US20040132800A1 - N-(2-arylethyl) benzylamines as antagonists of the 5-ht6 receptor - Google Patents

N-(2-arylethyl) benzylamines as antagonists of the 5-ht6 receptor Download PDF

Info

Publication number
US20040132800A1
US20040132800A1 US10/472,741 US47274104A US2004132800A1 US 20040132800 A1 US20040132800 A1 US 20040132800A1 US 47274104 A US47274104 A US 47274104A US 2004132800 A1 US2004132800 A1 US 2004132800A1
Authority
US
United States
Prior art keywords
group
hydrogen
methyl
compound
lower alkyls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/472,741
Other versions
US7157488B2 (en
US20060009511A9 (en
Inventor
Zhaogen Chen
Michael Cohen
Matthew Fisher
Bruno Giethlen
James Gillig
Jefferson McCowan
Shawn Miller
John Schaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/472,741 priority Critical patent/US7157488B2/en
Publication of US20040132800A1 publication Critical patent/US20040132800A1/en
Publication of US20060009511A9 publication Critical patent/US20060009511A9/en
Priority to US11/608,922 priority patent/US20070099909A1/en
Application granted granted Critical
Publication of US7157488B2 publication Critical patent/US7157488B2/en
Priority to US12/504,242 priority patent/US8044090B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/52Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/60Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms linked by carbon chains having two carbon atoms between the amino groups and the six-membered aromatic ring or the condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated
    • C07C225/16Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/37Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/32Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C317/34Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/32Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to an acyclic carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • C07D209/16Tryptamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/65One oxygen atom attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D233/24Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/34One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/34Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring

Definitions

  • the present invention relates to the synthesis of novel ligands selective for a subgroup of receptors for serotonin (5-HT). While there are seven subgroups of 5-HT receptors, this invention is selective for the 5-HT 6 subgroup. This invention also relates to the synthesis of novel ligands selective for the 5-HT 6 subgroup receptor that act as agonists to the natural ligands for this receptor. The invention also relates to the creation of novel ligands that act as antagonists to the 5-HT 6 receptor. The invention further relates to use of said compounds to treat mammals adversely affected by conditions mediated by the 5-HT 6 receptor.
  • Serotonin receptors have been divided into a number of families and subfamilies (5-HT 1 -5-HT 7 ) and approximately 14 populations have been cloned.
  • One of the newest populations identified is the 5-HT 6 subgroup.
  • various tricyclic psychotropic agents neutrals, antidepressants, and atypical neuroleptics agents
  • a rat 5-HT 6 receptor was first cloned in 1993 and, more recently, the same group described the cloning of a human 5-HT 6 receptor.
  • the 5-HT 6 serotonin receptors are members of the G-protein superfamily, are positively coupled to an adenylate cyclase second messenger system, and are found primarily in the central nervous system. Serotonin bound to the 5-HT 6 receptor subgroup causes an activation of the adenylate cyclase enzyme, with concomitant increased levels of intracellular cAMP. Although the exact physiological function and clinical significance of the 5-HT 6 receptor subgroup is not known, as noted above, many anti-psychotic agents bind these receptors with high affinity. Also, in rats that do not express 5-HT 6 receptors, the animals behave in a manner that seems to involve an increase in cholinergic function, suggesting that 5-HT 6 specific ligands might be of value in the treatment of anxiety-related disorders and memory deficits.
  • ligands may act as agonists or antagonists to endogenous receptor-ligand function.
  • 5-HT 6 receptor several specific ligands have been discovered which act as 5-HT 6 specific antagonists, but prior to the present invention, selective ligands which act as agonists to the 5-HT 6 receptor were unknown.
  • a 2-methyl analog of 5-methoxytryptamine binds to the 5-HT 6 receptor with an affinity comparable to 2-methyl-5-HT.
  • 5-methoxy-2-methyltryptamine lacks affinity for 5-HT 3 receptors.
  • 5-methoxy -2-methyltryptamine presents a ligand with specificity for the 5-HT 6 receptor subgroup.
  • the 5-methoxy-2-methyltryptamine compound has been modified and several of its alkyl derivatives bind with comparable affinity and activate adenylate cyclase activity at levels comparable to serotonin.
  • one derivative, 5-methoxy-2-phenylotryptamine binds to the 5-HT 6 receptor with a high affinity but the phenyl addition renders the compound an antagonist to 5-HT stimulated adenylate cyclase activity.
  • FIG. 1 is a graph showing the adenylate cyclase activity observed with several compounds of the invention.
  • the invention provides novel tryptamine derivative compounds with selectivity for the 5-HT 6 receptor subgroup.
  • an agent is termed selective when it displays an affinity for 5-HT 6 receptors that is tenfold higher than affinities it displays for other related receptor populations.
  • the invention further provides a method using said compounds to receptor subtype 5-HT 6 as agonists, or as antagonists to serotonin.
  • the compounds of the invention can be used either as the free base or as the pharmaceutically acceptable acid-addition salt form, for example, hydrochloride, hydrobromide, tartrate, and maleate. They may be used in oral or injectable pharmaceutical preparations as prophylactic and acute-phase remedies for the relief and reversal of serotonin-regulated symptoms. They may be used alone or in combination with each other or other known medications. Finally, said compounds may be used as above for determining 5-HT 6 receptor function.
  • Serotonin (5-hydroxy tryptamine, or 5-HT) is a product of tryptophan metabolism and is a tryptamine derivative that is a potent neurotransmitter. Serotonin is a well-characterized tryptamine derivative which regulates calcium ion channels on the surface of nerve and muscle cells. Many mental disorders in humans are associated with fluctuations in serotonin levels and are effectively treated with drugs which specifically interact with serotonin receptors or that block the reuptake of serotonin into the presynaptic axon terminals, suggesting that serotonin dysregulation may be involved in various mental disorders. Some serotonin receptor ligands and are clinically approved as drugs for the treatment of migraine headaches, depression, high blood pressure, and psychosis.
  • tryptamine derivatives are non-selective and bind at multiple 5-HT receptor subgroups.
  • Serotonin is no exception and binds at the various subfamilies of the 5-HT receptor, including the 5-HT 6 subgroup where it is a potent activator of adenylate cyclase enzyme activity.
  • Serotonin has the chemical formula:
  • the 5-HT 6 -selective ligand 2-methyl-5-methoxytryptamine contains a primary amine, presenting an obstacle to the compound crossing the blood brain barrier and also rendering the compound vulnerable to rapid metabolism due to oxidative deamination.
  • R 3 H, OH, OCH 3 , or a substituted or unsubstituted alkyl
  • R 4 H, CH 2 -phenyl, SO 2 -phenyl, or CH 2 as part of a substituted or unsubstituted alkyl ring connecting R 4 and R 5 ,
  • R 5 H, CH 3 , or CH 2 as part of a substituted or unsubstituted alkyl ring connecting R 5 with either R 4 or R 6 ,
  • R 6 H, CH 3 , or CH 2 as part of a substituted or unsubstituted alkyl ring connecting R 6 and R 5 .
  • the compounds of the invention and the pharmaceutically acceptable salts of the compounds of the invention can be used in the form of pharmaceutical preparations.
  • the preparations can be administered orally, for example in the form of tablets, coated tablets, dragees, hard and soft gelatin capsules, solutions, emulsions or suspensions.
  • the administration can be effected rectally, for example in the form of suppositories, or parenterally, for example in the form of injection solutions.
  • the compounds of the invention can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical and research preparations.
  • the preparations can contain preservatives, solubilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • the compounds of the present invention can also be radiolabelled and used to identify other 5-HT 6 ligands using techniques common in the art. This can be achieved by incubating the receptor in the presence of a ligand candidate plus an equimolar amount of radiolabelled compound of the invention. Ligands selective for 5-HT 6 are then revealed as those that are not significantly displaced by the compounds of the present invention.
  • Another embodiment of the invention can be the administration of the compounds of the invention to animals in drug discrimination assays.
  • animals usually rats
  • animals can be trained to recognize the effects of a given agent. Once trained, these animals can be used in tests of stimulus generalization to identify other agents that produce similar effects (i.e., agonists), or the animals can be used in tests of stimulus antagonism to identify agents that block or antagonize (i.e., antagonists) the effects of the training drug.
  • the procedure can be used to identify agonists that produce an effect common to the training drug, more antagonists that can block the effects of the training drug.
  • the animals can be used to identify other 5-HT 6 agonists and to identify 5-HT 6 -antagonists.
  • R 2 is selected from the group consisting of small alkyls (e.g., methyl, ethyl, n-propryl) aryl (e.g. phenyl) and arylalkyls.
  • R 1 is selected from the group consisting of lower alkyls such as ethyl and propyl, methyl and hydrogen, and can be the same or different at each location, and R 4 is from the group comprising H, CH 2 -phenyl, or SO 2 -phenyl.
  • X is selected from the group consisting of oxygen or 2H and R 1 is H or lower alkyls such as methyl, ethyl, or propyl.
  • Compound F is known and was prepared according to the following patent procedure: 4-aminomethyl-9-benzyl-1,2,3,4-tetrahydrocarbazoles, U.S. Pat. No. 3,939,177, Feb 17, 1976.
  • the oil was purified by column chromatography (CHCL 3 /MeOH; 9:1) and converted to an oxalate salt.
  • the salt was recrystallized from anhydrous Et 2 O/absolute EtOH to give 1.8 g of the desired target as a white powder.
  • the binding assay employed human 5-HT 6 stably transfected to HEK 293 human embryonic kidney cells with [ 3 H] lysergic acid diethylamide (70 Ci/mmol; Dupont NEN) as radioligand.
  • Radioligand was diluted in incubation buffer in borosilicate glass vials and protected from light. Competing agents (1 mM stock solution) were dissolved in DMSO or saline and stored at ⁇ 20 0 C. Dilutions of compounds were made using incubation buffer in 96-well plates and mixed by multichannel pipetting. Serial dilutions (1 in 4) started at a final concentration of 10,000 nM. Final concentrations >10,000 nM were individually prepared from the 1 mM stock solution.
  • Nonspecific binding was defined by 100 mM serotonin creatinine sulfate (Research Biochemicals) prepared fresh in incubation buffer at the time of each determination, and protected from light. in incubation buffer at the time of each determination, and protected from light. Reaction volumes were as follows: 200 ml incubation buffer (50 mM tris, 0.5 mM EDTA, 10 mM MgCl 2 ), pH 7.4 at 22 0 C, 100 ml test agent or serotonin (100 mM) or buffer, 100 ml [3H]lysergic acid diethylamide (2 nM final concentration) and 100 ml membrane preparation (15 mg protein).
  • the incubation was initiated by the addition of membrane homogenate and the plates vortexed. The plates were incubated, with protection from light, by shaking at 37 0 C for 60 min. The binding reaction was stopped by filtration. The samples were filtered under vacuum over 96 well glass fiber filters, presoaked in 0.3% PEI in 50 mM tris buffer (pH 7.4) for at least 1H and then washed 6 ⁇ with 1 ml of cold 50 mM tris (4 0 C, pH 7.4) using a Packard Filtermate Harvester. The unifilter plates were dried overnight in a 37° C. dry incubator. The unifilter bottoms were sealed and 35 ml of Packard MicroScint was added.
  • the plates were allowed to equilibrate for 1 h and were then sealed using a Packard TopSeal P with the Packard Plate Micromate 496. Plates were counted by liquid scintillation spectrometry. Each well was counted for 3 min. Compounds were initially assayed at 1000 and 100 nM. If a compound caused at least 80% inhibition of [ 3 H]lysergic acid diethylamide binding at 1000 nM, it was further tested and a Ki determined. The range of concentrations chosen was so that the middle concentration would produce approximately 50% inhibition.
  • Table 1 shows the affinity for 5-HT 6 receptors of claimed compounds derived from the general formula in formula 2 above.
  • COMPOUND R1 R2 R3 R4 R5 Ki(nm) A Me Me 5-OMe H Me 60 B Me Me 5-OMe H Et 16 C Me Me 5-OMe H nPr 185 D Me Me 5-OMe H Phenyl 20
  • Table 2 shows the results of affinity for 5-HT 6 receptors of claimed compounds derived from the general formula in formula 3 above.
  • COMPOUND R1 and R2 R4 Ki(nm) E Me —CH2-phenyl 136 F H —Ch2-phenyl 302 G Me H 168 H Me —SO2-phenyl 2
  • Table 3 shows the results of affinity for 5-HT 6 receptors of claimed compounds derived from the general formula in formula 4 above.
  • Table 4 shows the 5-selectivity of several compounds of the invention.
  • Ki nM(SEM) Receptor COMPOUND COMPOUND COMPOUND Population A B D CONTROL AND AGENT NET 6,380(3190) >10,000 >10,000 Nortriptyline 6.3(1.2) SERT >10,000 >10,000 4,700(1550) Fluoxetine 3.5(0.7) h5-HT1A 200(60) 170(54) 1,470(310) WAY 1000,635 0.6(1.5) h5-HT1D 250(180) 290(700) 6,225(70) Ergotamine 0.8(0.6) h5-HT1E 1,800(600) 520(180) >10,000 Serotonin 0.5(.015) r5-HT2A >10,000 >10,000 470(10) Clozapine 9(1) r5-HT2C 4,020(640) 1,810(490) 675(180) Clozapine 23(5) h5-HT5A 10,450(2195) 4,620
  • Ki values were >10,000 nM at the following populations of receptors: histamine, NMDA, PCP, acetylcholine, opiate, and vasopressin receptors. Ki values were >10,000 nM for compounds A and B at hD1, rD2, rD3, rD4, and hD5 receptors and 10,000 nM for D at hD1, rD2, and rD4 receptors. Compound D produced 70% inhibition at rD3 and hD5 receptors. NET and SERT represent the norepinephrine and serotonin transporters. Ki values for all three compounds were >10,000 at the dopamine transporter.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Furan Compounds (AREA)

Abstract

The present invention provides compounds of formula (I), which are antagonists of the 5-HT6 receptor.
Figure US20040132800A1-20040708-C00001

Description

  • [0001] This invention was discovered in the performance of U.S. government supported research under grants NIMH KO2MH01366 and NCEMS GM52213, and the U.S. government may have certain rights in the invention.
  • DESCRIPTION BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to the synthesis of novel ligands selective for a subgroup of receptors for serotonin (5-HT). While there are seven subgroups of 5-HT receptors, this invention is selective for the 5-HT[0003] 6 subgroup. This invention also relates to the synthesis of novel ligands selective for the 5-HT6 subgroup receptor that act as agonists to the natural ligands for this receptor. The invention also relates to the creation of novel ligands that act as antagonists to the 5-HT6 receptor. The invention further relates to use of said compounds to treat mammals adversely affected by conditions mediated by the 5-HT6 receptor.
  • 2. Description of the Prior Art [0004]
  • Serotonin receptors have been divided into a number of families and subfamilies (5-HT[0005] 1-5-HT7) and approximately 14 populations have been cloned. One of the newest populations identified is the 5-HT6 subgroup. It has been observed that various tricyclic psychotropic agents (neuroleptics, antidepressants, and atypical neuroleptics agents) bind the 5-HT6 receptor with nanomolar affinities (Roth et al. J. Pharmacol. Exp. Ther. 1994, 268, 1403-1410). A rat 5-HT6 receptor was first cloned in 1993 and, more recently, the same group described the cloning of a human 5-HT6 receptor. The 5-HT6 serotonin receptors are members of the G-protein superfamily, are positively coupled to an adenylate cyclase second messenger system, and are found primarily in the central nervous system. Serotonin bound to the 5-HT6 receptor subgroup causes an activation of the adenylate cyclase enzyme, with concomitant increased levels of intracellular cAMP. Although the exact physiological function and clinical significance of the 5-HT6 receptor subgroup is not known, as noted above, many anti-psychotic agents bind these receptors with high affinity. Also, in rats that do not express 5-HT6 receptors, the animals behave in a manner that seems to involve an increase in cholinergic function, suggesting that 5-HT6 specific ligands might be of value in the treatment of anxiety-related disorders and memory deficits.
  • Upon binding to cellular receptors, ligands may act as agonists or antagonists to endogenous receptor-ligand function. In the case of the 5-HT[0006] 6 receptor, several specific ligands have been discovered which act as 5-HT6 specific antagonists, but prior to the present invention, selective ligands which act as agonists to the 5-HT6 receptor were unknown.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to create derivatives of serotonin (5-HT) that specifically bind the 5-HT[0007] 6 receptor subgroup of the serotonin receptor family. It is another object of this invention to create 5-HT6-selective ligands that act as agonists when bound to the 5-HT6 receptor. It is further an object of this invention to create 5-HT6-selective ligands that act as antagonists when bound to the 5-HT6 receptor. Furthermore, the compounds of the present invention that possess antagonist activity are tryptamine derivatives and are structurally unrelated to previously described 5-HT6 antagonists. It is further an object of this invention to administer 5-HT6 selective ligands to animals to determine the physiological and biochemical effects of specific activation and inhibition of 5-HT6 receptor function. Finally, it is an object of this invention to treat mental disorders mediated by 5-HT6 function by administering to treatment subjects the 5-HT6-selective agonists and antagonist compounds described herein.
  • Various indolealkylamines, including serotonin(5-HT) and 5-methoxytryptamine, have been observed to bind the 5-HT[0008] 6 receptor with high affinity and produce a potent dose-dependent increase in cAMP levels. These tryptamines, however, are non-selective and bind at multiple families of 5-HT receptors. According to the invention, various modifications of 5-HT have been made to generate ligands with selectivity for the 5-HT6 receptor. An analog of 5-HT with a 2-methyl substituent introduced (2-methyly-5-HT) binds the 5-HT6 receptor with an affinity equivalent to that of the parent compound. The above analog is selective for the 5-HT6 and 5-HT3 receptors and binds at the 5-HT6 subgroup with a 20 fold greater affinity than at 5-HT3 receptors.
  • A 2-methyl analog of 5-methoxytryptamine, 5-methoxy-2-methyltryptamine, binds to the 5-HT[0009] 6 receptor with an affinity comparable to 2-methyl-5-HT. However, 5-methoxy-2-methyltryptamine lacks affinity for 5-HT3 receptors. Thus, 5-methoxy -2-methyltryptamine presents a ligand with specificity for the 5-HT6 receptor subgroup. In the present invention, the 5-methoxy-2-methyltryptamine compound has been modified and several of its alkyl derivatives bind with comparable affinity and activate adenylate cyclase activity at levels comparable to serotonin. Furthermore, one derivative, 5-methoxy-2-phenylotryptamine, binds to the 5-HT6 receptor with a high affinity but the phenyl addition renders the compound an antagonist to 5-HT stimulated adenylate cyclase activity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of the preferred embodiments of the invention with reference to the drawings, in which: [0010]
  • FIG. 1 is a graph showing the adenylate cyclase activity observed with several compounds of the invention.[0011]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • The invention provides novel tryptamine derivative compounds with selectivity for the 5-HT[0012] 6 receptor subgroup. For the present purpose, an agent is termed selective when it displays an affinity for 5-HT6 receptors that is tenfold higher than affinities it displays for other related receptor populations. The invention further provides a method using said compounds to receptor subtype 5-HT6 as agonists, or as antagonists to serotonin. The compounds of the invention can be used either as the free base or as the pharmaceutically acceptable acid-addition salt form, for example, hydrochloride, hydrobromide, tartrate, and maleate. They may be used in oral or injectable pharmaceutical preparations as prophylactic and acute-phase remedies for the relief and reversal of serotonin-regulated symptoms. They may be used alone or in combination with each other or other known medications. Finally, said compounds may be used as above for determining 5-HT6 receptor function.
  • Serotonin (5-hydroxy tryptamine, or 5-HT) is a product of tryptophan metabolism and is a tryptamine derivative that is a potent neurotransmitter. Serotonin is a well-characterized tryptamine derivative which regulates calcium ion channels on the surface of nerve and muscle cells. Many mental disorders in humans are associated with fluctuations in serotonin levels and are effectively treated with drugs which specifically interact with serotonin receptors or that block the reuptake of serotonin into the presynaptic axon terminals, suggesting that serotonin dysregulation may be involved in various mental disorders. Some serotonin receptor ligands and are clinically approved as drugs for the treatment of migraine headaches, depression, high blood pressure, and psychosis. [0013]
  • Generally, tryptamine derivatives are non-selective and bind at multiple 5-HT receptor subgroups. Serotonin is no exception and binds at the various subfamilies of the 5-HT receptor, including the 5-HT[0014] 6 subgroup where it is a potent activator of adenylate cyclase enzyme activity. Serotonin has the chemical formula:
    Figure US20040132800A1-20040708-C00002
  • Some modifications of serotonin result in loss of affinity for various 5-HT receptor subgroups. It had previously been thought that introduction of a 2-methyl substituent to 5-HT was not tolerated by any 5-HT receptors but the 5-HT[0015] 3 subgroup. Thus, prior to identification of the 5-HT6 receptor, 2-° methylation of 5-HT was thought to render the product selective for the 5-HT3 subgroup. We have found that the two methyl derivative of 5-HT, 2-methyl-5-HT has a high affinity for the 5-HT6-receptor. In fact, 2-methyl-5-HT binds the 5-HT6 receptor with a 20 fold greater affinity over 5-HT3 receptors. The 5-HT6-selective ligand 2-methyl-5-methoxytryptamine contains a primary amine, presenting an obstacle to the compound crossing the blood brain barrier and also rendering the compound vulnerable to rapid metabolism due to oxidative deamination. Our discovery that a methyl substituent at the 2 position was tolerated by the 5-HT6 receptor, together with the previous observation that O-° methylation of 5-HT abolishes affinity for 5-HT3 receptor, led to the present invention.
  • To address the above limitations of 2-methyl-5-methoxytryptamine, several derivative compounds were synthesized that were lipophilic and also might be less prone to rapid metabolism. N,N-dimethyl substituents were added to 2-methyltryptamine to create 2-methyl-N,N-dimethyltryptamine (Ki=308 nM). Re-introduction of the methoxy group to this compound, to form 2-methyl-5-methoxy-N,N-dimethyltryptamine resulted in a compound (Compound A) with an affinity for the 5-HT[0016] 6 receptor of Ki=60 nM. Homologation of the 2-methyl substituent of the above compound to form 2-ethyl-5-methoxy-N,N-dimethyltryptamine resulted in a ligand with an increased affinity for the 5-HT6 of Ki=16 nM (Compound B). To determine whether or not greater bulk additions could be added in place of a methyl or ethyl group, the 2-phenol derivative of the 2-methyl-5-methoxy-N,N-dimethyltryptamine was generated. This compound D binds the 5-HT6 receptor with a Ki=20 nM. These derivatives were of the general formula 1
    Figure US20040132800A1-20040708-C00003
  • where R[0017] 1 and R2=H or CH3,
  • R[0018] 3=H, OH, OCH3, or a substituted or unsubstituted alkyl,
  • R[0019] 4=H, CH2-phenyl, SO2-phenyl, or CH2 as part of a substituted or unsubstituted alkyl ring connecting R4 and R5,
  • R[0020] 5=H, CH3, or CH2 as part of a substituted or unsubstituted alkyl ring connecting R5 with either R4 or R6,
  • R[0021] 6=H, CH3, or CH2 as part of a substituted or unsubstituted alkyl ring connecting R6 and R5.
  • The compounds of the invention and the pharmaceutically acceptable salts of the compounds of the invention can be used in the form of pharmaceutical preparations. The preparations can be administered orally, for example in the form of tablets, coated tablets, dragees, hard and soft gelatin capsules, solutions, emulsions or suspensions. The administration can be effected rectally, for example in the form of suppositories, or parenterally, for example in the form of injection solutions. [0022]
  • The compounds of the invention can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical and research preparations. The preparations can contain preservatives, solubilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances. [0023]
  • The compounds of the present invention can also be radiolabelled and used to identify other 5-HT[0024] 6 ligands using techniques common in the art. This can be achieved by incubating the receptor in the presence of a ligand candidate plus an equimolar amount of radiolabelled compound of the invention. Ligands selective for 5-HT6 are then revealed as those that are not significantly displaced by the compounds of the present invention.
  • Another embodiment of the invention can be the administration of the compounds of the invention to animals in drug discrimination assays. In a drug discrimination paradigm, animals (usually rats) can be trained to recognize the effects of a given agent. Once trained, these animals can be used in tests of stimulus generalization to identify other agents that produce similar effects (i.e., agonists), or the animals can be used in tests of stimulus antagonism to identify agents that block or antagonize (i.e., antagonists) the effects of the training drug. Hence, the procedure can be used to identify agonists that produce an effect common to the training drug, more antagonists that can block the effects of the training drug. Specifically, with a 5-HT[0025] 6-selective agonist as training drug, the animals can be used to identify other 5-HT6 agonists and to identify 5-HT6-antagonists.
  • One family of compounds contemplated for use in this invention is represented by the formula 2 [0026]
    Figure US20040132800A1-20040708-C00004
  • wherein R[0027] 2 is selected from the group consisting of small alkyls (e.g., methyl, ethyl, n-propryl) aryl (e.g. phenyl) and arylalkyls.
  • Another family of compounds for use in this invention is represented by formula 3 [0028]
    Figure US20040132800A1-20040708-C00005
  • wherein R[0029] 1 is selected from the group consisting of lower alkyls such as ethyl and propyl, methyl and hydrogen, and can be the same or different at each location, and R4 is from the group comprising H, CH2-phenyl, or SO2-phenyl.
  • Another family of compounds for use in this invention is represented by formula 4 [0030]
    Figure US20040132800A1-20040708-C00006
  • wherein X is selected from the group consisting of oxygen or 2H and R[0031] 1 is H or lower alkyls such as methyl, ethyl, or propyl.
  • The following examples illustrate the present invention in more detail. However, they are not intended to limit its scope in any manner. [0032]
  • EXAMPLE 1 Synthesis of 2-ethyl-5-methoxy-N,N-dimethyltryptamine Maleate (Compound B)
  • A 2.5M solution of nBuLi (1.75 ml, 4.38 mmol) was added in a drop wise manner to a stirred solution of 2-methyl-5-methoxy-N,N-dimethyltryptamine (compound A in the examples below) free base (1.00 g, 4.33 mmol) in dry THF (7 mL) at −78° C. under N[0033] 2.
  • After stirring the reaction mixture for five minutes, the cooling bath was removed and CO[0034] 2 gas was passed into the solution for 10 minutes. The solvent was removed at 0° C. under reduced pressure to give a transparent solid. The flask was flushed with N2 and dry THF (7 mL) was added. The reaction mixture was degassed at −150° C. under reduced pressure of 1 mMHg, then allowed to warm to −78° C.; 1.7M tNuLi (2.8 mL, 4.8 mmol) was added in a drop wise manner. The solution was kept at −78° C. for three hours. The reaction make sure was acidified with a saturated ethereal solution of HCl. Anhydrous Et2O was added to the resulting suspension and the supernatant was decanted. The residue was heated at 100° C. under reduced pressure for 20 minutes. The resulting residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 12:1) to give 0.17 g of a bright yellow oil (16%). 1H-NMR(CDCl3) d 8.06 (s, 1H, J=8.67 HZ), 6.98 (s, 1H), 6.76 (dd, 1H, J=2.34, 8.73 HZ), 3.84 (s, 3H) 2.91-2.87 (m, 2H), 2.71 (q, 2H, J=7.38 HZ), 2.57-2.52 (m, 2H) 2.38 (s, 6H)1.25 (t, 3H, J=7.38 HZ).The maleate salt was prepared and recrystallized from an EtOAc/Et2O mixture; mp 123° C.
  • EXAMPLE 2
  • Magnesium turnings and NH[0035] 4Cl were added to a solution of Example 11 infra (1-Benzenesulfonyl-5-methoxy-2-n-propyl-N,N-dimethyl tryptamine, free base; 259 mg, 0.65 mmol) in MeOH (17 mL) and the mixture was allowed to stir at room temperature for one-hour. Saturated NH4Cl solution was added and the reaction mixture was extracted with CH2Cl2. The organic portion was dried (MgSO4) and the solvents was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 9:1) to give 75 mg of a bright yellow oil. 1H-NMR (CDCl3) □7.71 (brs, 1H), 2.89-2.83 (m, 2H), 2.69 (t, 2H, J=7.56 Hz), 2.53-2.47 (m, 2H), 2.36 (s, 6H), 1.68 (tq, 2H, J=7.28, 7.56 HZ), 0.98 (t, 3H, J=7.28 HZ). The salt was prepared and recrystallized from acetone; mp 146-147° C.
  • EXAMPLE 3 5-methoxy-2-phenyl-N,N-dimethyltryptamine Oxalate (Compound D)
  • 5-methoxy-2-phenylindole (3 g, 13.44 mmol) was added to a stirred ice-cooled solution of 1-dimethylamino-2-nitroethylene (1.56 g, 13.44 mmol) in trifluoracetic acid (8 ml). The resulting mixture was allowed to stir under N[0036] 2 at room temperature for 30 minutes and was then poured into ice/water. The solution was extracted with EtOAc and the organic portion was washed consecutively with saturated NaHCO3 solution, H 20, and then brine. The organic portion was dried (MgSO4) and solvent was removed under reduced pressure. The residue was recrystallized from CH2Cl2/hexane to give 2.36 g (60%) of a red powder. 1H-NMR (acetone-d6) d 8.82 (brs, 1H), 3.92 (s, 3H), IR (Kbr)1601, 1475, 1251 cm−1. A solution of this material (2 g, 6.75 mmol) in dry THF was added in a drop wise manner to a cooled 0° C. suspension of LiALH4 (1.54 g, 40.5 mmol)in dry THF under N2. The reaction mixture was heated at reflux for one-hour and then allowed to stand at room temperature overnight. The resulting mixture was quenched with H2O then 15% NaOH solution. Celite was added and the solution was filtered. The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 9:1) to give 1 g (55%) of the primary amine as an oil. 1H-NMR (CDCl3) d 8.19 (brs, 1H, J=2.37 HZ), 6.88 (dd, 1H, J=2.24, 8.75 HZ), 3.89 (s, 3H), 3.04 (brs, 4H). IR(KBr) 3397, 3347 cm−1. Sodium cyanoborohydride (510 mg, 8.12 mmol) was added to a solution of the primary amine (700 mg, 2.63 mmol) and 37% aqueous CH2O in MeCN (10 mL) at room temperature. The resulting mixture was adjusted to pH 5 with HOAc and was allowed to stir at room temperature overnight. A 15% solution of NaOH was added to neutralize the mixture and the mixture was extracted with CH2Cl2. The combined organic portion was washed with saturated NaHCO3 solution and brine. The organic portion was dried (MgSO4) and solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 9:1) to give 195 mg of 5-methoxy-2-phenyl-dimethyltryptamine free base as a white powder. 1HNMR (CDCl3) d 8.05 (brs, 1 h), 7.56-7.53 (m, 2H),7.49-7.44 (m, 2H), 7.39-7.34 (m, 1H), 7.29, 7.25 (m, 1H), 7.11 (d, 1H, J=2.25 HZ). 6.87 (dd, 1H, J=2.52, 8.73 HZ). 3.89 (s, 3H). 3.13-3.08 (m, 2H), 2.72-2.66 (m, 2H), 2.39 (s, 6H). Although the HCl salt has previously been reported, difficulties in his purification led to isolation of the product has its salt; after recrystallization from acetone.
  • EXAMPLE 4 4-dimethylaminomethyl-9-benzyl-6-methoxy-1,2,3,4, Tetrahydrocarbazole Hydrochloride (Compound E)
  • A mixture of 4-methoxyphenyl)benzylamine (42 g 0.2 mol) and ethyl 6-bromocyclohexanone Carboxylate (J. Org Chem 1961, 26, 22) (24.9 g, 0.1 mol) were heated at reflux in dry benzene (250 mL) for 24 hours. The reaction mixture was cooled and precipitated (4-methoxyphenyl) benzylamine hydrobromide was separated by filtration. The benzene extract was concentrated and fused zinc chloride (40 g) was added in reflux in absolute ethanol (125 mL) for six hours. The cooled mixture was slurred in H[0037] 20 (250 mL) and extracted with (Et2O; 4×200 mL). The combined ether extracts were washed with 5% HCl (100 mL), followed by brine solution and dried with MgSO4. The ether extract was evaporated under reduced pressure to give crude ethylester of title compound which was treated with a solution of KOH (50 g) in H20 (150 mL) and CH3OH (150 mL) at reflux temperature for three hours. The solution was evaporated to dryness under reduced pressure, the resulting residue was dissolved in H20 (250 mL) and the aqueous solution was extracted with Et2O and acidified with 10% HCl. The resulting solid was dried to give 22 g (33%) of title compound and was recrystallized from 1s.PrOH-H2). Mp 212-214° C. To a mixture of sodium hydride (0.96 g, 0.04 mol) in dry benzene (200 mL) was added portion wise 9-benzyl-6-methoxy-1,2,3,4-tetrahydro-4-carboxylic acid (14.00 g, 0.04 mol) and the mixture was stirred for one-hour. Thionoyl chloride (3.00 mL, 0.04 mol) was added slowly in the stirring was continued for 30 minutes. The resulting solution was poured into aqueous dimethylamine solution (40%)(36.50 mL) with ice bath cooling. The mixture was third for one-hour, washed with 100 mL H2O, NaHCO3 (50 mL)and saturated brine solution (50 mL), and dried with MgSO4, diluted with n-pentane (200 mL)and cooled to give 4-dimethylaminocarbonyl-9-benzyl-6-methoxy-1,2,3,4-tetrahydrocarbazole (9.10 g. 60%) mp 153-155° C. To a stir it solution of LialH4 (4.71 g, 94.2 mmol) in dry THF was added portion wise 4-dimethylaminocarbonyl-9-benzyl-6-methoxy-1,2,3,4-tetrahydrocarbazole (9.00 g, 24.8 mmol) and the mixture was heated under reflux for five hours the reaction mixture was cooled water (5.0 mL) NaOH solution (5.0 mL) was added and filtered. The filtrate was evaporated to dryness to give 4-dimethylamino-9-benzyl-6-methoxy-1,2,3,4-tetrahydrocarbazole (8 g, 92%). The free base was dissolved in either in converted to the salt using ethereal hydrochloride and recrystallized from a mixture of EtOH and Et2O. Mp 238-240° C.
  • EXAMPLE 5
  • Compound F is known and was prepared according to the following patent procedure: 4-aminomethyl-9-benzyl-1,2,3,4-tetrahydrocarbazoles, U.S. Pat. No. 3,939,177, Feb 17, 1976. [0038]
  • EXAMPLE 6
  • Compound G Sodium metal was added portion wise over a thirty minute period to a stirred solution of 4-(dimethylaminomethyl)-9-benzyl-6-methoxy-1,2,3,4-tetrahydrocarbazole (4 g, 0.01 mol) in liquid NH[0039] 3 (300 mL). NH4Cl (3.0 g) was added until the blue-collar of the mixture dissipated. The NH3 was evaporated, water (50 mL) was added in the mixture was extracted with CH2CL3 The combined organic portion was washed with water (50 mL), brine (50 mL), dried (MgSO4) and evaporated to give an oil. The oil was purified by column chromatography (CHCL3/MeOH; 9:1) and converted to an oxalate salt. The salt was recrystallized from anhydrous Et2O/absolute EtOH to give 1.8 g of the desired target as a white powder.1H-NMR (CDCl3, free base) d 8.10 (s, 1H, NH), 7.20 (t, 1H, ArH), 6.90 (d, 1H, ArH), 6,70 (dd, 1H, ArH), 3.80 (s, 3H, OCH3), 3.40 (t, 1H, CH), 3.15 (d, 1H, CH), 3.0 (t, 1H, CH)3.00 (t, 1H, Ch), 2.82 (s, 6H, 2×CH3), 2.63-2.73 (m, 2H, CH2), 2.23 (m, 1H, CH) 1.8-2.0 (m, 3H, CH2-CH).
  • EXAMPLE 7
  • A mixture of Compound G as free base (0.5 g, 1.94 mmol) and sodium hydride (60%) (0.085 g, 3.54 mmol) was heated at 100° C. under nitrogen until the evolution of H[0040] 2 gas ceased. The resultant was dissolved in anhydrous DMF and benzenesulfonylchloride (0.30 mL, 2.35 mmol) was added drop wise at 0° C. The reaction mixture was stirred at room temperature overnight. Saturated NaHCO3 solution was added and extracted with CH2Cl2 (3×25 mL). The organic layer was dried over MgSO4 and the solvent was removed under pressure. The residue was purified by column chromatography (CH2Cl2/MeOH; 9:1) as eluent to give an oil (0.60 g, 76%) and converted to hydrochloride salt. The hydrochloride salt was recrystallized from ethanol and anhydrous ether mp 259-261° C.
  • EXAMPLE 8 6,7,8,9-tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyridol[1,2-a]indole-9-one Oxalate (I)
  • A mixture of 5-methoxy-N,N-dimethyltryptamine (free base) (2.00 g, 9.17 mmol) and 60% NaH (0.41 g, 10.1 mmol) was heated at 100° C. under N[0041] 2 until evolution of gas had ceased. The resultant mass was dissolved in anhydrous DMF (25 ml) and anhydrous g-butryolactone 1.4 mL, 18.2 mmol) was added in dropwise manner at room temperature. The reaction mix was heated at reflux for 20 h, cooled to 0° C., and acidified by the addition of an ethereal solution of HCl. Additional Et2O was added to the resulting suspension and the supernatant was decanted. The residue was dissolved in PPE (52.5 mL) and CHCl3 (100 mL) and the reaction mixture was heated at reflux for 3 h under N2. The resulting mixture was neutralized by the addition of 15% NaOH solution at ice-bath temperature, and extracted with CH2Cl2. The organic portion was dried (MgSO4) and solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 20:1) to give 0.52 g (20%) of 6,7,8,9-tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyridol[1,2-a]indole-9-One free base as a yellow oil. 1H-NMR (DMSO-d6) □7.35 (d, 1H, J=8.79 Hz) 7.18 (s, 1H), 6.88 (d, 1H, J=8.85 Hz), 4.06 (t, 2H, J=6.60 Hz), 3.80 (s, 3H), 3.42-3.36 (m, 2H), 3.17-3.12 (m, 2H), 2.85 (s, 6H), 2.66-2.62 (m, 2H0. IR (CHCl3) 1648cm−1. A small sample was converted to the oxalate salt; mp 191-192° C.
  • EXAMPLE 9 6,7,8,9-tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyridol[1,2-a]indole Oxalate (J)
  • A solution of 1.0 M borane/THF (2 mL, 2 mmol) was added ion a dropwise manner to ice-bath cooled 6,7,8,9-tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyridol[1,2-a]indole-9-one Oxalate (290 mg, 1.01 mmol) under N[0042] 2. The reaction mixture was allowed to stir at room temperature for 2 h. Acetone (3 ml) was added , and the reaction mixture was heated at reflux for 1 h to quench the unreacted borane reagent. The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc; 4:1) to give 207 mg (75%) of a light yellow oil. 1H-NMR (DMSO-d6) □7.34 (d, 1H, J=8.85 Hz) 7.21 (s, 1H), 4.08 (t, 2H, J=6.65 Hz), 3.79 (s, 3H), 3.40-3.35 (m, 2H), 3.30-3.25 (m, 2H), 3.06-3.01 (m, 2H) 2.83 (s, 6H) 1.76-1.69 (m, 2H), 1.40-1.31 (m, 2H). A small portion was converted to its oxalate salt; mp 114-115° C.
  • EXAMPLE 10 1-Benzenesulfonyl-5-methoxy-N,N,-dimethyltryptamine Oxalate
  • A mixture of 5-methoxy-N,N-dimethyltryptamine (free base) (4.35 g, 19.93 mmol) and 60% NaH (0.87 g, 21.75 mmol) was heated at 100° C. under N[0043] 2 until evolution of H2 gas ceased. The resultant mass was dissolved in anhydrous DMF (21 ml) and benzenesulfonyl chloride (2.8 ml, 21.94 mmol) and 60% NaH (0.87 g, 21.75 mmol) was added in a dropwise manner at 0° C. The reaction mixture was allowed to stir at room temperature overnight. Saturated NaHCO3 solution was added and the mixture was extracted with CH2Cl2. The organic portion was dried (MgSO4)and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH; 9:1) to give 4.39 g of an oil (61%). 1H-NMR (CDCl3) □7.89-7.87(m, 1H,) 7.83 (d, 2H, J=8.0 Hz), 7.51 (t, 1H, J=7.8 Hz), 7.34 (s, 1H), 6.93-6.92 (m, 2H), 3.82 (s, 3H), 2.80 (t, 2H, J=7.8 Hz) 2.59 (t, 2H, J=7.8 Hz), 2.33 (s, 6H). IR CHCl3, 1357, 1115 cm−1. The oxalate salt was prepared and recrystallized from an acetone/Et2O mixture; mp 224-226° C.
  • EXAMPLE 11 1-Benzenesulfonyl-5-methoxy-2-n-propyl-N,N-dimethyl Tryptamine
  • A 2.5 M solution of nBuLi (1.4mL, 3.5 mmol) was added in a dropwise manner to a stirred solution of 1-Benzenesulfonyl-5-methoxy-N,N,-dimethyltryptamine oxalate (free base) (1.00 g, 2.79 mmol) in DME (4 mL) at −10° C. under N[0044] 2 The resulting solution was allowed to stir for an additional 10 min at −10° C., and then nPrl (0.35 mL, 3.59mmll) was added. The reaction mixture was allowed to stir for 1 h at −10° C. Saturated NaHCO3 solution was added and the reaction mixture was extracted with CHCl2. The organic portion was washed with brine and dried (MgSO4); the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel. (CH2Cl2/MeOH; 30:1). To give 0.19 g of a bright yellow oil. 1H-NMR (CDCl3) □8.06 (d, 1H, J=8.79 Hz), 7.62 (d, 2H, J=8.22 Hz), 7.51-7.46 (m, 1H), 6.89-6.85 (m, 1H), 3.85 (s, 3H), 2.96-2.89 (m, 4H) 2.63-2.57 (m, 2H), 2.48 (s, 6H) 6.87, 1.73 (q, 2H, J=7.51 Hz), 1.00 (t, 3H, J=7.51Hz). IR CHCl3, 1355 cm−1.
  • EXAMPLE 12 5-HT Derivative Binding to 5-HT6 Receptor
  • The binding assay employed human 5-HT[0045] 6 stably transfected to HEK 293 human embryonic kidney cells with [3H] lysergic acid diethylamide (70 Ci/mmol; Dupont NEN) as radioligand. Radioligand was diluted in incubation buffer in borosilicate glass vials and protected from light. Competing agents (1 mM stock solution) were dissolved in DMSO or saline and stored at −20 0 C. Dilutions of compounds were made using incubation buffer in 96-well plates and mixed by multichannel pipetting. Serial dilutions (1 in 4) started at a final concentration of 10,000 nM. Final concentrations >10,000 nM were individually prepared from the 1 mM stock solution. Nonspecific binding was defined by 100 mM serotonin creatinine sulfate (Research Biochemicals) prepared fresh in incubation buffer at the time of each determination, and protected from light. in incubation buffer at the time of each determination, and protected from light. Reaction volumes were as follows: 200 ml incubation buffer (50 mM tris, 0.5 mM EDTA, 10 mM MgCl2), pH 7.4 at 22 0 C, 100 ml test agent or serotonin (100 mM) or buffer, 100 ml [3H]lysergic acid diethylamide (2 nM final concentration) and 100 ml membrane preparation (15 mg protein). The incubation was initiated by the addition of membrane homogenate and the plates vortexed. The plates were incubated, with protection from light, by shaking at 37 0 C for 60 min. The binding reaction was stopped by filtration. The samples were filtered under vacuum over 96 well glass fiber filters, presoaked in 0.3% PEI in 50 mM tris buffer (pH 7.4) for at least 1H and then washed 6× with 1 ml of cold 50 mM tris (4 0 C, pH 7.4) using a Packard Filtermate Harvester. The unifilter plates were dried overnight in a 37° C. dry incubator. The unifilter bottoms were sealed and 35 ml of Packard MicroScint was added. The plates were allowed to equilibrate for 1 h and were then sealed using a Packard TopSeal P with the Packard Plate Micromate 496. Plates were counted by liquid scintillation spectrometry. Each well was counted for 3 min. Compounds were initially assayed at 1000 and 100 nM. If a compound caused at least 80% inhibition of [3H]lysergic acid diethylamide binding at 1000 nM, it was further tested and a Ki determined. The range of concentrations chosen was so that the middle concentration would produce approximately 50% inhibition.
  • Table 1 shows the affinity for 5-HT[0046] 6 receptors of claimed compounds derived from the general formula in formula 2 above.
    COMPOUND R1 R2 R3 R4 R5 Ki(nm)
    A Me Me 5-OMe H Me 60
    B Me Me 5-OMe H Et 16
    C Me Me 5-OMe H nPr 185
    D Me Me 5-OMe H Phenyl 20
  • Table 2 shows the results of affinity for 5-HT[0047] 6 receptors of claimed compounds derived from the general formula in formula 3 above.
    COMPOUND R1 and R2 R4 Ki(nm)
    E Me —CH2-phenyl 136
    F H —Ch2-phenyl 302
    G Me H 168
    H Me —SO2-phenyl 2
  • Table 3 shows the results of affinity for 5-HT[0048] 6 receptors of claimed compounds derived from the general formula in formula 4 above.
    COMPOUND X Ki(nM)
    I O 84
    J H2 1030
  • EXAMPLE 13 Characterization of 5HT6 Selectivity
  • Selected compounds were examined to determine their specificity of binding to the 5-HT[0049] 6 receptor. Compounds were examined at more than 30 receptor populations. Assays for the following receptors were performed as per the NIMH Psychoactive Drug Screening Program. The compounds failed to displace radioligand (i.e., <50% displacement) at a concentration of 10,000 nM at most receptors. Where more than 50% displacement was observed, Ki values were determined and the data are reported in the following table. It can be seen that the compounds are selective for 5-HT6 receptors.
  • Table 4 shows the 5-selectivity of several compounds of the invention. [0050]
    TABLE 4
    Ki, nM(SEM)
    Receptor COMPOUND COMPOUND COMPOUND
    Population A B D CONTROL AND AGENT
    NET  6,380(3190) >10,000 >10,000 Nortriptyline
    6.3(1.2)
    SERT >10,000 >10,000  4,700(1550) Fluoxetine
    3.5(0.7)
    h5-HT1A    200(60)    170(54)  1,470(310) WAY 1000,635
    0.6(1.5)
    h5-HT1D    250(180)    290(700)  6,225(70) Ergotamine
    0.8(0.6)
    h5-HT1E  1,800(600)    520(180) >10,000 Serotonin
    0.5(.015)
    r5-HT2A >10,000 >10,000    470(10) Clozapine
      9(1)
    r5-HT2C  4,020(640)  1,810(490)    675(180) Clozapine
     23(5)
    h5-HT5A  10,450(2195)  4,620(650)  5,160(930) Ergotamine
     22(3)
    h5-HT7    145(34)    300(60)    155(35) Clozapine
      9(2)
    h5-Ht6    60(13)    16(4)    20(5) Clozapine
     10(3)
  • Compounds displayed Ki values of >10,000 nM at the following populations of receptors: histamine, NMDA, PCP, acetylcholine, opiate, and vasopressin receptors. Ki values were >10,000 nM for compounds A and B at hD1, rD2, rD3, rD4, and hD5 receptors and 10,000 nM for D at hD1, rD2, and rD4 receptors. Compound D produced 70% inhibition at rD3 and hD5 receptors. NET and SERT represent the norepinephrine and serotonin transporters. Ki values for all three compounds were >10,000 at the dopamine transporter. [0051]
  • EXAMPLE 14 cAMP Activation Assays
  • Human 5-HT[0052] 6 receptors stably expressed in 293 HEK cells were grown in 24-well plates to near confluence and 18 h prior to the assay the medium was replaced with DMEM containing dialyzed 10% Fetal Calf Serum. For the assay, the medium was aspirated and replaced with fresh DMEM without serum and incubated with various concentrations of compounds of the invention in a total volume of 0.5 ml for 15 min. The assay was terminated by aspiration and the addition of 10% trichloroacetic acid (TCA). The TCA extract was used for cAMP determinations. (Data represent the mean of N=4 separate determinations). Results of cAMP activation by various compounds of the invention are shown in the attached Drawing of FIG. 1.
  • While the invention has been described in terms of its preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Accordingly, the present invention should not be limited to the embodiments as described above, but should further include all modifications and equivalents thereof within the spirit and scope of the description provided herein. [0053]

Claims (13)

Having thus described our invention, what we now claim as new and desire to secure by Letters Patent is as follows:
1. A compound having the formula:
Figure US20040132800A1-20040708-C00007
wherein,
R1 is selected from the group consisting of hydrogen, methyl and other lower alkyls and may be different at each location,
R2 is selected from the group consisting of hydrogen, a methyl, ethyl, n-propyl, and phenyl addition, and
R3 is selected from the group consisting of hydrogen, methyl, methoxy and substituted and unsubstituted lower alkyls.
2. The compound of claim 1 wherein R2 is an ethyl group.
3. A compound having the formula:
Figure US20040132800A1-20040708-C00008
wherein,
R1 is selected from the group consisting of hydrogen, and methyl and other lower alkyls and may be the same or different at each site; and
R4 is selected from the group consisting of hydrogen, lower alkyls, aryls, substituted and unsubstituted heteroaryls; and
R3 is selected from the group consisting of hydrogen, methyl and methoxy and substituted and unsubstituted lower alkyls.
4. The compound of claim 4 where R4 is selected from the group consisting of CH2-phenyl, H, and SO2-phenyl.
5. A compound having the formula:
Figure US20040132800A1-20040708-C00009
wherein,
R1 is selected from the group consisting of hydrogen, methyl and other lower alkyls and may be the same or different at each site;
R3 is selected from the group consisting of hydrogen, methyl and methoxy and substituted and unsubstituted lower alkyls, and
X is selected from the group consisting of oxygen and 2H.
6. A therapeutically effective composition for treating a condition mediated by the 5-HT6 receptor, comprising:
a pharmaceutically acceptable carrier; and
a compound selected from the group consisting of:
Figure US20040132800A1-20040708-C00010
wherein X is selected from the group consisting of oxygen and 2H;
wherein R1 is selected from the group consisting of hydrogen, methyl and other lower alkyls and may be the same or different at each site;
wherein R3 is selected from the group consisting of hydrogen, methyl and methoxy and substituted and unsubstitued lower alkyls; and
wherein each of R2 and R4 are selected from the group consisting of hydrogen, lower alkyls, aryls, alkaryls, substituted aryls, and heteroaryls.
7. The composition of claim 6 wherein R2 and R4 are selected from the group consisting of CH2-phenyl, SO2-phenyl, and hydrogen.
8. The composition of claim 6 wherein the R3 moiety is in the 2 position.
9. A method for treating a condition mediated by the 5-HT6 receptor, by administering an effective amount of a therapeutically effective composition comprising:
a pharmaceutically acceptable carrier; and
a compound selected from the group consisting of:
Figure US20040132800A1-20040708-C00011
wherein X is selected from the group consisting of oxygen and 2H;
wherein R1 is selected from the group consisting of hydrogen, methyl and other lower alkyls and may be the same or different at each site;
wherein R3 is selected from the group consisting of hydrogen, methyl and methoxy and substituted and unsubstituted lower alkyls; and
wherein each of R2 and R4 are selected from the group consisting of hydrogen, lower alkyls, aryls, alkaryls, substituted aryls, and heteroaryls.
10. A method for testing antagonists and antagonists with selectivity for the 5-HT6 receptor comprising:
administering a compound selected from the group consisting of:
Figure US20040132800A1-20040708-C00012
wherein X is selected from the group consisting of oxygen and 2H;
wherein R1 is selected from the group consisting of hydrogen, methyl and other lower alkyls and may be the same or different at each site;
wherein R3 is selected from the group consisting of hydrogen, methyl and methoxy and substituted and unsubstituted lower alkyls; and
wherein each of R2 and R4 are selected from the group consisting of hydrogen, lower alkyls, aryls, alkaryls, substituted aryls, and heteroaryls; and
observing said animals' responses; and
comparing said responses to control animals; and
administering other compounds of unknown activity to said experimental animals.
11. The compound of claim 1 further comprising a radiolabel.
12. The compound of claim 3 further comprising a radiolabel.
13. The compound of claim 5 further comprising a radiolabel.
US10/472,741 2001-03-29 2002-03-15 N-(2-Arylethyl) benzylamines as antagonists of the 5-HT6 receptor Expired - Lifetime US7157488B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/472,741 US7157488B2 (en) 2001-03-29 2002-03-15 N-(2-Arylethyl) benzylamines as antagonists of the 5-HT6 receptor
US11/608,922 US20070099909A1 (en) 2001-03-29 2006-12-11 N-(2-arylethyl)benzylamines as antagonists of the 5-ht6 receptor
US12/504,242 US8044090B2 (en) 2001-03-29 2009-07-16 N-(2-arylethyl)benzylamines as antagonists of the 5-HT6 receptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27992801P 2001-03-29 2001-03-29
US32944901P 2001-10-15 2001-10-15
US10/472,741 US7157488B2 (en) 2001-03-29 2002-03-15 N-(2-Arylethyl) benzylamines as antagonists of the 5-HT6 receptor
PCT/US2002/005115 WO2002078693A2 (en) 2001-03-29 2002-03-15 N-(2-arylethyl)benzylamines as antagonists of the 5-ht6 receptor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/608,922 Continuation US20070099909A1 (en) 2001-03-29 2006-12-11 N-(2-arylethyl)benzylamines as antagonists of the 5-ht6 receptor

Publications (3)

Publication Number Publication Date
US20040132800A1 true US20040132800A1 (en) 2004-07-08
US20060009511A9 US20060009511A9 (en) 2006-01-12
US7157488B2 US7157488B2 (en) 2007-01-02

Family

ID=26959969

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/472,741 Expired - Lifetime US7157488B2 (en) 2001-03-29 2002-03-15 N-(2-Arylethyl) benzylamines as antagonists of the 5-HT6 receptor
US11/608,922 Abandoned US20070099909A1 (en) 2001-03-29 2006-12-11 N-(2-arylethyl)benzylamines as antagonists of the 5-ht6 receptor
US12/504,242 Expired - Fee Related US8044090B2 (en) 2001-03-29 2009-07-16 N-(2-arylethyl)benzylamines as antagonists of the 5-HT6 receptor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/608,922 Abandoned US20070099909A1 (en) 2001-03-29 2006-12-11 N-(2-arylethyl)benzylamines as antagonists of the 5-ht6 receptor
US12/504,242 Expired - Fee Related US8044090B2 (en) 2001-03-29 2009-07-16 N-(2-arylethyl)benzylamines as antagonists of the 5-HT6 receptor

Country Status (29)

Country Link
US (3) US7157488B2 (en)
EP (1) EP1379239B1 (en)
JP (1) JP2004532209A (en)
KR (1) KR100894189B1 (en)
CN (1) CN1610547A (en)
AT (1) ATE372768T1 (en)
AU (1) AU2002303094B2 (en)
BR (1) BR0208179A (en)
CA (1) CA2442114C (en)
CY (1) CY1110362T1 (en)
CZ (1) CZ305838B6 (en)
DE (1) DE60222396T2 (en)
DK (2) DK1379239T3 (en)
DZ (1) DZ3493A1 (en)
EA (1) EA007493B1 (en)
ES (2) ES2292758T3 (en)
HK (1) HK1061649A1 (en)
HR (1) HRP20030771B1 (en)
HU (1) HU230322B1 (en)
IL (3) IL157651A0 (en)
MX (1) MXPA03008726A (en)
NO (1) NO326160B1 (en)
NZ (1) NZ527815A (en)
PL (1) PL220721B1 (en)
PT (2) PT1859798E (en)
SI (1) SI1859798T1 (en)
SK (1) SK287463B6 (en)
WO (1) WO2002078693A2 (en)
ZA (1) ZA200306795B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583524B2 (en) 2007-09-21 2023-02-21 Janssen Pharmaceutica Nv Inhibitors of the interaction between MDM2 and P53
US11724985B2 (en) 2020-05-19 2023-08-15 Cybin Irl Limited Deuterated tryptamine derivatives and methods of use

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074949A1 (en) 2008-08-13 2010-03-25 William Rowe Pharmaceutical composition and administration thereof
HU230322B1 (en) * 2001-03-29 2016-01-28 Eli Lilly And Co. N-(2-arylethyl)-benzylamines as antagonists of the 5-ht6 receptor and pharmaceutical compositions containing them
MXPA04001089A (en) * 2001-08-03 2004-05-20 Upjohn Co 5-arylsulfonyl indoles having 5-ht6 receptor affinity.
DK1523486T3 (en) 2002-06-21 2008-03-03 Suven Life Sciences Ltd Tetracyclic arylsulfonyl indoles with serotonin receptor affinity
BR0312945A (en) * 2002-07-17 2005-07-12 Lek Pharmaceuticals Pyridylethanol (phenylethyl) amine derivatives as cholesterol biosynthesis inhibitors
AR042423A1 (en) 2002-09-19 2005-06-22 Lilly Co Eli DIARIL ETERES AS AN OPERATIVE RECEIVER ANTAGONISTS
CA2508290C (en) * 2002-12-20 2017-02-28 Ciba Specialty Chemicals Holding Inc. Synthesis of amines and intermediates for the synthesis thereof
US7399774B2 (en) 2003-03-07 2008-07-15 Eli Lilly And Company 6-substituted nicotinamide derivatives as opioid receptor antagonists
EP1606275B1 (en) 2003-03-07 2008-08-27 Eli Lilly And Company Opioid receptor antagonists
DE10320782A1 (en) * 2003-05-09 2004-11-25 Bayer Cropscience Ag Substituted oxyarenes
BRPI0412263B1 (en) 2003-07-22 2019-10-15 Arena Pharmaceuticals, Inc. Diaryl and aryl heteroaryl urea derivatives, use and pharmaceutical composition containing them, as well as process for preparing said composition
CN1894240A (en) 2003-12-22 2007-01-10 伊莱利利公司 Opioid receptor antagonists
CA2558568A1 (en) 2004-03-12 2005-09-29 Eli Lilly And Company Opioid receptor antagonists
US7378448B2 (en) 2004-03-15 2008-05-27 Eli Lilly And Company Diphenylether amide derivatives as opioid receptor antagonists
WO2005090303A1 (en) 2004-03-15 2005-09-29 Eli Lilly And Company 4- (5- (aminomethyl) -indole-1-ylmethyl) -benzamide derivatives and related compounds as opioid receptor antagonists for the treatment of obesity
US8354427B2 (en) 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
LT2489659T (en) 2004-06-24 2018-03-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
EP1632491A1 (en) * 2004-08-30 2006-03-08 Laboratorios Del Dr. Esteve, S.A. Substituted indole compounds and their use as 5-HT6 receptor modulators
KR101331786B1 (en) * 2004-09-22 2013-11-21 얀센 파마슈티카 엔.브이. Inhibitors of the interaction between mdm2 and p53
US7459469B2 (en) 2004-11-10 2008-12-02 Targacept, Inc. Hydroxybenzoate salts of metanicotine compounds
DE102004062542A1 (en) * 2004-12-24 2006-07-06 Bayer Cropscience Ag Substituted oxyarenes
RS60205B1 (en) 2005-12-28 2020-06-30 Vertex Pharma Pharmaceutical compositions of the amorphous form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2007074860A1 (en) * 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
JP2009522354A (en) * 2006-01-06 2009-06-11 アストラゼネカ・アクチエボラーグ Compound
EP2001868B1 (en) * 2006-03-22 2013-07-17 Janssen Pharmaceutica N.V. Inhibitors of the interaction between mdm2 and p53
US8088795B2 (en) 2006-03-22 2012-01-03 Janssen Pharmaceutica N.V. Cyclic-alkylamine derivatives as inhibitors of the interaction between MDM2 and p53
EP2357174A1 (en) 2006-05-09 2011-08-17 AstraZeneca AB Salt forms of (2S)-(4E)-N-Methyl-5-[(5-Isopropoxy)pyridin-3-yl]-4-penten-2-amine
TWI389889B (en) 2006-05-09 2013-03-21 Targacept Inc Novel polymorph forms of (2s)-(4e)-n-methyl-5-[3-(5-isopropoxypyridin)yl]-4-penten-2-amine
EP1953153A1 (en) * 2007-01-31 2008-08-06 Laboratorios del Dr. Esteve S.A. Heterocyclyl-substituted sulfonamides for the treatment of cognitive or food ingestion related disorders
TW200922557A (en) 2007-08-06 2009-06-01 Janssen Pharmaceutica Nv Substituted phenylenediamines as inhibitors of the interaction between MDM2 and p53
AU2008310883A1 (en) * 2007-10-09 2009-04-16 Hamann, Mark T Method to use compositions having antidepressant anxiolytic and other neurological activity and compositions of matter
EP2231160B1 (en) * 2007-12-04 2013-08-14 Merck Sharp & Dohme Corp. Tryptamine sulfonamides as 5-ht6 antagonists
EP2254564A1 (en) 2007-12-12 2010-12-01 Glaxo Group Limited Combinations comprising 3-phenylsulfonyl-8-piperazinyl-1yl-quinoline
AU2009214724A1 (en) * 2008-02-11 2009-08-20 Organix Inc. Indole compounds and methods of use thereof
WO2009123714A2 (en) 2008-04-02 2009-10-08 Arena Pharmaceuticals, Inc. Processes for the preparation of pyrazole derivatives useful as modulators of the 5-ht2a serotonin receptor
US9126946B2 (en) 2008-10-28 2015-09-08 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)urea and crystalline forms related thereto
BRPI1008855B8 (en) * 2009-02-04 2021-05-25 Janssen Pharmaceutica Nv indole derivatives, their use as anticancer agents, their process for preparation and pharmaceutical composition comprising them
JP5083256B2 (en) * 2009-03-20 2012-11-28 株式会社デンソー Semiconductor device and manufacturing method thereof
LT2821400T (en) 2009-03-20 2018-02-12 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
CA2770724A1 (en) 2009-08-10 2011-02-17 Galenea Corporation 5-ht inhibiting indole compounds
EP2311823A1 (en) 2009-10-15 2011-04-20 AC Immune S.A. 2,6-Diaminopyridine compounds for treating diseases associated with amyloid proteins or for treating ocular diseases
TW201139370A (en) * 2009-12-23 2011-11-16 Lundbeck & Co As H Processes for the manufacture of a pharmaceutically active agent
FR2961097B1 (en) * 2010-06-09 2012-07-13 Oreal COSMETIC METHOD FOR TREATING HUMAN BODILY ODORS USING 6-ALKOXY TRYPTAMINE COMPOUND
FR2961095B1 (en) * 2010-06-09 2012-06-15 Oreal COSMETIC AND / OR DERMATOLOGICAL COMPOSITION COMPRISING AT LEAST ONE 6-ALCOXY TRYPTAMINE COMPOUND
US8293218B2 (en) * 2010-07-29 2012-10-23 Conopco, Inc. Skin care compositions comprising substituted monoamines
US8802700B2 (en) 2010-12-10 2014-08-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
WO2014165701A1 (en) * 2013-04-03 2014-10-09 The University Of Utah Research Foundation Application of 5-ht6 receptor antagonists for the alleviation of cognitive deficits of down syndrome
CN109966264A (en) 2012-02-27 2019-07-05 沃泰克斯药物股份有限公司 Pharmaceutical composition and its application
US20150051257A1 (en) * 2012-03-20 2015-02-19 Adamed Sp. Zo.O Sulphonamide derivatives of benzylamine for the treatment of cns diseases
CN102746211B (en) * 2012-06-27 2015-05-27 上海泰坦化学有限公司 Method for preparing substituted indole-3-methanal compound
JO3459B1 (en) * 2012-09-09 2020-07-05 H Lundbeck As Pharmaceutical compositions for treating alzheimer's disease
US10154988B2 (en) 2012-11-14 2018-12-18 The Johns Hopkins University Methods and compositions for treating schizophrenia
CN104725249B (en) * 2013-12-20 2019-02-12 广东东阳光药业有限公司 Benzylamine analog derivative and its application on drug
JO3639B1 (en) 2014-07-04 2020-08-27 H Lundbeck As Novel polymorphic form of N-[2-(6-fluoro-lH-indol-3-yl)ethyl]-3-(2,2,3,3-tetrafluoropropoxy)benzylamine hydrochloride
KR20170063954A (en) 2014-10-07 2017-06-08 버텍스 파마슈티칼스 인코포레이티드 Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
ES2570452B1 (en) * 2014-10-15 2017-04-19 Fundación Para La Investigación Biomédida Del Hospital Universitario De La Princesa Compounds derived from 3-Alkylamino-1H-Indolyl acrylate and its use in the treatment of neurodegenerative diseases
CN105175307A (en) * 2014-11-18 2015-12-23 苏州晶云药物科技有限公司 Lu AE58054 hydrochloride crystal form A, preparation method and uses thereof
TW201630881A (en) 2014-12-12 2016-09-01 H 朗德貝克公司 A process for the manufacture of idalopirdine
CN104529865B (en) * 2014-12-12 2017-02-01 广东东阳光药业有限公司 Benzylamine derivatives and application thereof in medicines
RU2017145976A (en) 2015-06-12 2019-07-15 Аксовант Сайенсиз Гмбх Diaryl- and arylheteroarylurea derivatives applicable for the prevention and treatment of behavioral disturbances during the REM phase of sleep
KR20180064373A (en) 2015-07-15 2018-06-14 엑소반트 사이언시즈 게엠베하 Diaryl and aryl heteroaryl urea derivatives as modulators of 5-HT2A serotonin receptors useful for the prevention and treatment of hallucinations associated with neurodegenerative diseases
WO2017067670A1 (en) 2015-10-23 2017-04-27 Pharmathen S.A. A novel process for the preparation of tryptamines and derivatives thereof
WO2017174691A1 (en) 2016-04-08 2017-10-12 H. Lundbeck A/S A process for the manufacture of idalopirdine via hydrogenation of an imine
AU2017256623B2 (en) * 2016-04-26 2022-07-21 H. Lundbeck A/S Use of an acetylcholinesterase inhibitor and idalopirdine for reducing falls in Parkinson's disease patients
US10864191B2 (en) 2016-05-11 2020-12-15 H. Lundbeck A/S 5-HT6 receptor antagonists for use in the treatment of Alzheimer's disease with apathy as comorbidity
WO2018013686A1 (en) * 2016-07-12 2018-01-18 Concert Pharmaceuticals, Inc. Deuterated idalopirdine
EP3333154A1 (en) 2016-12-07 2018-06-13 Sandoz Ag Crystalline form of a selective 5-ht6 receptor antagonist
CN106632303A (en) * 2017-01-09 2017-05-10 湖南华腾制药有限公司 Preparation method of 6-thiazolylindole derivative
WO2018191146A1 (en) * 2017-04-10 2018-10-18 Navitor Pharmaceuticals, Inc. Heteroaryl rheb inhibitors and uses thereof
SI3630098T1 (en) 2017-05-24 2021-07-30 H. Lundbeck A/S Combination of a 5-ht6 receptor antagonist and an acetylcholinesterase inhibitor for use in the treatment of alzheimer's disease in a patient subpopulation carrying apoe4 alleles
WO2019089066A1 (en) * 2017-11-06 2019-05-09 Acelot, Inc. SMALL MOLECULE DRUGS AND RELATED METHODS FOR TREATMENT OF DISEASES RELATED TO Aβ42 OLIGOMER FORMATION
EP3936192A4 (en) 2019-03-06 2022-11-16 Daiichi Sankyo Company, Limited Pyrrolopyrazole derivative
CN109942527A (en) * 2019-04-26 2019-06-28 新乡市润宇新材料科技有限公司 A kind of synthetic method of 3- bromine dibenzofurans
EP4208446A1 (en) * 2020-09-02 2023-07-12 Enveric Biosciences Canada Inc. Nitrated psilocybin derivatives and use thereof for modulating 5-ht2a receptor and for treating a psychiatric disorder
EP4301730A1 (en) * 2021-03-02 2024-01-10 Mindset Pharma Inc. Indole derivatives as serotonergic agents useful for the treatment of disorders related thereto
IL309074A (en) 2021-06-08 2024-02-01 Entheogenix Biosciences Inc Dimethoxyphenylalkylamine activators of serotonin receptors
EP4352043A1 (en) 2021-06-09 2024-04-17 ATAI Therapeutics, Inc. Novel prodrugs and conjugates of dimethyltryptamine
WO2023044577A1 (en) * 2021-09-24 2023-03-30 Psygen Inc. Recovery method for tryptamines
WO2023129909A1 (en) 2021-12-27 2023-07-06 ATAI Life Sciences AG Aminotetraline activators of serotonin receptors
US11746087B1 (en) 2022-03-18 2023-09-05 Enveric Biosciences Canada Inc. C4-carboxylic acid-substituted tryptamine derivatives and methods of using

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187805B1 (en) * 1998-09-15 2001-02-13 Merck Sharp & Dohme Ltd. Indole and indoline derivatives as 5-HT6 selective ligands
US6750348B1 (en) * 1999-03-24 2004-06-15 Anormed, Inc. Chemokine receptor binding heterocyclic compounds

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597149A (en) * 1969-04-29 1971-08-03 Showa Denko Kk Inhibition of gas-fume fading of dyed cellulose acetate material
FR2181559A1 (en) 1972-04-28 1973-12-07 Aec Chimie Organique Bio N-Phenylalkyl-N-3-indolylalkyl-alkylamines - with sedative, neuroleptic, analgesic, hypotensive, antiserotonin, adrenolytic activity
JPS5764632A (en) 1980-10-09 1982-04-19 Mitsui Toatsu Chem Inc Novel 2-arylethyl ether derivative and thioether derivative, their production and insecticide and acaricide
US5202336A (en) * 1986-09-24 1993-04-13 Bayer Aktiengesellschaft Antiflammatory quinolin methoxy phenylsulphonamides
DE3632329A1 (en) * 1986-09-24 1988-03-31 Bayer Ag SUBSTITUTED PHENYLSULPHONAMID
SE9103745D0 (en) 1991-12-18 1991-12-18 Wikstroem Haakan ARYL-TRIFLATES AND RELATED COMPOUNDS
CA2147991A1 (en) 1993-09-01 1995-03-09 Richard A. Glennon Tryptamine analogs with 5-ht1d selectivity
US5504101A (en) 1994-05-06 1996-04-02 Allelix Biopharmaceuticals, Inc. 5-HT-1D receptor ligands
PT1032559E (en) 1997-09-29 2007-02-28 Aventis Pharma Inc Aminoalkylphenol derivatives for treating depression and memory dysfunction
DE69930308T2 (en) * 1998-12-11 2006-11-30 Virginia Commonwealth University SELECTIVE 5-HT 6 RECEPTOR LIGANDS
CN1344270A (en) * 1999-01-13 2002-04-10 千年药品公司 Functionalized heterocycles as chemokine receptor modulators
US6187895B1 (en) * 1999-08-09 2001-02-13 General Electric Company Method for preparing polymers by solid state polymerization
HU230322B1 (en) 2001-03-29 2016-01-28 Eli Lilly And Co. N-(2-arylethyl)-benzylamines as antagonists of the 5-ht6 receptor and pharmaceutical compositions containing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187805B1 (en) * 1998-09-15 2001-02-13 Merck Sharp & Dohme Ltd. Indole and indoline derivatives as 5-HT6 selective ligands
US6750348B1 (en) * 1999-03-24 2004-06-15 Anormed, Inc. Chemokine receptor binding heterocyclic compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583524B2 (en) 2007-09-21 2023-02-21 Janssen Pharmaceutica Nv Inhibitors of the interaction between MDM2 and P53
US11724985B2 (en) 2020-05-19 2023-08-15 Cybin Irl Limited Deuterated tryptamine derivatives and methods of use
US11746088B2 (en) 2020-05-19 2023-09-05 Cybin Irl Limited Deuterated tryptamine derivatives and methods of use
US11834410B2 (en) 2020-05-19 2023-12-05 Cybin Irl Limited Deuterated tryptamine derivatives and methods of use
US11958807B2 (en) 2020-05-19 2024-04-16 Cybin Irl Limited Deuterated tryptamine derivatives and methods of use

Also Published As

Publication number Publication date
DE60222396T2 (en) 2008-05-15
ES2292758T3 (en) 2008-03-16
DK1379239T3 (en) 2008-01-07
NO20034289D0 (en) 2003-09-25
HUP0303651A2 (en) 2004-03-01
EA007493B1 (en) 2006-10-27
US20090306110A1 (en) 2009-12-10
ATE372768T1 (en) 2007-09-15
CN1610547A (en) 2005-04-27
US7157488B2 (en) 2007-01-02
US8044090B2 (en) 2011-10-25
SI1859798T1 (en) 2016-07-29
PL364458A1 (en) 2004-12-13
SK12052003A3 (en) 2004-09-08
CA2442114C (en) 2011-06-21
ZA200306795B (en) 2005-02-23
DK1859798T3 (en) 2016-03-21
IL185871A0 (en) 2008-01-06
CZ305838B6 (en) 2016-04-06
NO326160B1 (en) 2008-10-13
US20070099909A1 (en) 2007-05-03
HRP20030771A2 (en) 2005-08-31
CA2442114A1 (en) 2002-10-10
NO20034289L (en) 2003-11-28
ES2566056T3 (en) 2016-04-08
IL157651A0 (en) 2004-03-28
KR20030090694A (en) 2003-11-28
SK287463B6 (en) 2010-10-07
CZ20032614A3 (en) 2004-03-17
WO2002078693A2 (en) 2002-10-10
EA200301073A1 (en) 2004-02-26
PT1379239E (en) 2007-12-06
EP1379239B1 (en) 2007-09-12
CY1110362T1 (en) 2015-04-29
PL220721B1 (en) 2015-12-31
HK1061649A1 (en) 2004-09-30
MXPA03008726A (en) 2003-12-12
KR100894189B1 (en) 2009-04-22
HU230322B1 (en) 2016-01-28
HUP0303651A3 (en) 2004-08-30
DE60222396D1 (en) 2007-10-25
IL157651A (en) 2010-02-17
BR0208179A (en) 2004-03-02
WO2002078693A3 (en) 2002-12-05
US20060009511A9 (en) 2006-01-12
PT1859798E (en) 2016-03-31
NZ527815A (en) 2005-05-27
AU2002303094B2 (en) 2006-11-23
HRP20030771B1 (en) 2008-10-31
DZ3493A1 (en) 2002-10-10
EP1379239A2 (en) 2004-01-14
JP2004532209A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US20040132800A1 (en) N-(2-arylethyl) benzylamines as antagonists of the 5-ht6 receptor
AU767009B2 (en) Selective 5-HT6 receptor ligands
US6489488B2 (en) Selective 5-HT6 receptor ligands
RU2200736C2 (en) Application of compound-agonists of human cb2 receptor for preparing medicinal immunomodulating agents, novel compounds-agonists of cb2 receptor and pharmaceutical compositions based on thereof
JP3356726B2 (en) Pyrrolo [1,2-a] pyrazine derivatives as 5HT1A ligands
JP2978566B2 (en) 5-Azabicyclo [3.1.0] hexylalkyl-2-piperidone and -glutarimide as neurokinin receptor antagonists
AU662960B2 (en) N-sulphonyl-2-oxoindole derivatives having affinity for vasopressin and/or ocytocin receptors
RU2052457C1 (en) Indole derivatives
US20080004306A1 (en) Compositions and methods for modulating gated ion channels
US7098233B2 (en) 5-halo-tryptamine derivatives used as ligands on the 5-HT6 and/or 5-HT7 serotonin receptors
IE921993A1 (en) Compounds
US20100197721A1 (en) PYRROLO [3, 4-h] ISOQUINOLINE COMPOUNDS AND METHODS FOR MODULATING GATED ION CHANNELS
KR100985140B1 (en) Indolylalkylamine derivatives as 5-hydroxytryptamine-6 ligands
EA028921B1 (en) Phenoxyethyls
MX2008010645A (en) Amide derivative or salt thereof.
US6565829B2 (en) 5-arylsulfonyl indoles useful for treating disease
JP2009528318A (en) Sigma receptor compounds
WO2011140817A1 (en) 1-[(4-hydroxypridin-4-yl) methyl] pyridine-2(1h)-one derivatives, preparation methods and uses thereof
JPH06511261A (en) Novel indole derivative
TW555758B (en) Azabicyclic 5HT1 receptor ligands
EP1377578B1 (en) Beta-carboline derivatives and its pharmaceutical use against depression and anxiety
TW553933B (en) 3a,4,5,9b-Tetrahydro-1H-benz[e]indol-2-yl amine-derived neuropeptide Y receptors ligands useful in the treatment of obesity and other disorders
EP1693366A1 (en) Selective 5-HT 6 receptor ligands
ES2332976B2 (en) TETRAHIDRO-QUINOLIN-SULFONAMIDE SUBSTITUTE COMPOSITE, ITS PREPARATION AND USE AS MEDICINES.
JP2010516795A (en) Aryl substituted sulfonamides

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12