Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040103604 A1
Publication typeApplication
Application numberUS 10/617,670
Publication dateJun 3, 2004
Filing dateJul 14, 2003
Priority dateApr 19, 1995
Also published asUS6808772, US6878455, US6890666, US7008890, US20040103603, US20040103605, US20040103606, US20040103607, US20050284096, US20070245655
Publication number10617670, 617670, US 2004/0103604 A1, US 2004/103604 A1, US 20040103604 A1, US 20040103604A1, US 2004103604 A1, US 2004103604A1, US-A1-20040103604, US-A1-2004103604, US2004/0103604A1, US2004/103604A1, US20040103604 A1, US20040103604A1, US2004103604 A1, US2004103604A1
InventorsHartwig Kunzel, Theo Grosskinsky
Original AssigneeFraunhofer Gesell. Zur Foerd. Der Ang. Fors. E.V.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vapor barrier for use in the heat insulation of buildings
US 20040103604 A1
Abstract
The invention relates to a vapor barrier for use in the thermal insulation of buildings which can be used, in particular, for thermal insulation procedures in new buildings or in the renovation of old buildings. The vapor barrier in accordance with the invention is thereby capable of achieving water vapor exchange under different ambient conditions. This is achieved by using a material which has a water vapor diffusion resistance which is dependent on the ambient humidity and which also has adequate tensile strength and tear resistance.
Images(2)
Previous page
Next page
Claims(33)
We claim:
1. A vapor barrier for use in the insulation of buildings, wherein at least a portion of the vapor barrier is formed from a material which has a water vapor diffusion resistance dependent on an ambient humidity, with the proviso that the material, at a relative humidity of an atmosphere surrounding the vapor barrier in the region of 30% to 50%, has a water vapor diffusion resistance (sd-value) of 2 to 5 meters diffusion-equivalent air space width, and, at a relative humidity in the region of 60% to 80%, a water vapor diffusion resistance (sd-value) which is <1 meter diffusion-equivalent air space width.
2. The vapor barrier of claim 1 wherein the vapor barrier is a film-forming composition capable of being sprayed or painted onto the inner walls of a room to form a film on the inner surface of the walls.
3. The vapor barrier of claim 1 wherein at least a second portion of the vapor barrier is comprised of a carrier material.
4. The vapor barrier of claim 3 wherein the carrier material is selected from the group consisting of particle board, chip board, oriented strand board, plywood paneling, gypsum board, fiber reinforced gypsum board, fiber board, cement board, cementitious wood wool board, calcium silica board, fiber insulation batts or slabs, foam insulation slabs, wall paper, carpet and cloth.
5. The vapor barrier according to claim 1 wherein the material is a film.
6. The vapor barrier according to claim 5 wherein the film has a thickness of 10 μm to 2 mm.
7. The vapor barrier according to claim 5 wherein the film has a thickness of 20 μm to 100 μm.
8. The vapor barrier according to claim 5 wherein the material is applied as a coating to a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
9. The vapor barrier according to claim 5 wherein the material is sandwiched between two layers of a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
10. The vapor barrier of claim 5 wherein the film is formed prior to application to an inner wall surface.
11. The vapor barrier of claim 10 wherein the formed film has a decorative surface structure.
12. The vapor barrier of claim 10 wherein the formed film has a printed color pattern.
13. The vapor barrier according to claim 5 wherein the film is chosen from polyamide 6, polyamide 4 or polyamide 3.
14. The vapor barrier according to claim 13 wherein the film has a thickness of 10 μm to 2 mm.
15. The vapor barrier according to claim 13 wherein the film has a thickness of 20 μm to 100 μm.
16. The vapor barrier according to claim 13 wherein the material is applied as a coating to a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
17. The vapor barrier according to claim 16 wherein the carrier material is a fiber reinforced cellulose material.
18. The vapor barrier according to claim 13 wherein the material is sandwiched between two layers of a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
19. The vapor barrier according to claim 18 wherein the carrier material is a fiber reinforced cellulose material.
20. The vapor barrier according to claim 1 wherein the material is a polymer coating applied to a carrier material.
21. The vapor barrier according to claim 20 wherein a polymer for the polymer coating is selected from the group consisting of polyvinyl alcohol, dispersed synthetic resin, methyl cellulose, linseed oil alkyd resin, bone glue and protein derivatives.
22. The vapor barrier according to claim 20 wherein the carrier material is a fiber reinforced cellulose material.
23. The vapor barrier according to claim 1 wherein the material is applied as a coating to a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
24. The vapor barrier according to claim 23 wherein the carrier material is a fiber reinforced cellulose material.
25. The vapor barrier according to claim 1 wherein the material is sandwiched between two layers of a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
26. The vapor barrier according to claim 25 wherein the carrier material is a fiber reinforced cellulose material.
27. A vapor barrier for use in the insulation of buildings, at least a portion of the vapor barrier formed of a film including a material selected from the group consisting of polyamide 6, polyamide 4 and polyamide 3.
28. The vapor barrier according to claim 27 wherein the film has a thickness of 20 μm to 100 μm.
29. The vapor barrier according to claim 27 wherein the material is applied as a coating to a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
30. The vapor barrier according to claim 29 wherein the carrier material is a fiber reinforced cellulose material.
31. The vapor barrier according to claim 27 wherein the material is sandwiched between two layers of a carrier material, the carrier material being such that the characteristics of the vapor barrier are essentially provided by the coating.
32. The vapor barrier according to claim 31 wherein the carrier material is a fiber reinforced cellulose material.
33. The vapor barrier according to claim 27 wherein the film has a thickness of 10 μm to 2 mm.
Description
    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    This application is a Continuation-in-part of U.S. patent application Ser. No. 08/945,146, filed Oct. 17, 1997, which is the U.S. national phase of PCT/DE96/00705 filed Apr. 18, 1996, which claims priority to German patent application serial number 195 14 420.1 filed Apr. 19, 1995.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The invention relates to a vapor barrier, which is arranged facing the room, for use in the thermal insulation of buildings, especially for thermal insulation procedures in new buildings and in the renovation of old buildings.
  • [0003]
    In order to reduce the carbon dioxide emission which occurs as a result of heating buildings, thermal insulation procedures are carried out in the construction of new buildings and in the renovation of old buildings. For economic reasons, which constantly have to be considered by the owner of the building, the question of cost also has to be taken into account here. Moreover, the external appearance of the building is a significant factor here which also represents a limit to what can actually be done. Thus, for example, thermal insulation procedures of this kind can be carried out only in buildings, which have a visible framework, by means of insulation layers which are located internally. An acceptable amount of moisture in the framework wood must also be ensured, especially under winter conditions, via the possible diffusion of vapor and also by the vapor barrier facing the room. In contrast to this, the moisture, which is due to rain and which penetrates through the joints between the wooden posts and the nogging, must also be able to dry out toward the inside in the summer months in order to ensure long life for the wood that is used in the framework despite the improved thermal insulation characteristics.
  • [0004]
    Similar difficulties also arise in subsequent full-rafter insulation on high-pitched roofs with a vapor-tight front covering, for example, roofing fabric on planking. Thus tests carried out by the Fraunhofer Institut für Bauphysik in the case where vapor barriers were applied inside with a water vapor diffusion resistance (Sd value) which is less than a 10 m diffusion-equivalent air layer thickness, especially on roofs oriented toward the north, showed that the extent to which the planking dries out in the summer is not sufficient to achieve a wood moisture situation which is harmless. Thus vapor barriers which are applied facing the room can no longer adequately carry away moisture accumulations which are caused by convection, for example.
  • [0005]
    Proceeding from these Known disadvantages, the problem for the invention is to create a vapor barrier which is arranged facing the room and which is capable—under different ambient conditions which are variable in use—of ensuring water vapor exchange between the room air and the interior of the building component which will, as extensively as possible, prevent damage by moisture to the building material that is used.
  • DISCLOSURE OF THE INVENTION
  • [0006]
    According to the invention, a vapor barrier for use in the insulation of buildings is formed from a material which has a water vapor diffusion resistance dependent on an ambient humidity. At a relative humidity of an atmosphere surrounding the vapor barrier in the region of 30% to 50%, the material has a water vapor diffusion resistance (sd-value) of 2 to 5 meters diffusion-equivalent air space width. At a relative humidity in the region of 60% to 80%, the material has a water vapor diffusion resistance (sd-value) which is <1 meter diffusion-equivalent air space width.
  • [0007]
    Illustratively according to the invention, the vapor barrier is a film-forming composition capable of being sprayed or painted onto the inner walls of a room to form a film on the inner surface of the walls.
  • [0008]
    Further illustratively according to the invention, at least a second portion of the vapor barrier is comprised of a carrier material.
  • [0009]
    Additionally illustratively according to the invention, the carrier material is selected from the group consisting of particle board, chip board, oriented strand board, plywood paneling, gypsum board (standard or fiber reinforced), fiber board, cement board, cementitious wood wool board, calcium silica board, fiber insulation batts or slabs, foam insulation slabs, wall paper, carpet and cloth.
  • [0010]
    Illustratively according to the invention, the material is a film.
  • [0011]
    Further illustratively according to the invention, the film has a thickness of 10 μm to 2 mm.
  • [0012]
    Additionally illustratively according to the invention, the film has a thickness of 20 μm to 100 μm.
  • [0013]
    Illustratively according to the invention, the material is applied as a coating to a carrier material. The carrier material is such that the characteristics of the vapor barrier are essentially provided by the coating.
  • [0014]
    Further illustratively according to the invention, the material is sandwiched between two layers of a carrier material. The carrier material is such that the characteristics of the vapor barrier are essentially provided by the coating.
  • [0015]
    Additionally illustratively according to the invention, the film is formed prior to application to an inner wall surface.
  • [0016]
    Illustratively according to the invention, the formed film has a decorative surface structure.
  • [0017]
    Further illustratively according to the invention, the formed film has a printed color pattern.
  • [0018]
    Additionally illustratively according to the invention, the film is chosen from polyamide 6, polyamide 4 or polyamide 3.
  • [0019]
    Illustratively according to the invention, the carrier material is a fiber reinforced cellulose material.
  • [0020]
    Further illustratively according to the invention, the material is a polymer coating applied to a carrier material.
  • [0021]
    Additionally illustratively according to the invention, a polymer for the polymer coating is selected from the group consisting of polyvinyl alcohol, dispersed synthetic resin, methyl cellulose, linseed oil alkyd resin, bone glue and protein derivatives.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0022]
    The invention may best be understood by referring to the following detailed description and accompanying drawings which illustrate the invention. In the drawings:
  • [0023]
    [0023]FIG. 1 illustrates the result for the diffusion-equivalent air layer thickness (sd value) of a vapor barrier constricted according to the invention as a function of the average relative humidity which prevailed during an experiment; and.
  • [0024]
    [0024]FIG. 2 illustrates comparative humidity characteristics of inter-rafter insulation using a prior art vapor barrier and using a humidity-adaptive vapor barrier constricted according to the present invention.
  • DESCRIPTIONS OF ILLUSTRATIVE EMBODIMENTS
  • [0025]
    The vapor barrier, which is applied facing the room in accordance with the invention and which can also be termed a “humidity-adaptive vapor barrier,” uses as an essential material one that has a water vapor diffusion resistance which is dependent on the ambient humidity and which has sufficient tensile and compressive strength for use in buildings as they are being built.
  • [0026]
    In the case of a relative humidity in the range between 30% and 50% of the atmosphere surrounding the vapor barrier, the material used for the vapor barrier, in the form of a film or as a coating on a carrier material, should have a water vapor diffusion resistance value (sd value) of 2 to 5 m in terms of a diffusion-equivalent air layer thickness and a water vapor diffusion resistance (sd value) which is less than 1 m in terms of a diffusion-equivalent air layer thickness in the case of a relative humidity in the range from 60% to 80% as is typical for the summer months, for example.
  • [0027]
    This leads to a higher water vapor diffusion resistance being achieved under winter conditions than under summer conditions. In this way, the drying out process in the summer can be encouraged without the supply of moisture under winter conditions being able to assume a value which can impair the materials that are used and the building itself.
  • [0028]
    In addition to the applications that have already been mentioned in connection with the disadvantages of the prior art, the invention can also be used with metal roofs or timber post constructions and can also lead to a reduction in building costs here along with an improvement in thermal insulation.
  • [0029]
    It is possible to use, for example, polyamide 6, polyamide 4 or polyamide 3 as a material for the vapor barrier which has the desired properties. These are known, in particular, from K. BIEDERBICK's work “Kunststoffe—kurz und bündig”, published by Vogel-Verlag, Würzburg. These polyamides are used as films and they inherently have the required characteristics in terms of water vapor diffusion resistance. Moreover, they have the strength values that are necessary for use in buildings and they can therefore be used at no additional cost. The thickness of the films can be in the region from 10 μm to 2 mm or, preferably, in the region from 20 μm to 100 μm.
  • [0030]
    In one embodiment, the vapor barrier comprises a film, which may be applied, for example, by painting, spraying, or the like, onto a wall in like manner to a paint, coating, or the like. For example, such a vapor barrier can be formed by painting or spraying a polyamide compound onto the inner walls of a room.
  • [0031]
    In another embodiment, the vapor barrier itself can comprise a wall paper, which can optionally be provided with a surface structure or print having a colored pattern. For example, such vapor barrier can be provided by using a polyamide film used like, and/or in place of, conventional wall paper previously known in the art.
  • [0032]
    Other materials can also be used which do not have adequate strength but which can be applied to suitable carrier materials. The carrier materials here preferably have a low water vapor diffusion resistance and the required characteristics of the vapor barrier in accordance with the invention are essentially produced by the coating.
  • [0033]
    Fiber reinforced cellulose materials, such as paper webs, membranes made from synthetic fiber spun fabrics or even perforated polyethylene films, may be used as materials for the carrier(s), for example. Other examples of suitable carrier materials for purposes of the present invention include particle board, chip board, oriented strand board, plywood paneling, gypsum board (standard or fiber reinforced), fiber board, cement board, cementitious wood wool board, calcium silica board, fiber insulation batts or slabs, foam insulation slabs, wall paper, carpet and cloth. The vapor retarding material itself may be applied to these carrier materials as film or membrane or as coating (via spraying, painting or other appropriate application methods).
  • [0034]
    The material can be present as a coating on a carrier material. The coating here can be applied to one side of the carrier material but, in special cases, it can also be accommodated between two layers of the carrier material in a sandwich-like mariner. In the latter case, the coating material is effectively protected from both sides from mechanical wear and it can therefore ensure the desired water vapor diffusion properties over an extended period of time. Several such layer assemblies can also be assembled one above the other.
  • [0035]
    Different substances and materials can be used for coating the carrier material. Thus polymers, such as, for example, modified poly(vinyl alcohols), can be applied by means of suitable coating processes. The water vapor diffusion resistance, which is measured in accordance with DIN 52615, thereby varies by more than one power of ten between a dry environment and a damp one. However, dispersions of synthetic resins, methyl cellulose, linseed oil alkyd resin, bone glue or protein derivatives can also be used as a coating material for the carrier.
  • [0036]
    In the case where the carrier material is coated on one side, this coating can be applied to the side on which little or no protection is required against mechanical influences. The installation of the vapor barrier in accordance with the invention can take place in such a way in this case that the protective carrier material points toward the side facing the room or toward the side facing away from the room.
  • [0037]
    A vapor barrier in accordance with the invention can be formed from a film which comprises polyamide 6. Experiments were carried out with a film thickness of 50 μm. The polyamide 6 films that were used are currently manufactured by the MF-Folien GmbH firm in Kempten, Germany.
  • [0038]
    Hygroscopic Behavior in Laboratory Tests
  • [0039]
    The water vapor diffusion resistance of the humidity-adaptive vapor barrier was determined in accordance with DIN 52615 in the dry range (3/50% relative humidity (RH)) and in the damp range (50/93% RH) as well as in two damp ranges lying in between (33/50% and 50/75% RH). The result for the diffusion-equivalent air layer thickness (sd value) of the vapor barrier with a thickness of 50 μm is represented in FIG. 1 as a function of the average relative humidity which prevailed in the test. The difference between the sd value in the dry range and that in the damp range is more than one power of ten, so that under practical room air conditions which range between 30% and 50% in winter and between approximately 60% and 70% in summer—it can be expected that the diffusion currents can be controlled significantly by the vapor barrier.
  • [0040]
    An Example of a Practical Application
  • [0041]
    As a result of the installation of full inter-rafter insulation made from mineral fiber which is 10 cm to 20 cm thick, computational studies have shown that high-pitched roofs with vapor-tight secondary roofs can become so damp within a few years that damage is unavoidable despite a vapor barrier facing the room. The situation is particularly critical with high room air humidity levels which vary, for example, from 50% RH in January to 70% RH in July while, at the same time, the short-wave radiation gain is relatively low via a northerly orientation. The influence of the humidity-adaptive vapor barrier on the long-term moisture balance of such constructions under the climatic conditions of Holzkirchen has therefore been estimated computationally below with the help of a method which has already been verified several times in experiments.
  • [0042]
    The humidity characteristics following the installation of inter-rafter insulation with a traditional vapor barrier and with the humidity-adaptive vapor barrier facing the room are shown in FIG. 2 in the case of a non-insulated, highpitched roof (28° pitch), which is oriented toward the north, with planking, bitumen-treated felt and a tile covering, whereby the roof is in hygroscopic equilibrium with its surroundings. The profile for the overall humidity in the roof is indicated in the upper part of this diagram and the profile for the moisture in the wood of the planks is indicated in the lower part of this diagram, whereby these are over a period of ten years. The humidity in the roof with the traditional vapor barrier increases rapidly with seasonal fluctuations, whereby moisture values (>20% by mass) in the wood, which would give cause for concern on a long-term basis, already occur in the first year; by contrast, no moisture accumulation can be detected in the roof with the humidity-adaptive vapor barrier. In the summer, the moisture in the wood in this case is constantly below 20% by mass so that moisture damage does not need to be feared.
  • [0043]
    Thus the humidity-adaptive vapor barrier opens up the possibility of inexpensively insulating high-pitched roofs on old buildings with no great risk of damage.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3445322 *Oct 18, 1965May 20, 1969Charles CassaroLaminated building component
US4282697 *Apr 27, 1979Aug 11, 1981Dynamit Nobel AktiengesellschaftInsulating panel for roof coverings
US4288956 *Mar 14, 1979Sep 15, 1981Friedrich HeckInsulating-slabs and their use
US4318258 *Mar 14, 1979Mar 9, 1982Friedrich HeckThermal insulation for buildings
US4368604 *Apr 2, 1981Jan 18, 1983Dynamit Nobel AktiengesellschaftInsulating panel for roof coverings
US4542057 *Dec 4, 1984Sep 17, 1985Dynamit Nobel AktiengesellschaftHammock
US4597817 *Sep 28, 1984Jul 1, 1986Aktieselskabet Jens Villadsens FabrikerProcess for the preparation of a water-impervious surface coating
US4630421 *Nov 29, 1985Dec 23, 1986Metzeler Schaum GmbhRoof web for pitched roofs
US5370757 *Aug 30, 1991Dec 6, 1994Basf CorporationProcess for manufacturing substantially 100% nylon 6 carpet
US5389311 *Nov 1, 1993Feb 14, 1995Hetzel; Henry T.Atmometer covering and method
US5561958 *Apr 3, 1995Oct 8, 1996Neurones Of Zone IndustrielleDynamic-insulation wall element for renewing air in buildings in order to make them more comfortable and cheaper
US6258890 *Nov 8, 1996Jul 10, 2001Basf AktiengesellshaftUse of an aqueous polymer dispersion to produce water-vapor barriers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7825191Dec 20, 2006Nov 2, 2010E.I. Du Pont De Nemours And CompanyComposition comprising an ionomer and potassium ions
US7829197Jun 13, 2006Nov 9, 2010E. I. Du Pont De Nemours And CompanyVariable vapor barrier for humidity control
US7838104Dec 10, 2007Nov 23, 2010E. I. Du Pont De Nemours And CompanyVariable vapor barrier for humidity control
US7838123Jun 13, 2006Nov 23, 2010E. I. Du Pont De Nemours And CompanyVariable vapor barrier for moisture control in buildings
US8053049Nov 1, 2007Nov 8, 2011Certainteed CorporationPackaging for insulation products
US8420176Apr 19, 2010Apr 16, 2013E I Du Pont De Nemours And CompanyMethod for preparing a selectively permeable protective structure
US8733054Jul 30, 2013May 27, 2014Ewald Doerken AgMethod for producing a functional layer of a building shell, and building shell and functional layer
US8763338 *Mar 25, 2010Jul 1, 2014Ewald Dörken AgMethod for producing a functional layer of a building shell, and building shell and functional layer
US8852749Feb 11, 2008Oct 7, 2014E I Du Pont De Nemours And CompanyCompositions and structures having tailored water vapor transmission
US8864893Oct 8, 2010Oct 21, 2014Owens Corning Intellectual Capital, LlcBio-based binders for insulation and non-woven mats
US9290640Oct 17, 2014Mar 22, 2016Owens Corning Intellectual Capital, LlcBio-based binders for insulation and non-woven mats
US9321250Apr 19, 2010Apr 26, 2016E.I. Du Pont De Nemours And CompanySelectively permeable protective structure and articles therefrom
US9523189Jul 3, 2012Dec 20, 2016Dsm Ip Assets B.V.Water vapour control, which is arranged facing the inside of a building
US9546263Sep 16, 2014Jan 17, 2017Owens Corning Intellectual Capital, LlcBio-based binders for insulation and non-woven mats
US20050260368 *May 18, 2004Nov 24, 2005Ruid John OPackaging for insulation products
US20050284096 *Apr 11, 2005Dec 29, 2005Fraunhofer Gesell. Zur Foerd. Der Ang. Fors. E.V.Vapor barrier for use in the heat insulation of buildings
US20060059852 *Sep 23, 2004Mar 23, 2006Certainteed CorporationLaminated building materials
US20070142542 *Dec 20, 2006Jun 21, 2007Morris Barry AComposition comprising an lonomer and potassium lons
US20070245655 *Apr 27, 2007Oct 25, 2007Fraunhofer Gesell. Zur Foerd. Der Ang. Fors. E.V.Vapor barrier for use in the heat insulation of buildings
US20070283652 *Jun 13, 2006Dec 13, 2007John Chu ChenVariable vapor barrier for moisture control in buildings
US20070287019 *Jun 13, 2006Dec 13, 2007John Chu ChenVariable vapor barrier for humidity control
US20080115460 *Nov 1, 2007May 22, 2008Certain Teed CorporationPackaging for insulation products
US20090202852 *Feb 11, 2008Aug 13, 2009John Chu ChenCompositions and Structures Having Tailored Water Vapor Transmission
US20100041290 *Aug 12, 2009Feb 18, 2010E. I. Du Pont De Nemours And CompanySelectively permeable protective structure and methods for use
US20100272898 *Apr 19, 2010Oct 28, 2010E. I. Du Pont De Nemours And CompanyMethod for preparing a selectively permeable protective structure
US20100273379 *Apr 19, 2010Oct 28, 2010E. I. Du Pont De Nemours And CompanySelectively permeable protective structure and methods for use
US20100273380 *Apr 19, 2010Oct 28, 2010E.I. Du Pont De Nemours And CompanySelectively permeable protective structure and articles therefrom
US20110003522 *May 10, 2010Jan 6, 2011Liang ChenBio-based aqueous binder for fiberglass insulation materials and non-woven mats
US20110021101 *Jun 29, 2010Jan 27, 2011Hawkins Christopher MModified starch based binder
US20110086567 *Oct 8, 2010Apr 14, 2011Hawkins Christopher MBio-based binders for insulation and non-woven mats
US20110200814 *Feb 14, 2011Aug 18, 2011Hernandez-Torres Jesus MBiocides for bio-based binders, fibrous insulation products and wash water systems
US20110223364 *Mar 1, 2011Sep 15, 2011Hawkins Christopher MInsulative products having bio-based binders
US20120055110 *Mar 25, 2010Mar 8, 2012Ewald Doerken AgMethod for Producing a Functional Layer of a Building Shell, and Building Shell and Functional Layer
US20130067861 *Sep 16, 2011Mar 21, 2013Owens Corning Intellectual Capital, LlcPackaging to improve shelflife of insulation products
US20150121798 *Jul 3, 2012May 7, 2015Dsm Ip Assets B.V.Water vapour control, which is arranged facing the inside of a building
CN103732839A *Jul 3, 2012Apr 16, 2014帝斯曼知识产权资产管理有限公司Water vapour control, which is arranged facing the inside of a building
CN103732840A *Jul 3, 2012Apr 16, 2014帝斯曼知识产权资产管理有限公司Water vapour control, which is arranged facing the inside of a building
EP2411593B1Mar 25, 2010May 27, 2015Ewald Dörken AgMethod for producing a functional layer of a building shell, and building shell and functional layer
EP2554758A1Aug 2, 2011Feb 6, 2013DSM IP Assets B.V.A water vapour control arranged facing the inside of a building
WO2013017356A1Jul 3, 2012Feb 7, 2013Dsm Ip Assets B.V.Water vapour control, which is arranged facing the inside of a building
WO2013017357A1Jul 3, 2012Feb 7, 2013Dsm Ip Assets B.V.Water vapour control, which is arranged facing the inside of a building
Classifications
U.S. Classification52/404.1, 428/913, 428/474.4, 428/479.3, 428/475.5, 52/506.01
International ClassificationE04C2/00, E04D12/00, E04B1/62, E04B1/66, E04D13/16
Cooperative ClassificationE04B1/625, Y10T442/695, Y10T442/674, Y10T428/31772, Y10T428/31779, Y10T428/31986, Y10T428/31725, Y10T428/31993, Y10T442/693, Y10T428/31739, Y10T428/31783, Y10T428/1341, Y10T428/1376, Y10S428/913, E04D12/002, E04D13/16, B65H2701/1313, B32B27/06, B32B7/02, B65H2301/36
European ClassificationB32B7/02, B32B27/06, E04D12/00B, E04D13/16, E04B1/66