Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040160799 A1
Publication typeApplication
Application numberUS 10/670,462
Publication dateAug 19, 2004
Filing dateSep 26, 2003
Priority dateFeb 17, 2003
Also published asCA2515164A1, CA2515164C, CN1751339A, CN100383860C, CN101252016A, CN101252016B, DE60329334D1, EP1595251A1, EP1595251B1, EP2110817A1, EP2110817B1, US7764581, US20090028015, WO2004072963A1
Publication number10670462, 670462, US 2004/0160799 A1, US 2004/160799 A1, US 20040160799 A1, US 20040160799A1, US 2004160799 A1, US 2004160799A1, US-A1-20040160799, US-A1-2004160799, US2004/0160799A1, US2004/160799A1, US20040160799 A1, US20040160799A1, US2004160799 A1, US2004160799A1
InventorsYong Park, Sung Kim
Original AssigneePark Yong Cheol, Kim Sung Dae
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc
US 20040160799 A1
Abstract
A write-once type optical disc and a method and apparatus for allocating a spare area on the write-once type optical disc are provided. The method includes allocating a data area on a recording medium of write-once type, and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
Images(9)
Previous page
Next page
Claims(44)
What is claimed is:
1. A method for allocating a spare area on a recording medium of write-once type, the method comprising:
allocating a data area on the recording medium; and
allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
2. The method as claimed in claim 1, wherein the recording medium is a write-once blu-ray disc (BD-WO) and the rewritable optical disc is a rewritable blu-ray disc (BD-RE).
3. A method for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, the method comprising:
allocating a data area on the at least one recording layer of the recording medium; and
allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
4. The method as claimed in claim 3, wherein the at least one recording layer is a single recording layer, the recording layer including the user data area, an inner spare area, and an outer spare area, and
the inner spare area is allocated to have a predetermined fixed size and the outer spare area is allocated to have a size of N256 clusters.
5. The method as claimed in claim 4, wherein N is greater than zero and ≦32.
6. The method as claimed in claim 5, wherein a maximum ratio of a total size of the inner and outer spare areas to the size of the user data area is about 3%.
7. The method as claimed in claim 4, wherein N is greater than zero and ≦64.
8. The method as claimed in claim 7, wherein a maximum ratio of a total size of the replacement area of the inner and outer spare areas to the size of the user data area is about 4%.
9. The method as claimed in claim 4, wherein the outer spare area includes a replacement area and an interim defect management area for temporarily storing defect management information therein.
10. The method as claimed in claim 9, wherein a size of the interim defect management area is about a quarter of a size of the outer spare area.
11. The method as claimed in claim 9, further comprising:
allocating a lead-in area on the single recording layer of the recording medium, the lead-in area including a temporary defect management area for temporarily storing defect management information therein.
12. The method as claimed in claim 3, wherein the at least one recording layer includes first and second recording layers, the first recording layer including a first user data area, a first inner spare area and a first outer spare area, the second recording layer including a second user data area, a second inner spare area, and a second outer spare area, and
the first inner spare area is allocated to have a predetermined fixed size and the second inner spare area is allocated to have a size of L256 clusters where L is equal to or greater than zero.
13. The method as claimed in claim 12, wherein each of the first and second outer spare areas is allocated to a size of N256 clusters where N is greater than zero.
14. The method as claimed in claim 13, wherein at least one of the second inner spare area, the first outer spare area and the second outer spare area includes an interim defect management area for storing defect management information therein.
15. The method as claimed in claim 14, wherein a size of the interim defect management area is about a quarter of a size of the corresponding inner spare area or outer spare area.
16. The method as claimed in claim 14, further comprising:
allocating a lead-in area on the first recording layer and a lead-out area on the second recording layer, at least one of the lead-in and lead-out areas including a temporary defect management area for storing defect management information therein.
17. The method as claimed in claim 13, wherein 0<N≦16 and 0<L≦32.
18. The method as claimed in claim 17, wherein a maximum ratio of a total size of the inner and outer spare areas to a total size of the user data areas is about 3%.
19. The method as claimed in claim 13, wherein 0<N≦32 and 0<L≦64.
20. The method as claimed in claim 19, wherein a maximum ratio of a total size of replacement areas of the inner and outer spare areas to a total size of the user data area is about 4%.
21. The method as claimed in claim 3, wherein the recording medium is a write-once blu-ray disc (BD-WO).
22. An apparatus for allocating a spare area on a recording medium of write-once type, the apparatus comprising:
means for allocating a data area on the recording medium; and
means for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
23. An apparatus for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, the apparatus comprising:
means for allocating a data area on the at least one recording layer of the recording medium; and
means for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
24. A recording medium of write-once type, the recording medium comprising:
a data area allocated on the recording medium, the data area including a user data area and at least one spare area, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
25. The recording medium as claimed in claim 24, wherein the recording medium is a write-once blu-ray disc (BD-WO) and the rewritable optical disc is a rewritable blu-ray disc (BD-RE).
26. A recording medium of write-once type, the recording medium comprising:
at least one recording layer; and
a data area allocated on the at least one recording layer, the data area including a user data area and at least one spare area, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
27. The recording medium as claimed in claim 26, wherein the at least one recording layer is a single recording layer, the recording layer including the user data area, an inner spare area, and an outer spare area, and
the inner spare area is allocated to have a predetermined fixed size and the outer spare area is allocated to have a size of N256 clusters.
28. The recording medium as claimed in claim 27, wherein N is greater than zero and ≦32.
29. The recording medium as claimed in claim 28, wherein a maximum ratio of a total size of the inner and outer spare areas to the size of the user data area is about 3%.
30. The recording medium as claimed in claim 27, wherein N is greater than zero and ≦64.
31. The recording medium as claimed in claim 30, wherein a maximum ratio of a total size of the replacement area of the inner and outer spare areas to the size of the user data area is about 4%.
32. The recording medium as claimed in claim 27, wherein the outer spare area includes a replacement area and an interim defect management area for temporarily storing defect management information therein.
33. The recording medium as claimed in claim 32, wherein a size of the interim defect management area is about a quarter of a size of the outer spare area.
34. The recording medium as claimed in claim 32, further comprising:
allocating a lead-in area on the single recording layer of the recording medium, the lead-in area including a temporary defect management area for temporarily storing defect management information therein.
35. The recording medium as claimed in claim 26, wherein the at least one recording layer includes first and second recording layers, the first recording layer including a first user data area, a first inner spare area and a first outer spare area, the second recording layer including a second user data area, a second inner spare area, and a second outer spare area, and
the first inner spare area is allocated to have a predetermined fixed size and the second inner spare area is allocated to have a size of L256 clusters where L is equal to or greater than zero.
36. The recording medium as claimed in claim 35, wherein each of the first and second outer spare areas is allocated to a size of N256 clusters where N is greater than zero.
37. The recording medium as claimed in claim 36, wherein at least one of the second inner spare area, the first outer spare area and the second outer spare area includes an interim defect management area for storing defect management information therein.
38. The recording medium as claimed in claim 37, wherein a size of the interim defect management area is about a quarter of a size of the corresponding inner spare area or outer spare area.
39. The recording medium as claimed in claim 37, further comprising:
allocating a lead-in area on the first recording layer and a lead-out area on the second recording layer, at least one of the lead-in and lead-out areas including a temporary defect management area for storing defect management information therein.
40. The recording medium as claimed in claim 36, wherein 0<N≦16 and 0<L≦32.
41. The recording medium as claimed in claim 40, wherein a maximum ratio of a total size of the inner and outer spare areas to a total size of the user data areas is about 3%.
42. The recording medium as claimed in claim 36, wherein 0<N≦32 and 0<L≦64.
43. The recording medium as claimed in claim 42, wherein a maximum ratio of a total size of replacement areas of the inner and outer spare areas to a total size of the user data area is about 4%.
44. The recording medium as claimed in claim 26, wherein the recording medium is a write-once blu-ray disc (BD-WO).
Description
  • [0001]
    This application claims the priority benefit of Korean Patent Application No. P2003-009895 filed on Feb. 17, 2003, and No. 2003-023876 filed on Apr. 16, 2003, the entire contents of which are herein fully incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to a write-once optical disc, and more particularly, to an apparatus and method for allocating a spare area on a write-once optical disc such as a write-once blu-ray disc.
  • [0004]
    2. Discussion of the Background Art
  • [0005]
    A new type of high density optical disc such as a Blu-ray Disc Rewritable (BD-RE) is being developed. A benefit of the BD-RE is that it has a rewritable capability where the quality video and audio data can be written, erased and rewritten thereon repeatedly.
  • [0006]
    [0006]FIG. 1 is a block diagram of a general optical disc device for writing/reproducing data to/from an optical disc such as a BD-RE. As shown in FIG. 1, the optical disc device includes an optical pickup 11 for recording/reproducing a signal to/from a BD-RE 10, a video disc recorder (VDR) system 12 for processing a signal from the optical pickup 11 as a reproduced signal, or demodulating and processing an external data stream into a writable signal suitable for writing onto the BD-RE 10, and an encoder 13 for encoding an external analog signal and providing the encoded signal to the VDR system 12.
  • [0007]
    [0007]FIG. 2 shows a structure of a general BD-RE. Referring to FIG. 2, an LIA (lead-in area), a data area and an LOA (lead-out area) are allocated on the BD-RE. An ISA (inner spare area) and an OSA (outer spare area) are allocated separately to a front and a rear end of the data area. A user data area having an LSN (Logical Sector Number) is allocated between the ISA and the OSA of the data area.
  • [0008]
    Referring to FIGS. 1 and 2, the VDR system 12 writes input data from an external source in a cluster unit corresponding ECC block having a predetermined recording capacity after encoding and converting the input data into a recording signal. The VDR system 12 also detects a defective area within the data area when recording the data.
  • [0009]
    When a defective area is detected, the VDR system 12 performs a replacement writing operation to write the cluster data from the defective area onto the ISA instead. After the data writing is finished, location information of the defective area and management information for reproducing the cluster data written on the spare area (replacement area) are written as a defect list onto the LIA.
  • [0010]
    [0010]FIGS. 3A and 3B illustrate a general structure of a BD-RE single layer and a BD-RE dual layer, respectively. As shown, a BD-RE may have a single recording layer (FIG. 3A) or two recording layers (FIG. 3B).
  • [0011]
    Referring to FIG. 3A, the recording capacity of the inner spare area ISA being allocated to the BD-RE single layer is 2048 clusters, and the recording capacity of the outer spare area OSA is N256 (0=<N<=64) clusters with a maximum of 16384 clusters. The recording capacity of the data area of the BD-RE single layer is 355603 clusters. The recording capacity of the user data area of the BD-RE single layer is determined to be a difference between the recording capacity of the data area and the recording capacity of the spare areas. For example, when the recording capacity of the outer spare area is 16384 clusters (N=64), then the recording capacity of the user data area is 337171 clusters. As a result, the size of the inner and outer spare areas (18432=2048+16384) corresponds to 5.5% of the size of the user data area of the BD-RE single layer.
  • [0012]
    Referring to FIG. 3B, in the BD-RE dual layer, the recording capacity of the inner spare area (ISA0) of a first layer (Layer 0) is 2048 clusters. The recording capacity of the outer spare area (OSA0) of the first layer is N256 clusters (0=<N<=32) with the 8192 maximum clusters (N=32). On the other hand, the recording capacity of the inner spare area (ISA1) of a second layer (Layer 1) is L256 clusters (0=<L<=64) with the 16384 maximum clusters (L=64). The recording capacity of the outer spare area (OSA1) of the second layer is N256 clusters (0=<N<=32) with the 8192 maximum clusters (N=32). As a result, the total recording capacity of the spare areas of the first and second layers is calculated to be 5.1% of the total recording capacity of the user data areas of the first and second layers.
  • [0013]
    A Blu-ray Disc Write-Once (BD-WO) is another type of high density optical disc that is being developed where a high quality of data can be recorded and reproduced to and from the disc. As the name may suggest, data can be written only once on the BD-WO and is not rewritable on the BD-WO. But the BD-WO can be read repeatedly. As a result, the BD-WO is useful where the rewritability of data on a recording medium is not desired.
  • [0014]
    Recently, standardizing the size of the BD-WO is being considered. But allocating the spare areas of the BD-WO as in the BD-RE would cause a problem of wasting precious recording space due to the characteristics of the BD-WO. For instance, in the BD-RE the recording capacity of the spare areas should be allocated large enough since the BD-RE re-records data repeatedly and as a result many defective areas can surface. In contrast, BD-WO is able to write once and thus relatively less defective areas may be present. Therefore, it is not necessary and is wasteful to allocate the same amount of spare area of the BD-RE onto the BD-WO.
  • SUMMARY OF THE INVENTION
  • [0015]
    Accordingly, the present invention is directed to an apparatus and method for allocating a spare area of a write-once optical disc that substantially obviate one or more problems due to limitations and disadvantages of a related art.
  • [0016]
    An object of the present invention is to provide a write-once optical disc and a method and apparatus for optimally allocating the spare area on the write-once optical disc in consideration of the characteristics of the optical disc.
  • [0017]
    Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • [0018]
    To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for allocating a spare area on a recording medium of write-once type according to an aspect of the invention includes allocating a data area on the recording medium; and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
  • [0019]
    In accordance with another aspect of the invention, a method for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, includes allocating a data area on the at least one recording layer of the recording medium; and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
  • [0020]
    In accordance with another aspect of the invention, an apparatus for allocating a spare area on a recording medium of write-once type, includes a combination of elements for allocating a data area on the recording medium and for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
  • [0021]
    In accordance with another aspect of the invention, an apparatus for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, includes a combination of elements for allocating a data area on the at least one recording layer of the recording medium and for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
  • [0022]
    In accordance with an aspect of the invention, a recording medium of write-once type includes a data area allocated on the recording medium, the data area including a user data area and at least one spare area, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
  • [0023]
    In accordance with another aspect of the invention, a recording medium of write-once type includes at least one recording layer; and a data area allocated on the at least one recording layer, the data area including a user data area and at least one spare area, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
  • [0024]
    It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0025]
    The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • [0026]
    [0026]FIG. 1 illustrates a general optical disc device schematically;
  • [0027]
    [0027]FIG. 2 illustrates a structure of a general BD-RE;
  • [0028]
    [0028]FIGS. 3A and 3B illustrate a structure of a BD-RE single layer and a general BD-RE dual layer, respectively;
  • [0029]
    [0029]FIG. 4 illustrates a structure of a BD-WO single layer and a method of allocating a spare area on the BD-WO single layer according to a first preferred embodiment of the present invention;
  • [0030]
    [0030]FIG. 5 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the first preferred embodiment of the present invention;
  • [0031]
    [0031]FIG. 6 illustrates a structure of a BD-WO single layer and a method of allocating a spare area on the BD-WO single layer according to a second preferred embodiment of the present invention;
  • [0032]
    [0032]FIG. 7 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the second preferred embodiment of the present invention; and
  • [0033]
    [0033]FIG. 8 is a block diagram of an optical disc recording/reproducing device according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0034]
    Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • [0035]
    Hereinafter, the embodiments of the method of allocating a spare area on a write-once type optical disc such as BD-WO are explained in details according to the present invention in reference with drawings. The present method can be applied in the process of manufacturing a write-once BD-WO single layer and a write-once BD-WO dual layer. Considering the characteristics of data recording on the BD-WO, the maximum size of the spare area can be allocated which is smaller than the maximum size of the spare areas allocated to a BD-RE.
  • [0036]
    In the present invention, the recording capacity of the spare area(s)/replacement area(s) of a BD-WO is kept at less than about 5% of the recording capacity of the user data area. In the present application, the recording size of an area (assuming with no defects) means the size of the area. As such, these two terms are interchangeably used herein. As an example only, an embodiment of allocating the recording capacity of the spare area(s) to about 3% of the recording capacity of the user data area on the BD-WO will be now explained as follows.
  • [0037]
    [0037]FIG. 4 illustrates a structure of a BD-WO single layer and a method of allocating a spare area thereon according to a first embodiment of the present invention.
  • [0038]
    Referring to FIG. 4, the BD-WO single layer includes a single recording layer allocated with an LIA, a data area and an LOA. The data area includes a user data area having a logical sector number (LSN), and an inner spare area and/or an outer spare area for writing data of defective areas (i.e., as a replacement area). The recording capacity of the inner spare area (ISA) is allocated to be of a predetermined fixed value (e.g., 2048 clusters), and the recording capacity of the outer spare area (OSA) is variable, e.g., N256 clusters (0=<N<=32) with the maximum 8192 clusters (N=32).
  • [0039]
    The recording capacity of the data area of the BD-WO single layer is allocated to have 355603 clusters. The recording capacity of the user data area is obtained by subtracting the recording capacity of the spare areas (ISA and OSA) from the recording capacity of the data area. For example, when the recording capacity of the outer spare area OSA is at the maximum 8192 clusters (N=32), the recording capacity of the user data area is calculated to be 34563 (=355603−(2048+8192)) clusters. As a result, the recording capacity of the inner and outer spare areas (10240=2048+8192) of the BD-WO single layer according to this embodiment is about 3% of the recording capacity (size) of the user data area (34563 clusters) of the BD-WO single layer.
  • [0040]
    Accordingly, when the recording capacity of the inner and outer spare areas allocated to the BD-WO single layer is adjusted to be about 3% of the recording capacity of the user data area by varying the maximum recording capacity of the outer spare area, the spare areas of the BD-WO are prevented from being wasted and are efficiently allocated.
  • [0041]
    [0041]FIG. 5 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area thereon according to the first embodiment of the present invention.
  • [0042]
    Referring to FIG. 5, the BD-WO dual layer includes a first recording layer (Layer 0) and a second recording layer (Layer 1). The first recording layer (Layer 0) includes a LIA, a data area 32 a, and an outer zone area (Outer Zone 0). The data area 32 a includes an inner spare area (ISA0), a user data area 33 a, and an outer spare area (OSA0). The second recording layer (Layer 1) includes a LOA, a data area 32 b, and an outer zone area (Outer Zone 1). The data area 32 b of the second layer includes an inner spare area (ISA1), a user data area 33 b, and an outer spare area (OSA1). A data writing operation occurs generally in the direction shown with the dotted arrow A.
  • [0043]
    The inner spare area (ISA0) on the first layer has a predermined fixed size, e.g., 2048 clusters. The recording capacity of the outer spare area (OSA0) on the first layer is variable and is N256 clusters (0=<N<=16) with the maximum 4096 clusters (N=16). The recording capacity of the inner spare area (ISA1) on the second layer is variable and is L256 clusters (0=<N<=16) with the maximum 8192 clusters (L=32). The recording capacity of the outer spare area (OSA1) on the second layer is variable and is N256 clusters (0=<L<=32) with the maximum 4096 clusters (N=16). The total recording capacity of the first and second data areas 32 a and 32 b is 711206 (=3556032) clusters.
  • [0044]
    The total recording capacity of the user data areas on the first and second layers is calculated by subtracting the total recording capacity of the spare areas from the total recording capacity of the data areas of the first and second layers. For example, if both recording capacities of the first and second outer areas (OSA0 and OSA1) are at maximum 4096 clusters (N=16) and the recording capacity of the inner spare area (OSA1) of the second layer is at maximum 8192 clusters (L=32), then the total recording capacity of the user data areas of the first and second layers becomes 692774 clusters (=(3556032)−(2048+4096+4096+8192)). As a result, the total capacity of the spare areas of the first and second layers (2048+4096+4096+8192 clusters) corresponds to about 3% of the total recording capacity of the user data areas on the first and second layers.
  • [0045]
    Accordingly, the total recording capacity of the first and second inner and outer spare areas allocated to the BD-WO dual layer becomes about 3% of the total recording capacity of the user data areas by adjusting the maximum recording capacity of the first and second outer spare areas (OSA0, OSA1) and the maximum recording capacity of the second inner spare area (ISA1). Therefore, the spare areas are prevented from being wasted and are efficiently allocated in accordance with the data recording characteristics of the BD-WO.
  • [0046]
    In the first embodiment as shown in FIGS. 4 and 5, the entire spare areas (e.g., inner spare areas and outer spare areas) are used as replacement areas for storing data of defective areas according to a linear replacement scheme. For instance, if a cluster area of a user data area is found to be defective, then the data stored in that defective cluster area is also written onto a spare area functioning as a replacement area for the defective cluster area.
  • [0047]
    [0047]FIG. 6 shows a structure a BD-WO single layer and a method for assigning a spare area on the BD-WO single layer according to a second embodiment of the present invention. The BD-WO single layer shown in FIG. 6 includes a lead-in area, a data area, and a lead-out area. The data area has a fixed size, e.g., 355603 clusters.
  • [0048]
    The lead-in area includes first and second defect management areas DMA1 and DMA2, and a temporary defect management area TDMA. TDMA is an area to temporarily record and manage defect management information of the BD-WO until the BD-WO is finalized. For instance, if during a writing operation of the user data area, if data in a defective cluster area of the user data area is written onto a part (replacement area) of a spare area according to a linear replacement scheme, then information (e.g., location information, size, etc.) of the defective cluster area and the corresponding replacement area within the spare area is temporarily stored in the TDMA as TDMA information. Then if the BD-WO is to be finalized (e.g., upon completion of the data writing onto the user data area), then the TDMA information stored in the TDMA is transferred to one or each of the DMAs allocated on the BD-WO. In this example, the TDMA provided in the lead-in area has a fixed size, for example, 2048 clusters.
  • [0049]
    The data area includes an inner spare area ISA, a user data area 34, and an outer spare area OSA. In this example, the entire inner spare area ISA is used as an area for linear replacement (i.e., as a replacement area). In other words, an area for temporary defect management is not allocated to the inner spare area ISA. Generally, the ISA has a fixed size (e.g., 2048 clusters) and the OSA has a variable size.
  • [0050]
    The outer spare area OSA includes an interim defect management area (IDMA) and a replacement area 40 for linear replacement. In one example, the IDMA is allocated adjacent to the replacement area 40. The size of the IDMA is allocated variably depending on the size of the outer spare area OSA. Since the outer spare area OSA has a variable size, the IDMA also has a variable size.
  • [0051]
    Here, the IDMA is distinguished from the TDMA having a fixed size in the lead-in area in that it has a variable size and may differ from the TDMA depending on a usage manner in recorded timing. However, the TDMA and the IDMA can store the same contents despite the difference between the terms. This will be described later.
  • [0052]
    In one example, the IDMA having a variable size is allocated within the outer spare area OSA depending on whether or not the outer spare area OSA is allocated. For instance, if the outer spare area OSA is allocated, then the IDMA is allocated therein as discussed herein. But if the outer spare area OSA is not allocated, then the IDMA may not be allocated and only the TDMA having a fixed size may be allocated as discussed herein. In another variation, the outer spare area OSA may be allocated without the allocation of the IDMA therein. However, if the outer spare area OSA is allocated, it is preferable to allocate the IDMA therein.
  • [0053]
    The size of the IDMA positioned at the outer track of the disc depends on the variable size of the outer spare area OSA. In one example, the size of the outer spare area OSA is Nυ256 clusters (0≦N≦64). In this case, the size of the IDMA can be Pυ256 clusters, where P is an integer determined to be P=N/4. That is, a method wherein the size of the IDMA is allocated to be a quarter of the size of the outer spare area OSA can be used in determining the size of the IDMA. For example, if N=64 is used, then the size of the outer spare area OSA is allocated to be 16384 clusters (16384=64256) and P=N/4=16. As a result, the size of the IDMA according to the present invention is allocated to be 4096 clusters (4096=16256).
  • [0054]
    Similarly, the size of the IDMA may be varied depending on the size of the outer spare area OSA considering that when the replacement area for linear replacement is allocated in the OSA, the size of the replacement area, the size of the DMA, and the size of the spare area(s) depend on one another. In contrast, the size of the disk inner track area (especially the size of the TDMA positioned in the lead-in area) has a fixed value.
  • [0055]
    [0055]FIG. 7 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the second embodiment of the present invention.
  • [0056]
    Referring to FIG. 7, the BD-WO dual layer includes a first layer (Layer 0) and a second layer (Layer 1). The first layer (Layer 0) includes a lead-in area, a data area 35 a and an outer zone area Outer Zone 0. The second layer (Layer 1) includes a lead-out area, a data area 35 b and an outer zone area Outer Zone 1.
  • [0057]
    In each of the lead-in area and lead-out area, a TDMA of the present invention is provided as first and second TDMAs 37 a and 37 b, and a plurality of DMAs are provided. A plurality of DMAs are also provided in each of the Outer Zones 0 and 1. Each TDMA provided in the lead-in area and the lead-out area has a fixed size, for example, 2048 clusters.
  • [0058]
    The first data area 35 a of the first layer (Layer 0) includes an inner spare area ISA0, a user data area 36 a, and an outer spare area OSA0. The inner spare area ISA0 has a fixed size (e.g., 2048 clusters) and the outer spare area OSA0 has a variable size. Here, the entire ISA0 is used as a replacement area for linear replacement. The OSA0 includes a replacement area 38 d for linear replacement and a first IDMA 38 a for storing therein IDMA information for defect management. That is, an area for temporary defect management is not allocated to the inner spare area ISA0 of the first layer (Layer 0).
  • [0059]
    The second data area 35 b of the second layer (Layer 1) includes an inner spare area ISA1, a user data area 36 b, and an outer spare area OSA1. Each of the inner and outer spare areas ISA1 and OSA1 has a variable size. Each of the inner and outer spare areas ISA1 and OSA1 includes a replacement area 38 f or 38 g for linear replacement and an IDMA 38 b or 38 c for storing therein IDMA information for defect management. In one example, the IDMAs 38 a-38 c are each allocated to a portion adjacent to the corresponding replacement area for linear replacement. The size of the IDMAs is allocated depending on the size of the spare areas ISA1, OSA0 and OSA1 where the spare areas ISA1, OSA0 and OSA1 have a variable size.
  • [0060]
    Here, the IDMAs 38 a-38 c are allocated within the spare areas depending on whether or not the corresponding spare areas area allocated. For instance, if a spare area is allocated to the BD-WO, then the corresponding IDMA may be allocated therein. But if a spare area is not allocated, then the corresponding IDMA may not be allocated therein and only the TDMA(s) having a fixed size may be allocated. In one example, if the BD-WO has been allocated with the ISA0 and not with the ISA1, the OSA0 and/or the OSA1, then only the first TDMA 37 a may be allocated and the second TDMA 37 b and the IDMAs 38 a-38 c may not be allocated to the BD-WO. In another example, if the ISA0 and ISA1 (and not the OSA0 and OSA1) are allocated to the BD-WO, then the TDMAs 37 a and 37 b and the IDMA 38 b (not the IDMAs 38 a and 38 c) may be allocated. In still another example, the IDMA may not be allocated within the corresponding spare area even if the corresponding spare area is allocated to the BD-WO. For instance, even if the ISA0, OSA0 and OSA1 are allocated to the BD-WO, the corresponding IDMAs 38 a and 38 c may not be allocated therein. It should be noted that one or more of the ISA0, the OSA0 (with or without the IDMA 38 a), the OSA1 (with or without the IDMA 38 c), and the ISA1 (with or without the IDMA 38 b) may be allocated to the BD-WO with one or more of the TDMAs.
  • [0061]
    The size of the IDMAs may depend on the size of the spare areas ISA1, OSA0 and OSA1. For example, the size of each of the outer spare areas OSA0 and OSA1 is allocated to be Nυ256 clusters (0≦N≦32), and the size of the inner spare area ISA1 is allocated to be Lυ256 clusters (0≦L≦64). Then the size of each of the IDMAs 38 a and 38 c is allocated to be Pυ256 clusters and the size of the IDMA 38 b is allocated to be Qυ256 clusters, where P and Q are integers determined to be P=N/4 and Q=L/4. Here a method wherein the size of the IDMA having a variable size is allocated to be a quarter of the size of the corresponding outer/inner spare area can be used.
  • [0062]
    As an example, if N=32 (max), then the size of the outer spare areas OSA0 and OSA1 in total is 16384 clusters and P=N/4=8. As a result, the size of the IDMAs 38 a and 38 c in total is 4096 clusters. And if L=64 (max), the size of the inner spare area ISA1 is 16384 clusters and Q=L/4=16. As a result, the size of the IDMA 38 b is allocated to be 4096 clusters. According to this example, the total maximum size of the data areas (35 a and 35 b) of the BD-WO dual layer is 711206 clusters, the total maximum size of the spare areas (ISA 0, ISA1, OSA0 and OSA1) of the BD-WO dual layer is 34816 clusters, the total maximum size of the IDMAs (38 a-38 c) is 8192 clusters, the total maximum size of the replacement areas (ISA0, 38 d, 38 f and 38 g) within the spare areas is 26624 clusters, and the total size of the user data areas (36 a and 36 b) is 676390 clusters. As a result, the total capacity (size) of the replacement areas (ISA0, 38 d, 38 f and 38 g) in the spare areas of the BD-WO dual layer corresponds to about 4% of the total recording capacity of the user data areas of the BD-WO dual layer.
  • [0063]
    Here, the size of the IDMAs may vary depending on the size of the spare areas ISA1, OSA0 and OSA1 considering that when a replacement area for linear replacement is allocated in the corresponding spare area, the size of the replacement area, the size of the IDMA(s) and the size of the spare area depend on one another. In contrast, the size of the inner track area (especially the TDMA positioned at each of the lead-in area and the lead-out area) has a fixed value.
  • [0064]
    The arrows depicted in each of the areas shown in FIGS. 6 and 7 are examples of a data recording direction.
  • [0065]
    According to the second embodiment as shown in FIGS. 6 and 7, if a defective area within the user data area is detected during a data writing operation of the BD-WO, the data written or to be written to the defective area is written to a replacement area of a spare area according to the linear replacement. Information pertaining to the defective area and the replacement area and any other information is written onto the TDMA(s) and IDMA(s) allocated on specific areas of the disc. The same defect management information may be written to each of the TDMA(s) and IDMA(s). In the alternative, if the TDMA of a layer is full, then the IDMA(s) of the same or different layer may be used, or if an IDMA of a layer is full, then the IDMA(s) of the same or different layer or the TDMA(s) of the same or different layer may be used.
  • [0066]
    According to the second embodiment, in the BD-WO single layer, the entire ISA may be used as the area for linear replacement, whereas a portion of the OSA may be used as the IDMA and the remaining portion (or another portion) of the OSA may be used as the area for linear replacement. In the BD-WO dual layer, the entire ISA0 may be used as the area for linear replacement, whereas portions of the ISA1, OSA0 and OSA1 may be used as the IDMA(s) and the remaining portions (or other portions) of the ISA1, OSA0 and OSA1 may be used as the area for linear replacement.
  • [0067]
    [0067]FIG. 8 is an example of a block diagram of an optical disc recording/reproducing device 20 according to an embodiment of the present invention. The optical disc recording/reproducing device 20 includes an optical pickup 22 for writing/reading data to/from an optical recording medium 21, a servo unit 23 for controlling the pickup 22 to maintain a distance between an objective lens of the pickup 22 and the recording medium 21 and for tracking relevant tracks on the recording medium 21, a data processor 24 for processing and supplying input data to the pickup 22 for writing, and for processing data read from the recording medium 21, an interface 25 for exchanging data and/or commands with any external host 30, a memory or storage 27 for storing information and data therein including defect management data (e.g., TDMA information, IDMA information, DMA information, etc.) associated with the recording medium 21, and a microprocessor or controller 26 for controlling the operations and elements of the recording/reproducing device 20. Data to be written/read to/from the recording medium 21 may also be stored in the memory 27. All the components of the recording/reproducing device 20 are operatively coupled. The recording medium 21 is a recording medium of write-once type such as a BD-WO.
  • [0068]
    The methods of allocating spare areas, IDMA(s) and TDMA(s) on the BD-WO according to the embodiments of the present invention can be implemented by the recording/reproducing device 20 of FIG. 8 or any other suitable device/system. For instance, the microcomputer 26 can control allocating the size of the spare area(s), the IDMA(s), TDMA(s), etc. according to the above discussed embodiments. It can control varying the size of the spare area(s) as replacement writing operations are performed. It can control the process of writing replacement data to replacement areas of the spare areas in a replacement writing operation, and the process of writing defect management information to the IDMA(s), TDMA(s), and DMA(s). The process of allocating the spare area(s), IDMA(s), TDMA(s), etc. may occur as needed while the disc is being manufactured, or during or prior to data writing and/or replacement writing operations using the recording/reproducing device 20 or some other suitable device/system.
  • [0069]
    It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4733386 *Apr 29, 1986Mar 22, 1988Hitachi, Ltd.Method of writing file data into a write-once type memory device
US4807205 *Nov 26, 1986Feb 21, 1989Michel PicardProcess for writing with updating and reading informations on a non-erasable support organized into sectors
US5111444 *Jul 13, 1989May 5, 1992Matsushita Electric Industrial Co., Ltd.Method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
US5138203 *Apr 24, 1989Aug 11, 1992Hitachi, Ltd.Integrated circuit compensation for losses in signal lines due to parasitics
US5210734 *Aug 29, 1990May 11, 1993Victor Company Of Japan, Ltd.Information management method for appendage type additional information recording medium
US5235585 *Sep 11, 1991Aug 10, 1993International Business MachinesReassigning defective sectors on a disk
US5237553 *May 24, 1991Aug 17, 1993Matsushita Electric Industrial Co.Data recording and reproducing apparatus having a plurality of operating modes
US5319626 *Aug 26, 1991Jun 7, 1994Mitsubishi Electric CorporationMethod for rewriting defect management areas on optical disk according to ECMA standard
US5404357 *Jun 29, 1992Apr 4, 1995Matsushita Electric Industrial Co., Ltd.Information writing and reading apparatus
US5442611 *May 3, 1993Aug 15, 1995Olympus Optical Co., Ltd.Method of recording information on record medium having data record region and file management information record region
US5481519 *Feb 8, 1994Jan 2, 1996Canon Kabushiki KaishaMethod for recording, reproducing and managing file data on a recording medium
US5495466 *Jan 10, 1994Feb 27, 1996Eastman Kodak CompanyWrite verification in an optical recording system by sensing mark formation while writing
US5528571 *Jun 7, 1994Jun 18, 1996Sony CorporationOptical disc apparatus
US5608715 *Jul 20, 1995Mar 4, 1997Pioneer Electronic CorporationMulti-layered recording disk and recording/reproducing system using the same
US5715221 *Apr 10, 1996Feb 3, 1998Matsushita Electric IndustrialMethod for managing defects in an information recording medium, and a device and information recording medium using said method
US5720030 *Apr 27, 1995Feb 17, 1998Seiko Epson CorporationPreprocess method, information read/write method, input/output device and read/write device
US5740435 *Oct 27, 1995Apr 14, 1998Sony CorporationData management apparatus and method for managing data of variable lengths recorded on a record medium
US5745444 *Dec 18, 1995Apr 28, 1998Hitachi, Ltd.Method of controlling recording information on an optical disk using replacement control information
US5799212 *Aug 9, 1996Aug 25, 1998Sony CorporationEfficient recording medium
US5867455 *Aug 20, 1997Feb 2, 1999Hitachi, Ltd.Optical method and device for irradiating domains at predetermined positions
US5878020 *Mar 24, 1997Mar 2, 1999Kabushiki Kaisha ToshibaInformation recording disk with management areas
US5914928 *Jul 6, 1998Jun 22, 1999Kabushiki Kaisha ToshibaInformation recording disk having replacement area
US6058085 *Oct 28, 1997May 2, 2000Sony CorporationMethod and apparatus for identifying and skipping defective sections
US6189118 *Aug 6, 1999Feb 13, 2001Matsushita Electric Industrial Co., Ltd.Information recording medium, and method and apparatus for managing defect thereof
US6233654 *Oct 7, 1998May 15, 2001Sony CorporationRecording apparatus having a partially exchangeable disk array, a loading/unloading device, and a control device and which uses a disk-like recording medium
US6341109 *Feb 3, 2000Jan 22, 2002Nec CorporationDefective area replacement method and information writing/reading device
US6341278 *May 11, 2000Jan 22, 2002Sony CorporationRecording and reproducing apparatus and method for accessing data stored on a randomly accessible recording medium, and for managing data thereon
US6373800 *Sep 13, 1999Apr 16, 2002Kabushiki Kaisha ToshibaInformation recording apparatus and method with replacement process
US6405332 *May 26, 1999Jun 11, 2002Oki Electric Industry Co, Ltd.Storage device and alternate processing method for defective sectors of the same
US6414923 *Aug 16, 1999Jul 2, 2002Lg Electronics Inc.Recording/reproducing method of optical recording medium
US6529458 *Sep 24, 1999Mar 4, 2003Lg Electronics Inc.Method for managing defective area of optical recording medium
US6542450 *Nov 10, 1999Apr 1, 2003Lg Electronics Inc.Method for assigning spare area in optical recording medium
US6564345 *Mar 1, 1999May 13, 2003Lg Electronics, Inc.Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6581167 *Jan 31, 2000Jun 17, 2003Matsushita Electric Industrial Co., Ltd.Information recording medium, information recording method and information recording/reproduction system
US6697306 *Jul 31, 2001Feb 24, 2004Sony CorporationData recording method, data outputting method, and data recording and/or reproducing method
US6714502 *Mar 14, 2001Mar 30, 2004Samsung Electronics Co., LtdMethod of verifying defect management area information of optical disc and apparatus for performing the same
US6724701 *Jun 3, 2003Apr 20, 2004Koninklijke Philips Electronics N.V.Method of immediate writing or reading files on a disc like recording medium
US6738341 *Jun 20, 2002May 18, 2004Mitsubishi Denki Kabushiki KaishaRewritable optical disk with spare area and optical disk processing apparatus
US6754860 *Feb 21, 2003Jun 22, 2004Lg Electronics, Inc.Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6760288 *Jun 16, 2003Jul 6, 2004Koninklijke Philips Electronics N.V.Method of immediate writing or reading files on a disc like recording medium
US6763429 *Aug 22, 2000Jul 13, 2004Hitachi, Ltd.Method and apparatus for recording and playing back information
US6766418 *Apr 30, 2001Jul 20, 2004Emc CorporationMethods and apparatus for accessing data using a cache
US6842580 *Jan 26, 2000Jan 11, 2005Matsushita Electric Industrial Co., Ltd.Real-time recording/reproduction on an information recording medium including a defective region
US6845069 *Jul 25, 2001Jan 18, 2005Pioneer CorporationInformation editing apparatus, information editing method, and information recording medium on which program for controlling edit is recorded so as to be read by computer
US6883111 *Mar 4, 2002Apr 19, 2005Hitachi, Ltd.Data recording method and data recording apparatus
US6918003 *Jan 7, 2003Jul 12, 2005Ricoh Company, Ltd.Information reproducing apparatus, data management information obtaining method, data management information obtaining program, and storage medium
US6999398 *Mar 27, 2002Feb 14, 2006Canon Kabushiki KaishaMethod and apparatus for recording information on information recording medium
US7002882 *Mar 21, 2002Feb 21, 2006Kabushiki Kaisha ToshibaInformation recording medium capable of defect management, information recording apparatus capable of defect management, and information playback apparatus for playing back information from defect-managed medium
US7027059 *May 30, 2002Apr 11, 2006Intel CorporationDynamically constructed rasterizers
US7027373 *Mar 22, 2004Apr 11, 2006Matsushita Electric Industrial Co., Ltd.Information recording medium, information recording method and information reproduction method
US7042825 *Jan 3, 2003May 9, 2006Matsushita Electric Industrial Co., Ltd.Information recording medium, recording apparatus, reproduction apparatus, recording method, reproduction method and defect management method
US7050701 *Sep 24, 1999May 23, 2006Matsushita Electric Industrial Co., Ltd.Information recording medium, information recording/reproducing method, and information recording/reproducing device
US7161879 *May 12, 2006Jan 9, 2007Samsung Electronics Co., Ltd.Method of and drive for recording medium defect management, and defect managed recording medium
US7184377 *Jan 8, 2003Feb 27, 2007Matsushita Electric Industrial Co., Ltd.Multi-layered information recording medium, recording apparatus, and recording method
US7188271 *Sep 26, 2003Mar 6, 2007Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7233550 *Sep 26, 2003Jun 19, 2007Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7236687 *Apr 20, 2001Jun 26, 2007Sony CorporationInformation processing apparatus and method, program, and recording medium
US7327654 *May 9, 2006Feb 5, 2008Samsung Electronics Co., Ltd.Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS
US7349301 *Nov 19, 2003Mar 25, 2008Sony CorporationWrite-once recording medium on which portion of the data is logically overwritten
US7379402 *Aug 12, 2003May 27, 2008Samsung Electronics Co., Ltd.Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US20010009537 *Jan 23, 2001Jul 26, 2001Lg Electronics, Inc.Method of formatting optical recording medium
US20020025138 *Jan 9, 2001Feb 28, 2002Hitachi, Ltd.Apparatus and method for recording and reproducing information
US20020097665 *Mar 28, 2002Jul 25, 2002Samsung Electronics Co., Ltd.Recording medium having spare areas for defect management and method of allocating spare areas
US20020097666 *Mar 28, 2002Jul 25, 2002Samsung Electronics Co., LtdRecording medium having spare areas for defect management and method of allocating spare areas
US20020099950 *Jan 22, 2001Jul 25, 2002Smith Kenneth K.Method of maintaining integrity of an instruction or data set
US20030072236 *Feb 28, 2002Apr 17, 2003Akemi HirotsuneRecording method, recording medium, and recording system
US20030095482 *Apr 24, 2002May 22, 2003Chien-Li HungMethod for adjusting the writing speed of a CD drive
US20030126527 *Feb 21, 2003Jul 3, 2003Lg Electronics Inc.Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US20030135800 *Feb 21, 2003Jul 17, 2003Lg Electronics Inc.Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US20030137909 *Jan 8, 2003Jul 24, 2003Motoshi ItoMulti-layered information recording medium, recording apparatus , and recording method
US20030137910 *Jan 9, 2003Jul 24, 2003Hiroshi UedaMulti-layered information recording medium, reproduction apparatus, recording apparatus, reproduction method, and recording method
US20030142608 *Jan 3, 2003Jul 31, 2003Yoshikazu YamamotoInformation recording medium, recording apparatus, reproduction apparatus, recording method, reproduction method and defect management method
US20040001408 *Nov 18, 2002Jan 1, 2004Dataplay, Inc.Defect management system for write-once storage disk
US20040004917 *Nov 18, 2002Jan 8, 2004Ming-Hung LeeMethod for managing spare blocks of an optical disc
US20040062159 *Sep 26, 2003Apr 1, 2004Park Yong CheolOptical disc, method and apparatus for managing a defective area on an optical disc of write once type
US20040062160 *Sep 26, 2003Apr 1, 2004Park Yong CheolWrite-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US20040076096 *Sep 26, 2003Apr 22, 2004Samsung Electronics, Co., Ltd.Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS
US20040105363 *Aug 12, 2003Jun 3, 2004Samsung Electronics Co., Ltd.Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US20040114474 *Dec 10, 2003Jun 17, 2004Park Yong CheolMethod and apparatus for managing overwrite on an optical disc write once
US20040120233 *Dec 10, 2003Jun 24, 2004Park Yong CheolMethod of managing overwrite and method of recording management information on an optical disc write once
US20040125716 *Sep 9, 2003Jul 1, 2004Samsung Electronics Co., Ltd. Of Suwon-City, KoreaMethod and apparatus for adaptively allocating a spare area in a recording medium, and a recording medium having a spare area allocated using the same
US20040125717 *Sep 17, 2003Jul 1, 2004Samsung Electronics Co., Ltd.Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US20040136292 *Nov 5, 2003Jul 15, 2004Park Yong CheolMethod for managing defective area on optical disc of writable once type
US20040145980 *Sep 26, 2003Jul 29, 2004Park Yong CheolOptical disc of write once type, method, and apparatus for managing defect information on the optical disc
US20050007910 *Jul 7, 2004Jan 13, 2005Motoshi ItoWrite-once recording medium, recording method, recording apparatus, reproduction method, and reproduction apparatus
US20050008346 *Oct 7, 2003Jan 13, 2005Pioneer CorporationRecording apparatus, method for controlling the same and playback apparatus
US20050025007 *Jul 12, 2004Feb 3, 2005Park Yong CheolWrite-once optical disc, and method and apparatus for recording management information thereon
US20050047294 *Aug 5, 2004Mar 3, 2005Park Yong CheolWrite-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
US20050050402 *Aug 12, 2004Mar 3, 2005Takeshi KodaInformation recording medium, recording apparatus and method, reproducing apparatus and method, computer program for controlling record or reproduction, and data structure including control signal
US20050052972 *Sep 7, 2004Mar 10, 2005Park Yong CheolWrite-once optical disc and method for recording management information thereon
US20050052973 *Sep 7, 2004Mar 10, 2005Park Yong CheolWrite-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20050055500 *Sep 7, 2004Mar 10, 2005Park Yong CheolWrite-once optical disc and method for recording management information thereon
US20050060489 *Jul 12, 2004Mar 17, 2005Park Yong CheolWrite-once optical disc, method and apparatus for recording management information on write-once optical disc
US20050068877 *Nov 18, 2004Mar 31, 2005Lg Electronics Inc.Optical disc having variable spare area rates and method for variably setting the rate of spare areas in the optical disc
US20050083740 *Jun 4, 2003Apr 21, 2005Shoei KobayashiDisc recording medium, recording method, disc drive device
US20050083767 *Nov 19, 2003Apr 21, 2005Sony CorporationRecording medium, recording device, reproduction device, recording method, and reproduction method
US20050083830 *Nov 11, 2002Apr 21, 2005Koninkljke Philips Electronics N.V.Optical data storage medium and use of such medium
US20060077827 *Nov 18, 2005Apr 13, 2006Hideki TakahashiInformation recording medium capable of defect management, information recording apparatus capable of defect management, and information playback apparatus for playing back information from defect-managed medium
US20080046780 *Oct 10, 2007Feb 21, 2008Hirofumi ShibuyaNonvolatile memory
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7643394Jun 13, 2005Jan 5, 2010Kabushiki Kaisha ToshibaOptical disk, optical disk recording method, and optical disk recording apparatus
US7663997May 7, 2004Feb 16, 2010Lg Electronics, Inc.Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7668054Dec 10, 2003Feb 23, 2010Lg Electronics Inc.Method of managing overwrite and method of recording management information on an optical disc write once
US7672204Sep 26, 2003Mar 2, 2010Lg Electronics Inc.Optical disc, method and apparatus for managing a defective area on an optical disc
US7672208Nov 14, 2007Mar 2, 2010Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7684293May 10, 2004Mar 23, 2010Lg Electronics Inc.Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7701823May 9, 2007Apr 20, 2010Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7783829Jan 16, 2009Aug 24, 2010Lg Electronics Inc.Write-once optical disc and method for recording management information thereon
US7813243Feb 6, 2008Oct 12, 2010Lg Electronics Inc.Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7911900Sep 7, 2004Mar 22, 2011Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US7911904Mar 6, 2009Mar 22, 2011Lg Electronics, Inc.Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7936649Oct 28, 2009May 3, 2011Lg Electronics Inc.Method of managing overwrite and method of recording management information on an optical disc write once
US7952972Dec 19, 2008May 31, 2011Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US8045430Dec 30, 2008Oct 25, 2011Lg Electronics Inc.Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US8054718Jan 2, 2009Nov 8, 2011Lg Electronics Inc.Write-once optical disc, and method and apparatus for recording management information thereon
US8107336Jul 21, 2009Jan 31, 2012Lg Electronics Inc.Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US8296529Sep 7, 2004Oct 23, 2012Lg Electronics Inc.Write-once optical disc and method for recording management information thereon
US9443618 *Mar 14, 2013Sep 13, 2016SK Hynix Inc.Semiconductor memory device mapping external address as internal address wherein internal addresses of spare cells of two blocks differ by upper most bit and internal addresses of main cells of two blocks differ by upper most bit and the internal addresses of main cell and spare cell of each block differ by one bit and operating method for the same
US20050276191 *Jun 13, 2005Dec 15, 2005Yutaka KashiharaOptical disk, optical disk recording method, and optical disk recording apparatus
US20070211591 *May 9, 2007Sep 13, 2007Park Yong CWrite-once optical disc, and method and apparatus for recording management information on write-once optical disc
US20140189283 *Mar 14, 2013Jul 3, 2014SK Hynix Inc.Semiconductor memory device and operating method for the same
Classifications
U.S. Classification365/145, G9B/20.059
International ClassificationG11B20/18, G11B11/00, G11B7/00, G11C11/22, G11B7/007
Cooperative ClassificationG11B20/1883, G11B2020/1873, G11B2220/20
European ClassificationG11B20/18S
Legal Events
DateCodeEventDescription
Sep 26, 2003ASAssignment
Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, YONG CHEOL;KIM, SUNG DAE;REEL/FRAME:014552/0744
Effective date: 20030821