Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040145373 A1
Publication typeApplication
Application numberUS 10/478,148
PCT numberPCT/DE2003/000188
Publication dateJul 29, 2004
Filing dateJan 24, 2003
Priority dateMar 22, 2002
Also published asCN1537234A, CN100403035C, DE10212685A1, DE50309954D1, EP1490700A1, EP1490700B1, US7005859, WO2003081263A1
Publication number10478148, 478148, PCT/2003/188, PCT/DE/2003/000188, PCT/DE/2003/00188, PCT/DE/3/000188, PCT/DE/3/00188, PCT/DE2003/000188, PCT/DE2003/00188, PCT/DE2003000188, PCT/DE200300188, PCT/DE3/000188, PCT/DE3/00188, PCT/DE3000188, PCT/DE300188, US 2004/0145373 A1, US 2004/145373 A1, US 20040145373 A1, US 20040145373A1, US 2004145373 A1, US 2004145373A1, US-A1-20040145373, US-A1-2004145373, US2004/0145373A1, US2004/145373A1, US20040145373 A1, US20040145373A1, US2004145373 A1, US2004145373A1
InventorsGerhard Knecht
Original AssigneeGerhard Knecht
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Circuit arrangement and method for monitoring a current circuit
US 20040145373 A1
Abstract
A circuit arrangement and a method are described with which a current circuit can be monitored for correct function. A first and a second current sensor are provided in the current circuit. In a test phase, the second current sensor is switched to the current circuit. Next, a current flow is brought about through the first and the second current sensors, and the current intensity is measured via the first and second current sensors. From a comparison, an error function of the current sensor can be detected. The circuit arrangement according to the invention and the method according to the invention are particularly suitable for use in safety-oriented equipment.
Images(3)
Previous page
Next page
Claims(12)
1. A circuit arrangement having a current circuit for supplying a consumer, in particular an electric drive mechanism, wherein a current sensor (5) is provided in the current circuit, wherein a control unit (11) is provided that is connected to the current sensor (5), and wherein the control unit (11), via the current sensor (5), detects a current flow to the consumer, characterized in that a second current sensor (12) is provided; that the control unit (11) is connected to the second current sensor (12); that the control unit (11), via the second current sensor (12), detects the current flow to the consumer and monitors the current circuit by means of a comparison with the current detected by current sensor (5).
2. The circuit arrangement of claim 1, characterized in that a switch (9) is provided; that the switch (9) is connected to the control unit (11); and that via the switch (9), the consumer (3) can be decoupled from the current flow.
3. The circuit arrangement of one of claims 1 or 2, characterized in that a further switch (13) is provided, which is connected to the control unit (11); and that via the further switch (13), the second current sensor (12) can be switched into the current flow.
4. The circuit arrangement of one of claims 1-3, characterized in that the second current sensor (12) is embodied in the form of a resistor; that the voltage drop can be picked up via the resistor; and that the control unit (11) uses the voltage drop to monitor the current circuit.
5. The circuit arrangement of one of claims 1-4, characterized in that the consumer is a winding (4, 22, 25, 27) of an electric drive mechanism (3).
6. The circuit arrangement of one of claims 1-5, characterized in that the consumer is a drive mechanism (3) for an electromechanical brake (7).
7. The circuit arrangement of claim 5, characterized in that the electric drive mechanism (3) has at least two windings (22, 25, 27); that each winding (22, 25, 27) is connected to an input switch (19, 20, 21) via an input line; that the input switches (19, 20, 21) are connected to a positive potential; that each winding can be connected to a negative potential via a respective ok (23, 26, 28); and that the second current sensor (12) is connected between two input lines.
8. The circuit arrangement of claim 7, characterized in that the second current sensor (12) is embodied as a resistor; and that at least one input line is connected to a voltage meter unit (17).
9. The circuit arrangement of one of claims 7 or 8, characterized in that the second current sensor (12) can be connected in series with a winding (25); and that from the voltage drop via the second current sensor (12), a current flowing in the current circuit can be ascertained.
10. A method for monitoring a current supply to a consumer that is supplied with current via an input line, and a first current sensor (5) is disposed in the input line, characterized in that upstream or downstream of the consumer (3) in the current flow, a second current sensor (12) is provided; that via the current sensor (5) and the second current sensor (12), a current is detected; and that the detected currents are compared with one another, and that an error function is detected on the basis of the outcome of the comparison.
11. The method of claim 10, characterized in that the second current sensor (12) is switched into the current flow via a switch (13).
12. The method of claim 10 or 11, characterized in that the consumer (3) is decoupled from the current flow via a switch (9).
Description

[0001] The invention relates to a circuit arrangement with a current circuit as generically defined by the preamble to claim 1 and to a method for monitoring a current circuit as generically defined by the preamble to claim 10.

[0002] Current circuits are used in the most various areas of technology for supplying consumers. In supplying a consumer, in particular a consumer in a motor vehicle, in which the consumer performs safety-oriented functions, monitoring the current supply is an essential aspect of safety. The current supply is necessary if the safety-oriented consumer is to be capable of functioning correctly, and this current supply must therefore be monitored with regard to a failure or an error mode.

[0003] It is already known in such safety-critical systems as an electromechanical brake in a motor vehicle to provide a current sensor in the current circuit and to detect the current flowing in the current circuit via the current sensor, compare it with a comparison value, and depending on the outcome of comparison, to detect an error function or correct function of the current circuit. For instance, if an electronically commutated motor is driven via the current circuit, then via the current sensor the phase current is measured, and the torque that the motor is to output is adjusted with the aid of a phase current regulator. At the same time, the capability of correct function is monitored via the current measurement by the current sensor.

[0004] The object of the invention is to furnish a circuit arrangement and a method for supplying a consumer that enable reliable monitoring of the function of the current supply.

[0005] The object of the invention is attained by the circuit arrangement of claim 1 and by the method of claim 10.

[0006] One essential advantage of the circuit arrangement of the invention is that a second current sensor is provided in the current circuit, and that via the second current sensor, the current flow in the current circuit can be detected redundantly. It is thus possible on the basis of the second current sensor to monitor correct functioning of the first current sensor. For instance, if in the embodiments of the prior art the first current sensor produces a faulty signal, this is not detected, at least immediately, as an error signal. In contrast, the embodiment according to claim 1 offers the advantage of monitoring the current circuit independently of the first current sensor. This provides double safety for correct monitoring of the current circuit.

[0007] Preferably, the second current sensor can be switched into the current circuit, so that the second current sensor electrically affects the current circuit only when the current circuit is being monitored. Reliable monitoring is thus furnished without adversely affecting the electrical properties of the current circuit.

[0008] In a simple embodiment, a switch is provided by way of which the second current sensor can be coupled to the current circuit. Preferably, a further switch is provided, with which the consumer can be decoupled from the current circuit. In this way, it is assured that monitoring of the current circuit is possible without the consumer having any electrical influence on the current circuit.

[0009] Preferably, the second current sensor is embodied in the form of a resistor. A voltage drop across the resistor can be detected as a measurement variable, for assessing the current flow in the current circuit. Using a resistor as a current sensor is economical and makes a reliable method possible.

[0010] Preferably, an electric drive mechanism, especially a winding of the electric drive mechanism, is monitored with the circuit arrangement of the invention. The circuit arrangement of the invention is especially well suited to monitoring a safety-oriented consumer in a motor vehicle, such as an electromechanical brake.

[0011] In a preferred application, the second current sensor is placed between two high-side switches and the corresponding supply lines to windings of an electronically commutated motor. In this embodiment, a switch for turning the current sensor on or off can be omitted. By means of the connection selected, the current sensor has no perceptible effects on the operation of the motor. An economical embodiment of the circuit arrangement of the invention is thus possible, since the current sensor, particularly in the form of a resistor, can also be integrated as part of an integrated circuit.

[0012] Preferably, in monitoring the current flow, the second current sensor is connected in series with a winding of an electronically commutated motor. Thus besides monitoring the current flow, it is also possible to monitor the function of the winding of the motor.

[0013] The invention will be described in further detail below in conjunction with the drawings.

[0014] Shown are

[0015]FIG. 1, a schematic illustration of the circuit arrangement of the invention; and FIG. 2, a detail of a trigger unit for an electromechanical brake, in which the circuit arrangement of the invention is employed.

[0016] The fundamental principle of the invention can be employed in the most various fields of technology. For instance, safety-oriented circuits can be used in the fields of civil engineering, aeronautics, control technology, nuclear power plants, or automotive engineering. The circuit arrangement and the method of the invention, regardless of the field in which they are employed, offer enhanced safety in monitoring a current circuit.

[0017] The invention will be described in further detail below taking as an example an electromechanical brake for a motor vehicle.

[0018]FIG. 1, in a simplified illustration, shows the fundamental principle of the circuit arrangement of the invention. A direct-voltage source 1 is provided, which furnishes a fixed direct voltage. The direct-voltage source is in communication, via a current line 2 and a current sensor 5, with an electric drive mechanism 3. The electric drive mechanism 3 is for instance an electronically commutated motor, which has windings 4. An electronically commutated motor is well known and is described for instance in “Handbuch der elektrischen Anlagen und Maschinen” [Manual of Electrical Systems and Machines] by Egbert Hering, published by Springer-Verlag, 1999, ISBN 3-540-65184-5, chapter A8.5.1.3, pages 203 ff. The drive 3 is operatively connected via a drive rod 6 with final control elements of an electromechanical brake 7. Via the drive rod 6, the drive 3 controls the mode of operation of the electromechanical brake 7. The drive 3 can be connected to a ground potential via a first switch 9, which is preferably embodied as a field effect transistor. The first switch 9 is in communication with a control unit 11 via a control line 10.

[0019] Between the current sensor 5 and the drive 3, a second current sensor 12 is connected to the current line 2. The second current sensor 12, in a simple embodiment, can be embodied as a defined resistor. One output of the second current sensor 12 can be connected to ground via a second switch 13. The second switch 13 is in communication with the control unit 11 via a second control line 14. The control unit 11 is also connected to the current sensor 5. A memory 15 is also provided, in which control information and control fields are stored. The control unit 11 is furthermore connected to the drive 3 via a third control line 16.

[0020] In a known manner, the control unit 11 controls the phase currents for the windings 4 of the electrically commutated motor 3 in accordance with the desired rpm and the desired torque that the motor 3 is to furnish to the electromechanical brake 7. To that end, operating parameters of a motor vehicle 8 in which the circuit arrangement is disposed are taken into account. In addition, via the current sensor 5, the control unit 11 detects the current supplied to the drive 3 via the current line 2. The current is compared with reference values, and an error function of the current supply is detected if the detected current differs from the reference values by more than a predetermined differential value.

[0021] The input and output of the second current sensor 12 are connected to an A/D converter 17 via measurement lines 36. One output 37 of the A/D converter 17 is carried to the control unit 11.

[0022] For monitoring the current sensor 5 and the current supply of the drive 3, the control unit 11, in a monitoring phase, switches the resistor 12 to the current line 2; that is, the control unit 11 closes the second switch 13 and thus connects the output of the resistor 12 to ground. Preferably, the first switch 9 that is closed in normal operation is switched by the control unit 11 into an open position, so that the current flow no longer flows via the drive 3 but solely through the second current sensor 12. In the monitoring phase, the control unit 11 detects the voltage both at the input and at the output of the resistor 12. From the voltage drop across the resistor 12, the control unit 11 detects the current flowing through the current sensor 5.

[0023] With the knowledge of the resistance of the resistor 12, the control unit 11 calculates the current that is supplied to the drive 3. The current ascertained via the second current sensor 12 is compared with the current ascertained by the current sensor 5. If the comparison shows that the current ascertained by the current sensor 5 differs from the current that was calculated via the voltage drop of the resistor 12, then the control unit 11 detects an error function of the current sensor 5 and outputs an error signal, for instance to a display system of the motor vehicle 8. In addition, the control unit 11 can switch over to an emergency function, to assure safe stopping of the motor vehicle 8.

[0024] The monitoring is preferably done cyclically, whenever the drive 3 is not needed to actuate the electromechanical brake 7.

[0025]FIG. 2 shows a further advantageous embodiment of the circuit arrangement of the invention, which is preferably integrated with a trigger circuit for an electronically commutated motor 3. Advantageously, the second current sensor 12 is also integrated into the trigger circuit 18. An economical realization of the circuit arrangement can thus be achieved. The motor 3 is shown only schematically in the form of the three windings 22, 25, 27.

[0026] A direct-voltage source 1 is provided, which can be connected to one input of the current sensor 5 via a third switch 38. One output of the current sensor 5 is in communication with inputs of a first, second and third transistor 19, 20, 21. One output of the first transistor 19 is connected to one input of a first winding 22. One output of the first winding 22 is connected to one input of a fourth transistor 23. One output of the fourth transistor 23 is in communication with a ground line 24.

[0027] One output of the second transistor 20 is in communication with one input of a second winding 25. One output of the second winding 25 is in communication with one input of a fifth transistor 26. One output of the fifth transistor 26 is connected to the ground line 24. One output of the third transistor 21 is connected to one input of a third winding 27. One output of the third winding 27 is connected to one input of a sixth transistor 28. One output of the sixth transistor 28 is connected to the ground line 24. The outputs of the first, second and third windings 22, 25 and 27 are connected to the input of the current sensor 5 via a first, second and third diode 29, 30, and 31, respectively. The inputs of the first, second and third windings 22, 25, and 27 are connected to the ground line 24 via a fourth, fifth and sixth 32, 33, and 34, respectively. A capacitor 35 is connected between the ground line 24 and the input of the current sensor 5. In addition, test resistors 39 are also connected parallel to the fourth, fifth and sixth diodes 32, 33, 34. The control terminals of the transistors 19, 20, 21, 23, 26, 28 are connected to the control unit 11 via control lines. In a known manner, the control unit 11 controls the current supply to the windings 22, 25, 27, in order for a desired rpm and/or a desired torque to be output to the electromechanical brake 7 via the drive rod 6.

[0028] In the embodiment shown, the second current sensor 12 in the form of a resistor is disposed between the input of the first coil 22 and the input to the second coil 25. The terminals of the second current sensor 12 are in communication with the A/D converter 17 of the control unit 11, via measurement lines 36. Thus the second current sensor 12 is incorporated into an existing current circuit without additional switches. Because of the disposition of the second current sensor 12 between the high-side field effect transistors 19, 20 of the first and second windings 22, 25, respectively, the second current sensor 12 embodied as a resistor does not make itself annoyingly apparent in a normal motor commutation operation.

[0029] In a test of the current sensor 5, which is preferably performed when the motor is stopped, the first transistor 19 and the fifth transistor 26 are made conducting. The other transistors 20, 21, 23, 28 are blocked. In this state of the circuit, a test current flows to the ground line 24 via the current sensor 5, the first transistor 19, the second current sensor 12, the second winding 25, and the fifth transistor 26. The current flowing via the second current sensor 12 is calculated via the voltage drop detected across the second current sensor 12. The resistance of the second current sensor 12 is known, and the current can thus be calculated from the equation

U=R×I,

[0030] where U stands for the voltage drop across the second current sensor 12; R stands for the resistance of the second current sensor 12; and I stands for the current intensity.

[0031] Instead of the arrangement shown in FIG. 2, the second current sensor 12 can also be disposed between the input of the first and the input of the third winding 22, 27, or between the input of the second and the input of the third winding 25, 27. Depending on where the second current sensor 12 is disposed, suitable transistors should be made conducting in the monitoring process, so that a current flows across the second current sensor 12 and one winding.

[0032] In the test method, the current is detected both via the current sensor 5 and via the second current sensor 12. By way of a comparison of the two currents detected, a defect of the first and/or second current sensor 5,12 can be recognized.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7541799 *May 25, 2006Jun 2, 2009Lisa Dräxlmaier GmbHMethod and device for measuring a current flowing in an electrical conductor
WO2013087327A1 *Nov 14, 2012Jun 20, 2013Robert Bosch GmbhMethod for checking an electrical current measurement, circuit for carrying out the method, battery and motor vehicle
Classifications
U.S. Classification324/522
International ClassificationF16D65/18, G01R19/165, G01R35/00, G01R19/00
Cooperative ClassificationG01R35/00, G01R19/0092
European ClassificationG01R19/00G
Legal Events
DateCodeEventDescription
Apr 22, 2014FPExpired due to failure to pay maintenance fee
Effective date: 20140228
Feb 28, 2014LAPSLapse for failure to pay maintenance fees
Oct 11, 2013REMIMaintenance fee reminder mailed
Aug 20, 2009FPAYFee payment
Year of fee payment: 4
Jan 2, 2004ASAssignment
Owner name: ROBERT BOSCH GMBH, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KNECHT, GERHARD;REEL/FRAME:014230/0156
Effective date: 20031010