Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040153071 A1
Publication typeApplication
Application numberUS 10/747,534
Publication dateAug 5, 2004
Filing dateDec 29, 2003
Priority dateOct 27, 1998
Also published asUS6695842, US20020091446, WO2003007791A2, WO2003007791A3
Publication number10747534, 747534, US 2004/0153071 A1, US 2004/153071 A1, US 20040153071 A1, US 20040153071A1, US 2004153071 A1, US 2004153071A1, US-A1-20040153071, US-A1-2004153071, US2004/0153071A1, US2004/153071A1, US20040153071 A1, US20040153071A1, US2004153071 A1, US2004153071A1
InventorsJames Zucherman, Ken Hsu, Charles Winslow, Henry Klyce, John Flynn
Original AssigneeSt. Francis Medical Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Interspinous process distraction system and method with positionable wing and method
US 20040153071 A1
Abstract
An implant that is implanted between adjacent spinous processes for the relief of pain associated with the spine. The device has a spacer to distract apart the adjacent spinous processes. To minimize trauma to the patient, the device has a tapered tissue expander to distract a previously created opening between the adjacent spinous processes. The device also has two wings. The position of one wing is adjustable to allow for ease of assembly in a patent.
Images(8)
Previous page
Next page
Claims(2)
1. An implant for maintaining a space between adjacent anatomical structures, the implant comprising:
a spacer;
a wing; and
ramp device that positions the wing relative to the spacer.
2. An implant for maintaining a space between adjacent anatomical structures, the implant comprising:
a spacer;
a wing;
means for fastening the wing relative to the spacer; and
said fastening means including a ramp means for causing the wing to move relative to the spacer.
Description
    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 10/014,118, filed Oct. 26, 2001, which claims benefit to U.S. Provisional Application No. 60/306,263, filed Jul. 18, 2001, and is a continuation-in-part of U.S. patent application Ser. No. 09/799,215, filed Mar. 5, 2001, which is a continuation-in-part of U.S. patent application Ser. No. 09/473,173, filed Dec. 28, 1999, now U.S. Pat. No. 6,235,030, which is a continuation of U.S. patent application Ser. No. 09/179,570, filed Oct. 27, 1998, now U.S. Pat. No. 6,048,342, which is a continuation-in-part of U.S. patent application Ser. No. 09/474,037, filed Dec. 28, 1999, now U.S. Pat. No. 6,190,387, which is a continuation of U.S. patent application Ser. No. 09/175,645, filed Oct. 20, 1998, now U.S. Pat. No. 6,068,630, which is a continuation-in-part of U.S. patent application Ser. No. 09/200,266, filed Nov. 25, 1998, now U.S. Pat. No. 6,183,471, which is a continuation of U.S. patent application Ser. No. 09/139,333, filed Aug. 25, 1998, now U.S. Pat. No. 5,876,404, which is a continuation of U.S. patent application Ser. No. 08/958,281, filed Oct. 27, 1997, now U.S. Pat. No. 5,860,977. All of the above applications and patents are incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention is directed to an interspinous process implant system and method which can, for example, distract apart and maintain said distraction of adjacent spinous process.
  • BACKGROUND OF THE INVENTION
  • [0003]
    As the present society ages, it is anticipated that there will be an increase in adverse spinal conditions which are characteristic of older people. By way of example only, with aging comes increases in spinal stenosis (including, but not limited to, central canal and lateral stenosis), the thickening of the bones which make up the spinal column and facet arthropathy. Spinal stenosis is characterized by a reduction in the available space for the passage of blood vessels and nerves. Pain associated with such stenosis can be relieved by medication and/or surgery. Of course, it is desirable to eliminate the need for major surgery for all individuals and in particular for the elderly.
  • [0004]
    Accordingly, there needs to be developed procedures and implants for alleviating these and other spinal conditions, which procedures and implants are minimally invasive, can be tolerated by the elderly and can be performed preferably on an outpatient basis.
  • SUMMARY OF THE INVENTION
  • [0005]
    The present invention is directed to providing a minimally invasive apparatus and method for alleviating discomfort associated with the spinal column.
  • [0006]
    The present invention provides for apparatus and method for relieving pain by relieving the pressure and restrictions on the aforementioned blood vessels and nerves. Such alleviation of pressure is accomplished in the present invention through the use of an implant and method which distract the spinous process of adjacent vertebra in order to alleviate the problems caused by spinal stenosis and facet arthropathy and the like as well as other spinal ailments. While the implant and method particularly address the needs of the elderly, the invention can be used with individuals of all ages and sizes where distraction of the spinous process would be beneficial.
  • [0007]
    In one aspect of the invention, an implant is provided for relieving pain comprising a device positioned between a first spinous process and a second spinous process. The device includes a spinal column extension stop and a spinal column flexion non-inhibitor.
  • [0008]
    In a further aspect of the invention, the implant includes a first unit having a body with a guide or tissue expander and a first wing, with the first wing located at first end of the body. The guide extends from a second end of the body located distally from the first wing. The implant further includes a sleeve or spacer provided over said body. The implant further includes a second wing and a device for securing the second wing to the first unit, wherein the sleeve or spacer is located between the first and second wings.
  • [0009]
    In yet still a further aspect of the invention, the implant includes a sleeve which is rotatable relative to the wings of the implant in order to be able to accommodate the anatomical structure of spinous processes.
  • [0010]
    In still another aspect of the invention, the implant includes a second wing that is movable toward the first wing after the second wing is assembled to the first unit in the patient. In this aspect a fastener can be operated to cause the second wing to move toward the first wing. Accordingly, the implant can be easily assembled in the patient without concern for the shape of the spinous processes and then the first and second wings can be drawn together so that these wings are positioned closer to the spinous processes.
  • [0011]
    In another aspect the second wing includes an alignment tab which is received in an alignment groove of the first unit in order to guide the second wing as it is urged toward the first wing.
  • [0012]
    In another aspect of the invention a ramp mechanism is used to urge the second wing toward the first wing.
  • [0013]
    Other implants and methods within the spirit and scope of the invention can be used to release pain associated with the spine and/or increase the volume of the spinal canal thereby alleviating restrictions on vessels and nerves associated therewith and associated pain.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    [0014]FIG. 1 is a perspective view of an embodiment of the present invention;
  • [0015]
    [0015]FIG. 2 is a top view of an embodiment of the adjustable wing of the present invention;
  • [0016]
    [0016]FIG. 3 is a perspective view of an embodiment of the fastener used in the present invention;
  • [0017]
    [0017]FIG. 4 is cut-away view illustrating the interaction between the fastener and the adjustable wing with the adjustable wing is in a first position;
  • [0018]
    [0018]FIG. 5 is a cut-away view illustrating the fastener engaging the adjustable wing with the adjustable wing in a second position;
  • [0019]
    [0019]FIG. 6 is a side view illustrating an embodiment of the present invention as implanted between adjacent spinous processes; and
  • [0020]
    [0020]FIG. 7 is a front view of an embodiment of the present invention as implanted between adjacent spinous processes.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0021]
    Referring to FIG. 1, the implant device 100 has a main body 101. The main body 101 includes a spacer 102, a first wing 104, a tapered front end, lead-in guide or tissue expander 120 and an alignment track 106. The main body 101 is inserted between adjacent spinous processes. Preferably, the main body 101 remains safely and permanently in place without attachment to the bone or ligaments. All of the components of the implant device 100 are made of biologically acceptable material such as, but are not limited to, high strength titanium alloy or stainless steel. Preferably the first wing 104 is laser welded to the main body 101.
  • [0022]
    The tip of the tissue expander 120 has the smallest diameter, allowing the tip to be inserted into a small initial dilated opening. The diameter and/or cross-sectional areas of the tissue expander 120 then gradually increases until it is substantially similar to the diameter of the main body 101 and spacer 102. The tapered front end 120 makes it easier for a physician to urge the implant device 100 between adjacent spinous processes. When urging the main body 101 between adjacent spinous processes, the front end 120 distracts the adjacent spinous processes to the diameter of the spacer 102. As shown in FIG. 1, the tissue expander 120 is a pyramid shape. In another embodiment the tissue expander preferably has an angle of twenty-five degrees that allows it to clear the facet. This reduces the length of the front end 120. One will appreciate that the shape of the tissue expander 120 can be other shapes such as, but not limited to, cone shaped, or any other shape with a small lead-in cross-section expanding into a larger cross-section. These types of shapes gradually distract the spinous processes to a sufficient distance so that the spacer 102 can conveniently fit between the spinous processes.
  • [0023]
    The spacer 102 can be made of stainless steel, titanium, a super-elastic material or silicone or other biologically acceptable material. The material can be rigid or resilient as desired. As shown in FIG. 1, the spacer 102 is an elliptically shaped cylinder. One will appreciate that the spacer can consist of other shapes such as, but not limited to, egg-shaped, round-shaped or saddle-shaped. For example, the spacer 102 can be saddle-shaped along the surface which engages the spinous processes so that the high edges and the lower central portions can more fully accommodate the shape of the spinous processes. Preferably, the spacer 102 can swivel, allowing the spacer 102 to self-align relative to the uneven surface of the spinous process. This ensures that compressive loads are distributed equally on the surface of the bone. By way of example only, the spacer 102 can have diameters of six millimeters, eight millimeters, ten millimeters, twelve millimeters and fourteen millimeters. These diameters refer to the height by which the spacer distracts and maintains apart the spinous process. Thus for an elliptical spacer the above selected height would represent the small diameter measurement from the center of the ellipse. The largest diameter would be transverse to the alignment, of the spinous process, one above the other. Smaller and larger diameters are within the scope of the invention.
  • [0024]
    The shape of the spacer 102 and for that matter the shape of the entire implant is such that for purposes of insertion between the spinous processes, the spinous processes do not need to be altered or cut away in any manner in order to accommodate the implant 100. Additionally, the associated ligaments do not need to be cut away and there would be very little or no damage to the other adjacent or surrounding tissues other than piercing through and separating, or dilating an opening in a ligament.
  • [0025]
    The first wing 104 has a lower portion 116 and an upper portion 118. The upper portion 118 is designed to preferably accommodate, in this particular embodiment, the anatomical form or contour of the L4 (for an L4-L5 placement) or L5 (for an L5-S1 placement) vertebra. It is to be understood that the same shape or variations of this shape can be used to accommodate other vertebra. The lower portion 116 is also rounded to accommodate, in a preferred embodiment, the vertebra. The lower portion 116 and upper portion 118 of the first wing 104 will act as a stop mechanism when the implant device 100 is inserted between adjacent spinous processes. The implant device 100 cannot be inserted beyond the surfaces of the first wing 104. Additionally, once the implant device 100 is inserted, the first wing 104 can prevent side-to-side, or posterior to anterior movement of the implant device 100.
  • [0026]
    The implant device 100 also has an adjustable wing 110. The adjustable wing 110 has a lower portion 108 and an upper portion 114. Similar to the first wing 104, the adjustable wing 110 is designed to accommodate the anatomical form or contour of the vertebra.
  • [0027]
    The adjustable wing 110 is secured to the main body 101 with a fastener 122 provided through tapered cavity 130. The adjustable wing 110 also has an alignment tab 112. When the adjustable wing 110 is initially placed on the main body 101, the alignment tab 112 engages the alignment track 106. The alignment tab 112 slides within the alignment track 106 and helps to maintain the adjustable wing 110 substantially parallel with the first wing 104 in this preferred embodiment. When the main body 101 is inserted into the patient and the adjustable wing 110 has been attached, the adjustable wing 110 also can prevent side-to-side, or posterior to anterior movement.
  • [0028]
    Referring now to FIG. 2, the adjustable wing 110 includes the above mentioned tapered cavity 130. The tapered cavity 130 has a middle portion 132, two end portions 134 and a tapered wall 131. The diameter of the middle portion 132 is larger than the diameter of either end portion 134. The tapered wall 131 has a larger diameter at the top surface of the adjustable wing 110 than at the bottom surface. Accordingly a cone-like shape is formed. When the fastener 122 engages the main body 101 and is rotated, the fastener 122 travels into the main body 101 (see FIG. 1). As the fastener 122 travels into the main body 101, the adjustable wing 110 will travel along the alignment track 106 towards the first wing 104. The alignment tab 112 engages the alignment track 106 and functions as a guide, keeping the adjustable wing 110 and the first wing 104 substantially parallel to each other.
  • [0029]
    The fastener 122 has a tapered head 123, a middle section 136 and threaded bottom section 138 (see FIG. 3). The top end of the tapered head 123 was a diameter substantially similar to the diameter of the top surface of the tapered cavity 130. The diameter of the tapered head 123 is reduced as the tapered head meets the middle section 136. The slope of the tapered head 123 is similar to the slope of the tapered cavity 130 of the adjustable wing 110. The middle section 136 has a diameter substantially similar to the end portions 134 of the adjustable wing 110. The threaded bottom section 138 has a slightly larger diameter than the middle section 136 and is in one embodiment slightly smaller than the diameter of the middle portion 132 of the adjustable wing 110.
  • [0030]
    As the diameter of the end portions 134 are smaller than the diameter of the bottom section 138, the fastener 122 cannot initially be placed through the end portions 134 of the adjustable wing 110. Accordingly, to fasten the adjustable wing 110 to the main body 101, the threaded bottom section 138 of the fastener 122 is placed through the middle portion 132 of the adjustable wing 110 and into the main body 101. With a turn of the fastener 122, the threaded portion of the bottom section 138 will engage the main body 101.
  • [0031]
    In another preferred embodiment the diameter of threaded bottom section 138 is larger than the diameter of the middle portion of the adjustable wing 110. For this embodiment, the fasteners 122 is inserted into the cavity 130 by slicing the cavity 130 (FIG. 2) through the thinnest portion of the wall, spreading the wall open, inserting the middle section 136 in the cavity with the threaded bottom section 138 projection below the cavity 130, and laser welding the wall closed. The slicing step preferably includes using a carbide slicing device.
  • [0032]
    When the adjustable wing 110 is in the position furthest from the position of the first wing 104, the tapered head 123 of the fastener 122 is substantially out of, and not engaging, the tapered cavity 130 of the adjustable wing 110 (See FIG. 4). As the fastener 122 is rotated, the fastener 122 will continue to engage, and travel further into, the main body 101. As the fastener 122 travels downwardly into the main body 101, the tapered head 123 of the fastener 122 contacts the wall 131 of the tapered cavity 130. The adjustable wing 110 can freely slide back and forth, limited by the end portions 134 of the tapered cavity 130. When the tapered head 123 contacts the wall 131 of the tapered cavity 130, the adjustable wing 110 moves towards the first wing 104 guided by the alignment tab 112 in the alignment track 106. Therefore, the adjustable wing 110 remains substantially parallel to the first wing 104 in this preferred embodiment as the adjustable wing 110 moves toward the first wing 104 (see FIG. 5). It is to be understood that the tab 112 and the track 106 can be eliminated in another embodiment of the invention.
  • [0033]
    As shown in FIG. 5, the tapered head of 123 of the fastener 122 is mated in the tapered wall 131 of the adjustable wing 110. Accordingly, with this ramp mechanism, the adjustable wing 110 is urged toward the spinous processes and the first wing 104 and is locked in position at its closest approach to the first wing 104. This arrangement allows the surgeon to loosely assemble the implant in the patient and then urge the adjustable wing closer to the first wing, by rotating fastener 122 into body 110 making the implanting method more tolerant to the anatomy of the patient.
  • [0034]
    The structure of the spine is of course unique for every patient. Accordingly if the width of the spinous processes is excessive, the adjustable wing can be left in a position that is between that shown in FIG. 4 and that shown in FIG. 5. The separation between the first wing 104 and the adjustable wing 110 can be incrementally adjusted by the number of turns of the fastener 122.
  • [0035]
    [0035]FIGS. 6 and 7 illustrate the position of the implant device 100 in a patient. As shown by FIG. 6, the lower portion 116 and upper portion 118 of the first wing 104 function to prevent side-to-side movement, toward and away from the vertebral body ensuring that the implant device 100 remains in place. Similarly, the adjustable wing 110 will also prevent excessive side-to-side movement. The wing also prevents motion in the direction of the main body into the space between the spinous processes.
  • [0036]
    The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1665327 *Jul 31, 1926Apr 10, 1928Rissinger Thomas TCurling instrument
US2006946 *Mar 23, 1934Jul 2, 1935Farrell Anna EDevice for forming hair waves
US2201458 *Feb 7, 1939May 21, 1940Eugene LtdPermanent waving
US2677369 *Mar 26, 1952May 4, 1954Fred L KnowlesApparatus for treatment of the spinal column
US3648691 *Feb 24, 1970Mar 14, 1972Univ Colorado State Res FoundMethod of applying vertebral appliance
US4011602 *Oct 6, 1975Mar 15, 1977Battelle Memorial InstitutePorous expandable device for attachment to bone tissue
US4257409 *Apr 9, 1979Mar 24, 1981Kazimierz BacalDevice for treatment of spinal curvature
US4573454 *May 17, 1984Mar 4, 1986Hoffman Gregory ASpinal fixation apparatus
US4599086 *Jun 7, 1985Jul 8, 1986Doty James RSpine stabilization device and method
US4657550 *Jan 16, 1986Apr 14, 1987Daher Youssef HButtressing device usable in a vertebral prosthesis
US4827918 *Aug 14, 1986May 9, 1989Sven OlerudFixing instrument for use in spinal surgery
US4931055 *Jun 1, 1987Jun 5, 1990John BumpusDistraction rods
US5011484 *Oct 10, 1989Apr 30, 1991Breard Francis HSurgical implant for restricting the relative movement of vertebrae
US5092866 *Feb 2, 1990Mar 3, 1992Breard Francis HFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5098433 *Apr 12, 1989Mar 24, 1992Yosef FreedlandWinged compression bolt orthopedic fastener
US5180381 *Sep 24, 1991Jan 19, 1993Aust Gilbert MAnterior lumbar/cervical bicortical compression plate
US5192327 *Mar 22, 1991Mar 9, 1993Brantigan John WSurgical prosthetic implant for vertebrae
US5201734 *May 14, 1991Apr 13, 1993Zimmer, Inc.Spinal locking sleeve assembly
US5304178 *May 29, 1992Apr 19, 1994Acromed CorporationSublaminar wire
US5306275 *Dec 31, 1992Apr 26, 1994Bryan Donald WLumbar spine fixation apparatus and method
US5306309 *May 4, 1992Apr 26, 1994Calcitek, Inc.Spinal disk implant and implantation kit
US5387213 *Aug 20, 1993Feb 7, 1995Safir S.A.R.L.Osseous surgical implant particularly for an intervertebral stabilizer
US5390683 *Feb 21, 1992Feb 21, 1995Pisharodi; MadhavanSpinal implantation methods utilizing a middle expandable implant
US5395370 *Oct 16, 1992Mar 7, 1995Pina Vertriebs AgVertebral compression clamp for surgical repair to damage to the spine
US5395372 *Sep 7, 1993Mar 7, 1995Danek Medical, Inc.Spinal strut graft holding staple
US5413602 *Sep 29, 1992May 9, 1995Howmedica GmbhVertebral body spacer device
US5415661 *Mar 24, 1993May 16, 1995University Of MiamiImplantable spinal assist device
US5496318 *Aug 18, 1993Mar 5, 1996Advanced Spine Fixation Systems, Inc.Interspinous segmental spine fixation device
US5505732 *Jun 7, 1995Apr 9, 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US5514180 *Jan 14, 1994May 7, 1996Heggeness; Michael H.Prosthetic intervertebral devices
US5518498 *Oct 7, 1993May 21, 1996Angiomed AgStent set
US5527312 *Aug 19, 1994Jun 18, 1996Salut, Ltd.Facet screw anchor
US5593409 *Feb 17, 1995Jan 14, 1997Sofamor Danek Group, Inc.Interbody spinal fusion implants
US5609634 *Jun 30, 1993Mar 11, 1997Voydeville; GillesIntervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5609635 *Jun 7, 1995Mar 11, 1997Michelson; Gary K.Lordotic interbody spinal fusion implants
US5628756 *Jul 29, 1996May 13, 1997Smith & Nephew Richards Inc.Knotted cable attachment apparatus formed of braided polymeric fibers
US5707390 *Jun 5, 1995Jan 13, 1998General Surgical Innovations, Inc.Arthroscopic retractors
US5716416 *Sep 10, 1996Feb 10, 1998Lin; Chih-IArtificial intervertebral disk and method for implanting the same
US5725582 *Aug 18, 1993Mar 10, 1998Surgicraft LimitedSurgical implants
US5766252 *Jan 24, 1995Jun 16, 1998Osteonics Corp.Interbody spinal prosthetic implant and method
US5860977 *Oct 27, 1997Jan 19, 1999Saint Francis Medical Technologies, LlcSpine distraction implant and method
US5865846 *May 15, 1997Feb 2, 1999Bryan; VincentHuman spinal disc prosthesis
US5875428 *Jun 27, 1997Feb 23, 1999Kurzweil Educational Systems, Inc.Reading system displaying scanned images with dual highlights
US5885299 *Mar 14, 1996Mar 23, 1999Surgical Dynamics, Inc.Apparatus and method for implant insertion
US5888224 *Sep 5, 1997Mar 30, 1999Synthesis (U.S.A.)Implant for intervertebral space
US5888226 *Nov 12, 1997Mar 30, 1999Rogozinski; ChaimIntervertebral prosthetic disc
US5895420 *Sep 15, 1997Apr 20, 1999St. Jude Medical, Inc.Bioresorbable heart valve support
US6022376 *Mar 16, 1998Feb 8, 2000Raymedica, Inc.Percutaneous prosthetic spinal disc nucleus and method of manufacture
US6048342 *Oct 27, 1998Apr 11, 2000St. Francis Medical Technologies, Inc.Spine distraction implant
US6068630 *Oct 20, 1998May 30, 2000St. Francis Medical Technologies, Inc.Spine distraction implant
US6176881 *Apr 15, 1997Jan 23, 2001SynthesTelescopic vertebral prosthesis
US6190414 *Oct 31, 1996Feb 20, 2001Surgical Dynamics Inc.Apparatus for fusion of adjacent bone structures
US6214050 *May 11, 1999Apr 10, 2001Donald R. HueneExpandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material
US6234705 *Apr 6, 1999May 22, 2001Synthes (Usa)Transconnector for coupling spinal rods
US6364883 *Feb 23, 2001Apr 2, 2002Albert N. SantilliSpinous process clamp for spinal fusion and method of operation
US6368351 *Mar 27, 2001Apr 9, 2002Bradley J. GlennIntervertebral space implant for use in spinal fusion procedures
US6375682 *Aug 6, 2001Apr 23, 2002Lewis W. FleischmannCollapsible, rotatable and expandable spinal hydraulic prosthetic device
US6375683 *Apr 30, 1998Apr 23, 2002Stryker France S.A.Implant in particular for replacing a vertebral body in surgery of the spine
US6402750 *Apr 4, 2000Jun 11, 2002Spinlabs, LlcDevices and methods for the treatment of spinal disorders
US6520991 *Apr 9, 2001Feb 18, 2003Donald R. HueneExpandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae
US6554833 *Jul 16, 2001Apr 29, 2003Expanding Orthopedics, Inc.Expandable orthopedic device
US6582433 *Apr 9, 2001Jun 24, 2003St. Francis Medical Technologies, Inc.Spine fixation device and method
US6582467 *Oct 31, 2001Jun 24, 2003Vertelink CorporationExpandable fusion cage
US6685742 *Nov 12, 2002Feb 3, 2004Roger P. JacksonArticulated anterior expandable spinal fusion cage system
US6695842 *Oct 26, 2001Feb 24, 2004St. Francis Medical Technologies, Inc.Interspinous process distraction system and method with positionable wing and method
US6699246 *Apr 26, 2001Mar 2, 2004St. Francis Medical Technologies, Inc.Spine distraction implant
US6709435 *Mar 28, 2002Mar 23, 2004A-Spine Holding Group Corp.Three-hooked device for fixing spinal column
US6723126 *Nov 1, 2002Apr 20, 2004Sdgi Holdings, Inc.Laterally expandable cage
US6730126 *Feb 12, 2003May 4, 2004Frank H. Boehm, Jr.Device and method for lumbar interbody fusion
US6733534 *Jan 29, 2002May 11, 2004Sdgi Holdings, Inc.System and method for spine spacing
US6736818 *May 10, 2002May 18, 2004Synthes (U.S.A.)Radially expandable intramedullary nail
US6905512 *Jun 17, 2002Jun 14, 2005Phoenix Biomedical CorporationSystem for stabilizing the vertebral column including deployment instruments and variable expansion inserts therefore
US6981975 *Dec 24, 2003Jan 3, 2006Sdgi Holdings, Inc.Method for inserting a spinal fusion implant having deployable bone engaging projections
US7011685 *Jan 5, 2004Mar 14, 2006Impliant Ltd.Spinal prostheses
US7041136 *Apr 23, 2003May 9, 2006Facet Solutions, Inc.Facet joint replacement
US7048736 *May 17, 2002May 23, 2006Sdgi Holdings, Inc.Device for fixation of spinous processes
US7163558 *Nov 28, 2002Jan 16, 2007Abbott SpineIntervertebral implant with elastically deformable wedge
US7201751 *Apr 26, 2001Apr 10, 2007St. Francis Medical Technologies, Inc.Supplemental spine fixation device
US7217293 *Nov 21, 2003May 15, 2007Warsaw Orthopedic, Inc.Expandable spinal implant
US20040097931 *Oct 14, 2003May 20, 2004Steve MitchellInterspinous process and sacrum implant and method
US20050010293 *May 20, 2004Jan 13, 2005Zucherman James F.Distractible interspinous process implant and method of implantation
US20050049708 *Oct 15, 2004Mar 3, 2005Atkinson Robert E.Devices and methods for the treatment of spinal disorders
US20060004447 *Jun 30, 2004Jan 5, 2006Depuy Spine, Inc.Adjustable posterior spinal column positioner
US20060004455 *Jun 9, 2005Jan 5, 2006Alain LeonardMethods and apparatuses for bone restoration
US20060015181 *Jul 19, 2004Jan 19, 2006Biomet Merck France (50% Interest)Interspinous vertebral implant
US20060064165 *Mar 31, 2005Mar 23, 2006St. Francis Medical Technologies, Inc.Interspinous process implant including a binder and method of implantation
US20060084983 *Oct 20, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084985 *Dec 6, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084987 *Jan 10, 2005Apr 20, 2006Kim Daniel HSystems and methods for posterior dynamic stabilization of the spine
US20060084988 *Mar 10, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060085069 *Feb 4, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060089654 *Oct 25, 2005Apr 27, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
US20060089719 *Oct 21, 2004Apr 27, 2006Trieu Hai HIn situ formation of intervertebral disc implants
US20060106381 *Feb 4, 2005May 18, 2006Ferree Bret AMethods and apparatus for treating spinal stenosis
US20060106397 *Dec 2, 2005May 18, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
US20060111728 *Oct 5, 2005May 25, 2006Abdou M SDevices and methods for inter-vertebral orthopedic device placement
US20060116690 *Jan 20, 2006Jun 1, 2006Pagano Paul JSurgical instrumentation and method for treatment of a spinal structure
US20060122620 *Dec 6, 2004Jun 8, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilizing the motion or adjusting the position of the spine
US20060136060 *Sep 3, 2003Jun 22, 2006Jean TaylorPosterior vertebral support assembly
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7361196Mar 22, 2005Apr 22, 2008Stryker SpineApparatus and method for dynamic vertebral stabilization
US7666209Feb 23, 2010Kyphon SarlSpine distraction implant and method
US7722647Mar 14, 2005May 25, 2010Facet Solutions, Inc.Apparatus and method for posterior vertebral stabilization
US7753937Jun 2, 2004Jul 13, 2010Facet Solutions Inc.Linked bilateral spinal facet implants and methods of use
US7758581Mar 24, 2006Jul 20, 2010Facet Solutions, Inc.Polyaxial reaming apparatus and method
US7763073Jul 27, 2010Depuy Spine, Inc.Posterior process dynamic spacer
US7815648Sep 29, 2008Oct 19, 2010Facet Solutions, IncSurgical measurement systems and methods
US7837688Nov 23, 2010Globus MedicalSpinous process spacer
US7914560Mar 29, 2011Gmedelaware 2 LlcSpinal facet implant with spherical implant apposition surface and bone bed and methods of use
US7918875Apr 5, 2011Lanx, Inc.Interspinous distraction devices and associated methods of insertion
US7922750Nov 29, 2007Apr 12, 2011Paradigm Spine, LlcInterlaminar-interspinous vertebral stabilization system
US7955390Jun 7, 2011GME Delaware 2 LLCMethod and apparatus for spine joint replacement
US7985246Mar 31, 2006Jul 26, 2011Warsaw Orthopedic, Inc.Methods and instruments for delivering interspinous process spacers
US7993373Aug 9, 2011Hoy Robert WPolyaxial orthopedic fastening apparatus
US7998177Sep 29, 2008Aug 16, 2011Gmedelaware 2 LlcLinked bilateral spinal facet implants and methods of use
US7998178Sep 29, 2008Aug 16, 2011Gmedelaware 2 LlcLinked bilateral spinal facet implants and methods of use
US8007517Aug 30, 2011Lanx, Inc.Interspinous distraction devices and associated methods of insertion
US8062336Dec 19, 2005Nov 22, 2011Gmedelaware 2 LlcPolyaxial orthopedic fastening apparatus with independent locking modes
US8066741Nov 29, 2011Gmedelaware 2 LlcProsthesis for the replacement of a posterior element of a vertebra
US8109973Feb 7, 2012Stryker SpineMethod for dynamic vertebral stabilization
US8137385Oct 30, 2006Mar 20, 2012Stryker SpineSystem and method for dynamic vertebral stabilization
US8157842Jun 12, 2009Apr 17, 2012Kyphon SarlInterspinous implant and methods of use
US8202299Jun 19, 2012Collabcom II, LLCInterspinous implant, tools and methods of implanting
US8206418Jun 26, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement with detachable coupler
US8211147Jul 3, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement
US8226687Jul 24, 2012Stryker SpineApparatus and method for dynamic vertebral stabilization
US8241330 *Aug 14, 2012Lanx, Inc.Spinous process implants and associated methods
US8252027Aug 28, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement
US8308767Sep 19, 2008Nov 13, 2012Pioneer Surgical Technology, Inc.Interlaminar stabilization system
US8308768Aug 29, 2008Nov 13, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement
US8313511Nov 20, 2012Gmedelaware 2 LlcFacet joint replacement
US8328848Sep 26, 2006Dec 11, 2012Paradigm Spine, LlcInterspinous vertebral stabilization devices
US8333789Apr 17, 2008Dec 18, 2012Gmedelaware 2 LlcFacet joint replacement
US8353933Apr 17, 2008Jan 15, 2013Gmedelaware 2 LlcFacet joint replacement
US8419770Jun 2, 2004Apr 16, 2013Gmedelaware 2 LlcSpinal facet implants with mating articulating bearing surface and methods of use
US8425560Apr 23, 2013Farzad MassoudiSpinal implant device with fixation plates and lag screws and method of implanting
US8465525Jun 18, 2013DePuy Synthes Products, LLCPosterior process dynamic spacer
US8470000Apr 7, 2006Jun 25, 2013Paradigm Spine, LlcInterspinous vertebral and lumbosacral stabilization devices and methods of use
US8496689Feb 23, 2011Jul 30, 2013Farzad MassoudiSpinal implant device with fusion cage and fixation plates and method of implanting
US8529603Jan 24, 2012Sep 10, 2013Stryker SpineSystem and method for dynamic vertebral stabilization
US8540751Feb 21, 2007Sep 24, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8556936Feb 1, 2007Oct 15, 2013Gmedelaware 2 LlcFacet joint replacement
US8562649Aug 9, 2006Oct 22, 2013Gmedelaware 2 LlcSystem and method for multiple level facet joint arthroplasty and fusion
US8579941Apr 12, 2007Nov 12, 2013Alan ChervitzLinked bilateral spinal facet implants and methods of use
US8617211Mar 28, 2007Dec 31, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8623059Jan 13, 2012Jan 7, 2014Stryker SpineSystem and method for dynamic vertebral stabilization
US8672974Feb 21, 2007Mar 18, 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US8702759Aug 29, 2008Apr 22, 2014Gmedelaware 2 LlcSystem and method for bone anchorage
US8721688May 18, 2012May 13, 2014Collabcom II, LLCInterspinous implant, tools and methods of implanting
US8764801Feb 7, 2006Jul 1, 2014Gmedelaware 2 LlcFacet joint implant crosslinking apparatus and method
US8777994Sep 29, 2008Jul 15, 2014Gmedelaware 2 LlcSystem and method for multiple level facet joint arthroplasty and fusion
US8834482Apr 27, 2007Sep 16, 2014Paradigm Spine, LlcInstrument system for use with an interspinous implant
US8900273Jan 10, 2008Dec 2, 2014Gmedelaware 2 LlcTaper-locking fixation system
US8906063Sep 29, 2008Dec 9, 2014Gmedelaware 2 LlcSpinal facet joint implant
US8926700Jun 2, 2004Jan 6, 2015Gmedelware 2 LLCSpinal facet joint implant
US8974496Aug 30, 2007Mar 10, 2015Jeffrey Chun WangInterspinous implant, tools and methods of implanting
US8974499Sep 16, 2009Mar 10, 2015Stryker SpineApparatus and method for dynamic vertebral stabilization
US9011441Feb 16, 2007Apr 21, 2015Paradigm Spine, L.L.C.Method and system for performing interspinous space preparation for receiving an implant
US9050144Aug 29, 2008Jun 9, 2015Gmedelaware 2 LlcSystem and method for implant anchorage with anti-rotation features
US9055981Jan 25, 2008Jun 16, 2015Lanx, Inc.Spinal implants and methods
US9084639Jun 26, 2013Jul 21, 2015Farzad MassoudiSpinal implant device with fusion cage and fixation plates and method of implanting
US9173746Dec 10, 2012Nov 3, 2015Paradigm Spine, LlcInterspinous vertebral stabilization devices
US9247968Mar 31, 2010Feb 2, 2016Lanx, Inc.Spinous process implants and associated methods
US9265532 *Aug 10, 2010Feb 23, 2016Lanx, Inc.Interspinous implants and methods
US20060004451 *Sep 1, 2005Jan 5, 2006Facet Solutions, Inc.Facet joint replacement
US20060089654 *Oct 25, 2005Apr 27, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
US20060106397 *Dec 2, 2005May 18, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
US20060189983 *Mar 22, 2005Aug 24, 2006Medicinelodge, Inc.Apparatus and method for dynamic vertebral stabilization
US20060271055 *May 12, 2005Nov 30, 2006Jeffery ThramannSpinal stabilization
US20060293662 *Mar 3, 2006Dec 28, 2006Boyer Michael L IiSpinous process spacer
US20070161993 *Sep 26, 2006Jul 12, 2007Lowery Gary LInterspinous vertebral stabilization devices
US20070233129 *Feb 16, 2007Oct 4, 2007Rudolf BertagnoliMethod and system for performing interspinous space preparation for receiving an implant
US20070299442 *Jun 26, 2006Dec 27, 2007Sdgi Holdings, Inc.Vertebral stabilizer
US20080015609 *Apr 27, 2007Jan 17, 2008Trautwein Frank TInstrument system for use with an interspinous implant
US20080021561 *Mar 28, 2007Jan 24, 2008Zucherman James FSpine distraction implant and method
US20080172057 *Mar 28, 2007Jul 17, 2008Zucherman James FSpine distraction implant and method
US20080183211 *Nov 2, 2007Jul 31, 2008Lanx, LlcSpinous process implants and associated methods
US20080228225 *Nov 29, 2007Sep 18, 2008Paradigm Spine, LlcInterlaminar-Interspinous Vertebral Stabilization System
US20090088802 *Dec 5, 2008Apr 2, 2009Facet Solutions, Inc.Prosthesis for the replacement of a posterior element of a vertebra
US20090099607 *Feb 15, 2008Apr 16, 2009Stryker SpineApparatus and method for dynamic vertebral stabilization
US20090105773 *Oct 23, 2007Apr 23, 2009Warsaw Orthopedic, Inc.Method and apparatus for insertion of an interspinous process device
US20110166600 *Jul 7, 2011Lanx, Inc.Interspinsous implants and methods
US20110184468 *Jul 28, 2011Warsaw Orthopedic, Inc., An Indiana CorporationSpinous process fusion plate with osteointegration insert
US20120010660 *Jan 12, 2012Medicinelodge, Inc. Dba Imds Co-InnovationSystem and method for segmentally modular spinal plating
US20120239089 *Mar 17, 2011Sep 20, 2012Kyphon SarlInterspinous process implant and method of implantation
Classifications
U.S. Classification606/249, 606/907
International ClassificationA61K31/37, A61B17/66, A61B17/88, A61B17/70
Cooperative ClassificationA61K31/37, A61B17/66, A61B17/7071, A61B17/7068
European ClassificationA61K31/37, A61B17/70P8
Legal Events
DateCodeEventDescription
Feb 5, 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA
Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427
Effective date: 20070118
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS
Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427
Effective date: 20070118
Jan 21, 2008ASAssignment
Owner name: KYPHON INC., CALIFORNIA
Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260
Effective date: 20071128
Owner name: KYPHON INC.,CALIFORNIA
Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260
Effective date: 20071128
Mar 14, 2008ASAssignment
Owner name: KYPHON, INC., CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107
Effective date: 20071101
Owner name: KYPHON, INC.,CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107
Effective date: 20071101
May 9, 2008ASAssignment
Owner name: MEDTRONIC SPINE LLC, CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
Owner name: MEDTRONIC SPINE LLC,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
Jun 9, 2008ASAssignment
Owner name: KYPHON SARL, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325
Owner name: KYPHON SARL,SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325