US20040146375A1 - Self-attaching nut - Google Patents

Self-attaching nut Download PDF

Info

Publication number
US20040146375A1
US20040146375A1 US10/612,455 US61245503A US2004146375A1 US 20040146375 A1 US20040146375 A1 US 20040146375A1 US 61245503 A US61245503 A US 61245503A US 2004146375 A1 US2004146375 A1 US 2004146375A1
Authority
US
United States
Prior art keywords
annular groove
bottom wall
self
attaching nut
radial ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/612,455
Inventor
Richard Ward
Harold Woods
John Vrana
John Parker
Kerry Boggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitesell Formed Components Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/232,335 external-priority patent/US6851904B2/en
Application filed by Individual filed Critical Individual
Priority to US10/612,455 priority Critical patent/US20040146375A1/en
Assigned to FABRISTEEL PRODUCTS, INC. reassignment FABRISTEEL PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOGGS, KERRY V., PARKER, JOHN M., VRANA, JOHN J., WARD, RICHARD P., WOODS, HAROLD T.
Priority to US10/758,906 priority patent/US7066700B2/en
Priority to EP04751706A priority patent/EP1625311B1/en
Priority to ES04751706T priority patent/ES2288263T3/en
Priority to CA002522402A priority patent/CA2522402A1/en
Priority to BRPI0410387-4A priority patent/BRPI0410387A/en
Priority to DE602004007381T priority patent/DE602004007381T2/en
Priority to PCT/US2004/014440 priority patent/WO2004104431A1/en
Priority to JP2006532882A priority patent/JP2006528333A/en
Priority to AT04751706T priority patent/ATE366375T1/en
Priority to MXPA05012237A priority patent/MXPA05012237A/en
Publication of US20040146375A1 publication Critical patent/US20040146375A1/en
Assigned to SOUTHTRUST reassignment SOUTHTRUST SECURITY AGREEMENT Assignors: WHITESELL INTERNATIONAL CORPORATION
Assigned to WHITESELL INTERNATIONAL CORPORATION reassignment WHITESELL INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FABRISTEEL PRODUCTS, INC.
Priority to US11/262,263 priority patent/US7112025B2/en
Assigned to WHITESELL FORMED COMPONENTS (P/K/A WHITESELL INTERNATIONAL CORP. reassignment WHITESELL FORMED COMPONENTS (P/K/A WHITESELL INTERNATIONAL CORP. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO, N.A.(FORMERLY SOUTH TRUST BANK)
Assigned to WHITESELL FORMED COMPONENTS, INC. reassignment WHITESELL FORMED COMPONENTS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: WHITESELL INTERNATIONAL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/64Making machine elements nuts
    • B21K1/70Making machine elements nuts of special shape, e.g. self-locking nuts, wing nuts
    • B21K1/702Clinch nuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • B23P19/062Pierce nut setting machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/04Devices for fastening nuts to surfaces, e.g. sheets, plates
    • F16B37/06Devices for fastening nuts to surfaces, e.g. sheets, plates by means of welding or riveting
    • F16B37/062Devices for fastening nuts to surfaces, e.g. sheets, plates by means of welding or riveting by means of riveting
    • F16B37/068Devices for fastening nuts to surfaces, e.g. sheets, plates by means of welding or riveting by means of riveting by deforming the material of the support, e.g. the sheet or plate

Definitions

  • This invention relates to self-attaching female fasteners, particularly including pierce and clinch nuts, which may be formed by conventional cold header techniques, including secondary operations, and which provide improved resistance to rotation of the fastener and retention on a panel following installation.
  • Self-attaching female fasteners including pierce and clinch nuts, formed by cold header techniques and secondary press operations generally include a central pilot portion having a bore therethrough, an annular end face surrounding the bore, a flange portion surrounding the pilot portion including an end face, and an annular groove in the end face of the flange portion.
  • the annular groove includes an annular inner side wall adjacent the pilot portion, a bottom wall spaced below the plane of the annular end face of the flange portion and an outer side wall extending from the bottom wall to the end face of the flange portion.
  • the bottom wall of the groove may also include protuberances or ribs, including circular protuberances spaced from the inner and outer side walls of the groove, as disclosed, for example, in U.S. Pat. No. 5,531,552 assigned to the predecessor in interest of this application.
  • U.S. Pat. No. 5,549,430 also assigned to the predecessor in interest of the assignee of this application, discloses a self-attaching nut of this type, wherein the bottom wall of the groove includes a plurality of spaced arcuate or semi-circular protrusions integral with the pilot portion.
  • the prior art also includes radial ribs integral with the bottom wall of the groove and the inner and outer side walls, wherein the inner side wall of the annular groove or the outer wall of the pilot portion is inclined from the bottom wall radially outwardly.
  • this self-attaching nut does not have sufficient retention on the panel for many applications.
  • the prior art also includes self-attaching nuts having a “dovetail-shaped”annular groove, including small triangular protuberances integral with the bottom wall and the inner side wall and the bottom wall and the outer side wall. However, these small radial protuberances do not provide sufficient torque resistance for many applications.
  • the self-attaching nut of this invention may be utilized as either a pierce nut or a clinch nut.
  • the self-attaching nut of this invention includes a central pilot portion having a bore therethrough and an annular end face surrounding the bore.
  • the annular end face of the pilot portion may be utilized to pierce an opening in a panel or the pilot portion may be received through a preformed opening in a panel.
  • the self-attaching nuts are received by an installation tool or head affixed to one die member of a die press, generally the upper die member, having a reciprocal plunger received through a plunger passage.
  • a die member or die button is located opposite the plunger passage in the lower die member having an annular die lip configured to be received within an annular groove in the self-attaching nut.
  • the pilot portion When used as a clinch nut, the pilot portion is first received through the preformed opening and the annular projecting lip of the die button then deforms the panel metal surrounding the opening into the annular groove in the same manner. Where the bottom wall of the annular groove includes protuberances or ribs, the panel metal is deformed around the protuberances or ribs providing torque resistance.
  • the self-attaching nut of this invention includes a flange portion surrounding the pilot portion including an end face and an annular groove in the end face preferably including an inner side wall adjacent the pilot, a bottom wall and an outer side wall. As thus far described, the self-attaching nut and method of installation is conventional.
  • At least one of the inner and outer side walls of the annular groove is inclined toward the other side wall forming a restricted opening to the annular groove adjacent the annular end face of the flange portion surrounding the annular groove.
  • the outer side wall of the annular groove is inclined toward the pilot portion, providing improved retention of the self-attaching nut on a panel.
  • the outer side wall of the annular groove is inclined toward the pilot portion and the inner side wall is inclined from the bottom wall of the annular groove toward the outer side wall forming, a “dovetail-shaped” annular groove providing further improved retention of the self-attaching nut on a panel, which is generally referred to as the “push-off” strength of the fastener.
  • the push-off strength of the fastener is critical in many applications because a male threaded fastener is received through the panel into the bore of the fastener and threaded into the bore typically with a torque wrench in mass production applications.
  • the flange portion includes an annular end surface surrounding the pilot portion, which prevents the fastener from being pushed through the panel. In a typical application, the bore will be prethreaded. However, the bore may also be unthreaded for receipt of a thread forming or thread rolling male fastener, such as a bolt.
  • the self-attaching nut of this invention includes a plurality of circumferentially spaced radial ribs integral with the bottom wall and preferably the outer side wall of the annular groove, wherein the outer side wall is inclined toward the pilot portion and the radial ribs extend beyond a midportion of the bottom wall of the annular groove, but spaced from the inner side wall.
  • Each of the radial ribs includes a top face spaced above the bottom wall of the annular groove and opposed preferably planar side faces which prevent rotation of the self-attaching nut relative to a panel deformed into the annular groove against the bottom wall as described above.
  • the top face of the radial ribs are rectangular and inclined from the outer side wall of the annular groove toward the bottom wall and the top face extends to adjacent the inner side wall of the annular groove.
  • the bottom wall of the groove extends generally perpendicular to the axis of the bore through the pilot portion and the top faces of the radial ribs extend to or adjacent the junction of the inner wall and the bottom wall of the annular groove, providing optimum torque resistance.
  • this embodiment reduces the likelihood of distortion of the thread cylinder of the bore through the central pilot portion, but assures substantially complete filling of the undercut formed by the inclined inner side wall of the annular groove, particularly when compared to self-attaching nuts having a radial rib integral with both the inner and outer side walls of the groove and smaller radial ribs which do not extend beyond the midportion of the bottom wall of the annular groove.
  • the radial ribs are integral with either the inner or side walls of the annular groove, and the top face of the radial ribs extend generally parallel to the bottom wall of the groove.
  • the radial ribs further include an inwardly inclined end portion, spaced from the opposed side wall forming an undercut which receives panel beneath the undercut, further improving the push-off strength of the fastener and panel assembly.
  • the top face may also be inclined as described above.
  • the top faces of the radial ribs are generally rectangular and the bottom wall of the annular groove is substantially perpendicular to the axis of the bore through the pilot portion, such that the bottom wall between the radial ribs is trapezoidal having a smaller circumferential width adjacent the pilot portion.
  • the self-attaching nuts disclosed herein have substantially improved push-off strength and torque resistance, permitting the use of the self-attaching nut of this invention in applications requiring improved performance, such as automotive seat and seat belt anchors, etc.
  • Other advantages and meritorious features of the self-attaching nut of this invention will be more fully understood from the following description of the preferred embodiments, the appended claims and the drawings, a brief description of which follows.
  • FIG. 1 is a top plan or perspective view of one embodiment of the self-attaching nut of this invention
  • FIG. 2 is a top view of the self-attaching nut shown in FIG. 1;
  • FIG. 3 is a partial side cross-sectional view of the self-attaching nut shown in FIGS. 1 and 2 through one of the radial ribs;
  • FIG. 4 is a top perspective view of an alternative embodiment of the self-attaching nut of this invention.
  • FIG. 5 is a top view of the self-attaching nut shown in FIG. 4.
  • FIG. 6 is a partial side cross-sectional view of the embodiment of the self-attaching nut shown in FIGS. 4 and 5 through one of the radial ribs.
  • FIGS. 1 to 3 illustrate one preferred embodiment of a self-attaching female fastener or nut 20 which, as described above, may be formed by conventional cold forming or cold heading techniques, possibly including supplemental or secondary operations.
  • the self-attaching nut 20 may be utilized as either a pierce nut or a clinch nut as described above.
  • the disclosed embodiment of the self-attaching nut 20 includes a central pilot portion 22 , a bore 24 extending through the pilot portion and an annular end face 26 surrounding the bore 24 .
  • the bore 24 may be threaded as shown or unthreaded for receipt of a self-tapping or thread rolling male fastener.
  • the self-attaching nut 20 further includes an annular flange portion 28 surrounding the pilot portion 22 having an annular end face 30 and an annular groove 32 defined in the annular end face 30 surrounding the pilot portion 22 .
  • the annular groove 32 includes an inner side wall 34 adjacent the pilot portion 22 , a bottom wall 36 and an outer side wall 38 . As best shown in FIG.
  • the inner side wall 34 in this embodiment is inclined outwardly from the bottom wall 36 and the outer side wall 38 is inclined radially from the bottom wall 36 toward the pilot portion forming a dovetail-shaped annular groove.
  • a dovetail-shaped groove provides superior push-off strength.
  • the self-attaching nut is utilized as a pierce nut, as described above, the annular end face 26 of the pilot portion 22 is preferably planar and spaced above the plane of the annular end face 30 of the flange portion 28 as best shown in FIG.
  • the bottom wall 36 of the annular groove 32 extends substantially perpendicular to the axis of the bore 24 .
  • the bottom wall will be inclined at a relatively small angle, such as two to three degrees, to permit removal of the self-attaching nut from the die member used to form the bottom wall 36 of the groove.
  • This embodiment of the self-attaching nut 20 further includes a plurality of circumferentially spaced radial ribs 42 , each having a top face 44 and opposed side faces 46 .
  • the radial ribs 42 are integral with the outer side wall 38 of the annular groove 32 and the top faces are inclined from the outer side wall 38 to the bottom wall 36 , but spaced from the inner side wall 34 as best shown in FIG. 3.
  • the radial ribs 42 are integrally joined to the outer side wall 38 above a midportion 48 and the radial ribs extend radially beyond a midportion 50 of the bottom wall as shown in FIG. 3.
  • the top face 44 extends to or adjacent the junction 52 of the inner side wall 34 and the bottom wall 36 , providing optimum torsion resistance when installed on a panel without distorting the thread cylinder 24 . That is, the panel will be deformed against the inwardly inclined top faces 44 of the radial ribs 42 as the panel is deformed into the annular groove 32 and against the bottom wall 36 , which assures deformation of the panel beneath the outwardly inclined inner side wall 34 improving push-off strength without distortion of the threads 24 . As best shown in FIGS.
  • the top faces 44 of the radial ribs 42 in this embodiment are rectangular, the side faces 46 are triangular and the bottom wall 36 between the radial ribs 42 is trapezoidal having a small circumferential width adjacent the pilot portion 22 .
  • the self-attaching nut 20 may be utilized as a pierce or clinch nut.
  • the annular end face 26 of the pilot portion 22 is driven against a panel supported on a die member (not shown), piercing the panel and the panel surrounding the pierced opening is then driven into the annular groove 32 by an annular clinching lip, which drives the panel against the bottom wall 36 and the inclined surfaces 44 of the radial ribs 42 , forming a secure installation, wherein the self-attaching nut 20 is prevented from rotating on the panel by the triangular side faces 46 of the radial ribs 42 .
  • FIGS. 4 to 6 illustrate an alternative embodiment of the self-attaching nut 120 of this invention, wherein the self-attaching nut 120 is numbered in the same sequence as the self-attaching nut 20 illustrated in FIGS. 1 to 3 , but in the 100 series to reduce the required description. That is, the self-attaching nut 120 includes a central pilot portion 122 having a bore 124 therethrough and an annular end face 126 surrounding the bore 124 .
  • the self-attaching nut 120 further includes a flange portion 128 having an annular end face 130 and an annular groove 132 defined in the end face 130 of the flange portion 128 .
  • the annular groove 132 includes an inner side wall 134 adjacent the pilot portion 122 , a bottom wall 136 , which preferably extends radially generally perpendicular to the axis of the bore 124 , and an outer side wall 138 as best shown in FIG. 6.
  • the inner side wall 134 is inclined radially outwardly from the bottom wall 136 and includes a cylindrical top portion 140 .
  • the outer side wall 138 is also inclined radially inwardly from the bottom wall 136 forming a dovetail-shaped annular groove as shown in FIG. 6.
  • This embodiment of the self-attaching nut 120 also includes a plurality of circumferentially spaced radial ribs 142 .
  • the top faces 144 of the radial ribs 142 extend substantially parallel to the bottom wall 136 of the annular groove 132 as best shown in FIG. 6, such that the radial inner ends 154 are spaced above the plane of the bottom wall 136 , spaced from the inclined inner side wall 134 and the radial inner ends 156 are inclined inwardly as shown in FIG. 6, forming a dovetail-shaped opening between the radial inner ends 156 of the radial rims 142 and the inclined inner side wall 134 of the annular groove 132 as shown in FIG. 6.
  • the circumferential width of the top faces 44 and 144 of the radial ribs 42 and 142 are substantially equal and the ribs are equally spaced, such that the bottom wall 36 , 136 between the radial ribs adjacent the outer side wall 38 , 138 is substantially equal to the circumferential width of the top faces as best shown in FIGS. 2 and 5, which is a preferred embodiment.
  • the radial ribs 42 , 142 may be wider or narrower depending upon the panel thickness and the application.
  • the flange portion 28 , 128 includes an octagonal outer surface having a plurality of outer flat surfaces 58 , 158 which are utilized primarily during handling and feeding of the self-attaching nuts.
  • the flange portion may also be hexagonal or any other configuration, but is preferably polygonal.
  • the threaded bore 24 , 124 may also be cylindrical for receipt of a self-threading or thread rolling male fastener.

Abstract

A self-attaching nut including a central pilot portion, a flange portion surrounding the pilot portion having an end face including an annular groove in the end face having inclined inner and outer side walls and a plurality of circumferentially spaced radial ribs integral with the outer side wall extending beyond a midportion of the bottom wall, but spaced from the inner side wall. In one embodiment, the top faces of the radial ribs is inclined to adjacent the inner side wall of the annular groove and in another embodiment, the radial inner ends of the ribs are spaced above the plane of the bottom wall and include an inwardly inclined face.

Description

  • This application is a continuation-in-part application of U.S. Ser. No. 10/455,516 filed ______, which application was a continuation-in-part application of U.S. Ser. No. 10/232,335 filed Aug. 30, 2002.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to self-attaching female fasteners, particularly including pierce and clinch nuts, which may be formed by conventional cold header techniques, including secondary operations, and which provide improved resistance to rotation of the fastener and retention on a panel following installation. [0002]
  • BACKGROUND OF THE INVENTION
  • Self-attaching female fasteners, including pierce and clinch nuts, formed by cold header techniques and secondary press operations generally include a central pilot portion having a bore therethrough, an annular end face surrounding the bore, a flange portion surrounding the pilot portion including an end face, and an annular groove in the end face of the flange portion. The annular groove includes an annular inner side wall adjacent the pilot portion, a bottom wall spaced below the plane of the annular end face of the flange portion and an outer side wall extending from the bottom wall to the end face of the flange portion. To improve torque resistance or prevent rotation of the self-attaching female fastener on a panel following installation, the bottom wall of the groove may also include protuberances or ribs, including circular protuberances spaced from the inner and outer side walls of the groove, as disclosed, for example, in U.S. Pat. No. 5,531,552 assigned to the predecessor in interest of this application. U.S. Pat. No. 5,549,430, also assigned to the predecessor in interest of the assignee of this application, discloses a self-attaching nut of this type, wherein the bottom wall of the groove includes a plurality of spaced arcuate or semi-circular protrusions integral with the pilot portion. The prior art also includes radial ribs integral with the bottom wall of the groove and the inner and outer side walls, wherein the inner side wall of the annular groove or the outer wall of the pilot portion is inclined from the bottom wall radially outwardly. However, this self-attaching nut does not have sufficient retention on the panel for many applications. Finally, the prior art also includes self-attaching nuts having a “dovetail-shaped”annular groove, including small triangular protuberances integral with the bottom wall and the inner side wall and the bottom wall and the outer side wall. However, these small radial protuberances do not provide sufficient torque resistance for many applications. [0003]
  • There is therefore a need for a self-attaching fastener, particularly a pierce nut, having improved torque resistance and push-off strength. The self-attaching female fasteners of this invention provide these improvements as described below. [0004]
  • SUMMARY OF THE INVENTION
  • As set forth above, the self-attaching nut of this invention may be utilized as either a pierce nut or a clinch nut. The self-attaching nut of this invention includes a central pilot portion having a bore therethrough and an annular end face surrounding the bore. The annular end face of the pilot portion may be utilized to pierce an opening in a panel or the pilot portion may be received through a preformed opening in a panel. As will be understood by those skilled in this art, the self-attaching nuts are received by an installation tool or head affixed to one die member of a die press, generally the upper die member, having a reciprocal plunger received through a plunger passage. A die member or die button is located opposite the plunger passage in the lower die member having an annular die lip configured to be received within an annular groove in the self-attaching nut. Thus, during installation of the self-attaching nut in a panel, a self-attaching nut is received in the installation head and driven by the plunger against a panel supported on the die button. When used as a pierce nut, the annular end face of the pilot portion of the pierce nut pierces an opening in the panel and the projecting lip of the die button then deforms the panel surrounding the opening into the annular groove in the end face of the flange portion surrounding the pilot portion. When used as a clinch nut, the pilot portion is first received through the preformed opening and the annular projecting lip of the die button then deforms the panel metal surrounding the opening into the annular groove in the same manner. Where the bottom wall of the annular groove includes protuberances or ribs, the panel metal is deformed around the protuberances or ribs providing torque resistance. Thus, the self-attaching nut of this invention includes a flange portion surrounding the pilot portion including an end face and an annular groove in the end face preferably including an inner side wall adjacent the pilot, a bottom wall and an outer side wall. As thus far described, the self-attaching nut and method of installation is conventional. [0005]
  • In the preferred embodiment of the self-attaching nut of this invention, at least one of the inner and outer side walls of the annular groove is inclined toward the other side wall forming a restricted opening to the annular groove adjacent the annular end face of the flange portion surrounding the annular groove. In the preferred embodiment, the outer side wall of the annular groove is inclined toward the pilot portion, providing improved retention of the self-attaching nut on a panel. In a most preferred embodiment, the outer side wall of the annular groove is inclined toward the pilot portion and the inner side wall is inclined from the bottom wall of the annular groove toward the outer side wall forming, a “dovetail-shaped” annular groove providing further improved retention of the self-attaching nut on a panel, which is generally referred to as the “push-off” strength of the fastener. The push-off strength of the fastener is critical in many applications because a male threaded fastener is received through the panel into the bore of the fastener and threaded into the bore typically with a torque wrench in mass production applications. The flange portion includes an annular end surface surrounding the pilot portion, which prevents the fastener from being pushed through the panel. In a typical application, the bore will be prethreaded. However, the bore may also be unthreaded for receipt of a thread forming or thread rolling male fastener, such as a bolt. [0006]
  • The self-attaching nut of this invention includes a plurality of circumferentially spaced radial ribs integral with the bottom wall and preferably the outer side wall of the annular groove, wherein the outer side wall is inclined toward the pilot portion and the radial ribs extend beyond a midportion of the bottom wall of the annular groove, but spaced from the inner side wall. Each of the radial ribs includes a top face spaced above the bottom wall of the annular groove and opposed preferably planar side faces which prevent rotation of the self-attaching nut relative to a panel deformed into the annular groove against the bottom wall as described above. In one preferred embodiment of the self-attaching nut of this invention, the top face of the radial ribs are rectangular and inclined from the outer side wall of the annular groove toward the bottom wall and the top face extends to adjacent the inner side wall of the annular groove. In this embodiment, the bottom wall of the groove extends generally perpendicular to the axis of the bore through the pilot portion and the top faces of the radial ribs extend to or adjacent the junction of the inner wall and the bottom wall of the annular groove, providing optimum torque resistance. It should also be noted that this embodiment reduces the likelihood of distortion of the thread cylinder of the bore through the central pilot portion, but assures substantially complete filling of the undercut formed by the inclined inner side wall of the annular groove, particularly when compared to self-attaching nuts having a radial rib integral with both the inner and outer side walls of the groove and smaller radial ribs which do not extend beyond the midportion of the bottom wall of the annular groove. [0007]
  • In another preferred embodiment of the self-attaching nut of this invention, the radial ribs are integral with either the inner or side walls of the annular groove, and the top face of the radial ribs extend generally parallel to the bottom wall of the groove. The radial ribs further include an inwardly inclined end portion, spaced from the opposed side wall forming an undercut which receives panel beneath the undercut, further improving the push-off strength of the fastener and panel assembly. As will be understood, however, the top face may also be inclined as described above. In the disclosed embodiments, the top faces of the radial ribs are generally rectangular and the bottom wall of the annular groove is substantially perpendicular to the axis of the bore through the pilot portion, such that the bottom wall between the radial ribs is trapezoidal having a smaller circumferential width adjacent the pilot portion. [0008]
  • The self-attaching nuts disclosed herein have substantially improved push-off strength and torque resistance, permitting the use of the self-attaching nut of this invention in applications requiring improved performance, such as automotive seat and seat belt anchors, etc. Other advantages and meritorious features of the self-attaching nut of this invention will be more fully understood from the following description of the preferred embodiments, the appended claims and the drawings, a brief description of which follows.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top plan or perspective view of one embodiment of the self-attaching nut of this invention; [0010]
  • FIG. 2 is a top view of the self-attaching nut shown in FIG. 1; [0011]
  • FIG. 3 is a partial side cross-sectional view of the self-attaching nut shown in FIGS. 1 and 2 through one of the radial ribs; [0012]
  • FIG. 4 is a top perspective view of an alternative embodiment of the self-attaching nut of this invention; [0013]
  • FIG. 5 is a top view of the self-attaching nut shown in FIG. 4; and [0014]
  • FIG. 6 is a partial side cross-sectional view of the embodiment of the self-attaching nut shown in FIGS. 4 and 5 through one of the radial ribs.[0015]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • This application discloses two alternative embodiments of a self-attaching female fastener or nut of this invention. However, as will be understood by those skilled in this art, the disclosed embodiments are illustrative only and do not limit further embodiments based upon this disclosure, except as set forth in the appended claims. FIGS. [0016] 1 to 3 illustrate one preferred embodiment of a self-attaching female fastener or nut 20 which, as described above, may be formed by conventional cold forming or cold heading techniques, possibly including supplemental or secondary operations. The self-attaching nut 20 may be utilized as either a pierce nut or a clinch nut as described above. The disclosed embodiment of the self-attaching nut 20 includes a central pilot portion 22, a bore 24 extending through the pilot portion and an annular end face 26 surrounding the bore 24. The bore 24 may be threaded as shown or unthreaded for receipt of a self-tapping or thread rolling male fastener. The self-attaching nut 20 further includes an annular flange portion 28 surrounding the pilot portion 22 having an annular end face 30 and an annular groove 32 defined in the annular end face 30 surrounding the pilot portion 22. The annular groove 32 includes an inner side wall 34 adjacent the pilot portion 22, a bottom wall 36 and an outer side wall 38. As best shown in FIG. 3, the inner side wall 34 in this embodiment is inclined outwardly from the bottom wall 36 and the outer side wall 38 is inclined radially from the bottom wall 36 toward the pilot portion forming a dovetail-shaped annular groove. As set forth above, a dovetail-shaped groove provides superior push-off strength. However, as set forth above, it would also be possible to incline only one of the inner and outer side walls 34 and 38, respectively, preferably the outer side wall 38, where less performance is required. Where the self-attaching nut is utilized as a pierce nut, as described above, the annular end face 26 of the pilot portion 22 is preferably planar and spaced above the plane of the annular end face 30 of the flange portion 28 as best shown in FIG. 3 and the upper outer surface 40 of the pilot portion is preferably cylindrical as shown in FIG. 3 to provide columnar support for the end face 26 of the pilot portion during the piercing operation described above. In this preferred embodiment, the bottom wall 36 of the annular groove 32 extends substantially perpendicular to the axis of the bore 24. However, as will be understood by those skilled in this art, the bottom wall will be inclined at a relatively small angle, such as two to three degrees, to permit removal of the self-attaching nut from the die member used to form the bottom wall 36 of the groove.
  • This embodiment of the self-attaching [0017] nut 20 further includes a plurality of circumferentially spaced radial ribs 42, each having a top face 44 and opposed side faces 46. In this preferred embodiment, the radial ribs 42 are integral with the outer side wall 38 of the annular groove 32 and the top faces are inclined from the outer side wall 38 to the bottom wall 36, but spaced from the inner side wall 34 as best shown in FIG. 3. In the disclosed preferred embodiment, the radial ribs 42 are integrally joined to the outer side wall 38 above a midportion 48 and the radial ribs extend radially beyond a midportion 50 of the bottom wall as shown in FIG. 3. In a more preferred embodiment, the top face 44 extends to or adjacent the junction 52 of the inner side wall 34 and the bottom wall 36, providing optimum torsion resistance when installed on a panel without distorting the thread cylinder 24. That is, the panel will be deformed against the inwardly inclined top faces 44 of the radial ribs 42 as the panel is deformed into the annular groove 32 and against the bottom wall 36, which assures deformation of the panel beneath the outwardly inclined inner side wall 34 improving push-off strength without distortion of the threads 24. As best shown in FIGS. 1 and 2, the top faces 44 of the radial ribs 42 in this embodiment are rectangular, the side faces 46 are triangular and the bottom wall 36 between the radial ribs 42 is trapezoidal having a small circumferential width adjacent the pilot portion 22. As described above, the self-attaching nut 20 may be utilized as a pierce or clinch nut. When utilized as a pierce nut, the annular end face 26 of the pilot portion 22 is driven against a panel supported on a die member (not shown), piercing the panel and the panel surrounding the pierced opening is then driven into the annular groove 32 by an annular clinching lip, which drives the panel against the bottom wall 36 and the inclined surfaces 44 of the radial ribs 42, forming a secure installation, wherein the self-attaching nut 20 is prevented from rotating on the panel by the triangular side faces 46 of the radial ribs 42.
  • FIGS. [0018] 4 to 6 illustrate an alternative embodiment of the self-attaching nut 120 of this invention, wherein the self-attaching nut 120 is numbered in the same sequence as the self-attaching nut 20 illustrated in FIGS. 1 to 3, but in the 100 series to reduce the required description. That is, the self-attaching nut 120 includes a central pilot portion 122 having a bore 124 therethrough and an annular end face 126 surrounding the bore 124. The self-attaching nut 120 further includes a flange portion 128 having an annular end face 130 and an annular groove 132 defined in the end face 130 of the flange portion 128. The annular groove 132 includes an inner side wall 134 adjacent the pilot portion 122, a bottom wall 136, which preferably extends radially generally perpendicular to the axis of the bore 124, and an outer side wall 138 as best shown in FIG. 6. As described above, in this embodiment of the self-attaching nut 120, the inner side wall 134 is inclined radially outwardly from the bottom wall 136 and includes a cylindrical top portion 140. The outer side wall 138 is also inclined radially inwardly from the bottom wall 136 forming a dovetail-shaped annular groove as shown in FIG. 6.
  • This embodiment of the self-attaching [0019] nut 120 also includes a plurality of circumferentially spaced radial ribs 142. However, in this embodiment, the top faces 144 of the radial ribs 142 extend substantially parallel to the bottom wall 136 of the annular groove 132 as best shown in FIG. 6, such that the radial inner ends 154 are spaced above the plane of the bottom wall 136, spaced from the inclined inner side wall 134 and the radial inner ends 156 are inclined inwardly as shown in FIG. 6, forming a dovetail-shaped opening between the radial inner ends 156 of the radial rims 142 and the inclined inner side wall 134 of the annular groove 132 as shown in FIG. 6. Thus, during deformation of panel into the annular groove, the end portion of the panel (not shown) surrounding the opening which receives the pilot portion 122 will be deformed between the inwardly inclined end faces 156 of the radial ribs 142 and the outwardly inclined inner side wall 134 providing additional push-off strength. Further, because the area of the rectangular side faces 146 of the radial ribs 142 is greater than the triangular side faces 46 of the self-attaching nut 20 shown in FIGS. 1 to 3, it is anticipated that this embodiment of the self-attaching nut 120 will provide greater torque resistance.
  • As will be understood by those skilled in this art, various modifications may be made to the self-attaching nut of this invention within the purview of the appended claims. For example, in the disclosed embodiments of the self-attaching nuts, the circumferential width of the top faces [0020] 44 and 144 of the radial ribs 42 and 142 are substantially equal and the ribs are equally spaced, such that the bottom wall 36, 136 between the radial ribs adjacent the outer side wall 38, 138 is substantially equal to the circumferential width of the top faces as best shown in FIGS. 2 and 5, which is a preferred embodiment. However, the radial ribs 42, 142 may be wider or narrower depending upon the panel thickness and the application. Further, in the disclosed embodiment, the flange portion 28, 128 includes an octagonal outer surface having a plurality of outer flat surfaces 58, 158 which are utilized primarily during handling and feeding of the self-attaching nuts. However, the flange portion may also be hexagonal or any other configuration, but is preferably polygonal. As set forth above, the threaded bore 24, 124 may also be cylindrical for receipt of a self-threading or thread rolling male fastener. Having described the preferred embodiments of the self-attaching nut of this invention, the invention is now claimed, as follows.

Claims (20)

1. A self-attaching nut for attachment to a panel, comprising:
a central pilot portion having a bore therethrough and an annular end face surrounding said bore;
a flange portion surrounding said pilot portion including an annular end face substantially parallel to said annular end face of said pilot portion;
an annular groove in said end face of said flange portion including an inner side wall adjacent said pilot portion, a bottom wall spaced below a plane of said end face of said flange portion and an outer side wall extending to said annular end face of said flange portion inclined toward said pilot portion forming a restricted opening to said annular groove adjacent said annular end face of said pilot portion; and
said bottom wall of said annular groove including a plurality of circumferentially spaced radial ribs integral with said outer wall of said annular groove extending radially beyond a midportion of said bottom wall of said annular. groove spaced from said inner side wall, each of said radial ribs including a top face spaced from said bottom wall of said annular groove and opposed planar side faces preventing rotation of said self-attaching nut relative to a panel deformed into said annular groove against said bottom wall.
2. The self-attaching nut as defined in claim 1, wherein said top faces of said radial ribs are inclined from said outer side wall toward said bottom wall of said annular groove and said radial ribs extending radially to adjacent said inner side wall of said annular groove.
3. The self-attaching nut as defined in claim 2, wherein said radial ribs extend to adjacent a junction of said inner side wall and said bottom wall of said annular groove.
4. The self-attaching nut as defined in claim 1, wherein said radial ribs each include a radial inner end spaced above a plane of said bottom wall of said annular groove spaced from said inner wall of said annular groove.
5. The self-attaching nut as defined in claim 4, wherein said radial inner ends of said radial ribs are inclined inwardly forming an undercut for receiving said panel.
6. The self-attaching nut as defined in claim 1, wherein said bottom wall of said annular groove extends radially substantially perpendicular to an axis of said bore.
7. The self-attaching nut as defined in claim 6, wherein said top face of said radial ribs extend substantially parallel to said bottom wall of said annular groove.
8. The self-attaching nut as defined in claim 1, wherein said inner wall of said annular groove extends radially outwardly forming a dovetail annular groove.
9. The self-attaching nut as defined in claim 1, wherein said top faces of said radial ribs are substantially rectangular and said bottom wall of said annular groove between said radial ribs is trapezoidal having a smaller circumferential width adjacent said pilot portion.
10. The self-attaching nut as defined in claim 9, wherein said top faces of said radial ribs are inclined from said outer side wall to said bottom wall of said annular groove.
11. A self-attaching nut for attachment to a panel, comprising:
a central pilot portion having a bore therethrough and an annular end face surrounding said bore;
a flange portion surrounding said pilot portion having an end face;
an annular groove in said end face of said flange portion including an inner side wall adjacent said pilot portion, a bottom wall extending radially from said inner side wall substantially perpendicular to said bore of said pilot portion and an outer side wall extending from said bottom wall to said end face of said flange portion, one of said inner and outer side walls of said annular groove inclined toward the other of said inner and outer side walls forming a restricted opening to said annular groove adjacent said end face of said flange portion; and
said bottom wall of said annular groove including a plurality of circumferentially spaced radial ribs integral with said outer wall of said annular groove extending radially beyond a midportion of said bottom wall of said annular groove spaced from said inner side wall, each of said radial ribs including a planar top face inclined radially inwardly from said outer wall of said annular groove and said radial ribs including opposed planar side faces extending substantially perpendicular to said bottom wall preventing rotation of said self-attaching nut relative to a panel deformed into said annular groove against said bottom wall.
12. The self-attaching nut as defined in claim 11, wherein said top face of said radial ribs extend radially to adjacent said inner side wall of said annular groove.
13. The self-attaching nut as defined in claim 12, wherein said radial ribs extend to adjacent a junction of said inner side wall and said bottom wall of said annular groove.
14. The self-attaching nut as defined in claim 11, wherein said radial ribs are integrally joined to said outer side wall of said annular groove at or above a midportion between said bottom wall of said annular groove and said end face of said flange portion.
15. The self-attaching nut as defined in claim 11, wherein said outer side wall of said annular groove is inclined from said bottom wall toward said pilot portion.
16. The self-attaching nut as defined in claim 15, wherein said inner side wall of said annular groove is inclined from said bottom wall toward said outer side wall.
17. The self-attaching nut as defined in claim 11, wherein said planar top faces of said radial ribs are substantially rectangular and said bottom wall between said radial ribs is trapezoidal having a smaller circumferential width adjacent said pilot portion.
18. A self-attaching nut for attachment to a panel, comprising:
a central pilot portion having a bore therethrough and an annular end face surrounding said bore;
a flange portion surrounding said pilot portion having an end face;
an annular groove in said end face of said flange portion surrounding said pilot portion including an inner side wall adjacent said pilot portion, an annular bottom wall and an outer side wall inclined toward said pilot portion; and
a plurality of circumferentially spaced radial ribs integral with said bottom wall and said outer side wall of said annular groove, each radial rib having a top face spaced above said bottom wall of said annular groove including a radial inner end spaced from said inner side wall of said annular groove, and said radial inner ends of said radial ribs inclined inwardly to said bottom wall of said annular groove forming an undercut to receive panel therebeneath.
19. The self-attaching nut as defined in claim 18, wherein said annular bottom wall of said annular groove extends generally perpendicular to said bore and said top face of said radial ribs extend generally parallel to said bottom wall.
20. The self-attaching nut as defined in claim 18, wherein said top faces of said radial ribs are substantially rectangular and said bottom wall of said annular groove between said radial ribs is trapezoidal having a smaller circumferential width adjacent said pilot portion.
US10/612,455 2002-08-30 2003-07-02 Self-attaching nut Abandoned US20040146375A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US10/612,455 US20040146375A1 (en) 2002-08-30 2003-07-02 Self-attaching nut
US10/758,906 US7066700B2 (en) 2002-08-30 2004-01-16 Self-attaching fastener and method of attachment
MXPA05012237A MXPA05012237A (en) 2003-05-16 2004-05-10 Self-attaching fastener and method of attachment.
AT04751706T ATE366375T1 (en) 2003-05-16 2004-05-10 SELF-LOCKING FASTENER AND INSTALLATION METHOD
DE602004007381T DE602004007381T2 (en) 2003-05-16 2004-05-10 SELF-LOCKING FASTENING ELEMENT AND INSTALLATION PROCESS
JP2006532882A JP2006528333A (en) 2003-05-16 2004-05-10 Self-mounting fastener and mounting method
ES04751706T ES2288263T3 (en) 2003-05-16 2004-05-10 ELEMENT OF FIXING SELF AND FIXING PROCEDURE.
CA002522402A CA2522402A1 (en) 2003-05-16 2004-05-10 Self-attaching fastener and method of attachment
BRPI0410387-4A BRPI0410387A (en) 2003-05-16 2004-05-10 female self-fastening fastener and method for attaching a female fastener to a metal panel
EP04751706A EP1625311B1 (en) 2003-05-16 2004-05-10 Self-attaching fastener and method of attachment
PCT/US2004/014440 WO2004104431A1 (en) 2003-05-16 2004-05-10 Self-attaching fastener and method of attachment
US11/262,263 US7112025B2 (en) 2002-08-30 2005-10-28 Self-attaching nut

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/232,335 US6851904B2 (en) 2002-08-30 2002-08-30 Self-attaching female fastener and method of installation
US10/439,526 US6994500B2 (en) 2002-08-30 2003-05-16 Self-attaching nut
US10/612,455 US20040146375A1 (en) 2002-08-30 2003-07-02 Self-attaching nut

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/439,526 Continuation-In-Part US6994500B2 (en) 2002-08-30 2003-05-16 Self-attaching nut

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/758,906 Continuation-In-Part US7066700B2 (en) 2002-08-30 2004-01-16 Self-attaching fastener and method of attachment
US11/262,263 Continuation US7112025B2 (en) 2002-08-30 2005-10-28 Self-attaching nut

Publications (1)

Publication Number Publication Date
US20040146375A1 true US20040146375A1 (en) 2004-07-29

Family

ID=46299553

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/612,455 Abandoned US20040146375A1 (en) 2002-08-30 2003-07-02 Self-attaching nut
US11/262,263 Expired - Lifetime US7112025B2 (en) 2002-08-30 2005-10-28 Self-attaching nut

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/262,263 Expired - Lifetime US7112025B2 (en) 2002-08-30 2005-10-28 Self-attaching nut

Country Status (1)

Country Link
US (2) US20040146375A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002781A1 (en) * 2004-06-21 2006-01-05 Robert Mangapora Captive fastener
EP2516870A4 (en) * 2009-12-22 2016-12-21 R B & W Mfg Llc Nut with lug flare

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112024B2 (en) * 2002-08-30 2006-09-26 Whitesell International Corporation Self-attaching nut
US7591623B2 (en) * 2002-08-30 2009-09-22 Whitesell International Corporation Heavy metal pierce nut
US7568874B2 (en) * 2006-06-02 2009-08-04 Pur Water Purification Products, Inc. Nut for attaching two devices and method for providing the same
USD629487S1 (en) 2008-04-17 2010-12-21 The Procter & Gamble Company Connector for a faucet mounted water filter
USD629865S1 (en) 2008-04-17 2010-12-28 The Procter & Gambple Company Connector for a faucet mounted water filter
US8142125B2 (en) * 2007-08-24 2012-03-27 Whitesell International Corporation Self-attaching female fastener
US8608420B2 (en) * 2007-08-24 2013-12-17 Whitesell International Corporation Self-attaching nut
CN101795977B (en) 2007-09-05 2014-06-11 Pur水纯化产品公司 Apparatus and methods for faucet-mounted water filtration systems
US8092132B2 (en) * 2008-12-05 2012-01-10 American Axle & Manufacturing, Inc. Fastener with anti-rotation clip
US8541916B2 (en) * 2009-12-17 2013-09-24 Siemens Energy, Inc. Nut securing arrangement for electrical generator
USD637691S1 (en) 2010-08-18 2011-05-10 The Procter & Gamble Company Connector for a faucet mounted water filter
USD637690S1 (en) 2010-08-18 2011-05-10 The Procter & Gamble Company Connector for a faucet mounted water filter
USD637693S1 (en) 2010-08-18 2011-05-10 The Procter & Gamble Company Connector for a faucet mounted water filter
EP3240954A4 (en) 2014-12-30 2018-07-04 Graco Minnesota Inc. Self-aligning mounting and retention system
BR102018003284B1 (en) 2017-02-21 2021-07-20 Graco Minnesota Inc. PISTON ROD FOR A PUMP, PUMP, SPRAYER, AND METHOD FOR REPLACING A WEAR GLOVE
USD824479S1 (en) * 2017-02-28 2018-07-31 Yi Huei Jen Lug for a muzzle device
USD914492S1 (en) * 2019-05-30 2021-03-30 Curiteva, Inc. Resilient fastener washer
USD912204S1 (en) * 2019-06-27 2021-03-02 Neoperl Gmbh Flow regulator
KR20220156638A (en) 2020-03-31 2022-11-25 그라코 미네소타 인크. pump drive system
US11913488B2 (en) * 2021-05-27 2024-02-27 Rb&W Manufacturing Llc Self-clinching and self-piercing construction element with multi-purpose pilot
USD1014235S1 (en) * 2022-03-31 2024-02-13 Fluidmaster, Inc. Washer
USD1015864S1 (en) * 2022-03-31 2024-02-27 Fluidmaster, Inc. Nut

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10789A (en) * 1854-04-18 Apparatus fob painting- window-blinds
US159858A (en) * 1875-02-16 Improvement in pegging-machines
US172573A (en) * 1876-01-25 Improvement in ticket-reels
US182032A (en) * 1876-09-12 Improvement in piano attachments
US457054A (en) * 1891-08-04 Stump-puller
US525370A (en) * 1894-09-04 John james varley
US1919552A (en) * 1930-06-26 1933-07-25 Smith Corp A O Attaching grommets to metal plates
US3213914A (en) * 1961-11-06 1965-10-26 Illinois Tool Works Self-piercing nut with attaching groove
US3253631A (en) * 1963-06-17 1966-05-31 Republic Steel Corp Cold-formed self-piercing nut
US3282315A (en) * 1964-07-09 1966-11-01 Zahodiakin Tania Nut mechanically fused in place
US3736969A (en) * 1966-09-22 1973-06-05 H Warn Pierce nut
US3810291A (en) * 1969-07-11 1974-05-14 Multifastener Corp Installation die and nut and method of installing a nut in a panel
US3910331A (en) * 1974-08-12 1975-10-07 Kaynar Mfg Co Nut
US4389766A (en) * 1980-06-06 1983-06-28 The Lamson & Sessions Co. Method of mounting a fastener
US4432681A (en) * 1981-05-28 1984-02-21 Russell Burdsall & Ward Corporation Fastener
US4543023A (en) * 1981-05-28 1985-09-24 Russell, Burdsall & Ward Corporation Fastener
US4627776A (en) * 1985-05-14 1986-12-09 Russell, Burdsall & Ward Corporation Fastener
US4637766A (en) * 1985-06-17 1987-01-20 Textron Inc. Clinch type fastener
US4708556A (en) * 1985-05-14 1987-11-24 Russell, Burdsall & Ward Corporation Fastener attached to sheet metal
US4810143A (en) * 1983-12-21 1989-03-07 Multifastener Corporation Fastener and panel assembly
US4893976A (en) * 1988-03-01 1990-01-16 Textron Inc. Clinch type fastening structure
US4911592A (en) * 1980-02-02 1990-03-27 Multifastener Corporation Method of installation and installation apparatus
US5244326A (en) * 1992-05-19 1993-09-14 Arne Henriksen Closed end ridged neck threaded fastener
US5302066A (en) * 1993-01-19 1994-04-12 Textron Inc. Locking fastener
US5335411A (en) * 1991-10-31 1994-08-09 Profil Verbindungstechnik Gmbh & Co. Kg Method of attaching a fastening element to a panel
US5340251A (en) * 1992-01-31 1994-08-23 Multifastener Corporation Self-attaching fastener and installation die
US5423645A (en) * 1993-08-04 1995-06-13 Profil Verbindungstechnik Gmbh & Co. Kg Fastener and panel assembly
US5509766A (en) * 1993-01-11 1996-04-23 Nass Magnet Gmbh Fastening apparatus
US5531552A (en) * 1984-08-03 1996-07-02 Multifastener Corporation Self-attaching nut and method of making same
US5549430A (en) * 1992-01-31 1996-08-27 Multifastener Corporation Self-attaching fastener and installation die
US5613815A (en) * 1991-10-31 1997-03-25 Profil - Verbindungstechnik Fastener and panel assembly and method of making same
US5782594A (en) * 1996-08-16 1998-07-21 Profil-Verbindungstechnik Gmbh & Co Kg Self-attaching fastener & method
US5882159A (en) * 1996-08-16 1999-03-16 Profil Verbindungstechnik, Gmbh & Co. Element, method of attaching the element to a plate-like component, component assembly and die button
US6004087A (en) * 1995-08-18 1999-12-21 Profil-Verbindungstechnik Gmbh & Co. Kg Self-attaching fastener
US6220804B1 (en) * 1999-03-24 2001-04-24 R B & W Corporation Self-piercing clinch nut
US6257814B1 (en) * 1995-08-18 2001-07-10 Profil Verbindungstechnik & Co. Self-attaching fastener, method of forming same and method of attachment
US20030039530A1 (en) * 2001-08-22 2003-02-27 Gerold Ross Self-punching fastener which in a way safe against rotation and pressing out can be pressed into a metal sheet
US6543979B2 (en) * 2000-04-18 2003-04-08 Honda Giken Kogyo Kabushiki Kaisha Clinch nut assembly and method of producing clinch nut
US6851904B2 (en) * 2002-08-30 2005-02-08 Fabristeel Products, Inc. Self-attaching female fastener and method of installation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109710A (en) * 1981-12-24 1983-06-30 有限会社新城製作所 Piercing nut
FR2688835B1 (en) 1992-03-20 1995-09-15 Thiant Boulonnerie IMPROVEMENT WITH A SELF-TIGHTENING AND SELF-PUNCHING NUT.
USD448659S1 (en) * 1999-03-24 2001-10-02 R B & W Manufacturing Llc Self-piercing clinch nut
US20020172573A1 (en) * 1999-03-24 2002-11-21 Pamer W. Richard Self-piercing clinch nut
JP3841332B2 (en) * 2000-05-19 2006-11-01 株式会社青山製作所 Piercing nut
US7192234B2 (en) * 2001-05-31 2007-03-20 Illinois Tool Works Inc. Integral washer and threaded fastener assembly and method for making same
US7112024B2 (en) * 2002-08-30 2006-09-26 Whitesell International Corporation Self-attaching nut

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10789A (en) * 1854-04-18 Apparatus fob painting- window-blinds
US159858A (en) * 1875-02-16 Improvement in pegging-machines
US172573A (en) * 1876-01-25 Improvement in ticket-reels
US182032A (en) * 1876-09-12 Improvement in piano attachments
US457054A (en) * 1891-08-04 Stump-puller
US525370A (en) * 1894-09-04 John james varley
US1919552A (en) * 1930-06-26 1933-07-25 Smith Corp A O Attaching grommets to metal plates
US3213914A (en) * 1961-11-06 1965-10-26 Illinois Tool Works Self-piercing nut with attaching groove
US3253631A (en) * 1963-06-17 1966-05-31 Republic Steel Corp Cold-formed self-piercing nut
US3282315A (en) * 1964-07-09 1966-11-01 Zahodiakin Tania Nut mechanically fused in place
US3736969A (en) * 1966-09-22 1973-06-05 H Warn Pierce nut
US3810291A (en) * 1969-07-11 1974-05-14 Multifastener Corp Installation die and nut and method of installing a nut in a panel
US3910331A (en) * 1974-08-12 1975-10-07 Kaynar Mfg Co Nut
US4911592A (en) * 1980-02-02 1990-03-27 Multifastener Corporation Method of installation and installation apparatus
US4389766A (en) * 1980-06-06 1983-06-28 The Lamson & Sessions Co. Method of mounting a fastener
US4432681A (en) * 1981-05-28 1984-02-21 Russell Burdsall & Ward Corporation Fastener
US4543023A (en) * 1981-05-28 1985-09-24 Russell, Burdsall & Ward Corporation Fastener
US4810143A (en) * 1983-12-21 1989-03-07 Multifastener Corporation Fastener and panel assembly
US5531552A (en) * 1984-08-03 1996-07-02 Multifastener Corporation Self-attaching nut and method of making same
US4627776A (en) * 1985-05-14 1986-12-09 Russell, Burdsall & Ward Corporation Fastener
US4708556A (en) * 1985-05-14 1987-11-24 Russell, Burdsall & Ward Corporation Fastener attached to sheet metal
US4637766A (en) * 1985-06-17 1987-01-20 Textron Inc. Clinch type fastener
US4893976A (en) * 1988-03-01 1990-01-16 Textron Inc. Clinch type fastening structure
US5335411A (en) * 1991-10-31 1994-08-09 Profil Verbindungstechnik Gmbh & Co. Kg Method of attaching a fastening element to a panel
US5613815A (en) * 1991-10-31 1997-03-25 Profil - Verbindungstechnik Fastener and panel assembly and method of making same
US5340251A (en) * 1992-01-31 1994-08-23 Multifastener Corporation Self-attaching fastener and installation die
US5549430A (en) * 1992-01-31 1996-08-27 Multifastener Corporation Self-attaching fastener and installation die
US5244326A (en) * 1992-05-19 1993-09-14 Arne Henriksen Closed end ridged neck threaded fastener
US5509766A (en) * 1993-01-11 1996-04-23 Nass Magnet Gmbh Fastening apparatus
US5302066A (en) * 1993-01-19 1994-04-12 Textron Inc. Locking fastener
US5423645A (en) * 1993-08-04 1995-06-13 Profil Verbindungstechnik Gmbh & Co. Kg Fastener and panel assembly
US6081994A (en) * 1995-08-18 2000-07-04 Profil Verbindungstechnik Gmbh & Co. Element, method of attaching the element to a plate-like component, component assembly and die button
US6257814B1 (en) * 1995-08-18 2001-07-10 Profil Verbindungstechnik & Co. Self-attaching fastener, method of forming same and method of attachment
US6004087A (en) * 1995-08-18 1999-12-21 Profil-Verbindungstechnik Gmbh & Co. Kg Self-attaching fastener
US5782594A (en) * 1996-08-16 1998-07-21 Profil-Verbindungstechnik Gmbh & Co Kg Self-attaching fastener & method
US5882159A (en) * 1996-08-16 1999-03-16 Profil Verbindungstechnik, Gmbh & Co. Element, method of attaching the element to a plate-like component, component assembly and die button
US6276040B1 (en) * 1996-08-16 2001-08-21 Profil Verbindungstechnik, Gmbh Element, method of attaching the element to a plate-like component, component assembly and die buttons
US6220804B1 (en) * 1999-03-24 2001-04-24 R B & W Corporation Self-piercing clinch nut
US6409444B2 (en) * 1999-03-24 2002-06-25 R B & W Corporation Self-piercing clinch nut
US6543979B2 (en) * 2000-04-18 2003-04-08 Honda Giken Kogyo Kabushiki Kaisha Clinch nut assembly and method of producing clinch nut
US20030039530A1 (en) * 2001-08-22 2003-02-27 Gerold Ross Self-punching fastener which in a way safe against rotation and pressing out can be pressed into a metal sheet
US6851904B2 (en) * 2002-08-30 2005-02-08 Fabristeel Products, Inc. Self-attaching female fastener and method of installation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002781A1 (en) * 2004-06-21 2006-01-05 Robert Mangapora Captive fastener
EP2516870A4 (en) * 2009-12-22 2016-12-21 R B & W Mfg Llc Nut with lug flare

Also Published As

Publication number Publication date
US7112025B2 (en) 2006-09-26
US20060062652A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US7112025B2 (en) Self-attaching nut
US6851904B2 (en) Self-attaching female fastener and method of installation
US7597515B2 (en) Self-attaching nut
US7124492B2 (en) Fastener, method of attaching a fastener to a panel and fastener and panel assembly
US7001125B2 (en) Self-attaching female fastener element, sealed fastener and panel assembly and method of forming same
US20060204348A1 (en) Self-attaching fastener and fastener and panel assembly
US20070231105A1 (en) Heavy metal pierce nut
US7066700B2 (en) Self-attaching fastener and method of attachment
EP1468198B1 (en) Method of cold forming a self-attaching female fastener element
US20070207006A1 (en) Self-attaching nut

Legal Events

Date Code Title Description
AS Assignment

Owner name: FABRISTEEL PRODUCTS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WARD, RICHARD P.;WOODS, HAROLD T.;VRANA, JOHN J.;AND OTHERS;REEL/FRAME:014288/0451

Effective date: 20030625

AS Assignment

Owner name: SOUTHTRUST, ALABAMA

Free format text: SECURITY AGREEMENT;ASSIGNOR:WHITESELL INTERNATIONAL CORPORATION;REEL/FRAME:015127/0234

Effective date: 20040910

AS Assignment

Owner name: WHITESELL INTERNATIONAL CORPORATION, ALABAMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FABRISTEEL PRODUCTS, INC.;REEL/FRAME:015134/0885

Effective date: 20040910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: WHITESELL FORMED COMPONENTS (P/K/A WHITESELL INTER

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO, N.A.(FORMERLY SOUTH TRUST BANK);REEL/FRAME:042331/0604

Effective date: 20170421

AS Assignment

Owner name: WHITESELL FORMED COMPONENTS, INC., MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:WHITESELL INTERNATIONAL CORPORATION;REEL/FRAME:042466/0925

Effective date: 20131219