Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040130263 A1
Publication typeApplication
Application numberUS 10/336,568
Publication dateJul 8, 2004
Filing dateJan 2, 2003
Priority dateJan 2, 2003
Also published asUS6967117, US20040259281
Publication number10336568, 336568, US 2004/0130263 A1, US 2004/130263 A1, US 20040130263 A1, US 20040130263A1, US 2004130263 A1, US 2004130263A1, US-A1-20040130263, US-A1-2004130263, US2004/0130263A1, US2004/130263A1, US20040130263 A1, US20040130263A1, US2004130263 A1, US2004130263A1
InventorsRay-Hua Horng, Tung-Hsing Wu, Shao-Hua Huang
Original AssigneeRay-Hua Horng, Tung-Hsing Wu, Shao-Hua Huang
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High brightness led and method for producing the same
US 20040130263 A1
Abstract
The present invention discloses a high brightness LED (light emitting diode) and a method for producing the same. The LED of the present invention primarily includes a permanent substrate, LED epitaxial layers with a p-n or n-p junction structure, a layered structure formed between the permanent substrate and the LED epitaxial layers, a first electrode and a second electrode. The layered structure may include single layer, two layers or three layers. For the three layers structure, a reflective layer, a diffusion barrier and a buffer layer are usually included. These layers may be electrically conductive and formed by one or more thin films. Accordingly, the LED of the present invention can exhibit high brightness and excellent mechanical strength during manufacturing.
Images(8)
Previous page
Next page
Claims(20)
What is claimed is:
1. A high brightness LED (light emitting diode), comprising:
a permanent substrate;
LED epitaxial layers with p-n or n-p junction;
a layered structure formed between said permanent substrate and said LED epitaxial layers, and having properties of reflection, adhesion, diffusion barrier and buffer;
a first electrode and a second electrode formed on proper positions to provide enough energy for said LED epitaxial layers.
2. The high brightness LED as claimed in claim 1, further comprising a using-for-epitaxy substrate on said LED epitaxial layers.
3. The high brightness LED as claimed in claim 1, wherein said layered structure comprises single layer.
4. The high brightness LED as claimed in claim 1, wherein said layered structure comprises two layers.
5. The high brightness LED as claimed in claim 1, wherein said layered structure comprises a reflective layer, a buffer layer and a diffusion barrier.
6. The high brightness LED as claimed in claim 5, wherein said diffusion barrier is adjacent to said permanent substrate, said buffer layer is adjacent to said LED epitaxial layers, said reflective layer is formed between said diffusion barrier and said reflective layer, and said buffer layer is transparent.
7. The high brightness LED as claimed in claim 5, wherein said buffer layer is adjacent to said permanent substrate, said diffusion barrier is adjacent to said LED epitaxial layers, said reflective layer is formed between said buffer layer and said diffusion barrier, and said diffusion barrier is transparent.
8. The high brightness LED as claimed in claim 5, wherein said buffer layer is adjacent to said permanent substrate, said reflective layer is adjacent to said LED epitaxial layers, and said diffusion barrier is formed between said buffer layer and said reflective layer.
9. The high brightness LED as claimed in claim 5, wherein said reflective layer is adjacent to said permanent substrate, said buffer layer is adjacent to said LED epitaxial layers, said diffusion barrier is formed between said buffer layer and said reflective layer, and both said diffusion barrier and said buffer layer are transparent.
10. The high brightness LED as claimed in claim 5, wherein said diffusion barrier is adjacent to said permanent substrate, said reflective layer is adjacent to said LED epitaxial layers, and said buffer layer is formed between said diffusion barrier and said reflective layer.
11. The high brightness LED as claimed in claim 5, wherein said reflective layer is adjacent to said permanent substrate, said diffusion barrier is adjacent to said LED epitaxial layers, said buffer layer is formed between said buffer layer and said reflective layer, and both said diffusion barrier and said buffer layer are transparent.
12. The high brightness LED as claimed in claim 5, wherein at least one of said diffusion barrier, said buffer layer and said reflective layer is electrically conductive.
13. The high brightness LED as claimed in claim 5, wherein said buffer layer has a thermal expansion coefficient larger than both of said using-for-epitaxy substrate and said permanent substrate.
14. The high brightness LED as claimed in claim 5, wherein said buffer layer has a thermal expansion coefficient less than both of said using-for-epitaxy substrate and said permanent substrate.
15. A method for producing a high brightness LED, comprising steps of:
a) providing a temporary substrate for epitaxy;
b) forming LED epitaxial layers on said temporary substrate, wherein said LED epitaxial layers with pn junction;
c) providing a permanent substrate;
d) forming a layered structure between said permanent substrate and said LED epitaxial layers, wherein said layered structure has properties of reflection, adhesion, diffusion barrier and buffer; and
e) forming a first electrode and a second electrode on proper position to supply enough energy for said LED epitaxial layers.
16. The method as claimed in claim 15, wherein said layered structure comprises a buffer layer, a reflective layer and a diffusion barrier (in said step d).
17. The method as claimed in claim 16, wherein said buffer layer, said reflective layer and said diffusion barrier are formed by deposition.
18. The method as claimed in claim 16, wherein said buffer layer and said reflective layer are sequentially formed on said LED epitaxial layers, and said diffusion barrier is formed on said permanent substrate, and then said LED epitaxial layers and said permanent substrate are associated by wafer bonding technology.
19. The method as claimed in claim 16, wherein said reflective layer is formed on said LED epitaxial layers, and said buffer layer and said diffusion barrier are sequentially formed on said permanent substrate, and then said LED epitaxial layers and said permanent substrate are associated by wafer bonding technology.
20. The method as claimed in claim 16, wherein said diffusion barrier, said buffer layer and said reflective layer are sequentially formed on said permanent substrate, and then said LED epitaxial layers and said permanent substrate are associated by wafer bonding technology.
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to an LED (light emitting diode) and a method for producing the same, and more particularly to a high brightness LED and a method for producing the same, in which excellent mechanical strength for manufacturing can be exhibited.

[0003] 2. Related Prior Art

[0004] Currently, how to promote the brightness or illuminence is a significant issue for developing LED (light emitting diode). Therefore, many studies and developments are being made by researchers and industries.

[0005] As one of the most useful substrates for manufacturing LED, GaAs is still not satisfying enough in emitting efficiency, because partial wavelength will be absorbed. R.O.C. Pat. No. 385557, 391067 and 332344 mentioned solutions of this problem by forming epitaxial films with functions of conduction or reflection on the substrate. However, such design is still not satisfying for achieving high brightness.

[0006] U.S. Pat. No. 5,376,580 mentioned another solution, in which the GaAs substrate is removed after a transparent GaP substrate is bonded to the LED epitaxial layers formed on the GaAs substrate. In this method, an epitaxial layer of 60-70 μm needs to be processed, and the alignment with crystal axes of the GaP substrates is difficult during the wafer bonding process. On the other hand, the thermal treatment for a long time may influence luminous effect of the LED with p-n or n-p junction.

[0007] R.O.C. Pat. No. 415116 also provided a structure, in which a reflective layer and an adhesion layer are formed between the LED epitaxial layers and the conductive substrate. While such design facilitates brightness of the LED, the following problems exist:

[0008] 1) The substrate tends to be damaged caused by thermal stress due to different heat transfer coefficients and different thermal expansion coefficients between the layers. For example, the heat transfer coefficient of silicon triples that of GaAs, but the thermal expansion coefficient of silicon is less than that of GaAs (Si: 2.6×10−6/K, GaAs: 5.7×10−6/K). Therefore, the Si substrate or GaAs or both may be broken during thermal process.

[0009] 2) Reflectivity of the reflective layer or characteristic of the light emitting diode may regress because of mutual diffusion between the layers and the substrate.

[0010] Therefore, it is desirable to provide an improved LED structure to mitigate and/or obviate the aforementioned problems.

SUMMARY OF THE INVENTION

[0011] An object of the present invention is to provide a high brightness LED and a method for producing the same, so that mechanical strength of wafers can be improved and the productivity is thus promoted.

[0012] The LED of the present invention primarily includes a permanent substrate, LED epitaxial layers with pn junction, a layered structure formed between the permanent substrate and the LED epitaxial layers, a first electrode and a second electrode; wherein the layered structure possesses properties of reflection, adhesion, diffusion barrier and buffer. The layered structure can include single layer, two layers or three layers, where in the three layers usually includes a reflective layer, a diffusion barrier layer and a buffer layer. These layers may be electrically conductive. The first electrode and the second electrode are respectively formed on proper position to supply enough energy for the LED epitaxial layers.

[0013] The buffer layer, the reflective layer and the diffusion barrier aforementioned can be formed in an arbitrarily order, but the layer formed between the reflective layer and the LED epitaxial layers must be transparent.

[0014] The diffusion barrier can be made by Pt, Ti or a nitride containing transition metals, for example, Ti, Ta, (Ti, Ta, W)—N, (Ti, Ta, W)—Si—N, (Ti, Ta, W)—B—N, and mixtures thereof with the function of diffusion barrier. The reflective layer can be made by material containing In, Sn, Al, Au, Pt, Pd, Zn, Ag, Ge, Ni, Au—Zn, Au—Be, Au—Ge, Au—Ge—Ni, etc., or mixtures thereof with the function of reflection. The buffer layer can be made by conductive metal oxides, for example, In2O3(Sn), SnO2(Sb), SnO2(F), Zn2O3(Al), ZnO(Al), ZnO(In), ZnO(Ga), RuO2, IrO2, NiO, Bi2O3, MoO3, Cd2SnO4, Cd2SnO3, super conductive oxides, and mixture thereof which have a function of buffering from stress. The aforementioned LED epitaxial layers can further include a using-for-epitaxy substrate thereon, for example, a GaAs substrate. The thermal expansion coefficient of the buffer layer should be larger than the maximum of the using-for-epitaxy substrate and the permanent substrate, or less than the minimum of the using-for-epitaxy substrate and the permanent substrate.

[0015] The first electrode and the second electrode can be formed on positions referring to current LED structures.

[0016] The method for producing the high brightness LED primarily includes step of: a) providing a temporary substrate for epitaxy; b) forming LED epitaxial layers on the temporary substrate, wherein the LED epitaxial layers with pn junction; c) providing a permanent substrate; d) forming a layered structure between the permanent substrate and the LED epitaxial layers, wherein the layered structure has properties of reflection, adhesion, diffusion barrier and buffer; and e) forming a first electrode and a second electrode on proper position to supply enough energy for the LED epitaxial layers.

[0017] In the above step d), the layered structure can include a reflective layer, a diffusion barrier and a buffer layer, which can be formed on one or both of the LED epitaxial layers and the permanent substrate in an arbitrary order, and then the epitaxial layers and the permanent substrate are associated by wafer bonding. For example, (1) after the buffer layer and the reflective layer are formed on the LED epitaxial layers, and the diffusion barrier is formed on the permanent substrate, the two parts are associated by wafer bonding; (2) after the reflective layer is formed on the LED epitaxial layers, and the buffer layer and the diffusion barrier are sequentially formed on the permanent substrate, the two parts are associated by wafer bonding; (3) after the diffusion barrier, the buffer layer and the reflective layer are sequentially formed on the permanent substrate, the two parts are associated by wafer bonding.

[0018] More detailed description about the present invention will be present in the following embodiments accompanying with drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019]FIG. 1 shows the epitaxial layer with multiple cladding layers;

[0020] FIGS. 2A-2D show the process in accordance with the first embodiment of the present invention;

[0021] FIGS. 3A-3D show the process in accordance with the second embodiment of the present invention;

[0022] FIGS. 4A-4C show the process in accordance with the third embodiment of the present invention;

[0023] FIGS. 5-7 show the other three structures of the LED in accordance with the present invention; and

[0024]FIGS. 8A and 8B show different arrangements of the electrodes in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] Referring to FIG. 1, epitaxial layers with multiple cladding layers formed on a GaAs temporary substrate 10 used for epitaxy is provided.

[0026] The first layer is a GaInP epitaxial layer 11, and the second layer is n+GaAs epitaxial layer 12. LED epitaxial layers 13 are formed on the n+GaAs epitaxial layer 12. The LED epitaxial layers 13 has a p-n or n-p structure, and can be II-IV or III-V metals with the direct-bandgap, for example, ZnSe, AlGaInP or GaN.

[0027] Next, a buffer layer 21, a reflective layer 22 and a diffusion barrier 23 are formed between the conductive permanent substrate 20 and the LED epitaxial layers 13. The buffer layer 21, the reflective layer 22 and the diffusion barrier 23 can be arranged in an arbitrary order, and individually including one or more films. Particularly, the film placed between the reflective layer 22 and the LED epitaxial layers 13 must be transparent. These three layers can be preliminarily deposited on one or both of the LED epitaxial layers 13 and the permanent substrate 20, and finally be associated by wafer bonding. Three common embodiments are described as follows.

[0028] Referring to FIGS. 2A and 2B, the buffer layer 21 and the reflective layer 22 are sequentially deposited and coated on the LED epitaxial layers 13 to form a multi-layer structure 021, and the diffusion barrier 23 is deposited on the permanent substrate 20 to form another multi-layer structure 022. Then, the multi-layer structure 021 is flipped and bonded to another multi-layer structure 022, as shown in FIG. 2C. Next, the temporary substrate 10 and the first layer (GaInP epitaxial layer) 11 are removed by etching, and stopping at the n+GaAs epitaxial layer 12 to obtain an LED 023 with the reflective layer and the conductive substrate as shown in FIG. 2D. In this embodiment, the buffer layer 21, the reflective layer 22 and the diffusion barrier 23 can be formed by physical deposition, for example, sputtering, e-beam, and thermal deposition.

[0029] The buffer layer 21, the reflective layer 22 and the diffusion barrier 23 of this embodiment are all electrically conductive, and the one adjacent to the LED epitaxial layers or the permanent substrate must have property of ohmic contact. The buffer layer 21 can be made from conductive metal oxides, for example, In2O3(Sn), SnO2(Sb), SnO2(F), Zn2O3(Al), ZnO(Al), ZnO(In), ZnO(Ga), RuO2, IrO2, NiO, Bi2O3, MoO3, Cd2SnO4, Cd2SnO3, super conductive oxides, and mixture thereof. It should be also noted that the thermal expansion coefficient of the buffer layer 21 requires to be either larger than those of both the using-for-epitaxy temporary substrate and the permanent substrate 20, or less than those of them both. In this embodiment, the using-for-epitaxy temporary substrate 10 is GaAs with a thermal expansion coefficient 5.7×10−6/K, and the permanent substrate 20 is silicon with a thermal expansion coefficient 2.6×10−6. That is, the buffer layer 21 has to have a thermal expansion coefficient larger than 5.7×10−6 or less than 2.6−10−6.

[0030] The reflective layer 22 in this embodiment is made from Au and Au—Be. Other material such as In, Sn, Al, Pt, Pd, Zn, Ag, Ge, Ni, Au—Zn, Au—Ge, Au—Ge—Ni, etc., or mixtures thereof with the function of reflection can be used, too.

[0031] The diffusion barrier 23 in this embodiment is made form Pt and Ti. Other material containing Ti, Ta, (Ti, Ta, W)—N, (Ti, Ta, W)—Si—N, (Ti, Ta, W)—B—N, and mixtures thereof with the function of diffusion barrier can be used, too.

[0032]FIGS. 3A, 3B, 3C and 3D show the second embodiment in accordance with the present invention. The reflective layer 22 is coated on the LED epitaxial layers 13 to form a multi-layer structure 031, and the buffer layer 21 and the diffusion barrier 23 are sequentially deposited on the permanent substrate 20 to form another multi-layer structure 032. Then the multi-layer structure 031 is flipped and bonded to another multi-layer structure 032, as shown in FIG. 3C. Next, the temporary substrate 10 and the first layer (GaInP epitaxial layer) 11 are removed by etching, and stopping at the n+GaAs epitaxial layer 12 to obtain an LED 033 with the reflective layer and the conductive substrate as shown in FIG. 3D.

[0033]FIGS. 4A, 4B and 4C show another embodiment, in which the diffusion barrier 23, the buffer layer 21 and the reflective layer 22 are sequentially deposited and coated on the permanent substrate 20 to form a multi-layer structure 042. Then the multi-layer structure 041 including the temporary substrate 10 and the epitaxial layers 1112 and 13 is flipped, and bonded to the above multi-layer structure 042. Next, the temporary substrate 10 and the first layer (GaInP epitaxial layer) 11 are removed by etching, and stopping at the n+GaAs epitaxial layer 12 as shown in FIG. 4C.

[0034] FIGS. 5-7 show different arrangement of the buffer layer 21, the reflective layer 22 and the diffusion barrier 23, wherein the technologies including physical deposition, wafer bonding, and etching are applied, too.

[0035]FIGS. 8A and 8B show two styles for forming electrodes. In FIG. 8A, a transparent electrode 51 is formed on the n+GaAs epitaxial layer 12, and then a first electrode 52 used for local wire bonding is formed on the transparent electrode 51. A second electrode 53 is formed on backside of the conductive permanent substrate 20. Certainly, the first electrode 52 can be directly formed on the n+GaAs epitaxial layer 12. The top surface of the first electrode 51 or the n+GaAs epitaxial layer 12 can be further shaped into a rough surface by dry etching so as to improve the refractive effect of the light source.

[0036] In FIG. 8B, most of the n+GaAs epitaxial layer 12 are etched, and the first electrode 52 is formed on the remained epitaxial layer 12. Next, the exposed LED epitaxial layers 13 are etched to expose partial reflective layer 22, on which the second electrode 53 is then formed. The second electrode can be also formed on backside of the permanent substrate 20.

[0037] According to the above embodiments, the LED of the present invention possesses the following advantages:

[0038] 1. No damage occurs on the epitaxial layers during wafer bonding, since the wafers are all thick enough, and therefore the yield of mass product can be increased.

[0039] 2. The GaAs temporary epitaxial layer can be selectively removed, which promotes the emitting efficiency of the LED

[0040] 3. The reflective layer facilitates light beams to emit from the front surface, which effectively increases brightness of the LED.

[0041] 4. The buffer layer prevents the wafers from damage caused by different heat transfer coefficients and thermal expansion coefficients.

[0042] 5. The diffusion barrier blocks the thermal diffusion of elements between layers during wafer bonding, so that characteristics and quality of the LED can be maintained.

[0043] 6. The rough electrode surface may cause the light beams to be repeatedly refracted, and brightness of the LED can be enhanced.

[0044] 7. The vertical LED (two electrodes are respectively arranged over the LED epitaxial layers and backside of the permanent substrate) may efficiently utilize the LED surfaces and increase productivity thereof.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7074631Mar 5, 2004Jul 11, 2006Luminus Devices, Inc.Light emitting device methods
US7083993Nov 26, 2003Aug 1, 2006Luminus Devices, Inc.Methods of making multi-layer light emitting devices
US7084434Nov 26, 2003Aug 1, 2006Luminus Devices, Inc.Uniform color phosphor-coated light-emitting diode
US7098589Nov 26, 2003Aug 29, 2006Luminus Devices, Inc.Light emitting devices with high light collimation
US7105861Jun 18, 2004Sep 12, 2006Luminus Devices, Inc.Electronic device contact structures
US7138666Sep 27, 2004Nov 21, 2006Luminus Devices, Inc.Light emitting devices
US7166870Nov 19, 2004Jan 23, 2007Luminus Devices, Inc.Light emitting devices with improved extraction efficiency
US7274043Jun 18, 2004Sep 25, 2007Luminus Devices, Inc.Light emitting diode systems
US7301271Feb 7, 2005Nov 27, 2007Luminus Devices, Inc.Light-emitting devices with high light collimation
US7341880Jul 22, 2004Mar 11, 2008Luminus Devices, Inc.Light emitting device processes
US7345416Feb 7, 2005Mar 18, 2008Luminus Devices, Inc.Patterned light emitting devices
US7417367May 18, 2005Aug 26, 2008Luminus Devices, Inc.Patterned light emitting devices
US7450311Jun 18, 2004Nov 11, 2008Luminus Devices, Inc.Optical display systems and methods
US7459845Feb 7, 2005Dec 2, 2008Luminus Devices, Inc.Light emitting devices
US7482640Feb 9, 2006Jan 27, 2009Luminus Devices, Inc.Electronic device contact structures
US7495260Sep 14, 2006Feb 24, 2009Luminus Devices, Inc.Light emitting devices
US7504669Jul 13, 2007Mar 17, 2009Luminus Devices, Inc.Light emitting devices
US7521854Nov 26, 2003Apr 21, 2009Luminus Devices, Inc.Patterned light emitting devices and extraction efficiencies related to the same
US7667238Aug 23, 2005Feb 23, 2010Luminus Devices, Inc.Light emitting devices for liquid crystal displays
US7719019Apr 22, 2006May 18, 2010Luminus Devices, Inc.Light emitting devices
US7733007Jul 15, 2008Jun 8, 2010Luminus Devices, Inc.Patterned light emitting devices
US7737450Feb 8, 2006Jun 15, 2010Luminus Devices, Inc.Light emitting diode systems
US7763903 *Sep 16, 2005Jul 27, 2010Panasonic CorporationSemiconductor light emitting element and method for fabricating the same
US7915679Sep 27, 2004Mar 29, 2011Luminus Devices, Inc.Light-emitting devices including a nonperiodic pattern
US8072134Nov 26, 2007Dec 6, 2011Luminus Devices, Inc.Light-emitting devices
US8217415Jan 21, 2009Jul 10, 2012Luminus Devices, Inc.Electronic device contact structures
US8405298Nov 2, 2011Mar 26, 2013Luminus Devices, Inc.Large emission area light-emitting devices
US8643266 *Sep 24, 2009Feb 4, 2014Luminus Devices, Inc.Light-emitting device including independently electrically addressable sections
US20100219767 *Sep 24, 2009Sep 2, 2010Luminus Devices, Inc.Light-emitting device including independently electrically addressable sections
US20100307588 *May 27, 2010Dec 9, 2010Lee Jung-HyunSolar cell structures
CN101714600BNov 16, 2009May 25, 2011厦门市三安光电科技有限公司Inversed AlGaInP based light-emitting diode and manufacturing method thereof
DE102010020211A1 *May 12, 2010Nov 10, 2011Osram Opto Semiconductors GmbhTräger für ein optoelektronisches Bauelement, optoelektronische Vorrichtung mit einem Träger und Verfahren zur Herstellung eines Trägers für ein optoelektronisches Bauelement
Classifications
U.S. Classification313/506, 257/E33.068
International ClassificationH01J1/62, H01L21/00, H05B33/00, H01L33/00, H01L33/46
Cooperative ClassificationH01L33/0079, H01L33/46
European ClassificationH01L33/00G3D, H01L33/46
Legal Events
DateCodeEventDescription
Jan 2, 2003ASAssignment
Owner name: NATIONAL CHUNG-HSING UNIVERSITY, TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORNG, RAY-HUA;WU, TUNG-HSING;HUANG, SHAO-HUA;REEL/FRAME:013640/0932
Effective date: 20021225