Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040105994 A1
Publication typeApplication
Application numberUS 10/308,702
Publication dateJun 3, 2004
Filing dateDec 3, 2002
Priority dateDec 3, 2002
Also published asCA2511768A1, DE60331579D1, EP1567335A1, EP1567335B1, US7794849, US20080061480, US20090202848, WO2004050361A1
Publication number10308702, 308702, US 2004/0105994 A1, US 2004/105994 A1, US 20040105994 A1, US 20040105994A1, US 2004105994 A1, US 2004105994A1, US-A1-20040105994, US-A1-2004105994, US2004/0105994A1, US2004/105994A1, US20040105994 A1, US20040105994A1, US2004105994 A1, US2004105994A1
InventorsPang-Chia Lu, Robert Peet, Benoit Ambroise, Linda Van den Bossche, Nancy Vanderheyden, Francois Bosch, Jacques Moriau, Lindsay Mendes, Syd Wright
Original AssigneePang-Chia Lu, Peet Robert G., Benoit Ambroise, Van Den Bossche Linda, Vanderheyden Nancy Nadine, Francois Bosch, Jacques Moriau, Mendes Lindsay J., Wright Syd R.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermoplastic film structures with a low melting point outer layer
US 20040105994 A1
Abstract
A film structure including at least a base layer containing a thermoplastic polymer and at least an outer layer containing a low melting point polymer. Methods of manufacturing the film structure, including the steps of coextruding melts corresponding to the individual layers of the film structure through a die and thereafter: simultaneously biaxially stretching the coextruded film sheet; or sequentially biaxially stretching the coextruded film sheet, wherein the machine-direction orientation (MDO) is performed with a radiant-heated MDO stretcher. An extrusion-coated film structure exhibiting strong bond adhesion, and a method of manufacturing the same are also provided.
Images(11)
Previous page
Next page
Claims(35)
What is claimed is:
1. A coextruded, biaxially oriented film structure comprising a base layer comprising a thermoplastic polymer and a first outer layer comprising a thermoplastic polymer that has a melting point of not more than 230° F.
2. The film structure of claim 1, wherein the thermoplastic polymer of the base layer is a polyolefin selected from the group consisting of isotactic propylene polymer, syndiotactic propylene polymer, ethylene-propylene copolymer, ethylene-propylene-butene-1 terpolymer, ethylene-butylene copolymer, ethylene copolymer, high density polyethylene, low density polyethylene, very low density polyethylene, ethylene plastomer, linear low density polyethylene and blends thereof.
3. The film structure of claim 1, wherein the thermoplastic polymer of the first outer layer is selected from the group consisting of ethylene plastomer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid terpolymer, ethylene-methacrylic acid terpolymer, ethylene homopolymer, ethylene copolymer and blends thereof.
4. The film structure of claim 1, wherein an intermediate layer is applied on one side of the base layer and the first outer layer is applied on a side of the intermediate layer opposite the base layer.
5. The film structure of claim 4, wherein the intermediate layer comprises an ethylene polymer.
6. The film structure of claim 1, wherein a second outer layer is disposed on a side of the base layer opposite the first outer layer.
7. The film structure of claim 1, wherein the film structure has been oriented from 1.5 to 8 times in the machine direction and from 2 to 12 times in the transverse direction.
8. The film structure of claim 1, wherein the film structure has been prepared by a process comprising the steps of:
preparing and coextruding melts corresponding to each individual layer of the film structure through a die to form a coextruded film sheet; and
simultaneously biaxially orienting the coextruded film sheet to form the film structure.
9. The film structure of claim 8, wherein the simultaneous biaxial orientation proceeds on a line that utilizes linear motors to directly propel opposed pairs of tenter clips synchronously.
10. The film structure of claim 1, wherein the film structure has been prepared by a process comprising the steps of:
preparing and coextruding melts corresponding to each individual layer of the film structure through a die to form a coextruded film sheet; and
sequentially biaxially orienting the coextruded film sheet with a sequential biaxial orientation apparatus that employs a radiant-heated machine-direction orientation stretcher.
11. The film structure of claim 10, wherein the machine-direction orientation stretcher comprises a radiant-heating section in a non-contacting free span between a last slow roll and a first fast roll.
12. The film structure of claim 1, wherein at least one outer surface of the film structure is surface-treated by one of corona discharge treatment, flame treatment or plasma treatment.
13. The film structure of claim 1, wherein an outer surface of a side of the film structure opposite the first outer layer has a coating applied thereon.
14. The film structure of claim 1, wherein an outer surface of a side of the film structure opposite the first outer layer is metallized.
15. The film structure of claim 1, wherein the first outer layer is heat-sealed to a substrate.
16. A laminate comprising a substrate laminated to the first outer layer of the film structure of claim 1.
17. A metallized film structure comprising a metal layer deposited on the first outer layer of the film structure of claim 1.
18. A film structure comprising a base layer comprising a propylene polymer, an intermediate layer on one side of the base layer, the intermediate layer comprising an ethylene polymer, and a first outer layer extrusion-coated on a side of the intermediate layer opposite the base layer.
19. The film structure of claim 18, wherein the ethylene polymer of the intermediate layer is medium density polyethylene (MDPE).
20. The film structure of claim 18, wherein the extrusion-coated first outer layer comprises an ethylene-vinyl acetate (EVA) copolymer.
21. The film structure of claim 18, wherein the film structure does not comprise a primer between the base layer and intermediate layer or between the intermediate layer and first outer layer.
22. The film structure of claim 21, wherein the film structure possesses an adhesion peel strength of at least 0.3 N/15 mm.
23. The film structure of claim 18, wherein the first outer layer is heat-sealed to a substrate.
24. A laminate comprising a substrate laminated to the first outer layer of the film structure of claim 18.
25. A metallized film structure comprising a metal layer deposited on the first outer layer of the film structure of claim 18.
26. A method of manufacturing a coextruded, biaxially oriented film structure comprising a base layer comprising a polyolefin and a first outer layer comprising a polymer that has a melting point of not more than 230° F. (110° C.), wherein the method comprises the steps of:
preparing and coextruding melts corresponding to each individual layer of the film structure through a die to form a coextruded film sheet; and
simultaneously biaxially orienting the coextruded film sheet to form the film structure.
27. The method of claim 26, wherein the simultaneous biaxial orientation proceeds on a line that utilizes linear motors to directly propel opposed pairs of tenter clips synchronously.
28. A method of manufacturing a coextruded, biaxially oriented film structure comprising a base layer comprising a polyolefin and a first outer layer comprising a polymer that has a melting point of not more than 230° F. (110° C.), wherein the method comprises the steps of:
preparing and coextruding melts corresponding to each individual layer of the film structure through a die to form a coextruded film sheet; and—sequentially biaxially orienting the coextruded film sheet with a sequential biaxial orientation apparatus that employs a radiant-heated machine-direction orientation stretcher.
29. The method of claim 28, wherein the machine-direction orientation stretcher comprises a radiant-heating section in a non-contacting free span between a last slow roll and a first fast roll.
30. A film structure prepared as a substrate for an extrusion-coated outer layer, wherein the film structure comprises (i) a base layer comprising a propylene polymer and (ii) an additional layer on one side of the base layer comprising an ethylene polymer, wherein the additional layer is receptive to an extrusion-coated outer layer on a side of the additional layer opposite the base layer.
31. The film structure of claim 30, wherein the film structure does not comprise a primer between the base layer and additional layer.
32. The film structure of claim 31, wherein the film structure does not comprise a primer on the side of the additional layer opposite the base layer.
33. The film structure of claim 30, wherein the ethylene polymer of the additional layer is medium density polyethylene (MDPE).
34. A method of preparing a substrate for an extrusion-coated outer layer, comprising the step of preparing the film structure of claim 30 by coextruding melts corresponding to the base layer and additional layer through a die to form a coextruded film sheet, wherein the additional layer maximizes the adhesion between the base layer and an outer layer when an outer layer is extrusion-coated on a side of the additional layer opposite the base layer.
35. A coextruded, biaxially oriented film structure comprising a base layer comprising a thermoplastic polymer and a first outer layer comprising a thermoplastic polymer that has a Vicat softening point of not more than 85° C. (185° F.).
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    The invention relates to multilayer thermoplastic film structures comprising at least one low melting point outer layer, and methods of manufacturing multilayer thermoplastic film structures comprising at least one low melting point outer layer.
  • [0002]
    Thermoplastic film structures are used in a wide variety of applications. Of the many different types of thermoplastic film structures, so-called oriented polypropylene (OPP) film structures, including biaxially oriented polypropylene (BOPP) film structures, which comprise at least one polypropylene-containing layer, are a very popular choice. OPP film structures possess excellent optical and mechanical characteristics, in addition to excellent barrier characteristics, e.g., moisture-barrier characteristics. OPP film structures, however, are not ideal in every respect.
  • [0003]
    For example, packaging applications, lamination applications, and metal adhesion applications are just some examples of the wide variety of applications in which thermoplastic film structures may be employed. For many packaging applications, the film structure must exhibit good sealing characteristics. For lamination applications, the film structure must achieve strong lamination bonds with the substrate to which it is being laminated. The metal layer of a metallized film structure must strongly adhere to the metallized layer of the film structure.
  • [0004]
    The extension of unmodified OPP film structures into packaging, lamination, and metal adhesion applications has been somewhat hampered by the difficulties associated with providing an OPP film structure that possesses: adequate heat-seal characteristics over a wide temperature range for packaging applications; adequate lamination bond strengths for lamination applications; or adequate metal adhesion for metallized film structures.
  • [0005]
    One solution has been to apply a coating having excellent heat-sealing, laminating, and/or metallizing characteristics onto an outer surface of an OPP film structure. An example of such a coating is a coating comprising a low melting point polymer.
  • [0006]
    According to one approach, a coating comprising a low melting point polymer is applied onto an outer surface of a polypropylene-containing film structure via an off-line coating process. For example, if the goal is to provide a biaxially oriented film structure having a coating on an outer surface thereof, an off-line coating process would apply the coating to the film structure after the film structure has been formed and oriented in both the machine and transverse directions. Off-line coating, however, can be extremely costly, requiring expensive equipment, such as drying ovens, solvent recovery systems, and the like.
  • [0007]
    According to a different approach, a coating comprising a low melting point polymer may be applied onto an outer surface of a polypropylene-containing film structure via an in-line extrusion coating process. In an in-line extrusion coating process, which may be used in conjunction with a sequential tenter frame orienter, a coating comprising a low melting point polymer is applied onto an outer surface of a polypropylene-containing film structure after the film structure has been formed and then oriented in the machine-direction, but before the film structure has been oriented in the transverse direction.
  • [0008]
    Regardless of whether an in-line or off-line coating technique is employed, the bond adhesion obtained between the polypropylene-containing layer and certain low melting point polymers that may serve as the coating, such as an ethylene-vinyl acetate (EVA) copolymer, may be less than adequate.
  • [0009]
    One method to improve bond strength is to corona-treat the substrate before extrusion coating the, e.g., EVA copolymer, thereon, or to ozone-treat the, e.g., EVA copolymer, before it contacts the substrate. Bond strength, however, is not always sufficient with either of these methods, and, furthermore, odor and corrosiveness are issues with ozone.
  • [0010]
    A reliable method to achieve high bond adhesion is to apply a primer layer between the substrate and the low melting point coating. Examples of suitable primers include imine-type, water-based primers and polyurethane-type primers. The application of a primer, however, makes the process (i) more complicated, because the primer solution has to be prepared and diluted, and (ii) more expensive, because the drying time for the primer limits the coating speed.
  • [0011]
    It would be advantageous to be able to provide, without the need for primer, a film structure exhibiting good bond adhesion between an extrusion-coated, low melting point polymer, such as an EVA copolymer coating, and the substrate to which the coating is applied.
  • [0012]
    In addition, it must be noted that via off-line coating, a film structure is provided wherein the low melting point coating has not at all been oriented. Via in-line extrusion coating, a film structure is provided wherein the low melting point coating has been oriented in only one direction, i.e., the transverse direction.
  • [0013]
    Attempts to manufacture a coextruded, biaxially oriented film structure comprising at least a polypropylene-containing base layer and an outer layer comprising a low melting point polymer have been hampered by the machine-direction orientation step in conventional methods of manufacturing biaxially oriented film structures. Specifically, the machine-direction orientation step may require machine-direction orientation (MDO) roll temperatures above about 220° F. (104° C.) in order to properly stretch the base layer. Therefore, a low melting point polymer may not be coextruded and machine-direction oriented by such a method because a low melting point polymer that contacts MDO rolls at such temperatures tends to disadvantageously stick to the MDO rolls. Other complications arising from contacting a low melting point polymer outer layer with relatively high temperature MDO rolls include residue build-up, optical defects, and the potential for forming holes in the film sheets that leads to breaks and production interruption.
  • [0014]
    It would therefore be advantageous to be able to coextrude and biaxially orient a film structure comprising at least a polypropylene-containing base layer and an outer layer comprising a low melting point polymer.
  • SUMMARY OF THE INVENTION
  • [0015]
    There is provided a coextruded, biaxially oriented film structure comprising at least a base layer comprising a thermoplastic polymer and at least an outer layer comprising a low melting point polymer. In certain embodiments of the invention, the low melting point polymer is selected from the group consisting of ethylene plastomers, ethylene-vinyl acetate (EVA) copolymers, ethylene-acrylic acid (EAA) copolymers or terpolymers, and blends thereof.
  • [0016]
    There is also provided a method of manufacturing a coextruded, biaxially oriented film structure comprising at least a base layer comprising a thermoplastic polymer and at least an outer layer comprising a low melting point polymer. In certain embodiments, the method comprises the steps of coextruding melts corresponding to the individual layers of the film structure through a die and thereafter simultaneously biaxially stretching the coextruded film sheet. In other embodiments, the method comprises the steps of coextruding melts corresponding to the individual layers of the film structure through a die and thereafter sequentially biaxially stretching the coextruded film sheet, wherein the machine-direction orientation (MDO) is performed with a radiant-heated MDO stretcher.
  • [0017]
    Additionally, there is provided a film structure comprising at least a base layer comprising a propylene polymer, an intermediate layer comprising an ethylene polymer on one side of the base layer, and a first outer layer comprising a low melting point polymer, such as a low melting point polymer comprising an ethylene-vinyl acetate (EVA) copolymer, on a side of the intermediate layer opposite the base layer. This film structure does not comprise a primer between the base layer and intermediate layer or between the intermediate layer and first outer layer.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0018]
    The film structure comprises a base layer. The base layer comprises a polymeric matrix comprising any of the film-forming thermoplastic polymers. A polyolefin having a melting point, for example, of at least about 302° F. (150° C.) and up to, for example, about 332.6° F. (167° C.), represents one example of a suitable film-forming polymer for forming the polymeric matrix of the base layer. If the film-forming thermoplastic polymer of the base layer is a polyolefin, the polyolefin preferably has a relatively high degree of crystallinity.
  • [0019]
    A particularly desirable polyolefin that may be used as the film-forming polymer is an isotactic propylene homopolymer having (i) an isotacticity of from about 89 to 99% (as measured by 13C NMR spectroscopy using meso pentads), (ii) a melting point of from about 311° F. (155° C.) to about 329° F. (165° C.), and (iii) a melt flow rate of from about 0.5 to about 15 g/10 minutes (as measured according to ASTM D1238). The isotactic propylene polymer may be produced by using Ziegler-Natta or metallocene catalysts. Metallocene-catalyzed isotactic polypropylenes made developmentally or commercially are EOD 96-21 and EOD 97-09, from Fina Oil and Chemical Co., EXPP-129, from ExxonMobil Chemical Co., and Novalen M, from BASF GmbH., among others.
  • [0020]
    In certain embodiments that comprise a base layer comprising propylene homopolymer, there may be added to the base layer from 0.0002 to 8 wt %, based on the weight of polypropylene, more preferably from 0.005 to 2 wt %, e.g., from 0.01 to 2 wt %, of a beta nucleator. Any type of beta nucleator may be employed, including two-component beta nucleators. Alternatively, a base layer of a film structure according to the present invention may not comprise any beta-nucleator.
  • [0021]
    Other suitable film-forming polymers that may be used to form the polymeric matrix of the base layer include, but are not limited to, syndiotactic polypropylene, ethylene-propylene copolymers, ethylene-propylene-butene-1 terpolymers, butylene-ethylene copolymers, functionally grafted polymers, blends of any of the foregoing polymers, etc.
  • [0022]
    Although it is preferred for the film-forming polymer of the base layer to comprise any of the propylene homopolymers, copolymers, or terpolymers described above, in an alternative embodiment, the film-forming polymer of the base layer is an ethylene copolymer or an ethylene homopolymer, such as high density polyethylene (HDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), low density polyethylene (LDPE), or ethylene plastomer.
  • [0023]
    HDPE has either no or moderate levels of long-chain branching and a density of, for example, from about 0.941 g/cm3 or higher, e.g., from about 0.952 g/cm3 to about 0.968 g/cm3, a melting point of, for example, from about 266° F. to about 299° F. (from about 130° C. to about 148° C.), and a melt index of from less than 1 to 50 g/10 min, e.g, from 1 to 10 g/10 min (as measured according to ASTM D1238).
  • [0024]
    LLDPE has either no or moderate levels of long-chain branching and typically has a melt index of from less than 1 to 50 g/10 min, e.g., from 1 to 10 g/10 min (as measured according to ASTM D1238) and a density in the range of from 0.910 to 0.940 g/cm3, preferably from 0.915 to 0.928 g/cm3.
  • [0025]
    VLDPE, which is sometimes referred to as ultra low density polyethylene (ULDPE), is a very low density polyethylene with either no or moderate levels of long-chain branching and typically has a density at or below 0.915 g/cm3, e.g., from about 0.860 to about 0.910 g/cm3 and a melt index of from less than 1 to 50 g/10 min, e.g., from 1 to 20 g/10 min (as measured according to ASTM D1238).
  • [0026]
    HDPE, LLDPE, and VLDPE may be produced via catalytic polymerization using a Ziegler-Natta catalyst or a metallocene or other single-site catalyst in a gas-phase, solution, or slurry process. They may be derived solely from ethylene or from ethylene together with other higher comonomers, such as butene-1, hexene-1 or octene-1. When VLDPE is produced using a metallocene or other single-site catalyst, it is commonly referred to as a type of plastomer.
  • [0027]
    LDPE is highly branched and typically has a density in the range of from 0.912 g/cm3 to 0.94 g/cm3, e.g., from 0.915 g/cm3 to 0.928 g/cm3, and a melt index of from less than 1 to 50 g/10 min, e.g., from 1 to 10 g/10 min (as measured according to ASTM D1238). LDPE may be produced in a high pressure process using free-radical initiators. LDPE polymerized at high pressure is sometimes referred to as high-pressure polyethylene.
  • [0028]
    If it is desired to produce an opaque film structure, a cavitating agent(s) can be dispersed within the polymeric matrix of the base layer. A suitable cavitating agent(s) includes any organic or inorganic material that is incompatible with (the term “incompatible” is used in the sense that the materials are two distinct phases), and has a higher melting point than, the film-forming polymer of the base layer, at least at the orientation temperature. For example, the cavitating agent(s) may be any of those described in U.S. Pat. Nos. 4,377,616 and 4,632,869, the entire disclosures of which are incorporated herein by reference. Specific examples of the cavitating agent(s) include polybutylene terephthalate (PBT), nylon, an acrylic resin, an ethylene-norborene copolymer, solid or hollow preformed glass spheres, metal beads or spheres, ceramic spheres, calcium carbonate, and combinations thereof. When the base layer comprising a cavitating agent(s) is subjected to uniaxial or biaxial orientation, a cavity forms, providing a film having an opaque appearance.
  • [0029]
    The particle size of the cavitating agent(s) may be, for example, from about 0.1 micron to about 10 microns, more preferably from about 0.2 micron to about 2 microns. The cavitating agent(s) may be of any desired shape. For example, the cavitating agent(s) may be substantially spherical. The cavitating agent(s) may be present in the base layer in an amount of less than 30 wt %, for example from 2 wt % to 20 wt %, e.g., from 5 wt % to 10 wt %, based on the total weight of the base layer.
  • [0030]
    The cavitating agent(s) may be dispersed within the polymeric matrix of the base layer by blending the cavitating agent(s) and the film-forming polymer that provides the polymeric matrix at a temperature above the melting point of the film-forming polymer. This blending may take place in an extruder, such as a co-rotating, intermeshing twin screw extruder.
  • [0031]
    To preserve the structural integrity of the base layer, a thin layer of the film-forming polymer of the base layer, without the cavitating agent(s), may be coextruded on one or both sides of the film-forming polymer of the base layer. In this case, the total of the cavitating agent(s)-containing layer and the non-cavitating agent(s)-containing layer(s) may be considered the overall base layer of the film.
  • [0032]
    The base layer may also comprise an opacifying agent(s). Examples of the opacifying agent(s) include iron oxide, carbon black, titanium dioxide, talc, and combinations thereof. The opacifying agent(s) may be present in the base layer in an amount of from 1 to 15 wt %, for example from 1 to 8 wt %, e.g., from about 2 to about 4 wt %, based on the total weight of the base layer. Aluminum is another example of an opacifying agent that may be used in the base layer of the present film structure. Aluminum may be included in the base layer as an opacifying agent in an amount of from 0.01 to 1.0 wt %, e.g., from about 0.25 to about 0.85 wt %, based on the total weight of the base layer.
  • [0033]
    The base layer may further comprise one or more hydrocarbon resins. The hydrocarbon resin(s) may be present in the base layer in a total amount of from 1 wt % to 15 wt %, for example from 1 wt % to 12 wt %, e.g., from 2 wt % to 6 wt %, based upon the total weight of the base layer.
  • [0034]
    The hydrocarbon resin(s) may be a low molecular weight hydrocarbon which is compatible with the film-forming polymer of the base layer. The hydrocarbon resin(s) may, optionally, be hydrogenated. The hydrocarbon resin(s) may have a number average molecular weight of less than 5,000, for example less than 2,000, e.g. from 500 to 1,000. The resin(s) may be natural or synthetic and may have a softening point in the range of from 140° F. to 356° F. (60° C. to 180 IC). A specific example of a hydrocarbon resin that may be contained in the present base layer is any of the hydrocarbon resins disclosed in U.S. Pat. No. 5,667,902 to Brew, et al., which is incorporated herein by reference. Specific examples include, but are not limited to, petroleum resins, terpene resins, styrene resins, and cyclopentadiene resins. Examples of commercially available hydrogenated resins include PICCOLYTE, REGALREZ, and REGALITE, each of which are available from Hercules Corp., ESCOREZ, available from ExxonMobil Chemical Co., and ARKON, available from Arakawa Chemical Co.
  • [0035]
    A saturated alicyclic resin is an additional example of a hydrocarbon resin that may be included in the base layer of the present film structure. Saturated alicyclic resins have a softening point in the range of from 185° F. to 284° F. (85 IC to 140° C.), for example from 212° F. to 284° F. (100° C. to 140° C.), as measured by the ring and ball technique. An example of a commercially available saturated alicyclic resin is ARKON-P, available from Arakawa Forest Chemical Industries, Ltd. Of Japan.
  • [0036]
    The base layer of the film structure is of sufficient thickness to provide bulk properties, such as barrier, stiffness, etc. that are desired for product protection and good performance on packaging equipment. In preferred embodiments, the thickness of the base layer ranges from about 50% to about 99% of the entire thickness of the film structure.
  • [0037]
    The film structure comprises at least a first outer layer. The first outer layer comprises a low melting point polymer. Preferably, the low melting point polymer has a melting point of not more than about 230° F. (110° C.), e.g., from about 113° F. to about 230° F. (45° C. to about 110° C.). For more amorphous polymers that may not have a well-defined crystalline melting point, suitable low melting point polymers include those that have a Vicat softening point of not more than about 85° C. (185° F.).
  • [0038]
    Although the low melting point polymer to be employed as a first outer layer of the present film structure may be any of the low melting materials known in the art, in particularly preferred embodiments of the invention, the first outer layer comprises a low melting point polymer selected from the group consisting of very low density polyethylene (VLDPE), ethylene plastomers, ethylene-vinyl acetate (EVA) copolymers, ethylene-acrylic acid (EAA) or ethylene-methacrylic acid (EMA) copolymers or terpolymers, ethylene homopolymers or ethylene copolymers (such as LDPE, LLDPE (Ziegler-Natta or metallocene-catalyzed)), and blends thereof.
  • [0039]
    VLDPE, or ultra low density polyethylene (ULDPE), is a particular type of film-forming polyolefin that may be employed as the first outer layer of the present invention. An example of a VLDPE is an ethylene-based hexane copolymer that has a density of from about 0.860 g/cm3 to about 0.910 g/cm3, e.g., from about 0.890 g/cm3 to about 0.909 g/cm3, and a melt index of from about 3 to about 17 g/10 minutes (as measured according to ASTM D1238). As mentioned earlier, when VLDPE is produced using a metallocene or other single-site catalyst, it is commonly referred to as a type of plastomer. Plastomers are commercially available from ExxonMobil Chemical Company, under the trademarks EXACT PLASTOMER 3139 (melt index=7.5 g/10 minutes (ASTM D1238); density=0.900 g/cm3) and EXACT 3040 (melt index=16.5 g/10 minutes (ASTM D1238; density=0.900 g/cm3). Other examples of suitable VLDPE resins include, but are not limited to, product No. 1137 (melt index=8 g/10 minutes; density=0.906 g/cm3) from Union Carbide, Danbury, Conn. and product No. XPR 0545-33260 46L (melt index=3.3 g/10 minutes; density=0.908 g/cm3) from Dow Chemical Company, Midland, Mich.
  • [0040]
    In general, ethylene plastomers are film-forming plastomers that are produced via well known single-site (including metallocene) catalyst technology, which permits very precise control of (i) the comonomer incorporated into an ethylene polymer and (ii) the molecular weight distribution. Ethylene plastomers may be copolymers of ethylene with higher α-olefins having from 3 to about 10 carbon atoms, such as, for example, 1-butene, 1-hexene and 1-octene. Preferred ethylene plastomers for use as the film-forming plastomer of the first outer layer have a density range of from about 0.865 to 0.889 g/cm3 and a peak melting point range of from about 120° F. to about 185° F. (from about 49° C. to about 85° C.). Ethylene plastomers are commercially available from ExxonMobil Chemical Company, under the trademark EXACT. Ethylene plastomers are also, commercially available from Dow Plastics, Dow U.S.A., Midland, Mich., under the trademark ENGAGE, e.g., ENGAGE EG8100 (an ethylene/1-octene copolymer), or AFFINITY.
  • [0041]
    Ethylene-vinyl acetate copolymers are film-forming copolymers having from about 1 wt % to about 45 wt % of vinyl acetate comonomer content, and the remainder of ethylene. A particularly preferred range of the vinyl acetate comonomer content is from about 5 wt % up to about 30 wt %, e.g., from about 6 wt % up to about 21 wt %. Preferably, the ethylene-vinyl acetate copolymer has a melt index of from about 0.5 to about 28 g/10 min (ASTM D1238; 190° C./2.16 kg) and a peak melting point range of from about 113° F. to about 212° F. (from about 45° C. to about 100° C.). Ethylene-vinyl acetate copolymers are commercially available from, for example, ExxonMobil Chemical Company under the trade name ESCORENE ULTRA.
  • [0042]
    Ethylene acrylic acid (EAA) and ethylene methacrylic acid (EMAA) copolymers and terpolymers are film-forming copolymers and terpolymers that comprise (i) polyethylene, (ii) acrylic acid, methacrylic acid, or mixtures thereof, and/or (iii) alkyl acrylate, alkyl methacrylate, or mixtures thereof, e.g., ethylene-methacrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-ethyl acrylate copolymer, etc. For example, an ethylene acid terpolymer resin composition may comprise: (i) from about 0.5 wt % to about 12 wt % of acrylic acid, methacrylic acid, or mixtures thereof; (ii) up to about 20 wt % of alkyl acrylate, alkyl methacrylate, or mixtures thereof, preferably from about 6 wt % to about 20 wt % of alkyl acrylate, alkyl methacrylate, or mixtures thereof; and (iii) the remainder of polyethylene. Preferred EAA and EMAA copolymers and terpolymers for use as the film-forming polymers of the first outer layer have a melting point range of from about 140° F. to about 212° F. (from about 60° C. to about 100° C.). Examples of EAA and EMAA copolymers and terpolymers include ESCOR 5000 (melt index=8 g/10 minutes (ASTM D1238); density=0.931 g/cm3; 6 wt % acrylic acid), ESCOR 5050 (melt index=8 g/10 minutes (ASTM D1238); density=0.936 g/cm3; 9 wt % acrylic acid), and ESCOR 5100 (melt index=8 g/10 minutes (ASTM D1238); density=0.940 g/cm3; 11 wt % acrylic acid), which are commercially available ethylene-acrylic acid copolymers, and ESCOR AT-310 (melt index=6 g/10 minutes (ASTM D1238); density=0.943 g/cm3) and ESCOR AT-320 (melt index=5 g/10 minutes (ASTM D1238);
  • [0043]
    density=0.953 g/cm3), which are commercially available acid terpolymers. ESCOR resins are commercially available from ExxonMobil Chemical Company.
  • [0044]
    The film structure may comprise the first outer layer applied directly on one side of the base layer, or the film structure may comprise one or more intermediate, or tie, layers between the base layer and the first outer layer.
  • [0045]
    The film structure may additionally comprise one or more layers on the side of the base layer opposite the side of the first outer layer. For example, the film structure may comprise a second outer layer applied directly on the side of the base layer opposite the first outer layer, or the film structure may comprise one or more intermediate, or tie, layers between the base layer and second outer layer.
  • [0046]
    The second outer layer, if present, comprises a polymeric matrix comprising a film-forming polymer.
  • [0047]
    In one embodiment of the invention, the film-forming polymer of the second outer layer is the same as the film-forming polymer of the first outer layer, i.e., the second outer layer is also a low melting point polymer.
  • [0048]
    For other embodiments of the invention, the film-forming polymer used to form the polymeric matrix of the second outer layer may be chosen from a list of materials including, but not limited to, polyolefins, such as polypropylene, syndiotactic polypropylene, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), ethylene copolymers, such as ethylene-vinyl acetate and ethylene-vinyl alcohol copolymers, nylons, polymers grafted with functional groups (including, but not limited to, maleic and himic anhydride), blends of these, etc. MDPE has a density in the range of from about 0.926 g/cm3 to about 0.940 g/cm3.
  • [0049]
    For certain embodiments, it may be desirable for the second outer layer to be a heat-seal layer. For example, it may be desirable for the film-forming polymer of the second outer layer to comprise polyolefinic copolymers, terpolymers, or blends thereof.
  • [0050]
    Suitable heat-seal copolymers include block or random copolymers of ethylene and propylene, butylene and propylene, and ethylene and butylene. A preferred copolymer is an ethylene-propylene (EP) random copolymer generally containing from about 2 to about 8 wt % ethylene, specifically from about 3 to about 7 wt % ethylene, the balance being made up of propylene. The copolymer may have a melt index at 446° F. (230° C.) generally ranging from about 2 to about 15 g/10 min (ASTM D1238), and preferably from about 3 to about 8 g/10 min. The crystalline melting point is usually from about 257° F. to about 302° F. (from about 125° C. to about 150° C.) and the number average molecular weight range is from about 25,000 to 100,000. The density will usually range from about 0.89 to about 0.92 g/cm3. An example of a commercially available copolymer that may be used as the second outer layer is 7880 PP, available from CHISSO.
  • [0051]
    Suitable heat-seal terpolymers include ethylene-propylene-butene-1 terpolymers. A preferred terpolymer is an ethylene-propylene-butene-1 (EPB) terpolymer obtained from the random inter-polymerization of from about 1 to about 8 weight percent ethylene, preferably from about 3 to about 7 weight percent ethylene with from about 1 to about 10 weight percent butene-1, preferably from about 2 to about 8 weight percent butene-1 with propylene representing the balance. The foregoing EPB terpolymers may be characterized by a melt index at 446° F. (230° C.) of from about 2 to about 16 g/10 min (ASTM D1238), and advantageously from about 3 to about 7 g/10 min, a crystalline melting point of from about 212° F. to 284° F. (from about 100° C. to about 140° C.), an average molecular weight of from about 25,000 to about 100,000 and a density within the range of from about 0.89 to about 0.92 g/cm3. An example of a commercially available terpolymer that may be used as the second outer layer is XPM 7510, available from CHISSO.
  • [0052]
    If a blend of EPB terpolymer and EP copolymer is used as the second outer layer, the blend may contain from about 10 to about 90 weight percent EPB terpolymer and preferably from about 40 to about 60 weight percent EPB terpolymer, the balance being made up of EP copolymer.
  • [0053]
    According to additional embodiments of the invention, the outer surface of the second outer layer has a glossy appearance. This may be accomplished by several manners known in the art.
  • [0054]
    For example, a polymer that possesses high gloss optical characteristics when formed into a film may be specifically selected as the film-forming polymer of the second outer layer. Examples of such polymers are well known in the art, and include polyolefins, such as homopolymers of propylene or ethylene. Blends of film-forming polymers for the second outer layer may also be employed, provided that a combination of incompatible polymers is not employed. The presence of two or more incompatible polymers may negatively affect the gloss optical characteristics.
  • [0055]
    To further ensure that the film-forming polymer selected for the second outer layer will provide a glossy appearance, the level of gloss-impairing additives, especially certain slip additives, such as fatty amides, silicone oil, and certain antiblocking agents, added to the second outer layer may be controlled, or if necessary, kept at nil. In addition, or alternatively, to further enhance the glossy appearance of the film-forming polymer selected for the second outer layer, a particular coating, such as a high-gloss polyurethane coating, may be applied to the outer surface of the second outer layer.
  • [0056]
    According to still further embodiments of the invention, the outer surface of the second outer layer has a matte appearance. This may be accomplished by several manners known in the art. For example, a blend of two or more incompatible polymers may be employed as the film-forming polymers of the second outer layer, or a coating that imparts a haze may be applied to the outer surface of the second outer layer. U.S. Pat. No. 6,087,015 to Cretekos, et al., which is incorporated herein by reference, provides some specific example of matte surface layers.
  • [0057]
    The intermediate layer(s) that is optionally provided between the base layer and the first outer layer and/or between the base layer and the second outer layer comprises a polymeric matrix comprising a film-forming polymer. Suitable film-forming polymers for forming the polymeric matrix of the intermediate layer(s) include, but are not limited to, polyolefins, such as polypropylene, syndiotactic polypropylene, polypropylene copolymers, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), ethylene copolymers, nylons, polymers grafted with functional groups, blends of these, etc.
  • [0058]
    Although the thickness of the film structure, and the thicknesses of the individual layers of the film structure, are not critical, in certain embodiments, the film structure has a total thickness ranging from about 0.2 mil to about 5 mils, preferably from about 0.4 mil to about 2.5 mils. The thickness of the base layer preferably ranges from about 50% to about 99%, the thickness of each intermediate layer, if any, preferably ranges from 0% to 25%, and the thickness of each outer layer(s) preferably ranges from 1% to 15%, wherein, for each case, the example range is based on the entire thickness of the film structure. In certain embodiments, the thickness of the coated layer may be from about 30 to about 70%.
  • [0059]
    In order to modify or enhance certain properties of the film structure for specific end-uses, it is possible for one or more of the layers to contain appropriate additives in effective amounts. Preferred additives include, but are not limited to anti-blocks, anti-static agents, coefficient of friction (COF) modifiers, processing aids, colorants, clarifiers, ionomers and other additives known to those skilled in the art.
  • [0060]
    Thus, a film structure according to the present invention comprises at least a base layer comprising a thermoplastic polymer and at least a first outer layer comprising a low melting point polymer.
  • [0061]
    In contrast to related prior art film structures, however, each of the individual layers of a film structure prepared according to preferred embodiments of the present invention, including the base layer and first outer layer, are coextruded and biaxially oriented, for example, from about 1.5 to about 8 times in the machine direction and from about 2 to about 12 times in the transverse direction, e.g., from about 4 to 6 times in the machine direction and from about 8 to 10 times in the transverse direction.
  • [0062]
    In one preferred embodiment of the invention, melts corresponding to each of the individual layers of the film structure, including the first outer layer, are prepared and coextruded through a die, e.g., a flat-film die or slot die, quenched, and then the film sheet comprising the coextruded layers is subjected to a simultaneous biaxial orientation process that does not employ machine-direction orientation (MDO) rolls. The result is a coextruded, biaxially oriented film structure wherein the low melting point polymer coextruded as the first outer layer of the film structure does not disadvantageously stick to any MDO rolls.
  • [0063]
    Specifically, simultaneous biaxial orientation may proceed on a line that utilizes linear motors to directly propel opposed pairs of tenter clips synchronously. A film sheet comprising each of the coextruded layers of the film structure to be produced may be primarily oriented by synchronously accelerating along a diverging path a multitude of directly opposed pairs of tenter clips holding the film sheet, thus achieving simultaneous biaxial orientation and providing the biaxially oriented film structure. In addition, secondary machine-direction orientation on the same tenter can be effected along a parallel, or substantially parallel, path subsequent to the diverging path by simultaneously accelerating the directly opposed pairs of tenter clips along some portion of the parallel path.
  • [0064]
    The use of linear motors to directly propel tenter clips to effect simultaneous biaxial stretching is further disclosed in U.S. Pat. No. 4,853,602 to Hommes, et al., the contents of which are incorporated herein by reference in their entirety.
  • [0065]
    There is also provided an alternative preferred embodiment that results in each of the individual layers of a film structure, including the first outer layer, being coextruded and biaxially oriented. According to this alternative preferred embodiment, melts corresponding to each of the individual layers of the film structure, including the first outer layer, are prepared and coextruded through a die, e.g., a flat-film die or slot die, quenched, and then the film sheet comprising the coextruded layers is subjected to a sequential biaxial orientation process that employs a radiant-heated MDO stretcher. The radiant-heated MDO stretcher allows a low melting point polymer to be coextruded as the first outer layer of a film structure without disadvantageously sticking to any MDO rolls.
  • [0066]
    Specifically, the machine-direction orienter in a sequential biaxial orientation line equipment is provided with a high-intensity radiant-heating section in a non-contacting free span between a last slow roll and a first fast roll. The surface of each of these rolls, as well as all other rolls in the MD orienter, is held at a temperature below the temperature at which the relatively low melting outer layer would stick to the roll.
  • [0067]
    In the non-contacting free span between the last slow roll and the first fast roll, a film leaves the last slow roll, passes in close proximity to a heater designed to heat the film to a desired high temperature, is MD oriented at the desired high temperature, and then passes directly onto the first fast roll, which is held at a temperature below the sticking point of the film to the surface of the roll. The film only stretches from the point that it reaches its highest temperature, which is at the exit of the radiant heater, to the point that the film touches onto the first fast roll. The length over which the film actually stretches, the stretch length or stretch gap, is related primarily to the distance between the end of the heater and the point at which film lays down on the first fast roll.
  • [0068]
    The overall length between the last slow roll and the first fast roll is essentially immaterial. In other words, within reasonable limits, there is no constraint on the size of the radiant heater unit.
  • [0069]
    A radiant heater may comprise a long quartz, glass, or ceramic tube that spans the entire width of the web passing through the MD orienter. Within this tube is a heating wire, such as Nichrome or Kanthal, etc. Typically this wire is spirally wound. Electrical power is supplied to the ends of these wires, such that the heating wire can reach a chosen temperature. The amount of electrical power, and the resulting wire temperature, is chosen to provide radiant energy at a preferred balance of the wave length most appropriate for the infra-red absorption spectra of the film being processed, the throughput of the film, the temperature increase desired within the film, and the radiant power of the wire at the temperature chosen.
  • [0070]
    If the wire temperature is held at a moderate heater wire temperature, for example, below about 1500° F., the heating wire can be open to the atmosphere and still retain an acceptable operating life. If a wire temperature above 1500° F. is desired, the wire typically is mounted within an evacuated vitreous glass bulb.
  • [0071]
    A radiant heater unit may comprise a chosen number of tubes. The number is chosen primarily based on throughput of the film passing the heater and the temperature rise desired. The total number of tubes and the distance between the last slow roll and the first fast roll is not critical in the control of the MD orientation step. It is preferred to minimize the distance from the exit end of the radiant heater unit to the first fast roll.
  • [0072]
    The slow roll section is run at a temperature just below the temperature that would cause the low melting point polymer of the first outer layer to disadvantageously stick to the roll surfaces. Although the exact temperature for the slow roll section may depend on the particular low melting point being employed as the first outer layer, a general range of temperatures for the slow roll section may be from about 175° F. to about 250° F. (from about 80° C. to about 121° C.).
  • [0073]
    The radiant-heater(s) raises the temperature of the film sheet comprising each of the coextruded layers of the film structure to be produced to a desired stretching temperature in the non-contacting free span. Although the specific stretching temperature may depend on the particular compositional make-up of the individual layers of the coextruded sheet, a general range of temperatures at which the non-contacting free span may be maintained is from about 195° F. to about 290° F. (from about 90° C. to about 143° C.).
  • [0074]
    From the point of its highest temperature at the exit from the radiant-heated non-contacting free span, the coextruded sheet would stretch in the machine direction until it reaches a comparatively cool first fast roll. Specifically, the first, and subsequent, fast rolls would be maintained at a temperature below the temperature that would cause the low melting point polymer of the first outer layer to disadvantageously stick to the roll surfaces. Although the exact temperature at which to maintain the fast rolls may depend on the particular low melting point polymer being employed as the first outer layer, a general range of temperatures for the fast roll section may be from about 175° F. to about 250° F. (from about 80° C. to about 121° C.).
  • [0075]
    From here, the machine-direction oriented film structure may proceed to the transverse-direction orientation section of the apparatus, thereafter resulting in a coextruded, biaxially oriented film structure wherein the low melting point polymer coextruded as the first outer layer of the film structure has not disadvantageously stuck to any MDO rolls.
  • [0076]
    As an example of how a film structure according to the present invention may be prepared by a radiant-heating MD orientation process, consider a two-layer, coextruded cast web comprising an isotactic polypropylene base layer and an outer layer of an acid terpolymer (ESCOR AT-310, having a melting point of 201° F. (94° C.)). The coextruded web may be passed through the slow roll section of a MD orienter held at a temperature of 195° F., without sticking. The coextruded web can then be heated to a temperature of 250° F. in close proximity to the radiant heater in the free span. The web, so heated, will then stretch, at, for example, 5 MDX, from the end of the radiant heater unit until it reaches the first fast roll, which is held at 195° F. Stretching ceases and the oriented film proceeds across the remaining MD rolls, at 195° F., and into the TD orienter. Thus, the utility of this invention has been shown for MD stretching an essentially isotactic polypropylene film at stretching temperatures necessary for isotactic polypropylene without running the film over rolls held at those same temperatures.
  • [0077]
    As would be readily understood by one of ordinary skill in the art, both the simultaneous stretching and radiant-heating embodiments work equally well, whether the film structure to be produced is limited to a base layer and first outer layer, or whether the film structure to be produced further comprises any of the additional layers disclosed herein, including one or more intermediate layers and/or a second outer layer.
  • [0078]
    One or both of the outer surfaces of the coextruded, biaxially oriented film structure, e.g., one or both of the first and second outer layers, or one or both of the first outer layer and the base layer where the film structure does not include a second outer layer, may be surface-treated. The surface treatment can be carried out by any method known in the art, including, but not limited to, corona discharge treatment, flame treatment, or plasma treatment. Although any of these techniques are effectively employed to surface-treat the outer layer(s), a particularly desirable method of treatment is the so-called corona treatment method, which comprises exposing the film surface to a high voltage corona discharge while passing the film between a pair of spaced electrodes. The surface of the outer layer(s) may be treated to a surface tension level of at least about 35 dynes/cm, e.g. from about 38 to 55 dynes/cm, in accordance with ASTM Standard D2578-84.
  • [0079]
    In addition, the outer surface of the side of the coextruded, biaxially oriented film structure opposite the first outer layer, e.g., the outer surface of the second outer layer, or the outer surface of the base layer where the film structure does not include a second outer layer, may have a coating applied thereto via, e.g., an off-line coating process. An appropriate coating includes, but is not limited to, an acrylic coating, such as those described in U.S. Pat. Nos. 3,753,769 and 4,865,908, both of which are incorporated herein by reference, an acrylonitrile coating, a polyvinylidene chloride (PVdC) coating, such as those described in U.S. Pat. Nos. 4,214,039, 4,447,494, 4,961,992, 5,019,447, and 5,057,177, all of which are incorporated herein by reference, a polyvinyl alcohol (PVOH) coating, a urethane coating, an epoxy coating, and blends thereof.
  • [0080]
    Examples of commercially available PVOH materials include VINOL 125, 99.3+% super hydrolyzed polyvinyl alcohol and VINOL 325, 98% hydrolyzed polyvinyl alcohol, each of which may be obtained from Air Products, Inc. For additional examples of PVOH coatings that may be used to coat the second outer layer, see, for example, U.S. Pat. Nos. 4,927,689, 5,230,963, and 5,547,764, which are incorporated herein by reference.
  • [0081]
    The coating may be applied in an amount such that there will be deposited upon drying a smooth, evenly distributed layer, generally on the order of from about 0.01 to about 1 mil thickness. Generally, the coating comprises 1 to 25 wt %, preferably 7 to 15 wt % of the entire coated film structure. The coating on the film structure is subsequently dried by hot air, radiant heat or by any other convenient means.
  • [0082]
    Prior to the application of the coating, the outer surface of the side of the coextruded, biaxially oriented film structure opposite the first outer layer may be primed with a primer material. An appropriate primer material includes, but is not limited to, a poly(ethyleneimine) primer and an epoxy primer.
  • [0083]
    The outer surface of the side of the coextruded, biaxially oriented film structure opposite the first outer layer, e.g., the outer surface of the second outer layer, the outer surface of the base layer where the film structure does not include a second outer layer, or the outer surface of the coating where a coating has been applied to that side of the film structure, may be metallized. Application of a metal coating layer may be accomplished by vacuum deposition, or any other metallization technique, such as electroplating or sputtering. The metal of the metal coating layer may be aluminum, or any other metal capable of being vacuum deposited, electroplated, or sputtered, such as, for example, gold, zinc, copper, or silver. The thickness of the deposited metal coating may be from about 5 to about 200 nanometers (nm), for example, from about 10 to 100 μm, e.g. from about 30 to about 80 nm.
  • [0084]
    While attention has been given to embodiments of the invention wherein each of the individual layers of the film structure to be prepared, including the base layer and first outer layer, are coextruded and biaxially oriented, in some instances it may be necessary to extrusion-coat (including monoextrusion coating and coextrusion coating) the first outer layer onto the base layer or onto an intermediate layer adjacent to the base layer. In particular, the first outer layer may be extrusion-coated onto the base layer or intermediate layer in an amount such that there will be deposited upon drying a smooth, evenly distributed layer, generally on the order of from about 0.01 to about 1 mil thickness. Generally, the coating comprises 1 to 25 wt %, preferably 7 to 15 wt % of the entire coated film structure. The coating on the film structure is subsequently dried by hot air, radiant heat or by any other convenient means.
  • [0085]
    If an off-line coating technique is used, a coating comprising the low melting point polymer, e.g., plastomer or EVA, to form the first outer layer is applied onto an outer surface of a film structure after the film structure has been formed and oriented. If an in-line extrusion coating process is used, a coating comprising the low melting point polymer to form the first outer layer is applied onto an outer surface of a film structure after the film structure has been formed and then oriented in the machine-direction, but before the film structure has been oriented in the transverse direction. Either way, the first outer layer is not coextruded and biaxially oriented with the other layers of the film structure.
  • [0086]
    It has been discovered that the bond adhesion obtained between a polypropylene-containing base layer and an extrusion-coated first outer layer, such as an extrusion-coated, low melting point polymer comprising an ethylene-vinyl acetate (EVA) copolymer, may be improved by providing at least one layer of an ethylene polymer on the outer surface of the polypropylene-containing base layer that is to have the first outer layer extrusion-coated thereon.
  • [0087]
    An advantage of providing this at least one ethylene layer is that a film structure prepared in this manner achieves strong bond adhesion between the extrusion-coated first outer layer and substrate, without the need for a primer between the propylene-containing base layer and ethylene layer(s) or between the ethylene layer(s) and extrusion-coated first outer layer. Besides eliminating the need for a primer, which can be relatively expensive, the process speed is no longer limited by the time required to dry the primer. In addition, bond adhesion may no longer depend on humidity, as most primers are water-sensitive, and no primer is needed.
  • [0088]
    In a preferred embodiment of a film structure comprising an extrusion-coated first outer layer, the base layer comprises a propylene polymer, such as any of the Ziegler-Natta- or metallocene-catalyzed propylene homopolymers, copolymers, or terpolymers described earlier. In a particularly preferred embodiment, the base layer is an isotactic propylene homopolymer. As for the ethylene polymer of the at least one layer of an ethylene polymer, it may be an ethylene homopolymer, copolymer, or terpolymer. If an ethylene copolymer or terpolymer is employed, the ethylene copolymer or terpolymer preferably comprises a predominant amount of ethylene comonomer content, e.g., above 50 weight percent.
  • [0089]
    Particularly preferred ethylene polymers for the at least one layer of an ethylene polymer are homopolymers of ethylene, such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and blends thereof. MDPE has a density in the range of from about 0.926 g/cm3 to about 0.940 g/cm3.
  • [0090]
    The provision of the at least one ethylene layer of an ethylene polymer on the outer surface of a polypropylene-containing base layer that is to have a first outer layer extrusion-coated thereon yields a film structure that achieves a minimum adhesion peel of at least 0.3 N/15 mm, for example, at least 0.5 N/15 mm, preferably at least 0.8 N/I 5 mm, e.g., at least 1.0 N/15 mm, wherein adhesion peel is measured and defined by ASTM D1876 by means of a T peel configuration. Importantly and surprisingly, film structures according to the invention achieve these minimum adhesion peel values without the need for a primer between the propylene-containing base layer and ethylene layer(s) or between the ethylene layer(s) and extrusion-coated first outer layer.
  • [0091]
    Whether each of the individual layers of the film structure to be prepared, including the base layer and first outer layer, are coextruded and biaxially oriented, or whether the first outer layer is extrusion-coated onto an outer surface of a film structure, the provision of a first outer layer of a low melting point polymer, e.g., plastomer or EVA, lends the film structure superior functionality. For example, for packaging applications, the first outer layer provides the film structure with excellent sealing characteristics. For lamination applications, the first outer layer allows the film structure to achieve strong lamination bonds with the substrate to which it is being laminated. In addition, the first outer layer allows the metal layer of a metallized film structure to strongly adhere to the film structure.
  • [0092]
    A film structure according to the invention may be used for low temperature seal, high speed packaging use, for low temperature over-lamination to paper or other plastic substrates, document lamination, “plastification,” or for digital printing with selected surface chemistry.
  • [0093]
    In a particular application, the first outer layer of a film structure according to the invention is laminated onto a substrate. The substrate may be glass, plastic, ceramic, metal, textiles, electronics or wood. For example, the substrate may be another polymer film or laminate, a cellulosic web(s), e.g., numerous varieties of paper, such as corrugated paperboard, craft paper, glassine, and cartonboard, nonwoven tissue, e.g., spunbonded polyolefin fiber, melt-blown microfibers, etc.
  • [0094]
    In a preferred embodiment, a film structure according to the invention is laminated via the first outer layer as a protective film for an identification card or display system used for advertising, including signs, posters, pictures, etc.
  • [0095]
    While the lamination of a film structure to a substrate may employ a suitable adhesive, e.g., a hot melt adhesive, such as blends of HEVA, waxes and resins, a water-based adhesive, such as polyvinylidene chloride latex, etc., between the first outer layer and substrate, film structures prepared according to the present invention may be advantageously laminated by heat lamination.
  • [0096]
    Heat lamination, which uses heat and pressure to apply a lamination film onto a substrate, improves the durability of the substrate without the need for more expensive water-based lamination or environmentally unfriendly solvent-based lamination. Commercial heat laminators used for the lamination of film structures to paper substrates, such as cards, can be standalone machines in which a printed card is fed into the laminator where an overlay film is applied to the card. In this case, a film structure according to the present invention may advantageously be employed as the overlay film. Alternatively, the laminator may be integrated into a printer.
  • [0097]
    For other applications, the first outer layer of the film structure is metallized. Application of a metal coating layer to the first outer layer may be accomplished by vacuum deposition, or any other metallization technique, such as electroplating or sputtering. The metal of the metal coating layer may be aluminum, or any other metal capable of being vacuum deposited, electroplated, or sputtered, such as, for example, gold, zinc, copper, or silver. The thickness of the deposited metal coating may be from about 5 to about 200 nanometers (nm), for example, from about 10 to 100 nm, e.g. from about 30 to about 80 nm.
  • [0098]
    The following example, which further illustrates an embodiment of the invention, compares a primerless film structure prepared according to the invention with a commercially available film for document plastification.
  • EXAMPLE
  • [0099]
    A primeness film structure according to one embodiment of the present invention was produced on a pilot line, and compared to a conventional three-layer polypropylene film.
  • [0100]
    In particular, a three-layer coextruded, biaxially oriented film structure was prepared, wherein the film structure comprised a propylene homopolymer base layer, a MDPE outer layer on one side of the base layer, and a high-gloss propylene homopolymer outer layer on the side of the base layer opposite the MDPE outer layer.
  • [0101]
    A 15 μm layer of FL01418, which is an ethylene-vinyl acetate copolymer (melt index=14 g/10 minutes (ASTM D1238) (melt index correlated from melt flow rate measurement at 190° C. according to the following: log (melt index)=0.9394+0.9174*(log(melt flow rate))); 18 wt % vinyl acetate) available from ExxonMobil Chemical Co. under the trademark ESCORENE ULTRA, was coated onto the MDPE outer layer via an off-line coating process.
  • [0102]
    The conventional three-layer polypropylene film was also coated (off-line on a commercial production line) with a 15 μm layer of FL01418, but the receiving layer of the three-layer polypropylene film was first primed with a water-based primer.
  • [0103]
    An adhesion peel strength test was performed on both coated film structures according to ASTM D1876. At a peel speed of 50 mm/min, the coated film structure according to an embodiment of the invention, comprising a MDPE layer but no primer layer, achieved an adhesion peel value of 1.35 N/mm. In contrast, at the same 50 mm/min peel speed, the coated conventional three-layer film (primer layer, no ethylene-containing receiving layer) achieved an adhesion peel value of 0.9 N/mm.
  • [0104]
    In addition to possessing improved adhesion peel strengths, it must be noted that film structures according to this embodiment of the invention also eliminate the need for primer layers, which can be expensive.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3285766 *Mar 28, 1963Nov 15, 1966Avisun CorpBiaxially oriented ethylene polymer coated polypropylene sheet and method for makingsame
US3753769 *Jul 2, 1971Aug 21, 1973Mobil Oil CorpCoating composition and plastic articles coated therewith
US3877969 *May 21, 1973Apr 15, 1975Takeda Chemical Industries LtdCoated glass bottles
US3925591 *Jan 29, 1975Dec 9, 1975Ciba Geigy CorpTransparent laminate films of polyolefines and polyesters and processes for their manufacture
US4147827 *Nov 4, 1977Apr 3, 1979Mobil Oil CorporationCoextruded heat sealable laminar thermoplastic films
US4214039 *Apr 23, 1979Jul 22, 1980Mobil Oil CorporationPolypropylene film with primer of a water dispersed epoxy resin coating
US4377616 *Dec 30, 1981Mar 22, 1983Mobil Oil CorporationLustrous satin appearing, opaque film compositions and method of preparing same
US4447494 *Mar 8, 1982May 8, 1984Mobil Oil CorporationOriented multilayer heat sealable packaging film
US4565739 *Dec 28, 1984Jan 21, 1986Mobil Oil CorporationOriented multi-layer heat sealable film
US4632869 *Sep 3, 1985Dec 30, 1986Mobil Oil CorporationResin composition, opaque film and method of preparing same
US4695503 *Mar 7, 1986Sep 22, 1987Mobil Oil CorporationCoated, oriented, polymer film laminate
US4853602 *May 17, 1988Aug 1, 1989E. I. Dupont De Nemours And CompanySystem for using synchronous secondaries of a linear motor to biaxially draw plastic films
US4865908 *Sep 21, 1987Sep 12, 1989Mobil Oil CorporationCoated, oriented polymer film laminate
US4927689 *Jul 7, 1987May 22, 1990Du Pont Canada Inc.Gas barrier structures
US4961992 *Jan 13, 1989Oct 9, 1990Mobil Oil CorporationLaminated packaging film
US5019447 *Dec 12, 1989May 28, 1991Mobil Oil CorporationOriented polypropylene film structure
US5057177 *May 25, 1990Oct 15, 1991Mobil Oil CorporationLaminated packaging film
US5230963 *Dec 20, 1991Jul 27, 1993Mobil Oil CorporationOxygen and water vapor transmission resistant film and method
US5407611 *Feb 23, 1994Apr 18, 1995Viskase CorporationProcess of corona treating a thermoplastic tubular film
US5547764 *Dec 22, 1994Aug 20, 1996Mobil Oil CorporationMethod of producing PVOH coatings with enhanced properties
US5667902 *Apr 30, 1996Sep 16, 1997Mobil Oil CorporationHigh moisture barrier polypropylene-based film
US5811185 *Aug 3, 1995Sep 22, 1998Hoechst AktiengesellschaftLow temperature heat sealable biaxially oriented polypropylene films comprising propylene/butylene resin
US6087015 *May 15, 1998Jul 11, 2000Mobil Oil CorporationMatte surface film
US6558808 *Feb 21, 1995May 6, 2003Basell Polyolefine GmbhHeat-sealable, polyolefinic multilayer film, process for the production thereof, and the use thereof
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7279206 *Mar 22, 2005Oct 9, 2007Curwood, Inc.Packaging laminates and articles made therefrom
US7390434 *Apr 23, 2004Jun 24, 2008Fujifilm CorporationMethod and apparatus for producing film from polymer solution, and optical polymer film
US7622406 *Oct 31, 2006Nov 24, 2009Jhrg, LlcPuncture and abrasion resistant, air and water impervious laminated fabric
US7648756Oct 12, 2006Jan 19, 2010Michelman, Inc.Coating for enhancing low temperature heat sealability and high hot tack to polymeric substrates
US7651751Feb 10, 2004Jan 26, 2010Kronotec AgBuilding board
US7678425Mar 16, 2010Flooring Technologies Ltd.Process for finishing a wooden board and wooden board produced by the process
US7790293Apr 27, 2006Sep 7, 2010Flooring Technologies Ltd.Process for finishing a wooden board and wooden board produced by the process
US7816001Jun 20, 2008Oct 19, 2010Kronotec AgInsulation board made of a mixture of wood base material and binding fibers
US7820570 *Nov 23, 2009Oct 26, 2010Jhrg, LlcPuncture and abrasion resistant, air and water impervious laminated fabric
US7827749Nov 9, 2010Flooring Technologies Ltd.Panel and method of manufacture
US7828029 *Nov 9, 2010Jhrg, LlcPuncture and abrasion resistant, air and water impervious laminated fabric
US7854986Sep 7, 2006Dec 21, 2010Flooring Technologies Ltd.Building board and method for production
US7908816Jan 30, 2004Mar 22, 2011Kronotec AgDevice for connecting building boards, especially floor panels
US8003168Aug 23, 2011Kronotec AgMethod for sealing a building panel
US8016969Jun 18, 2009Sep 13, 2011Flooring Technologies Ltd.Process for finishing a wooden board and wooden board produced by the process
US8048501 *Apr 26, 2007Nov 1, 2011Innovia Films LimitedSealable, peelable film comprising a block copolymer peelable core layer
US8062723 *Jun 22, 2010Nov 22, 2011Innovia Films LimitedSealable, peelable film comprising a block copolymer peelable core layer
US8071188 *Nov 6, 2008Dec 6, 2011Innovia Fillms LimitedSealable, peelable film comprising a block copolymer peelable core layer
US8176698Sep 20, 2004May 15, 2012Kronotec AgPanel
US8257791Sep 4, 2012Kronotec AgProcess of manufacturing a wood fiberboard, in particular floor panels
US8475871Oct 29, 2010Jul 2, 2013Flooring Technologies Ltd.Building board and method for production
US8609228Apr 9, 2010Dec 17, 2013Dow Global Technologies LlcHigh performance sealable coextruded biaxially oriented polypropylene film
US8709610Oct 17, 2008Apr 29, 2014Dow Global Technologies LlcBiaxially oriented film which could be thermally laminated with paper and other substrates
US8833029Oct 8, 2009Sep 16, 2014Kronotec AgFloor panel
US8919063Sep 7, 2006Dec 30, 2014Flooring Technologies Ltd.Building board having a pattern applied onto side surfaces and conecting mechanisms thereof
US9130090 *Oct 31, 2011Sep 8, 2015Lg Chem, Ltd.Olefin composition
US9169658Feb 3, 2009Oct 27, 2015Kronotec AgFloor panel and method of laying a floor panel
US9186872Nov 6, 2008Nov 17, 2015Essel Propack Ltd.Multi-layer flexible sheet and method thereof
US9365028Feb 14, 2007Jun 14, 2016Flooring Technologies Ltd.Method for finishing a building board and building board
US20040212892 *Apr 23, 2004Oct 28, 2004Fuji Photo Film Co., Ltd.Method and apparatus for producing film from polymer solution, and optical polymer film
US20060216488 *Mar 22, 2005Sep 28, 2006Curwood, Inc.Packaging laminates and articles made therefrom
US20070087189 *Oct 12, 2006Apr 19, 2007Michelman, Inc.Coating for enhancing low temperature heat sealability and high hot tack to polymeric substrates
US20080102721 *Oct 31, 2006May 1, 2008Holland John EPuncture and abrasion resistant, air and water impervious laminated fabric
US20080286547 *May 18, 2007Nov 20, 2008Hubbard Michael APolypropylene films with enhanced moisture barrier properties, process for making and composition thereof
US20090081405 *Nov 6, 2008Mar 26, 2009Innovia Films LimitedSealable, peelable film
US20090098364 *May 12, 2006Apr 16, 2009Oji Paper Co., Ltd.Biaxially Oriented Laminated Polypropylene Film and Uses Thereof
US20090155530 *Nov 5, 2008Jun 18, 2009Laborie Marie-Pierre GMethods for surface activation of wood-fiber reinforced thermoplastic composites for surface adhesion enhancement and composites having such surface properties
US20090239011 *Apr 26, 2007Sep 24, 2009Innovia Films LimitedSealable, peelable film
US20090274921 *Jun 2, 2009Nov 5, 2009Nina AckermansTerpolymer with high melting point
US20090278281 *Nov 12, 2009Jhrg, LlcMethod for forming a puncture and abrasion resistant laminated fabric and three dimensional ballistic resistant products therefrom
US20090297814 *Dec 3, 2009Curie Kevin JInnerliner With Cross-Linked Eva
US20100009108 *Nov 26, 2008Jan 14, 2010Avery Dennison CorporationComposition, film and related methods
US20100068963 *Mar 18, 2010Jhrg, LlcPuncture and abrasion resistant, air and water impervious laminated fabric
US20100089522 *Nov 18, 2009Apr 15, 2010Jhrg, LlcPuncture and abrasion resistant, air and water impervious laminated fabric
US20100209640 *Jul 31, 2007Aug 19, 2010Dow Global Technologies Inc.Layered film compositions, packages prepared therefrom, and methods of use
US20100260996 *Oct 14, 2010Dow Global Technologies Inc.High performance sealable coextruded biaxially oriented polypropylene film
US20100264053 *Jun 22, 2010Oct 21, 2010Innovia Films LimitedSealable, peelable film
US20100266828 *Nov 6, 2008Oct 21, 2010Mrinal Kanti BanerjeeMulti-layer flexible sheet and method thereof
US20120139132 *Jun 7, 2012Lg Chem, Ltd.Olefin composition
CN102133966A *Jan 30, 2011Jul 27, 2011浙江大东南包装股份有限公司Low-melting-point packaging film and preparation method thereof
CN102794966A *Aug 6, 2012Nov 28, 2012北京康得新复合材料股份有限公司Glue-free bidirectional stretching polypropylene film used for paper-plastic composite and preparation method thereof
CN102863919A *Jul 4, 2011Jan 9, 2013孟孟Polypropylene biaxially oriented film without primary coat and preparation method thereof
WO2009087659A2 *Nov 6, 2008Jul 16, 2009Essel Propack Ltd.A multi-layer flexible sheet and method thereof
WO2009087659A3 *Nov 6, 2008Sep 3, 2009Essel Propack Ltd.A multi-layer flexible sheet and method thereof
WO2012155859A1 *May 18, 2012Nov 22, 2012Zhejiang Zhongcheng Packing Material Co., LtdPolyolefin film for packaging and preparation method therefor
WO2014023219A1 *Aug 6, 2013Feb 13, 2014Beijing Kangde Xin Composite Material Co., Ltd.Biaxially stretched polypropylene film without adhesive agent for lamination to paper and preparation method thereof
WO2015155054A3 *Mar 31, 2015Mar 10, 2016Windmöller & Hölscher KgPackaging means as well as device and method for producing a packaging means
Classifications
U.S. Classification428/515, 428/500
International ClassificationB32B37/15, B32B27/32, B32B27/00, B32B38/18, B29C55/14, B29C35/08, B29C55/02
Cooperative ClassificationY10T428/31504, B32B27/32, Y10T428/31909, Y10T428/31855, Y10T428/31938, Y10T428/31678, B32B38/1825, B29C55/023, B29C35/0805, B32B37/153, B29C55/14
European ClassificationB29C55/02B, B32B27/32
Legal Events
DateCodeEventDescription
Dec 3, 2002ASAssignment
Owner name: EXXONMOBIL OIL CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, PANG-CHIA;AMBROISE, BENOIT;VANDERHYEDEN, NANCY;AND OTHERS;REEL/FRAME:013551/0793;SIGNING DATES FROM 20021120 TO 20021128