Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040118273 A1
Publication typeApplication
Application numberUS 10/323,383
Publication dateJun 24, 2004
Filing dateDec 18, 2002
Priority dateDec 18, 2002
Also published asUS6758125, WO2004057262A2, WO2004057262A3
Publication number10323383, 323383, US 2004/0118273 A1, US 2004/118273 A1, US 20040118273 A1, US 20040118273A1, US 2004118273 A1, US 2004118273A1, US-A1-20040118273, US-A1-2004118273, US2004/0118273A1, US2004/118273A1, US20040118273 A1, US20040118273A1, US2004118273 A1, US2004118273A1
InventorsPaul Zank
Original AssigneeZank Paul A.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Active armor including medial layer for producing an electrical or magnetic field
US 20040118273 A1
Abstract
An active armor system, which includes a first armor layer and a second armor layer. An interior space is interposed between the first and second armor layer. A third layer is also positioned preferably adjacent to and on the inner side of the first layer This third layer is comprised of a material selected from a piezoelectric material, and electrostrictive material, and a magnetostrictive material. The third layer may also be characterized as any material capable of producing an electrical or magnetic field within the space in response to the application of mechanical force on this third layer. The application of force on the third layer as a result of the impacting of a shaped charge projectile on the first armor layer will result in the production of an electric or magnetic charge in the interior space which will disrupt the formation of the shaped charge gas jet so as to prevent the penetration of the second armor layer.
Images(6)
Previous page
Next page
Claims(30)
What is claimed is:
1. An active armor system comprising
a first armor layer having a front face and a rear face;
a second armor layer positioned in spaced generally parallel relation to the first armor layer and having a front face and a rear face;
a third layer comprised of a material selected from a piezoelectric material, an electrostrictive layer and a magnetostrictive material; and
a space interiorly positioned between the first armor layer and the second armor layer.
2. The active armor system of claim 1 wherein the third layer is a medial layer having a front face and a rear face which is positioned between the first armor layer and the second armor layer.
3. The active armor system of claim 2 wherein the first armor layer is comprised of a metal or a metal alloy.
4. The active armor system of claim 3 wherein the first armor layer is comprised of a ferromagnetic metal or a ferromagnetic metal alloy.
5. The active armor system of claim 2 wherein the medial layer is comprised of a piezoelectric material.
6. The active armor system of claim 2 wherein the medial layer is comprised of an electrostrictive material.
7. The active armor system of claim 2 wherein the medial layer is comprised of an magnetostrictive material.
8. The active armor system of claim 2 wherein the medial layer is selected from a material selected from Terfernol and Terfernol-D.
9. The active armor system of claim 2 wherein the front face of the medial layer abuts the rear face of the first armor layer.
10. The active armor layer of claim 9 wherein the front face of the second armor layer is adjacent the space.
11. The active armor system of claim 2 wherein an electrode is fixed to the rear face of the medial layer.
12. The active armor system of claim 11 wherein the electrode has a front and a rear face and the front face abuts the rear face of the medial layer.
13. The active armor system of claim 12 wherein the space is positioned between the rear face of the electrode and the front face of the second armor layer.
14. The active armor system of claim 2 wherein the space positioned between the first armor layer and the second armor layer is an air space.
15. The active armor system of claim 2 wherein the spaced position between the firs armor layer and the second armor layer is an inert gas space.
16. The active armor system of claim 2 wherein the spaced positioned between the first armor layer and the second armor layer is a vacuum space.
17. The active armor system of claim 2 wherein the second armor layer is comprised of a metal or a metal alloy.
18. The active armor system of claim 2 wherein the second armor layer is comprised of a polymer and reinforced fiber composite material.
19. The active armor system of claim 2 wherein the first armor layer is an outer layer and the second armor layer is an inner layer.
20. An active armor system comprising:
a front armor layer having a front face and a rear face;
a rear armor layer having a front face and a rear face;
a medial layer interposed between the front armor layer and the rear armor layer having a front face and a rear face, wherein said front face of said medial layer is adjacent the rear face of said front armor layer and said medial layer is comprised of a material selected from a piezoelectric material, a electrostive material and a magnetostrictive material;
an electrode positioned over the rear face of the medial layer;
a space interposed between the electrode and the front fact of the inner armor layer.
21. The active armor system of claim 20 wherein the outer armor layer is comprised of a ferromagnetic metal or an alloy of a ferromagnetic metal alloy.
22. The active armor system of claim 20 wherein the space interposed between the electrode and the front face of the inner armor layer is selected from an air space, an inert gas space and a vacuum space.
23. An active armor system comprising:
a front armor layer having a front face and a rear face;
a rear armor layer having a front face and a rear face;
a medial layer interposed between the front armor layer and the rear armor layer having a front face and a rear face, wherein said front face of said medial layer is adjacent the rear face of said front armor layer and said medial layer is comprised of a material capable of generating an electrical or magnetic field in response to an application of a mechanical force thereon;
a space positioned between the front armor layer and the rear armor layer.
24. An active armor system comprising:
a front layer selected from a material selected from the group consisting of a piezoelectric material, an electrostrictive material and a magnetostructive material;
a first metallic layer adjacent the front layer;
a second metallic layer positioned rearwardly from the first metallic layer; and
a space interposed between the first metallic layer and the second metallic layer.
25. The active armor system of claim 24 wherein the front layer is comprised of a piezoelectric material.
26. The active armor system of claim 24 wherein a detonated shaped charge is positioned against the front layer and said shaped charge produces a shock wave which is sufficiently large to generate sufficient electrical energy to disrupt the jet stream.
27. The active armor system of claim 24 wherein the second metallic layer is an exterior of a vehicle.
28. An active armor system comprising:
a first L-shaped member comprising a first metallic layer, a second metallic layer, a third layer comprised of a material selected from the group consisting of a piezoelectric material, an electrostrictive material and a magnetostructive material and having a first leg and a second leg and an outside corner and an inside corner between said first leg and said second leg;
a second L-shaped member comprising a first metallic layer, a second metallic layer, a third layer comprised of a material selected from the group consisting of a piezoelectric material, an electrostrictive material and a magnetostructive material and having a first leg and a second leg and an outside corner and an inside corner between said first leg and said second leg;
wherein the second L-shaped member is superimposed over the first L-shaped member such that the outside corner of the second L-shaped member abuts the inside corner of the first L-shaped member.
29. The active armor system of claim 26 wherein a plurality of additional L-shaped members each comprised of a first and second metallic layer and a third layer selected from the group consisting of a piezoelectric material, an electrostrictive material and a magnetostructive material are superimposed over the second L-shaped member.
30. The active armor system of claim 1 wherein the third layer is a piezoelectric material.
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to armaments and more particularly to reactive and active armor.

[0003] 2. Brief Description of Prior Developments

[0004] The prior art discloses various arrangements of active armor in which a medial layer is positioned between an outer and an inner armor layer with a medial explosive or nonexplosive layer which disrupts a shaped charge to prevent it penetration of the overall armor system.

[0005] U.S. Pat. No. 4,368,660, for example, discloses an arrangement in which an explosive charge is positioned between two armor layers. On detonation of the explosive, the armor layers are displaced from one another to disrupt the shaped charge jet.

[0006] U.S. Pat. No. 4,881,448 discloses an active armor arrangement consisting of two mutually parallel metal plates with an interior sheet of incompressible formaldehyde compound. Upon impact with a hollow jet explosive charge, the incompressible layer causes the outer metal sheets to push outwardly into the path of a hollow jet explosive charge.

[0007] U.S. Pat. No. 4,867,077 discloses an active armor in which explosive material is imbedded between layers of a resilient material which are contained between upper and lower rigid plates in a sandwich structure. A construction for application of active armor to a structure to be protected comprises a plurality of such packages, a plurality of projections attached to the structure and a plurality of holder each attachable to the other and running between adjacent projections. Each of the holders holds an edge of one of the packages so that each projection is thereby attached to at least one of the packages by the holder.

[0008] It has also been suggested that performance of active armor may be improved by providing a medial space between an outer and an inner armor layer and providing an electrical generator to create an electric or magnetic field in the space between the outer and inner armor layers. A disadvantage to such an arrangement might be that the necessity to add additional weight and space requirement in order to provide an electrical generator of sufficient capacity to provide the necessary parent supply might add undue weight and space requirements when such an armor is used on a mobile vehicle. A further disadvantage of such an arrangement might be that the effectiveness of such armor might be reduced or effectively lost in the event of a power failure during operations, or in the event that the generator was shut down during non-operational periods.

[0009] A need, therefore, exists for active armor in which an electrical or magnetic field may be provided in the space between an outer and inner armor layers which is not dependent on a necessity to be continually generating electrical power.

SUMMARY OF THE INVENTION

[0010] The present invention is an active armor system, which includes a first armor layer and a second armor layer. A space is interposed between the first and second armor layer. A third layer is also positioned preferably adjacent to and on the inner side of the first layer. This third layer is comprised of a material selected from a piezoelectric material, an electrostrictive material, and a magnetostrictive material. The third layer may also be characterized as any material capable of producing an electrical or magnetic field within the space in response to the application of mechanical force on this third layer. The application of force on the third layer as a result of the impacting of a shaped charge projectile on the first armor layer will result in the production of an electric or magnetic charge in the interior space which will disrupt the formation of the shaped charge gas jet so as to prevent the penetration of the second armor layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention is further described with reference to the accompanying drawing in which:

[0012]FIG. 1 is a vertical cross-sectional view of a preferred embodiment of the active armor system of the present invention;

[0013]FIG. 2 is a vertical cross-sectional view of another preferred embodiment of the active armor system of the present invention;

[0014]FIG. 3 is a vertical cross-sectional view of a third preferred embodiment of the active armor system of the present invention;

[0015]FIG. 4 is a vertical cross-sectional view of a fourth preferred embodiment of the active armor system of the present invention; and

[0016]FIG. 5 is another vertical cross-sectional view of the preferred embodiment of the present invention shown in FIG. 4.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0017] Referring to FIG. 1, the active armor system of the present invention is shown generally at numeral 10. This active armor system 10 includes a front armor layer 11 which would preferably consist of suitable steel alloy or some other ferromagnetic material. The front armor layer 11 has a front face 12 and a rear face 14. The conventional shaped charge projectile 15(which is not part of the invention) and against which this system is designed to protect travels in the direction of the arrow and would ordinarily be expected to impact against the front face 12 of the outer armor layer 11. Adjacent the front armor layer 11 there is an interior layer 16 which includes a front face 18 and a rear face 20. This front face 18 would abut the rear face 14 of the front armor layer 11. The interior layer 16 is comprised of a suitable piezoelectric, electrostrictive, or magnetostrictive material. If a magnetostrictive material is selected, it would preferably be Terfernol which has a formula of Th.sub0.27 Dy.sub0.73 Fe.sub2. Alternatively the magnetstrictive material may be a Terfernol-D alloy (“Doped” Terfernol) which has a formula of Tb.sub0.27.Dy.sub0 73 Fe.sub1.95 and which has an additive which is a Group III or Group IV element such as Si or Al. Inwardly adjacent the interior layer 16 there is an electrode 22 which has a front face 24 and a rear face 26. The front face 24 of electrode 22 would abut the rear face 20 of interior layer 16. Inwardly adjacent the rear face 26 of electrode 22 there is an interior air space 28. Alternatively, this air space 28 may be a vacuum space or may be a space filled with an inert gas. On the rear side of the armor system there is a rear armor layer 30 which has a front face 32 and a rear face 34. Armor layer 11 is electrically connected to solid state power converter 36 by line 38. Layer 26 is electrically connected to solid state power computer 36 by line 40. The front face 32 is adjacent the air space 38 and the rear face 34 is adjacent a space to be protected 44 as, for example, the interior compartment of a tank or armored personnel carrier.

[0018] In operation, when a shaped charge projectile as, for example, projectile 15 impacts the front face 12 of the front armor layer 11, the force of that impact is transmitted through the front armor layer 11 to the interior layer 16. An electrical charge is transmitted to the electrode 22 which produces an electrical field in the air space 28. The shaped charge of projectile 15 would be expected to form a gas jet (not shown). If this gas jet penetrates the outer armor layer10 as well as the interior layer 16 and the electrode 22, small, often molten, particles of the front armor layer 11 would enter the air space 28. Because, however, of the electrical field produced as a result of the application of mechanical force on the interior layer 16, the formation of the shaped charge gas jet is disrupted so that the rear armor layer 30 would not be penetrated.

[0019] Referring to FIG. 2, an embodiment is shown with a conductive plate 44 and a conductive plate 46 between which there is a piezoelectric material layer 48. An electrostrictive or magnetostrictive material may be substituted for the piezoelectric material in layer 48. There is an insulation layer 50. Line 52 extends from conductive layer 44 and line 54 extends from conductive layer 46 to a circuit including diodes 56, 58, 60 and 62. This circuit is connected by line 64 to a positive charge and by line 66 to a negative charge. Force vectors 70 which may impinge toward or away from conductive layer 44.

[0020] Referring to FIG. 3, another embodiment of active armor system of the present invention is shown in which there is a front piezoelectric plate 70. An electrostrictive material or magnetostrictive material may be substituted for the piezoelectric material in this plate 70. Between conductive plate 72 and conductive plate 74 an air space 76 is positioned. Conductive plate 74 may be the exterior of a vehicle to be protected. A detonating shaped charge 78 produces an aperture 80 in the exterior piezoelectric plate 70 and front conductive plate 72 to produce a jet stream 82 of gas and molten metal in the air space 76. The detonation of the shaped charge 78 causes the application of force vectors 83 and 84 on the exterior piezoelectric plate 70 which produces a positive charge on conductive plate 72 and a negative plate on conductive charge 84 so as to disrupt the jet stream 82 of gas and molten metal and prevent its penetration of conductive plate 74. A shock wave resulting from the detonation of the shaped charge 78 will move through the piezoelectric plate 70 at about 10,000 ft/sec (Vpp). The shaped charge jet stream 82 will move through the space 76 at about 30,000 ft/sec (Vjet). The available electrical energy will be proportional to Pi * (Vpp*t){circumflex over ( )}Z. It should be understood that the distance between the piezoelectric plate 70 and the conductive plate 74 will be large enough to allow the shock wave to cover an area big enough to generate sufficient electrical energy to disrupt the jet stream 82.

[0021] Referring to FIG. 4, in another embodiment of the active armor of the present invention there are a plurality of cells as in cell 85 which is comprised of a conductive front plate 86, a conductive rear plate 88 and a medial piezoelectric plate 90 and an insulator 92. There are also a plurality of other such vertically oriented cells 94, 96 and 98. There are also a plurality of horizontal cells 100, 102, 104 and 106. These vertical and horizontal cells together form a plurality of L-shaped members as in member 108 which has an interior corner 110, an exterior corner 112, a vertical leg 114 and a horizontal leg 116. There are also a plurality of other L-shaped members 118, 120 and 122. L-shaped member 118 is superimposed over L-shaped member 108 such that the exterior of L-shaped member 118 is adjacent to the interior corner of L-shaped member 108. L-shaped member 120 is superimposed over L-shaped member 118 in a similar way and L-shaped member 122 is positioned in a superimposed relation over L-shaped member 120 in a similar way. It would be appreciated that a force in any direction as at force vectors 124, 126, 128, 130, 132, 134, 136 or 138 will cause current to be generated.

[0022] Referring to FIG. 5, an arrangement is shown in which there is a lower stack 140 of L-shaped member such as L-shaped member 142, 144 and 146. There is also an upper stack 148 of L-shaped members as at L-shaped member 150, 152 and 154.

[0023] It will be appreciated that an active armor layer making use of an electrical or magnetic field in an interior air space has been described in which such field can be established without the necessity of an onboard generator.

[0024] While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7509903 *Jul 27, 2005Mar 31, 2009Raytheon CompanySeparable structure material
US7661350Mar 2, 2006Feb 16, 2010Tda Armenents SasModule structure for electrical armour plating
US7730823 *Jan 17, 2006Jun 8, 2010Cedar Ridge Research LlcMagnetic damping field armor system and method
US7819048Nov 20, 2008Oct 26, 2010Raytheon CompanySeparable structure material method
US7819050 *Aug 11, 2006Oct 26, 2010General AtomicsActive armor system
US7946211 *Jun 25, 2008May 24, 2011The United States Of America As Represented By The Secretary Of The NavyElectrical and elastomeric disruption of high-velocity projectiles
US8006607 *May 4, 2006Aug 30, 2011Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Protective module using electric current to protect objects against threats, especially from shaped charges
US8069771Sep 27, 2010Dec 6, 2011General AtomicsActive armor systems
US8074554 *May 4, 2011Dec 13, 2011General AtomicsActive armor systems
US8166863 *Jun 3, 2010May 1, 2012Cedar Ridge Research LlcMagnetic damping field armor system
US8359965 *Sep 17, 2007Jan 29, 2013Oxford J CraigApparatus and method for broad spectrum radiation attenuation
US20090071322 *Sep 17, 2007Mar 19, 2009Oxford J CraigApparatus and method for broad spectrum radiation attenuation
US20130213210 *Jul 5, 2011Aug 22, 2013Geke Schutztechnik GmbhReactive protection arrangement
EP1698850A1 *Feb 28, 2006Sep 6, 2006Tda Armements S.A.S.Structure of a module for an electric armour
Classifications
U.S. Classification89/36.17
International ClassificationF41H5/007
Cooperative ClassificationF41H5/007
European ClassificationF41H5/007
Legal Events
DateCodeEventDescription
May 3, 2012FPAYFee payment
Year of fee payment: 8
May 3, 2012SULPSurcharge for late payment
Year of fee payment: 7
Feb 20, 2012REMIMaintenance fee reminder mailed
Jan 14, 2008REMIMaintenance fee reminder mailed
Jan 7, 2008FPAYFee payment
Year of fee payment: 4
Mar 31, 2003ASAssignment
Owner name: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZANK, PAUL A.;REEL/FRAME:013531/0210
Effective date: 20030221
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZANK, PAUL A. /AR;REEL/FRAME:013531/0210
Owner name: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZANK, PAUL A. /AR;REEL/FRAME:013531/0210
Effective date: 20030221