter and circumference reduction of the mitral 5 annulus 6.

[0044] The device of FIG. 2 comprises an elongate body 8 made of memory metal, e.g. Nitinol, or other similar material which has a memory of an original shape, illustrated in FIG. 3, and can be temporary forced into another shape, illustrated in FIG. 2. This elongate body 8 comprises one, two or more memory metal strings 9 of helical or other shape so as to fit together and be able of permitting the movements described below. Along the elongate body 8 several hooks 10 are fastened so as to extend radially out therefrom. These hooks 10 are covered by a cover sheath 11 in FIG. 2.

[0045] The elongate body 8 is forced into a stretched or extended state by means of a stabilizing instrument 12 shown in FIG. 4. This instrument 12 has two arms 13 at a distal end 14 of a rod 15 and a locking means 16 at a proximal end of the rod 15. The distance between the ends of the rod 15 corresponds to the desired length of the elongate body 8 when being insert d into the coronary sinus 5.

[0046] The arms 13 are free to move between the position shown in FIG. 4 and a position in alignment with the rod 15, as shown in FIG. 6. The locking means 16 has two locking knobs 17, which are pressed radially outwards from the rod 15 by two spring blades 18. Thus, the elongated body 8 can be pushed over the rod 15 of the stabilizing instrument 12, then stretched between the arms 13 and the knobs 17, and finally locked in its stretched state on the stabilizing instrument 12 between the arms 13 and the knobs 17, as illustrated in FIG. 5.

[0047] The rod 15 may be a metal wire which is relatively stiff between the distal end 14 and the locking means 16 but still so bendable that it will follow the shape of the coronary sinus 5. Proximally of the locking means 16 the metal wire of the stabilizing instrument 11 is more pliable to be able to easily follow the bends of the veins.

[0048] The above-described elongate body 8 is positioned in the coronary sinus 5 in the following way:

[0049] An introduction sheath (not shown) of synthetic material may be used to get access to the venous system. Having reached access to the venous system, a long guiding wire (not shown) of metal is advanced through the introduction sheath and via the venous system to the coronary sinus 5. This guiding wire is provided with X-ray distance markers so that the position of the guiding wire in the coronary sinus 5 may be monitored.

[0050] The elongate body 8 is locked onto the stabilizing instrument 12, as shown in FIG. 5, and introduced into the long cover sheath 11 of synthetic material. This aggregate is then pushed through the introduction sheath and the venous system to the coronary sinus 5 riding on the guiding wire. After exact positioning of the elongate body B in the coronary sinus 5, as illustrated in FIG. 8 where the mitral valve 19 is shown having a central gap 20, the cover sheath 11 is retracted exposing the elongate body 8 within the coronary sinus 5. This maneuver allows the hooks 10 on the elongate body 8 to dig into the walls of the coronary sinus 5 and into the heart. The elongate body 8 is still locked on to the stabilizing instrument 12 such that the hooks 10 engage the walls of the coronary sinus 5 in the stretched or extended state of the elongate body 8.

[0051] A catheter 21, shown in FIG. 6, is pushed forward on the guiding wire and the rod 15 for releasing the elongate body 8 from the locking means 16 by pressing the spring blades 18 towards the rod 15. This movement releases the knobs 17 as well as the arms 13 from engagement with the elongate body 8 which contracts as illustrated in FIG. 9, thereby shortening the radius of curvature of the coronary sinus. As a result, the mitral valve annulus 6 shrinks moving the posterior part thereof forward (shown by arrows in FIG. 9). This movement reduces the circumference of the mitral valve annulus 6 and thereby closes the central gap 20.

[0052]FIG. 7 illustrates a part of an arrangement of the wires 9 and the hooks 10 along a peripheral part of the elongate body 8, whereby the elongate body 8 will be asymmetrically contracted resulting in a bending thereof when interconnecting parts 22 of at least some of the hooks 10 are shortened to an original shape.

[0053]FIGS. 10 and 11 illustrate an alternative embodiment of an elongate body 8′, which is a solid wire in the shape of an open U-shaped ring that will engage the wall of the coronary sinus 5 most adjacent to the mitral valve annulus 6 when inserted into the coronary sinus 5. The elongate body 8′ consists of a memory metal material which when reverting to its original shape will bend as illustrated in FIG. 11. The return of the open ring 8′ to its original shape may be initiated in several ways, as is obvious to the man skilled in the art.

[0054] The third embodiment of the elongate body 8″, illustrated in FIGS. 12 and 13, comprises three stent sections 23-25 positioned at one end of the elongate body 8″, at the middle thereof and at the other end of the elongate body 8″, respectively. These stent sections 23-25 may be positioned in the coronary sinus 5 as illustrated by conventional means, such that their positions are fixed. They are connected by wires 26, 27, which may be maneuvered from outside the vein system such that the distances between the adjacent stent sections 23, 24 and 24, 25 are reduced. More specifically, these distances are reduced asymmetrically, i.e. more on the side of coronary sinus 5 most adjacent to the posterior part of the mitral valve annulus 6. Thereby, the elongate body 8″ is bent, as illustrated in FIG. 13, and presses the coronary sinus 5 against the mitral valve annulus 6 closing the gap 20.

[0055] A fourth embodiment of the device is shown in FIG. 14 as comprising two stent sections, more precisely a proximal stent section 30 and a distal stent section 31. The fourth embodiment further comprises a first eyelet 32, which is fixed to a preferably proximal part of the the distal stent section 31, a second eyelet 33, which is fixed to a preferably distal part of the proximal stent section 30, and a third eyelet 34, which is positioned between the proximal and distal stent sections 30, 31. These sections 30, 31 are joined by a wire 35, one end of which is fixed to the the distal stent section 31. The wire 35 may be fixed to th distal stent section 31 at a proximal point, as shown in FIG. 14, or at a more distal point up to the distal end of the distal stent section 31.

[0056] From the distal stent section 31 the wire 35 extends to and through the third eyelet 34 and then back towards the distal stent section 31 to and through the first eyelet 32. From the first eyelet 32 the wire 35 then extends to and through the second eyelet 33 and then finally to the third eyelet 34, the other end of the wire 35 being fixed to this third eyelet 34.

[0057] By moving the third eyelet 34 towards the proximal stent section 30, the distance between the proximal and distal stent sections 30, 31 will be reduced. On the contrary, by moving the third eyelet 34 towards the distal stent section 31, the distance between the proximal and distal stent sections may be increased. However, such increase will require some means pushing the distal stent section 31 in a distal direction away from the proximal stent section 30 or pulling the proximal stent section in a proximal direction away from the distal stent section 31.

[0058] The distance between the proximal and distal stent sections 30, 31 will reach a maximum when the third eyelet 34 is positioned close to the distal stent section 31 and will reach a minimum when the third eyelet 34 is positioned close to the proximal stent section 30.

[0059] The third eyelet 34 may be moved towards the proximal stent section 30 by means of a single wire 36, which has an end releasably fixed to the third eyelet 34 and extends proximally therefrom through the proximal stent section 30 and furter proximally out of the coronary sinus 5, through the vein system and out of the human body.

[0060] In a preferred embodiment schematically illustrated in FIG. 15, a second wire 37 extends through the third eyelet 34 and further extends as a double wire proximally from the third eyelet 34, through the proximal stent section 30 and the coronary sinus 5 and then out of the body. The third eyelet 34 will be moved proximally by simultaneous pulling both ends of the second wire 37 outside of the body. When the desired position of the third eyelet 34 is reached, the second wire 37 may easily be removed through the vein system by pulling only one of its ends outside the body.

[0061] As illustrated in FIG. 15, a third wire 38 may be extended through the third eyelet 34. Therefrom it extends as a double wire distally to and through the first eyelet 32 and then this double wire extends proximally from the first eyelet 32 (or a further eyelet fixed to the proximal end of the distal stent) through the proximal stent section 30 and finally the double wire 38 extends proximally through the coronary sinus 5 and out of the human body. By pulling both ends of this third wire 38 outside of the body, the third eyelet 34 will allow a movement of the proximal and distal stent sections 30, 31 away from each other. By means of the second wire 37 and the third wire 38 the position of the third eyelet 34 may be adjusted repeatedly until a desired position is attained. The third wire 38 may be removed in the same manner as the second wire 37.

[0062] Obviously, the position of the third eyelet 34 may be used to control the distance between the proximal and distal Stent sections 30, 31, and this distance controls the radius of curvature of the device and thus also the radius of curvature of the coronary sinus 5.

[0063] The furter embodiment of the device illustrated in FIG. 16 corresponds to the embodiment illustrated in FIG. 15 except that the first eyelet 32 is fixed to the proximal stent section 30 and the second eyelet 33 is fixed to the distal stent section 31. Therefore, a fourth wire 39 has the same extension as the third wire 38 in FIG. 15 but has the function of the second wire 37 in FIG. 15. A fifth wire 40 has the same extension as the second wire 37 in FIG. 15 but has the function of the third wire 38 of FIG. 15.

[0064] The quotient between the maximum distance and the minimum distance between the proximal stent section 30 and the distal stent section 31 in FIGS. 15 and 16 is about 1.5. A quotient of about 2.5 would be possible by letting the wire 35 extend once more via the third eyelet 34 and the first eyelet 32 (or another eyelet fixed at substantially the same position as the first eyelet) before finally extending via the second eyelet 33 back to the third eyelet 34 where the second end of the wire 35 is fixed, as shown in FIG. 17.

[0065] According to FIG. 18, the wires 35-40 extending between the proximal stent section 30 and the distal stent section 31 are confined in a plastic sheath or a plastic wire spiral 41 which will cover and protect the wires 35-40. By enclosing the wires 35-40, the sheath or spiral 41 will also prohibit them from cutting through the wall of the coronary sinus 5. Alternatively, more than one sheath or spiral 41 may be used, all of which should be compressible lengthwise so as to allow the reduction of the distance between the proximal and distal stent sections 30, 31.

[0066] The embodiments illustrated in FIGS. 15-18 may be introduced by conventional means into the coronary sinus 5 via the vein system. Preferably, the distal stent section 31 first is adjusted to a desired position, whereupon it is expanded so as to engage the walls of the coronary sinus 5. Thereby, the position of the distal stent section 31 is fixed in the coronary sinus 5. Then the position of the proximal stent section 30 is adjusted considering the required reduction of the distance between the the proximal and distal stent sections 30, 31. Thereafter the proximal stent section 30 is expanded such that it is fixed relative the coronary sinus 5. Finally, the distance between the proximal and distal stent sections 30, 31 is reduced using one of the wires 37 and 39. If the distance reduction is found too extensive, the distance between the stent sections 30 and 31 may be increased by pulling one of the wires 38 and 40. After achieving a perfect position, the used wires 37-40 may be removed by pulling in one of the double ends.

[0067] It should be noted that instead of eyelets having a single opening, eyelets having multiple openings could be used such that each one of the wires extends through an opening of its own.

[0068] Still one further embodiment of the device according to the present invention is illustrated in FIGS. 19 and 20. Here, the device comprises an elongate body having three stent sections, the proximal stent section 30 and the distal stent section 31 being of the same type as described above. A central stent section 42 is such as to reduce its length when expanded radially.

[0069] When this device is positioned in the coronary sinus 5, the proximal and distal sections 30, 31 are first expanded, as illustrated in FIG. 19, and then the central stent section 42 is expanded. As a consequence of its length reduction when expanded, the central stent section 42 will reduce the distance between the proximal and distal stent sections 30, 31 and thus reduce the radius of curvature of the coronary sinus 5 as illustrated in FIG. 20.

[0070] Concludingly, the present invention provides a device placed in the coronary sinus 5 and designed to reduce the dilatation of the mitral annulus. This device is at a distance from the attachment of the posterior leaflet that does not much exceed the distance at which present annuloplasty rings are placed by open surgery techniques, and the coronary sinus is along its entire course large enough to hold such a device. The device could be positioned by catheter technique or any other adequate technique and offers a safer alternative to the current open surgery methods. The device could be designed or heparincoated so as to avoid thrombosis in the coronary sinus, thus reducing the need for aspirin, ticlopedine or anticoagulant therapy.

[0071] It is to be understood that modifications of the above-described device and method can be made by people skilled in the art without departing from the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4164046 *May 16, 1977Aug 14, 1979Cooley DentonValve prosthesis
US4655771 *Apr 11, 1983Apr 7, 1987Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US4830003 *Jun 17, 1988May 16, 1989Wolff Rodney GCompressive stent and delivery system
US4954126 *Mar 28, 1989Sep 4, 1990Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US5006106 *Oct 9, 1990Apr 9, 1991Angelchik Jean PApparatus and method for laparoscopic implantation of anti-reflux prosthesis
US5061275 *Dec 29, 1989Oct 29, 1991Medinvent S.A.Self-expanding prosthesis
US5104404 *Jun 20, 1991Apr 14, 1992Medtronic, Inc.Articulated stent
US5209730 *Dec 19, 1989May 11, 1993Scimed Life Systems, Inc.Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
US5224491 *Jun 30, 1992Jul 6, 1993Medtronic, Inc.Implantable electrode for location within a blood vessel
US5304131 *Feb 11, 1992Apr 19, 1994Paskar Larry DCatheter
US5383892 *Nov 6, 1992Jan 24, 1995Meadox FranceStent for transluminal implantation
US5390661 *Feb 3, 1993Feb 21, 1995W. L. Gore & Associates, Inc.Introducer for esophageal probes
US5496275 *Feb 4, 1994Mar 5, 1996Advanced Cardiovascular Systems, Inc.Low profile dilatation catheter
US5531779 *Jan 24, 1995Jul 2, 1996Cardiac Pacemakers, Inc.Stent-type defibrillation electrode structures
US5534007 *May 18, 1995Jul 9, 1996Scimed Life Systems, Inc.Stent deployment catheter with collapsible sheath
US5545209 *Jun 30, 1994Aug 13, 1996Texas Petrodet, Inc.Controlled deployment of a medical device
US5591197 *Mar 14, 1995Jan 7, 1997Advanced Cardiovascular Systems, Inc.Expandable stent forming projecting barbs and method for deploying
US5593442 *Jun 5, 1995Jan 14, 1997Localmed, Inc.Radially expansible and articulated vessel scaffold
US5607444 *Jul 9, 1996Mar 4, 1997Advanced Cardiovascular Systems, Inc.Ostial stent for bifurcations
US5674280 *Oct 12, 1995Oct 7, 1997Smith & Nephew, Inc.Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy
US5713949 *Aug 6, 1996Feb 3, 1998Jayaraman; SwaminathanMicroporous covered stents and method of coating
US5733325 *May 6, 1996Mar 31, 1998C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system
US5741274 *Dec 22, 1995Apr 21, 1998Cardio Vascular Concepts, Inc.Method and apparatus for laparoscopically reinforcing vascular stent-grafts
US5800519 *Nov 4, 1996Sep 1, 1998Kopin CorporationTubular medical prosthesis for use in a body lumen
US5876419 *Oct 15, 1997Mar 2, 1999Navius CorporationStent and method for making a stent
US5876433 *May 29, 1996Mar 2, 1999Ethicon, Inc.Stent and method of varying amounts of heparin coated thereon to control treatment
US5891108 *Sep 12, 1994Apr 6, 1999Cordis CorporationDrug delivery stent
US5911732 *Mar 10, 1997Jun 15, 1999Johnson & Johnson Interventional Systems, Co.Articulated expandable intraluminal stent
US5919233 *Jun 25, 1997Jul 6, 1999Ethicon, Inc.Flexible implant
US5935081 *Jan 20, 1998Aug 10, 1999Cardiac Pacemakers, Inc.Long term monitoring of acceleration signals for optimization of pacing therapy
US5954761 *Mar 25, 1997Sep 21, 1999Intermedics Inc.Implantable endocardial lead assembly having a stent
US6019739 *Jun 18, 1998Feb 1, 2000Baxter International Inc.Minimally invasive valve annulus sizer
US6027525 *May 23, 1997Feb 22, 2000Samsung Electronics., Ltd.Flexible self-expandable stent and method for making the same
US6051020 *Oct 29, 1997Apr 18, 2000Boston Scientific Technology, Inc.Bifurcated endoluminal prosthesis
US6077296 *Mar 4, 1998Jun 20, 2000Endologix, Inc.Endoluminal vascular prosthesis
US6093203 *May 13, 1998Jul 25, 2000Uflacker; RenanStent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6110100 *Apr 22, 1998Aug 29, 2000Scimed Life Systems, Inc.System for stress relieving the heart muscle and for controlling heart function
US6123699 *Sep 5, 1997Sep 26, 2000Cordis Webster, Inc.Omni-directional steerable catheter
US6168619 *Oct 16, 1998Jan 2, 2001Quanam Medical CorporationIntravascular stent having a coaxial polymer member and end sleeves
US6171329 *Aug 28, 1998Jan 9, 2001Gore Enterprise Holdings, Inc.Self-expanding defect closure device and method of making and using
US6183411 *Sep 21, 1998Feb 6, 2001Myocor, Inc.External stress reduction device and method
US6203556 *Aug 5, 1999Mar 20, 2001Kensey Nash CorporationTransmyocardial revascularization system and method of use
US6210432 *Jun 30, 1999Apr 3, 2001Jan Otto SolemDevice and method for treatment of mitral insufficiency
US6221103 *Sep 30, 1998Apr 24, 2001The University Of CincinnatiDevice and method for restructuring heart chamber geometry
US6248119 *Jun 22, 2000Jun 19, 2001Jan Otto SolemDevice and method for endoscopic vascular surgery
US6250308 *Sep 17, 1999Jun 26, 2001Cardiac Concepts, Inc.Mitral valve annuloplasty ring and method of implanting
US6264602 *Mar 9, 2000Jul 24, 2001Myocor, Inc.Stress reduction apparatus and method
US6264691 *Apr 23, 1999Jul 24, 2001Shlomo GabbayApparatus and method for supporting a heart valve
US6275730 *Sep 7, 1999Aug 14, 2001Uab Research FoundationMethod and apparatus for treating cardiac arrythmia
US6343605 *Aug 8, 2000Feb 5, 2002Scimed Life Systems, Inc.Percutaneous transluminal myocardial implantation device and method
US6350277 *Jan 15, 1999Feb 26, 2002Scimed Life Systems, Inc.Stents with temporary retaining bands
US6368348 *May 15, 2000Apr 9, 2002Shlomo GabbayAnnuloplasty prosthesis for supporting an annulus of a heart valve
US6402679 *Nov 14, 2000Jun 11, 2002Myocor, Inc.External stress reduction device and method
US6402680 *Apr 27, 2001Jun 11, 2002Myocor, Inc.Stress reduction apparatus and method
US6402781 *Jan 31, 2000Jun 11, 2002MitralifePercutaneous mitral annuloplasty and cardiac reinforcement
US6409760 *Jun 21, 2000Jun 25, 2002University Of CincinnatiDevice and method for restructuring heart chamber geometry
US6537314 *Jan 30, 2001Mar 25, 2003Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty and cardiac reinforcement
US6569198 *Mar 30, 2001May 27, 2003Richard A. WilsonMitral or tricuspid valve annuloplasty prosthetic device
US6602288 *Oct 5, 2000Aug 5, 2003Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template, system and method of use
US6626899 *Jul 3, 2001Sep 30, 2003Nidus Medical, LlcApparatus and methods for treating tissue
US6702826 *Jun 22, 2001Mar 9, 2004Viacor, Inc.Automated annular plication for mitral valve repair
US6706065 *Jul 19, 2001Mar 16, 2004Ev3 Santa Rosa, Inc.Endoluminal ventricular retention
US6709456 *Oct 1, 2001Mar 23, 2004Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty with hemodynamic monitoring
US6790231 *Feb 5, 2002Sep 14, 2004Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US6989028 *Jan 30, 2002Jan 24, 2006Edwards Lifesciences AgMedical system and method for remodeling an extravascular tissue structure
US6997951 *Dec 24, 2002Feb 14, 2006Edwards Lifesciences AgMethod and device for treatment of mitral insufficiency
US7004958 *Mar 6, 2002Feb 28, 2006Cardiac Dimensions, Inc.Transvenous staples, assembly and method for mitral valve repair
US7011682 *Aug 5, 2003Mar 14, 2006Edwards Lifesciences AgMethods and apparatus for remodeling an extravascular tissue structure
US7044967 *Jun 28, 2000May 16, 2006Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US7090695 *Nov 26, 2002Aug 15, 2006Edwards Lifesciences AgMethod for treatment of mitral insufficiency
US7179282 *May 2, 2003Feb 20, 2007Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7186264 *Mar 29, 2002Mar 6, 2007Viacor, Inc.Method and apparatus for improving mitral valve function
US7192442 *Feb 5, 2001Mar 20, 2007Edwards Lifesciences AgMethod and device for treatment of mitral insufficiency
US7192443 *May 9, 2002Mar 20, 2007Edwards Lifesciences AgDelayed memory device
US7226477 *Dec 17, 2003Jun 5, 2007Advanced Cardiovascular Systems, Inc.Apparatuses and methods for heart valve repair
US7314485 *Feb 3, 2003Jan 1, 2008Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US7351259 *May 10, 2004Apr 1, 2008Cardiac Dimensions, Inc.Device, system and method to affect the mitral valve annulus of a heart
US7364588 *Aug 4, 2004Apr 29, 2008Cardiac Dimensions, Inc.Device, assembly and method for mitral valve repair
US20010018611 *Feb 5, 2001Aug 30, 2001Solem Jan OttoMethod and device for treatment of mitral insufficiency
US20020016628 *Oct 1, 2001Feb 7, 2002Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20020019660 *Jul 26, 2001Feb 14, 2002Marc GianottiMethods and apparatus for a curved stent
US20020022880 *Apr 13, 2001Feb 21, 2002Melvin David B.Device and method for restructuring heart chamber geometry
US20020087173 *Dec 28, 2000Jul 4, 2002Alferness Clifton A.Mitral valve constricting device, system and method
US20020103532 *Jul 19, 2001Aug 1, 2002Langberg Jonathan J.Transluminal mitral annuloplasty
US20020103533 *Jan 30, 2001Aug 1, 2002Langberg Jonathan J.Percutaneous mitral annuloplasty and cardiac reinforcement
US20020111533 *Jan 22, 2002Aug 15, 2002Melvin David BoydDevice and method for restructuring heart chamber geometry
US20020111647 *Oct 19, 2001Aug 15, 2002Khairkhahan Alexander K.Adjustable left atrial appendage occlusion device
US20020124857 *May 8, 2002Sep 12, 2002Intermedics Inc.Apparatus for imparting physician-determined shapes to implantable tubular devices
US20030083538 *Nov 1, 2001May 1, 2003Cardiac Dimensions, Inc.Focused compression mitral valve device and method
US20030088305 *Oct 25, 2002May 8, 2003Cook IncorporatedProstheses for curved lumens
US20040102841 *Nov 17, 2003May 27, 2004Langberg Jonathan J.Percutaneous mitral annuloplasty with cardiac rhythm management
US20040133192 *Sep 23, 2003Jul 8, 2004Houser Russell A.Apparatus and methods for treating tissue
US20040153146 *Aug 5, 2003Aug 5, 2004Randall LashinskiMethods and apparatus for remodeling an extravascular tissue structure
US20040176840 *Mar 23, 2004Sep 9, 2004Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20050043792 *Sep 29, 2004Feb 24, 2005Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US20050060030 *Jul 19, 2004Mar 17, 2005Lashinski Randall T.Remotely activated mitral annuloplasty system and methods
US20050096740 *Nov 1, 2004May 5, 2005Edwards Lifesciences AgTransluminal mitral annuloplasty
US20060116756 *Jan 4, 2006Jun 1, 2006Solem Jan OMethod and device for treatment of mitral insufficiency
US20060116757 *Jan 13, 2006Jun 1, 2006Randall LashinskiMethods and apparatus for remodeling an extravascular tissue structure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6964683 *Mar 10, 2004Nov 15, 2005Cardiac Dimensions, Inc.System and method to effect the mitral valve annulus of a heart
US7063722 *Feb 12, 2004Jun 20, 2006Edwards Lifesciences, LlcMethod of implanting a self-molding annuloplasty ring
US7311728Sep 29, 2004Dec 25, 2007Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US7500989Jun 3, 2005Mar 10, 2009Edwards Lifesciences Corp.Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US7637945Dec 20, 2006Dec 29, 2009Edwards Lifesciences CorporationDevice and method for treatment of mitral insufficiency
US7637946Feb 1, 2007Dec 29, 2009Edwards Lifesciences CorporationCoiled implant for mitral valve repair
US7666224Jul 7, 2005Feb 23, 2010Edwards Lifesciences LlcDevices and methods for heart valve treatment
US7670368Mar 2, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7674287Aug 24, 2006Mar 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7678145Jul 1, 2005Mar 16, 2010Edwards Lifesciences LlcDevices and methods for heart valve treatment
US7682385Jul 3, 2006Mar 23, 2010Boston Scientific CorporationArtificial valve
US7695425Feb 17, 2004Apr 13, 2010Edwards Lifesciences LlcHeart wall tension reduction apparatus and method
US7695512Jul 19, 2004Apr 13, 2010Edwards Lifesciences AgRemotely activated mitral annuloplasty system and methods
US7717954Aug 20, 2007May 18, 2010Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US7722523Jul 9, 2002May 25, 2010Edwards Lifesciences LlcTransventricular implant tools and devices
US7722666Apr 15, 2005May 25, 2010Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7758639Jan 18, 2007Jul 20, 2010Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US7766812Apr 14, 2006Aug 3, 2010Edwards Lifesciences LlcMethods and devices for improving mitral valve function
US7776053Dec 12, 2006Aug 17, 2010Boston Scientific Scimed, Inc.Implantable valve system
US7780627Jul 16, 2007Aug 24, 2010Boston Scientific Scimed, Inc.Valve treatment catheter and methods
US7780722Feb 7, 2005Aug 24, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7794496Dec 19, 2003Sep 14, 2010Cardiac Dimensions, Inc.Tissue shaping device with integral connector and crimp
US7799038Jan 20, 2006Sep 21, 2010Boston Scientific Scimed, Inc.Translumenal apparatus, system, and method
US7806928Mar 21, 2007Oct 5, 2010Edwards Lifesciences CorporationDiagnostic kit to assist with heart valve annulus adjustment
US7814635May 12, 2006Oct 19, 2010Cardiac Dimensions, Inc.Method of making a tissue shaping device
US7828841Dec 21, 2007Nov 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7828842Nov 9, 2010Cardiac Dimensions, Inc.Tissue shaping device
US7828843Aug 24, 2004Nov 9, 2010Cardiac Dimensions, Inc.Mitral valve therapy device, system and method
US7837728Dec 19, 2003Nov 23, 2010Cardiac Dimensions, Inc.Reduced length tissue shaping device
US7837729Sep 20, 2004Nov 23, 2010Cardiac Dimensions, Inc.Percutaneous mitral valve annuloplasty delivery system
US7854755Feb 1, 2005Dec 21, 2010Boston Scientific Scimed, Inc.Vascular catheter, system, and method
US7854761Dec 19, 2003Dec 21, 2010Boston Scientific Scimed, Inc.Methods for venous valve replacement with a catheter
US7857846May 2, 2003Dec 28, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7867274Feb 23, 2005Jan 11, 2011Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7878966Feb 4, 2005Feb 1, 2011Boston Scientific Scimed, Inc.Ventricular assist and support device
US7883539Apr 23, 2002Feb 8, 2011Edwards Lifesciences LlcHeart wall tension reduction apparatus and method
US7887582May 5, 2004Feb 15, 2011Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7892276Dec 21, 2007Feb 22, 2011Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US7931684 *Mar 30, 2005Apr 26, 2011Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery system
US7935146Mar 23, 2004May 3, 2011Edwards Lifesciences AgPercutaneous mitral annuloplasty with hemodynamic monitoring
US7951189Jul 27, 2009May 31, 2011Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US8006594 *Aug 11, 2008Aug 30, 2011Cardiac Dimensions, Inc.Catheter cutting tool
US8100820Aug 22, 2007Jan 24, 2012Edwards Lifesciences CorporationImplantable device for treatment of ventricular dilation
US8109984Jan 4, 2006Feb 7, 2012Edwards Lifesciences AgMethod and device for treatment of mitral insufficiency
US8211171 *Nov 13, 2007Jul 3, 2012The United States Of America, As Represented By The Secretary Of The Department Of Health And Human ServicesTranscatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US8475524Aug 1, 2005Jul 2, 2013Biosense Webster, Inc.Monitoring of percutaneous mitral valvuloplasty
US8764626Jan 24, 2012Jul 1, 2014Edwards Lifesciences CorporationMethod of treating a dilated ventricle
US8974525Oct 19, 2010Mar 10, 2015Cardiac Dimensions Pty. Ltd.Tissue shaping device
US9101338May 3, 2007Aug 11, 2015Mayo Foundation For Medical Education And ResearchSoft body tissue remodeling methods and apparatus
US20040102841 *Nov 17, 2003May 27, 2004Langberg Jonathan J.Percutaneous mitral annuloplasty with cardiac rhythm management
US20040127848 *Dec 30, 2002Jul 1, 2004Toby FreymanValve treatment catheter and methods
US20040133220 *Aug 5, 2003Jul 8, 2004Randall LashinskiAdjustable transluminal annuloplasty system
US20040162611 *Feb 12, 2004Aug 19, 2004Salvador MarquezMethod of implanting a self-molding annuloplasty ring
US20040176840 *Mar 23, 2004Sep 9, 2004Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20040186566 *Mar 17, 2004Sep 23, 2004Hindrichs Paul J.Body tissue remodeling methods and apparatus
US20040193260 *Apr 6, 2004Sep 30, 2004Alferness Clifton A.Anchor and pull mitral valve device and method
US20040243228 *Mar 10, 2004Dec 2, 2004Leonard KowalskySystem and method to effect the mitral valve annulus of a heart
US20040249452 *Mar 29, 2004Dec 9, 2004Adams John M.Focused compression mitral valve device and method
US20050010240 *May 5, 2004Jan 13, 2005Cardiac Dimensions Inc., A Washington CorporationDevice and method for modifying the shape of a body organ
US20050021121 *Jun 3, 2004Jan 27, 2005Cardiac Dimensions, Inc., A Delaware CorporationAdjustable height focal tissue deflector
US20050027351 *Dec 19, 2003Feb 3, 2005Cardiac Dimensions, Inc. A Washington CorporationMitral valve regurgitation treatment device and method
US20050027353 *Aug 24, 2004Feb 3, 2005Alferness Clifton A.Mitral valve therapy device, system and method
US20050043792 *Sep 29, 2004Feb 24, 2005Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US20050060030 *Jul 19, 2004Mar 17, 2005Lashinski Randall T.Remotely activated mitral annuloplasty system and methods
US20050080483 *Dec 20, 2002Apr 14, 2005Solem Jan OttoDelayed memory device
US20050096666 *Sep 20, 2004May 5, 2005Gordon Lucas S.Percutaneous mitral valve annuloplasty delivery system
US20050096740 *Nov 1, 2004May 5, 2005Edwards Lifesciences AgTransluminal mitral annuloplasty
US20050119673 *Sep 20, 2004Jun 2, 2005Gordon Lucas S.Percutaneous mitral valve annuloplasty device delivery method
US20050137450 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc., A Washington CorporationTapered connector for tissue shaping device
US20050137451 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc. A Washington CorporationTissue shaping device with integral connector and crimp
US20050149182 *Feb 28, 2005Jul 7, 2005Alferness Clifton A.Anchor and pull mitral valve device and method
US20050187619 *Nov 19, 2004Aug 25, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050209690 *May 18, 2005Sep 22, 2005Mathis Mark LBody lumen shaping device with cardiac leads
US20050216077 *May 18, 2005Sep 29, 2005Mathis Mark LFixed length anchor and pull mitral valve device and method
US20050222678 *Apr 5, 2004Oct 6, 2005Lashinski Randall TRemotely adjustable coronary sinus implant
US20050272969 *Aug 4, 2005Dec 8, 2005Alferness Clifton ADevice and method for modifying the shape of a body organ
US20100049314 *Nov 13, 2007Feb 25, 2010June-Hong KimTranscatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US20120245679 *Mar 25, 2011Sep 27, 2012Jan Otto SolemDevice, A Kit And A Method For Heart Support
EP2881083A1Dec 10, 2012Jun 10, 2015David AlonHeart valve repair device
EP2886084A1Dec 10, 2012Jun 24, 2015David AlonHeart valve repair device
WO2014195786A2Jun 3, 2014Dec 11, 2014David AlonHeart valve repair and replacement
Classifications
U.S. Classification623/2.11, 623/2.36
International ClassificationA61F2/90, A61F2/24, A61F2/88
Cooperative ClassificationA61F2/88, A61F2002/075, A61F2/2451, A61F2/90, A61F2230/0078, A61F2220/0008, A61F2/91
European ClassificationA61F2/90, A61F2/24R4