Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040142022 A1
Publication typeApplication
Application numberUS 10/733,161
Publication dateJul 22, 2004
Filing dateDec 10, 2003
Priority dateMar 23, 2000
Also published asCA2403711A1, CA2403711C, CN1204020C, CN1431964A, EP1299287A1, EP1299287A4, US6698162, US20020005028, WO2001070577A1
Publication number10733161, 733161, US 2004/0142022 A1, US 2004/142022 A1, US 20040142022 A1, US 20040142022A1, US 2004142022 A1, US 2004142022A1, US-A1-20040142022, US-A1-2004142022, US2004/0142022A1, US2004/142022A1, US20040142022 A1, US20040142022A1, US2004142022 A1, US2004142022A1
InventorsJutaro Shudo, Larry Caldwell, Tu Xuan Duong
Original AssigneeJutaro Shudo, Larry Caldwell, Tu Xuan Duong
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods of producing a terminally sterilized topical patch preparation
US 20040142022 A1
Abstract
Methods of producing a terminally sterilized topical patch preparation are provided. In the subject methods, a topical patch preparation is exposed to electron beam radiation, preferably low level electron beam radiation, for a period of time sufficient to terminally sterilize the topical patch preparation. Also provided are the terminally sterilized topical patch preparations produced by the subject methods and methods of using the same.
Images(11)
Previous page
Next page
Claims(38)
What is claimed is:
1. A method of producing a terminally sterilized topical patch preparation, said method comprising:
exposing a topical patch preparation to electron beam radiation for a period of time sufficient to terminally sterilize said topical patch preparation;
whereby a terminally sterilized topical patch preparation is produced.
2. The method of claim 1, wherein said topical patch preparation is sealed in a packaging material containing an aluminum layer.
3. The method of claim 2, wherein said sealed topical patch preparation is produced by:
(a) providing a topical patch preparation;
(b) packaging said topical patch preparation in packaging material comprising an aluminum layer; and
(c) sealing said packaged topical patch preparation.
4. The method of claim 1, wherein said electron beam radiation is low level electron beam radiation.
5. The method of claim 4, wherein said low level electron beam radiation ranges from about 5 to 19 kGy.
6. The method of claim 4, wherein said low level electron beam radiation ranges from about 8 to 15 kGy.
7. The method of claim 1, wherein said preparation is exposed for a period of time ranging from about 40 to 80 sec.
8. A method of producing a sealed, terminally sterilized topical patch preparation, said method comprising:
(a) producing a sealed topical patch preparation by the method comprising:
(i) providing a topical patch preparation;
(ii) packaging said topical patch preparation in packaging material comprising an aluminum layer; and
(iii) sealing said packaged topical patch preparation; and
(b) exposing said sealed topical patch preparation to low level electron beam radiation for a period of time sufficient to terminally sterilize said topical patch preparation;
whereby a sealed, terminally sterilized topical patch preparation is produced.
9. The method of claim 8, wherein said low level electron beam radiation ranges from about 5 to 19 kGy.
10. The method of claim 8, wherein said low level electron beam radiation ranges from about 8 to 15 kGy.
11. The method of claim 8, wherein said preparation is exposed for a period of time ranging from about 40 to 80 sec.
12. A terminally sterilized topical patch preparation produced according to the method of claim 1.
13. A terminally sterilized topical patch preparation, said preparation comprising:
a fibrous material; and
an adhesive gel composition;
wherein said preparation contains nonviable microorganisms.
14. The preparation of claim 13, wherein said adhesive gel composition comprises:
an active agent;
a water-soluble polymer gel;
water; and
a water holding agent.
15. The preparation of claim 14, wherein said active agent is a local anesthetic.
16. The preparation of claim 13, wherein said preparation is sealed in packaging material.
17. The preparation of claim 16, wherein said packaging material comprises an aluminum layer.
18. The preparation of claim 14, wherein said nonviable microorganisms are electron beam irradiated microorganisms.
19. A method of delivering an active agent to a subject, said method comprising:
applying a terminally sterilized topical patch preparation comprising an active agent to a skin surface of said subject;
whereby said active ingredient is delivered to a subject.
20. The method of claim 19, wherein said preparation is the preparation of claim 14.
21. A kit for use in transdermal delivery of an active agent to a subject in need thereof, said kit comprising:
(a) a terminally sterilized topical patch preparation comprising an active agent; and
(b) instructions for using said preparation to practice the method of claim 19.
22. A method of producing a terminally sterilized topical patch preparation, said method comprising:
exposing a water-containing topical patch preparation to electron beam radiation for a period of time sufficient to terminally sterilize said topical patch preparation, to produce a terminally sterilized topical patch preparation.
23. The method of claim 22, wherein said topical patch preparation is sealed in a packaging material containing an aluminum layer.
24 The method of claim 23, wherein said sealed topical patch preparation is produced by:
(a) providing a topical patch preparation;
(b) packaging said topical patch preparation in packaging material comprising an aluminum layer; and
(c) sealing said packaged topical patch preparation.
25. The method of claim 22, wherein said electron beam radiation is low level electron beam radiation.
26. The method of claim 22, wherein said preparation is exposed for a period of time ranging from about 40 to 80 sec.
27. The method according to claim 22, wherein said water-containing topical patch preparation comprises a water-soluble polymer, water and a water holding agent.
28. A terminally sterilized topical patch preparation produced according to the method of claim 22.
29. A method of producing a terminally heat sterilized adhesive gel composition, said method comprising:
exposing an adhesive gel composition to electron beam radiation for a period of time sufficient to terminally sterilize said topical patch preparation;
whereby a terminally sterilized adhesive gel composition is produced.
30. The method of claim 29, wherein said adhesive gel composition comprises a pharmaceutically active agent.
31. The method of claim 30, wherein said pharmaceutically active agent is present in said adhesive gel composition in an amount ranging from about 0.2 to about 10.0%.
32. The method of claim 30, wherein said pharmaceutically active agent is a local anesthetic.
33. The method of claim 29, wherein said adhesive gel composition comprises:
(a) a water-soluble polymer gel;
(b) water; and
(c) a water retaining agent.
34. The method of claim 29, wherein said adhesive gel composition is sealed in a packaging material comprising an aluminum layer.
35. The method of claim 34, wherein said sealed adhesive gel composition is produced by:
(a) providing an adhesive gel composition;
(b) packaging said adhesive gel composition in a packaging material comprising an aluminum layer; and
(c) sealing said packaged adhesive gel composition in said packaging material.
36. The method of claim 29, wherein said electron beam radiation is low level electron beam radiation.
37. The method of claim 36, wherein said low level electron beam radiation ranges from about 5 to about 19 kGy.
38. The method of claim 29, wherein said preparation is exposed for a period of time ranging from about 40 to about 80 seconds.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of application Ser. No. 09/813,652 now U.S. Pat. No. ______; which application, pursuant to 35 U.S.C. § 119 (e), claims priority to the filing date of the U.S. Provisional Patent Application Serial No. 60/191,608 filed Mar. 23, 2000 and Serial No. 60/218,220, filed on Jul. 14, 2000; the disclosures of which are herein incorporated by reference.
  • INTRODUCTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The field of this invention is transdermal drug delivery, particularly, methods of producing topical patch preparations for transdermal drug delivery.
  • [0004]
    2. Background of the Invention
  • [0005]
    Transdermal delivery devices, e.g., topical patches, wound dressings, etc., are used to administer a variety of therapeutic agents, such as pharmaceutically active agents. The devices are generally applied to the surface of the skin and a therapeutically active agent contained therein is delivered to the systemic circulation via absorption through the skin. Advantages of transdermal delivery of a therapeutic agent over oral or parenteral administration include increased bioavailability (as first-pass liver metabolism is avoided), and more controlled (e.g., sustained, continuous) delivery. Topical preparations, e.g., topical patch preparations, for transdermal delivery typically contain an active agent dissolved or dispersed in an aqueous adhesive gel composition that is coated or spread onto a fibrous material.
  • [0006]
    Sterile topical patch preparations for transdermal delivery are currently commercially produced by clean room fabrication from sterilized components. The process requires specially designed facilities, special equipment, protective clothing for clean room personnel made of special materials (e.g., Tyvek®), and stringent environmental control and maintenance, e.g., of air quality, pressure, temperature and humidity. Accordingly, clean room fabrication is costly.
  • [0007]
    Accordingly, the development of methods of producing terminally sterilized topical patch preparations for transdermal delivery would be of great benefit in drug delivery.
  • [0008]
    Relevant Literature
  • [0009]
    Patents of interest include the following: U.S. Pat. Nos. 6,030,554; 6,028,242; 5,782,914; 5,730,933; 5,496,302; 5,011,660 and 4,652,763. See also U.S. Pat. Nos. 5,827,529; 5,480,649; 5,242,951; 5,116,621 and 5,082,663.
  • SUMMARY OF THE INVENTION
  • [0010]
    Methods of producing a terminally sterilized topical patch preparation are provided. In the subject methods, a topical patch preparation is exposed to electron beam radiation, preferably low level electron beam radiation, for a period of time sufficient to terminally sterilize the topical patch preparation. Also provided are the terminally sterilized topical patch preparations produced by the subject methods, as well as methods of using the same.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • [0011]
    Methods of producing a terminally sterilized topical patch preparation are provided. In the subject methods, a topical patch preparation is exposed to electron beam radiation, preferably low level electron beam radiation, for a period of time sufficient to terminally sterilize the topical patch preparation. Also provided are the terminally sterilized topical patch preparations produced by the subject methods, as well as methods of using the same. In further disclosing the subject invention, methods for producing the subject topical patches and the patches themselves will be described first in greater detail, followed by a review of representative methods of using the topical patches.
  • [0012]
    Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
  • [0013]
    In this specification and the appended claims, singular references include the plural, unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.
  • [0014]
    Method of Producing a Terminally Sterilized Topical Patch Preparation
  • [0015]
    As summarized above, the subject invention provides methods for producing terminally sterilized topical patch preparations. The subject methods are suitable for use in terminally sterilizing a variety of different types of topical patch preparations. By topical patch preparation is meant a composition that includes an active ingredient in a topical delivery vehicle, i.e., a vehicle that is suitable for application to a skin surface (or epidermal surface) of an animal. A variety of different topical patch preparations are known to those of skill in the art. Representative topical patch preparations that may be terminally sterilizable according to the subject methods are provided infra. In many embodiments, the topical patch preparation is present in a sealed packaging means, i.e., it is sealed, as described in greater detail infra.
  • [0016]
    A feature of the subject methods is that the topical patch preparation, which in many embodiments is sealed in a packaging means, is exposed to electron beam irradiation for a period of time sufficient to terminally sterilize the composition while maintaining the activity of the active agent present therein. The topical patch preparation may be exposed to electron beam irradiation using any convenient protocol and device, where representative protocols and devices for exposing compositions of matter to electron beam irradiation are disclosed in U.S. Pat. Nos. 6,030,554; 6,028,242; 5,989,498 and 5,807,491; the disclosures of which are herein incorporated by reference. In many embodiments, the topical patch composition is exposed to low level electron beam irradiation. By low level electron beam irradiation is meant electron beam irradiation ranging in strength from about 5 to 19 kGy, and in many embodiments from about 8 to 15 kGy.
  • [0017]
    In practicing the subject methods, the topical patch preparation is exposed to electron beam irradiation for a period of time sufficient to terminally sterilize the topical patch preparation without adversely affecting the properties of the preparation to an unacceptable degree. Generally, the period of time during which the topical patch preparation is exposed to the electron beam irradiation is at least about 1 min., usually at least about 1-2 min. and more usually at least about 2 min., where the period of time may be as long as 3 min. or longer, but usually does not exceed about 5 min. and more usually does not exceed about 3 min. In many embodiments, the period of time ranges from about 1 to 3 and usually from about 1 to 2 min.
  • [0018]
    The above described process produces a terminally sterilized topical patch preparation. By “terminally sterilized” is meant that the topical patch preparation is substantially, if not completely, free of viable microorganisms, where by “substantially free” is meant that amount of viable microorganisms present in the patch preparation following the above described treatment does not exceed about 100, usually does not exceed about 10 and more usually does not exceed about 5 and by “completely free” is meant that no viable microorganisms are present in the topical patch preparation. As such, the subject patches are substantially, if not completely, free of microorganisms selected from the group consisting of: Staphylococcus aureus; Psedlomonas aeruginosa; Escherichia coli; Candida albicans; Aspergillus niger; and the like.
  • [0019]
    The subject methods are suitable for use in the sterilization of a wide variety of topical patch preparations. Examples of different types of topical patch preparations with which the subject sterilization methods may be employed include those described in U.S. Pat. Nos. 5,827,529; 5,480,646; 5,242,951; 5,116,621; and 5,082,663; the disclosures of which are herein incorporated by reference.
  • [0020]
    A representative topical patch preparation described in at least some of the above mentioned patents that may be terminally sterilized according to the subject methods is made up of active agent retaining layer present on a support, where the active agent retaining layer is made up of one or more active agents present in, e.g., dissolved in or dispersed in, and adhesive gel base, where the adhesive gel base is made up of a water-soluble high molecular weight substance, water and a water retaining agent.
  • [0021]
    Water-soluble high molecular weight substances include water-soluble polymers, where polymers of interest include, but are not limited to: gelatin, starch, agar, mannan, alginic acid, polyacrylic acid, polyacrylate, dextrin, methylcellulose, sodium methylcellulose, sodium carboxymethylcellulose, carboxyvinyl polymer, polyvinyl alcohol, polyvinylpyrrolidone, acacia, tragacanth, karaya gum, and starch acrylate copolymer. Metallic salts of these, as well as the products of cross-linking these by means of organic or inorganic cross-linking agents, are also of interest. These water-soluble polymers can be used to bring out the properties and characteristics of the other starting materials used in the adhesive gel composition, and in practice can be used alone or in combinations of 2 or more. The amount of water soluble high molecular weight substance(s) present in the adhesive gel base generally ranges from about 0.5 to 50, usually from a bout 5 to 25% by weight.
  • [0022]
    The amount of water present in the gel adhesive is sufficient to impart the desired physical properties to the gel adhesive, and generally ranges from about 10 to 70%, usually from about 20 to 50%.
  • [0023]
    The water-retaining agent or water-holding agent of the subject adhesive gel compositions is any agent that is capable of at least diminishing the volatilization of water contained in the adhesive gel base so that the water content in the adhesive gel base is maintained at least a substantially constant, if not constant, level during storage and use of the preparation. One or more water-retaining agents may be employed in the subject compositions, where the amount of water-retaining agent present in the adhesive gel base generally ranges from about 1 to 70%, more preferably 10 to 60% by weight. Examples of suitable water-retaining or water-holding agents include, but are not limited to: 1 or more types of polyvalent alcohols, such as glycerin, sorbitol, propylene glycol, 1,3-butylene glycol, and ethylene glycol, and the like.
  • [0024]
    Furthermore, in addition to the aforementioned ingredients, various additives that are used in ordinary topical water-soluble patch preparations may also be suitably compounded as needed, including inorganic substances such as kaolin, bentonite, and titanium dioxide; preservatives such as paraben; anionic, cationic, and nonionic surfactants; metallic aluminum crosslinking agents such as aluminum chloride, dried aluminum hydroxide gel, and dihydroxyaluminum aminoacetate; oils such as jojoba oil and castor oil; solubilizers such as crotamiton; chelating agents such as EDTA; pH regulators such as malic acid, tartaric acid, and diisopropanolamine; alcohols such as ethanol; moisture retaining agents such as hyaluronic acid, aloe extract, and urea; and other perfumes and coloring agents.
  • [0025]
    A diverse array of active agents or ingredients may be present in the adhesive gel base, described supra, in the subject topical patch preparations. Depending on the nature of the agent, the amount of active agent present in the composition generally ranges from about 0.2 to 10%, usually from about 0.2 to 5% and more usually from about 0.5 to 5%. Representative specific active agents of interest include, but are not limited to: dl-camphor, capsaicin, eucalyptus oil, nonivamide, methyl salicylate, glycol salicylate, dipotassium glycyrrhizinate, l-menthol, and tocopheryl acetate; nonsteroidal antiinflammatories such as salts and derivatives of ketoprofen, flurbiprofen, felbinac, and diclofenac; and local anesthetics such as lidocaine, tetracaine, and xylocalne.
  • [0026]
    In many embodiments, the active agent present in the composition is a local anesthetic. Although two or more local anesthetic agents may be present in the subject compositions, generally the subject compositions will comprise a single local anesthetic agent. Local anesthetics of interest are those which, when administered in the topical formulations, rapidly penetrate a keratinized skin surface. In many embodiments, local anesthetics of interest have a molecular weight and melting point that is compatible with transport across the keratinized skin surface. Generally, the molecular weight of the local anesthetic will not exceed about 300 dal, and will more usually not exceed about 250 dal. The melting point of the local anesthetic will be less than about 100° C. In many embodiments, the local anesthetic will be a compound comprised of a secondary or tertiary amine linked by a bond or through a connecting group to an aromatic group. The local anesthetic will generally be an alkanyl compound of from about 9 to 20 carbon atoms. Because the composition is applied topically, the local anesthetic will generally be present in the composition as a free base to promote penetration of the agent through the skin surface. A large number of local anesthetics are known in the art, many of which are suitable for topical application. Suitable local anesthetics include lidocaine, butamben, butanilicaine, ethyl aminobenzoate, fomocaine, hydroxyprocaine, isobutyl p-aminobenzoate, naepaine, octacaine, parethoxycaine, piridocaine, prilocaine, procaine, risocaine, tolycaine, trimecaine, tetracaine, xylocalne, ethylaminobenzoate (benzocaine); etc.
  • [0027]
    As mentioned above, the adhesive gel composition containing the one or more active ingredients is typically present on a support. The support is generally made of a flexible material which is capable of fitting in the movement of human body and includes, for example, various non-woven fabrics, woven fabrics, spandex, flannel, or a laminate of these materials with polyethylene film, polyethylene glycol terephthalate film, polyvinyl chloride film, ethylene-vinyl acetate copolymer film, polyurethane film, and the like.
  • [0028]
    In many embodiments, the to be sterilized topical preparation or patch is present in a sealed package prior to exposure to electron beam irradiation, as described above. Generally, the sealed package is fabricated from a packaging material that includes a layer made out of a material capable of preventing passage of moisture, oxygen and other agents, i.e., the package includes in a moisture/oxygen barrier material. Any suitable barrier material may be employed, where barrier materials of interest include metalic layers, e.g., aluminum, where in many embodiments, the barrier layer is an aluminum layer. This barrier layer has a thickness sufficient to provide for the barrier function, where the thickness typically ranges from about 5 to 15, usually from about 6 to 10 μm. In many embodiments, the package is a laminate of the barrier layer in combination with one or more additional layers, e.g., polymeric layers, paper layers, etc. A representative aluminum containing package that may be used with the subject patch preparations is sold by Dainippon Printing Co., Ltd. (Kyoto, Japan).
  • [0029]
    The topical patch preparations that may be terminally sterilized according to the subject methods may be fabricated using any convenient protocol. One convenient protocol for fabrication of such patches includes preparing a gel adhesive paste through the uniform mixing of the aforementioned ingredients and then coating the paste onto support, followed by cutting of the resultant product to the specified size to obtain the desired topical patch preparation. The resultant topical patch preparation is then heat-sealed, typically several sheets to a package, using a packaging material containing an aluminum layer, as described supra, to obtain the sealed topical patch. For a more detailed description of the fabrication protocol, see U.S. Pat. No. 5,827,529; the disclosure of which is herein incorporated by reference.
  • [0030]
    Terminally Sterilized Topical Patch Preparation
  • [0031]
    Also provided by the subject invention are terminally sterilized patch preparations, where in many embodiments the patch preparations are terminally sterilized packaged patch preparations, i.e., patch preparations sealed in a package, such as an aluminum foil containing package or envelope, as described supra. Because of the process employed in the subject methods, the subject topical preparations are characterized by the presence of non-viable microorganisms and substantially no viable microorganisms, where in certain embodiments the subject terminally sterilized topical patch preparations include no viable microorganisms. Where the subject terminally sterilized topical patch preparations contain some viable microorganisms, they will not contain so many organisms that they cannot be called terminally sterilized. As such, in these embodiments, the number of microorganisms will not exceed about 100, usually will not exceed about 10 and more usually will not exceed about 1 to 10. Because the subject compositions are prepared from non-sterile components and then terminally sterilized, as opposed to preparations prepared under clean room conditions and protocols, the number of non-viable or irradiation killed microorganisms present in the subject compositions is substantial, and may range from about 1 to 100, usually from about 1 to 50 and more usually from about 1 to 10.
  • [0032]
    Methods of Using Patch Preparations
  • [0033]
    The subject terminally sterilized patch preparations find use in the topical delivery of active agents to a host, where by topical delivery is meant delivery via absorption through the skin. In using the subject terminally sterilized topical patch preparations to topically administer an active agent to the skin, the topical preparation is applied to a skin surface and maintained at the site of application for a period of time sufficient for the desired amount of active agent to be delivered to the host, where the period of time typically ranges from about 1 hr to 24 hr, usually from about 1 hr to 12 hr.
  • [0034]
    Kits
  • [0035]
    Also provided are kits, where the subject kits at least include one or more terminally sterilized topical patch preparations, as described above. The subject topical patch preparations in the kits may be present in a package, as described supra. The subject kits also generally include instructions for how to use the patches in active agent delivery to a host. The instructions are generally recorded on a suitable recording medium. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. As such, the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e. associated with the packaging or subpackaging) etc. In other embodiments, the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc.
  • [0036]
    The following practical and comparative examples are offered by way of illustration and not by way of limitation.
  • EXPERIMENTAL I. COMPOSITIONS FOR PRACTICAL EXAMPLES
  • [0037]
    [0037]
    TABLE 1
    Compositions of Practical Examples 1-6.
    Practical Practical Practical Practical Practical Practical
    Ingredient Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
    indomethacin 0.5
    felbinac 0.5
    lidocaine 5.0
    glycol salicylate 1.0
    l-menthol 0.5 0.5 0.02
    dl-camphor 0.5
    tocopheryl acetate 0.2 0.2
    hyaluronic acid 2.0
    crotamiton 2.0 0.5
    sorbitol 30.0 25.0 20.0 10.0 20.0
    kaolin 5.0 1.5 2.0 1.0
    urea 3.0
    gelatin 2.0 1.0 0.5
    disodium EDTA 0.2 0.1 0.1 0.07 0.05 0.08
    diisopropanolamine 3.0
    tartaric acid 2.3 0.2 1.5 1.0 1.4 1.5
    castor oil 1.0 0.2 2.0 2.0 1.0
    Tween-80 0.2 0.2 0.1
    methyl paraoxybenzoate 0.2 0.2 0.2 0.2 0.15 0.2
    dihydroxyaluminum 0.2 0.5 0.25 0.08 0.05 0.07
    aminoacetate
    carboxycarbonyl polymer 1.6 0.8 0.5
    polyacrylic acid 10.0 10.0 5.0
    sodium polyacrylate 5.0 3.0 5.0 7.0 7.0 5.0
    sodium 4.0 5.0 4.0 3.0 5.0
    carboxymethylcellulose
    PVA 2.0 1.0 2.0 1.0
    glycerin 15.0 17.0 23.0 20.0 30.0 20.0
    distilled water 31.9 47.2 21.45 40.25 53.33 39.05
    Total 100.00 100.00 100.00 100.00 100.00 100.00
  • II. PRACTICAL EXAMPLES Practical Example 1
  • [0038]
    A water-soluble polymer gel topical patch preparation is prepared wherein the non-steroidal anti-inflammatory indomethacin is compounded as the active ingredient. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET non-woven cloth in an amount of 1200 kg/m2, and the resultant product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting sealed package product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • Practical Example 2
  • [0039]
    A water-soluble polymer gel topical patch preparation is prepared wherein the non-steroidal anti-inflammatory felbinac is compounded as the active ingredient. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET non-woven cloth in an amount of 1200 kg/m2, and the resulting product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting packaged product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • Practical Example 3
  • [0040]
    A water-soluble polymer gel topical patch preparation is prepared wherein the local anesthetic lidocaine is compounded as the active ingredient. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET non-woven cloth in an amount of 1200 kg/m2, and the resulting product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resultant packaged product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • Practical Example 4
  • [0041]
    An anti-inflammatory analgesic water-soluble polymer gel topical patch preparation is prepared wherein glycol salicylate, l-menthol, dl-camphor, and tocopheryl acetate are compounded as the active ingredients. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET nonwoven cloth in an amount of 1200 kg/m2, and the resulting product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resultant packaged product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • Practical Example 5
  • [0042]
    A water-soluble, moisture-retaining topical patch preparation is prepared wherein hyaluronic acid and tocopheryl acetate are compounded as the active ingredients. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET non-woven cloth in an amount of 1200 kg/m2, and the resulting product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resultant packaged product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • Practical Example 6
  • [0043]
    A placebo. All the ingredients are blended together to produce a uniform paste. The paste is spread onto a PET non-woven cloth in an amount of 1200 kg/m2, and the resulting product is then covered with a PP film and cut to a size of 10 cm by 14 cm. These sheets are then packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resultant packaged product is then irradiated for 2 minutes with a 12 kGy electron beam and thereby sterilized.
  • III. COMPARATIVE EXAMPLES Comparative Example 1
  • [0044]
    A water-soluble polymer gel topical patch preparation according to Practical Example 1 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 2
  • [0045]
    A water-soluble polymer gel topical patch preparation according to Practical Example 2 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 3
  • [0046]
    A water-soluble polymer gel topical patch preparation according to Practical Example 3 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 4
  • [0047]
    A water-soluble polymer gel topical patch preparation according to Practical Example 4 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 5
  • [0048]
    A water-soluble water-retaining topical patch preparation according to Practical Example 5 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 6
  • [0049]
    A placebo according to Practical Example 6 that has not been subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 7
  • [0050]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a water-soluble polymer gel topical patch preparation according to Practical Example 1, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 8
  • [0051]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a water-soluble polymer gel topical patch preparation according to Practical Example 2, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 9
  • [0052]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a water-soluble polymer gel topical patch preparation according to Practical Example 3, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 10
  • [0053]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a water-soluble polymer gel topical patch preparation according to Practical Example 4, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 11
  • [0054]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a water-soluble water-retaining topical patch preparation according to Practical Example 5, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • Comparative Example 12
  • [0055]
    Methyl paraoxybenzoate is added as a preservative in an amount of 0.2% to a placebo according to Practical Example 6, and the resulting product is packaged, 2 sheets per package, by means of heat sealing in a packaging material containing an aluminum layer. The resulting product is not subjected to sterilization by means of electron beam irradiation.
  • [0056]
    IV. RESULTS
    TABLE 2
    Comparative Results of the Levels of Microorganisms
    in the Compositions of Practical Examples 1-6
    and Comparative Examples 1-6.
    First Second Third
    comparison comparison comparison
    Practical Example 1
    Comparative + + +
    Example 1
    Practical Example 2
    Comparative + + +
    Example 2
    Practical Example 3
    Comparative + + +
    Example 3
    Practical Example 4
    Comparative + + +
    Example 4
    Practical Example 5
    Comparative + + +
    Example 5
    Practical Example 6
    Comparative + + +
    Example 6
  • [0057]
    As shown in Table 2, sterilization by electron beam irradiation is complete, demonstrating that an adequate sterilization effect may be obtained even with irradiation for 2 minutes at 12 kGy.
  • [0058]
    The aforementioned Practical Examples 1 through 6 and Comparative Examples 7 through 12, are prepared and stored each in a room kept at 40° C. The Practical and Comparative Examples are compared after 1 week, 1 month, 3 months, and 6 months for preparation discoloration and abnormal odors (Table 3). For Practical Example 1 and Comparative Example 7, and for Practical Example 3 and Comparative Example 9, the contents of the active ingredients are also measured and compared (Table 4).
  • [0059]
    The values shown represent the differences between the Practical Examples and the Comparative Examples, and represent the sensory differences felt by 10 healthy individuals comparing the respective examples.
    TABLE 3
    Comparative Results for Discoloration and Abnormal Odor.
    After 1 week After 1 month After 3 months After 6 months
    Abnormal Abnormal Abnormal Abnormal
    Discoloration odor Discoloration odor Discoloration odor Discoloration odor
    Practical + + + +
    Example 1
    Practical + +
    Example 2
    Practical + + +
    Example 3
    Practical +
    Example 4
    Practical + +
    Example 5
    Practical
    Example 6
  • [0060]
    As shown in Table 3, the topical patch preparations subjected to electron beam irradiation sterilization exhibit virtually the same external characteristics as the topical patch preparations that are not subjected to electron beam irradiation sterilization. As such, long-term storage results in, for example, extremely little decomposition of the water-soluble polymer gel due to the electron irradiation.
  • [0061]
    All of the results shown are obtained by conducting [the comparison] at n=3, and are the means thereof.
    TABLE 4
    Results of Measurement and Comparison of the Active
    Ingredients of Practical Example 1 and Comparative Example 7,
    and of Practical Example 3 and Comparative Example 9.
    After 1 After 1 After 3 After 6
    week month months months
    indomethacin Practical 4.98 4.94 4.88 4.72
    Example 1
    Comparative 4.99 4.96 4.87 4.75
    Example 7
    lidocaine Practical 48.7 48.3 47.9 47.1
    Example 3
    Comparative 49.2 48.9 48.5 47.7
    Example 9
  • [0062]
    Units are mg active ingredient/g composition.
  • [0063]
    Table 4 shows that, as far as the stability of the active ingredients is concerned, virtually no decomposition is caused by electron beam irradiation, and stability is well within a range of ±10%.
  • [0064]
    VI. Stability
  • [0065]
    A. Introduction
  • [0066]
    Three sublots of lidocaine topical patch (5% as described in practical example 3, above) (lot # 2024) were subjected respectively to a low E-Beam irradiation dose of 0.5 megarad (or 5.0 kGy), 0.9-1.0 megarad (or 9-10 kGy), and 1.3-1.4 megarad (13-14 kGy).
  • [0067]
    The three stability lots were recorded as follows:
    Stability No Irradiation dose
    001-9A 0.5 mrad
    001-9b 0.9-1.0 mrad
    001-9C 1.3-1.4 mrad
  • [0068]
    B. Specific Lots
    1. STABILITY # 001-9A subjected to 5.0 kGy (kilogray) or
    5.0 mrad e-beam radiation
    Tests performed Initial 3 mo 40° C. 6 mo 40° C. Specifications
    Microbiology
    Sterility tests Pass Pass Pass Pass
    (USP 24)
    Chemistry
    Physical Pass Pass Pass White to light
    appearances yellow, faint
    characteristic odor
    Lidocaine HCL 96.4% 101.3% 101.4% 90.0-110.0% of
    700 mg per patch
    Dissolution, 324.2 mg 321.5 mg 348.0 mg NLT 280 mg/patch
    lidocaine at 30 minutes
    Methylparaben 13.2 mg 13.6 mg 13.6 mg 14.0 +/− 1.4 mg per
    patch
    Propylparaben 6.70 mg 6.95 mg 7.12 mg  7.0 +/− 0.7 mg per
    patch
    Related None None detected None detected <700 mcgs/patch
    compounds 2,6- detected
    xylidine
    pH 6.80 6.95 6.82  6.0-7.5
    Adhesive strength 38 seconds 27 seconds >5 seconds NLT 5 seconds
    Weight variation
    Average (20) 16.354 g 16.280 g 16.390 g Deviation NMT
    RSD 2.04 g 1.41 g 1.62 g 10%
  • [0069]
    [0069]
    2. STABILITY # 001-9B subjected to 9 to 10 kGy (kilogray) or
    0.9 to 1.0 mrad (megarad) e-beam radiation
    Tests performed Initial 3 mo 40° C. 6 mo 40° C. Specifications
    Microbiology
    Sterility tests Pass Pass Pass Pass
    (USP 24)
    Chemistry
    Physical Pass Pass Pass White to light
    appearances yellow, faint
    characteristic
    odor
    Lidocaine HCL 96.7% 103.2% 100.8% 90.0-110.0% of
    700 mg per
    patch
    Dissolution, 344.6 mg per patch 328.8 mg per patch 349.7 mg per patch NLT 280 mg per patch
    lidocaine
    Methylparaben 13.5 mg 13.9 mg 13.4 mg 14.0 +/− 1.4 mg
    per patch
    Propylparaben 6.51 mg 7.09 mg 7.04 mg  7.0 +/− 0.7 mg
    per patch
    Related None None None <700 mcg/patch
    compounds detected detected detected
    2,6-xylidine
    pH 6.81 7.10 6.83  6.0-7.5
    Adhesive 39 seconds 22 seconds >5 seconds NLT 5 seconds
    strength
    Weight
    variation
    Average (20) 16.389 g 16.470 g 16.504 g Deviation NMT
    RSD 1.54 g 1.71 g 1.45 g 10%
  • [0070]
    [0070]
    3. STABILITY # 001-9C subjected to 13 to
    14 kGy (kilogry) or 1.3 to 1.4 megarad e-beam radiation
    Tests performed Initial 3 mo 40° C. 6 mo 40° C. Specifications
    Microbiology
    Sterility tests Pass Pass Pass Pass
    (USP 24)
    Chemistry
    Physical Pass Pass Pass White to light
    appearances yellow, faint
    characteristic
    odor
    Lidocaine HCL 96.6% 98.3% 97.7% 90.0-110.0%
    of 700 mg per
    patch
    Dissolution, 328.5 mg 334.5 mg 332.9 mg NLT 280 mg per
    lidocaine patch
    Methylparaben 13.5 mg 13.5 mg 13.3 mg 14 +/− 1.4 mg per
    patch
    Propylparaben 6.52 mg 6.85 mg 6.97 mg 7 +/− 0.7 mg per
    patch
    Related None None None <700 mcgs per
    compounds 2,6- detected detected detected patch
    xylidine
    pH 6.79 7.00 6.81  6.0-7.5
    Adhesive 60 seconds 46 seconds >5 seconds NLT 5 seconds
    strength
    Weight variation
    Average (20) 16.409 g 16.290 g 16.389 mg Deviation
    RSD 1.33 g 1.88 mg 1.58 mg NMT 10%
  • [0071]
    C. Results
  • [0072]
    Storage at accelerated conditions (6 months 40° C. 75% RH) of the lidocaine patch 5% subjected to e-beam radiation from a dose of 0.5 to 1.4 megarad shows no effects on the stability and the sterility of the product.
  • [0073]
    It is evident from the above results and discussion that the subject invention provides for the effective, complete sterilization of a topical patch preparation using electron beam radiation, even at low levels of irradiation, whereby a stable, terminally sterilized topical patch preparation is produced. As such, the subject invention provides a more convenient method for producing terminally sterilized topical patch. Furthermore, the subject terminally sterilized patch preparations have a broad ranges of diverse applications because of their terminal sterility, where such applications include applications to open wounds, etc. As such, the subject invention represents a significant contribution to the art.
  • [0074]
    All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
  • [0075]
    Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3797494 *Aug 9, 1971Mar 19, 1974Alza CorpBandage for the administration of drug by controlled metering through microporous materials
US4250139 *Feb 1, 1979Feb 10, 1981Collagen CorporationMicrowave sterilization of dry protein
US4460445 *Feb 28, 1983Jul 17, 1984Milliken Research CorporationRadiation-stable polyolefin compositions containing benzaldehyde acetals
US4515666 *Feb 28, 1983May 7, 1985Milliken Research CorporationRadiation-stable polyolefin compositions containing aromatic ketone compounds
US4540416 *Dec 28, 1984Sep 10, 1985El Paso Polyolefins CompanyHeat-sterilizable polyolefin compositions and articles manufactured therefrom
US4652763 *Mar 29, 1985Mar 24, 1987Energy Sciences, Inc.Electron-beam irradiation sterilization process
US4726928 *Apr 18, 1986Feb 23, 1988American Hoechst CorporationRadiation-resistant vinyl halide resin compositions and a process for their production
US5011660 *Nov 28, 1988Apr 30, 1991Huls America Inc.Method of sterilizing medical grade film
US5082663 *Aug 20, 1987Jan 21, 1992Teikoku Seiyaky Co., Ltd.External adhesive preparation containing steroids
US5116621 *Dec 24, 1990May 26, 1992Lederle (Japan), Ltd.Anti-inflammatory analgesic patch
US5242951 *Dec 28, 1990Sep 7, 1993Nitto Denko CorporationEstrogen-containing gel preparation
US5405366 *Nov 12, 1992Apr 11, 1995Nepera, Inc.Adhesive hydrogels having extended use lives and process for the preparation of same
US5480649 *Nov 7, 1991Jan 2, 1996Teikoku Seiaku Kabushiki KaishaProcaterol-containing preparation for application to the skin
US5496302 *Apr 29, 1992Mar 5, 1996Baxter International Inc.Method for sterilizing
US5540033 *Jan 10, 1994Jul 30, 1996Cambrex HydrogelsIntegrated Manufacturing process for hydrogels
US5730933 *Apr 16, 1996Mar 24, 1998Depuy Orthopaedics, Inc.Radiation sterilization of biologically active compounds
US5782914 *Nov 29, 1996Jul 21, 1998Bio-Vascular, Inc.Method for preparing heterogeneous tissue grafts
US5827529 *Jun 10, 1994Oct 27, 1998Teikoku Seiyaku Kabushiki KaishaExternal preparation for application to the skin containing lidocaine
US5960956 *Feb 19, 1997Oct 5, 1999St. Jude Medical, Inc.Storage container
US5989489 *Mar 6, 1996Nov 23, 1999Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TnoMethod for manufacturing a composite material
US6028242 *Jun 24, 1997Feb 22, 2000Stryker CorporationTerminally sterilized osteogenic devices and preparation thereof
US6030554 *Apr 13, 1998Feb 29, 2000Menicon Co., Ltd.Method of sterilizing intraocular lens by electron beam
US6623751 *Jul 29, 1999Sep 23, 2003L'oreal S.A.Cosmetic, pharmaceutical, or dermatological patch
US20030035810 *Dec 6, 2000Feb 20, 2003Caplan Michael J.Microbial delivery system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7899681 *Mar 1, 20113M Innovative Properties CompanyElectronic management of sterilization process information
US20030187586 *Mar 29, 2002Oct 2, 2003Katzenmaier Kevin R.Electronic management of sterilization process information
US20040147187 *Dec 12, 2003Jul 29, 2004Rasor Allen C.Elastically deformable fabric with gel coated surface
Classifications
U.S. Classification424/449, 53/428
International ClassificationA61K31/405, A61K31/167, B65B55/08, A61P23/02, A61K47/30, B65B55/16, A61L2/26, B65B55/02, A61L2/00, A61L2/08, A61K9/70
Cooperative ClassificationA61L2/087, A61K9/7061, B65B55/02, A61L2/0035, A61K9/7053, A61L2/26, B65B55/16
European ClassificationB65B55/02, B65B55/16, A61L2/26, A61L2/00P2R2, A61L2/08J, A61K9/70E2B6B, A61K9/70E2B6B2
Legal Events
DateCodeEventDescription
Mar 30, 2004ASAssignment
Owner name: TEIKOKU PHARMA USA, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUDO, JUTARO;CALDWELL, LARRY;DUONG, TU XUAN;REEL/FRAME:014503/0567;SIGNING DATES FROM 20010606 TO 20030414