US20040180777A1 - Alkali resistant ceramic media - Google Patents

Alkali resistant ceramic media Download PDF

Info

Publication number
US20040180777A1
US20040180777A1 US10/810,092 US81009204A US2004180777A1 US 20040180777 A1 US20040180777 A1 US 20040180777A1 US 81009204 A US81009204 A US 81009204A US 2004180777 A1 US2004180777 A1 US 2004180777A1
Authority
US
United States
Prior art keywords
alkali
weight
resistant
ceramic body
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/810,092
Inventor
Xueren Cao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/810,092 priority Critical patent/US20040180777A1/en
Publication of US20040180777A1 publication Critical patent/US20040180777A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Definitions

  • This invention relates to ceramic regenerative heat transfer media for use in Regenerative Thermal Oxidizers.
  • Ceramic heat-transfer media used in RTOs typically consist of 70 ⁇ 75% SiO 2 , 20 ⁇ 25% Al 2 O 3 , 2 ⁇ 5% K 2 O or Na 2 O, and trace amounts of Fe, Ca, and Ti.
  • the media can be shaped like honeycombs, plates, saddles, or other forms. When ceramic media having such composition are used in an alkaline environment, reactions will occur between the surface of the media and the alkaline component.
  • Alkali-resistant ceramics used in the metal finishing and glass industries contains silicon carbide, silicon nitride, alumina, zirconia, and similar materials that have to be formed under high pressure. As a result, these ceramics are quite expensive. More importantly, these ceramic compositions cannot be shaped using ordinary methods, so they often cannot be made into the same shapes as conventional ceramic media.
  • U.S. Pat. No. 5,731,250 to Reid et al. teaches the use of zircon-based ceramic bodies made from a composition that can be formed by conventional processes.
  • zircon is expensive, and it would be useful to make heat-exchange media from a material with even better resistance to alkali attack.
  • RTO regenerative thermal oxidizers
  • RTO usually consist of two or more heat-exchange canisters with one combustion chamber. Heat-transfer media are installed in the heat-exchange canisters in order to store and release heat.
  • the present invention provides an alkali-resistant material comprising 20 ⁇ 80 wt % MgO, 10 ⁇ 50 wt % SiO 2 , 5 ⁇ 30 wt % Al 2 O 3 , and 1 ⁇ 10 wt % Fe 2 O 3 , CaO, Ka 2 O and/or Na 2 O, with forsterite and spinel being the dominant crystalline phases.
  • the MgO may be derived from oxides of magnesium or from talc.
  • the SiO 2 and Al 2 O 3 may be derived from clay.
  • the alkali-resistant material in accordance with the present invention can be formed in the same way as conventional ceramic media.
  • the raw materials are ground up into particles, 80% of which are smaller than 50 microns and mixed with water to form a paste which can be extruded or pressed into shape, then dried and fired at 1,250° C. ⁇ 1,450° C.
  • This alkali-resistant material can also be applied as a surface coating to conventional ceramic media shapes.
  • the coated product is then fired at 1,250° C. ⁇ 1,450° C.
  • chemical reactions that may occur are the following:
  • the material After firing, the material has porosity less than 5% by volume, water absorption less than 5% by weight, and compressive strength greater than 2 ⁇ 10 8 N/m 2 .
  • Analysis by x-ray diffraction spectroscopy reveals the characteristics peaks of forsterite and spinel, indicating that these are the predominant crystalline phases. There is no evidence of any quartz phase.
  • the ceramic material in accordance with the present invention when used at temperatures between 200 ⁇ 1,100° C., shows high resistance to alkali attack.
  • Ceramic saddles were prepared from the alkali-resistant material in accordance with present invention.
  • the alkali-resistant material was prepared from the following raw materials: Alkali-Resistant Ceramic Material Chemical Composition of the Raw Raw Materials Materials (weight %) (weight %) Roasted Magnesia 80 MgO 76.3 Ceramic Clay 14 SiO 2 13.6 Limestone 5 Al 2 O 3 5.2 Water Glass 1.0 CaO 2.9 Carboxymethyl 1.5 K 2 O 0.4 Cellulose Na 2 O 1.4 Fe 2 O 3 0.2
  • the raw materials listed above were ground in the dry state to a particle size less than 50 microns for 80% of the particle. Water is then mixed into the ground material to make a homogeneous paste. A pressure filter was then used to remove the excess water. Once the water content was less than 23%, the mixture was formed into the shape of saddles. The shaped material was dried for two hours at 110° C., then fired at 1,350° C. in a kiln for 19 hours.
  • Porcelain saddles, zircon-based ceramic bodies, and alkali-resistant saddles in accordance with the present invention were buried under wood ash.
  • the wood ash was heated to 870° C. and maintained at that temperature for 40 hours.
  • the specimens were then washed, dried and weighed.
  • the alkali-resistant saddles in accordance with the present invention saddles showed the lowest weight change, suggesting good resistance to wood ash build-up.
  • the alkali-resistant saddles did not significantly react with alkaline components of wood ash.
  • the surface of the alkali-resistant saddles was covered with the deposits of the low-melting-point components in wood ash, which washed off easily.
  • the SiO 2 in the porcelain saddles reacted with the wood ash at high temperature. The wood ash was therefore chemically bound to the porcelain saddles. With a combination of physical and chemical attachment, the overall weight of the porcelain saddles increased significantly.
  • the normal operating temperature of RTOs is 850° C.
  • the specimens were heated to 870° C. for this test, or 20° C. higher than normal operating temperature. This test showed that alkali-resistant saddles in accordance with the present invention have good resistance to thermal stress.
  • Example 2 A batch of alkali-resistant saddles with slightly different composition was prepared and tested the same way as in Example 1.
  • Alkali-Resistant Ceramic Material Chemical Composition of the Raw Raw Material Materials (weight %) (weight %) Light Magnesia 40 MgO 44.6 Powdered Talc 27 SiO 2 38.2 Ceramic Clay 30 Al 2 O 3 10.4 Calcium Carbonate 3 CaO 1.6 Carboxymethyl 1 K 2 O 1.8 Cellulose Na 2 O 0.9 Fe 2 O 3 0.5
  • This mixture was then applied as a coating onto saddles made of ordinary clay (75 wt % SiO 2 , 20 wt % Al 2 O 3 , 4 wt % K 2 O or Na 2 O, 2 wt % Fe 2 O 3 ).
  • the saddles were then dried at 110° C., and fired at 1,300° C. in a kiln.

Abstract

The present invention relates to novel ceramic media or ceramic media coatings comprising mainly magnesia, silicon dioxide, and alumina, with forsterite and spinel as the dominant crystalline phases, which show high resistance to alkali attack at high temperature. Ceramic materials having these characteristics are particularly well suited for use as heat-exchange media in regenerative thermal oxidizers (RTOs) for the wood process industry.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 60/372,953 filed on Apr. 16, 2002.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to ceramic regenerative heat transfer media for use in Regenerative Thermal Oxidizers. [0002]
  • BACKGROUND OF THE INVENTION
  • Conventional ceramic heat-transfer media used in RTOs typically consist of 70˜75% SiO[0003] 2, 20˜25% Al2O3, 2˜5% K2O or Na2O, and trace amounts of Fe, Ca, and Ti. The media can be shaped like honeycombs, plates, saddles, or other forms. When ceramic media having such composition are used in an alkaline environment, reactions will occur between the surface of the media and the alkaline component.
  • between the surface of the media and the alkaline component. [0004]
  • As a result, a layer of reaction products builds up on the surface of the media, which increases in thickness over time such that the effective void fraction of the media is decreased. The reduction in void fraction eventually reaches a point at which the increased pressure drop of gas flowing through the media impairs the operating efficiency and performance of the equipment, which then has to be shut down to permit replacement of the media. This not only adds to the cost of media, but it may also result in lost production. [0005]
  • Alkali-resistant ceramics used in the metal finishing and glass industries contains silicon carbide, silicon nitride, alumina, zirconia, and similar materials that have to be formed under high pressure. As a result, these ceramics are quite expensive. More importantly, these ceramic compositions cannot be shaped using ordinary methods, so they often cannot be made into the same shapes as conventional ceramic media. [0006]
  • U.S. Pat. No. 5,731,250 to Reid et al. teaches the use of zircon-based ceramic bodies made from a composition that can be formed by conventional processes. However, zircon is expensive, and it would be useful to make heat-exchange media from a material with even better resistance to alkali attack. [0007]
  • As is well known, regenerative thermal oxidizers (RTO) usually consist of two or more heat-exchange canisters with one combustion chamber. Heat-transfer media are installed in the heat-exchange canisters in order to store and release heat. [0008]
  • In the wood process industry, the waste gas treated by RTOs often contains substantial amounts of solid particulates. Analysis by scanning electron microscopy (SEM) indicates that the residue left on the media by partial oxidation of such solid particulates consists of: [0009]
    TABLE 1
    Composition of char/ash residue from wood dust
    Component
    C O Na Mg Al Si S K Ca
    Percent 68.56 27.71 0.83 0.71 0.36 0.5 0.5 0.44 0.37
  • Additional analysis using Auger electron spectroscopy (AES) shows that wood ash contains large amounts of Na[0010] 2SO4, K2CO3, CaCO3, MgO, Al2O3, SiO2 and other inorganic compounds. At the operating temperature of an RTO (850° C.), these components can become corrosive. The corrosive nature of these compounds can cause chemical reactions with ordinary porcelain or stoneware. These reactions can reduce the void fraction of the media and impair the performance of the RTO.
  • Analysis of media that had been installed in an RTO for ten months reveals that the surface layer of the media contained the same components as wood ash, indicating that the wood ash has reacted with that layer of ceramic material. [0011]
    TABLE 2
    Surface compostion of chemical porcelain media after 10
    months in RTO
    Component
    C O Na Mg Al Si S K Ca
    Percent 20.34 42.88 15.12 0.7 7.57 9.59 3.17 0.33 0.7
  • Analysis by AES and X-ray diffraction spectroscopy shows that the surface layer consists of sodium aluminosilicate (Na[0012] 2AlSiO4), potassium aluminosilicate (K2AlSiO4), and various other compounds of potassium, calcium, aluminum, silicon and/or sulfur. These are the reaction products that cause problems with the media.
  • There is therefore a need for an economical alkali-resistant ceramic material that can solve the problem of chemical attack by hot alkali in RTOs. [0013]
  • DESCRIPTION OF THE INVENTION
  • The present invention provides an alkali-resistant material comprising 20˜80 wt % MgO, 10˜50 wt % SiO[0014] 2, 5˜30 wt % Al2O3, and 1˜10 wt % Fe2O3, CaO, Ka2O and/or Na2O, with forsterite and spinel being the dominant crystalline phases.
  • The MgO may be derived from oxides of magnesium or from talc. The SiO[0015] 2 and Al2O3 may be derived from clay.
  • The alkali-resistant material in accordance with the present invention can be formed in the same way as conventional ceramic media. The raw materials are ground up into particles, 80% of which are smaller than 50 microns and mixed with water to form a paste which can be extruded or pressed into shape, then dried and fired at 1,250° C.˜1,450° C. [0016]
  • This alkali-resistant material can also be applied as a surface coating to conventional ceramic media shapes. The coated product is then fired at 1,250° C.˜1,450° C. Among the chemical reactions that may occur are the following: [0017]
  • Al2O3+MgO→MgAl2O4
  • Al2O3+2MgO→Mg2Al2O5
  • 2MgO+SiO2→Mg2SiO4
  • After firing, the material has porosity less than 5% by volume, water absorption less than 5% by weight, and compressive strength greater than 2×10[0018] 8 N/m2. Analysis by x-ray diffraction spectroscopy reveals the characteristics peaks of forsterite and spinel, indicating that these are the predominant crystalline phases. There is no evidence of any quartz phase.
  • The ceramic material in accordance with the present invention, when used at temperatures between 200˜1,100° C., shows high resistance to alkali attack.[0019]
  • EXAMPLE 1
  • Ceramic saddles were prepared from the alkali-resistant material in accordance with present invention. The alkali-resistant material was prepared from the following raw materials: [0020]
    Alkali-Resistant Ceramic Material
    Chemical
    Composition
    of the Raw
    Raw Materials Materials
    (weight %) (weight %)
    Roasted Magnesia 80 MgO 76.3
    Ceramic Clay 14 SiO2 13.6
    Limestone 5 Al2O3 5.2
    Water Glass 1.0 CaO 2.9
    Carboxymethyl 1.5 K2O 0.4
    Cellulose
    Na2O 1.4
    Fe2O3 0.2
  • The raw materials listed above were ground in the dry state to a particle size less than 50 microns for 80% of the particle. Water is then mixed into the ground material to make a homogeneous paste. A pressure filter was then used to remove the excess water. Once the water content was less than 23%, the mixture was formed into the shape of saddles. The shaped material was dried for two hours at 110° C., then fired at 1,350° C. in a kiln for 19 hours. [0021]
  • 1. Accelerated Alkali Corrosion Test: [0022]
  • Specimens of conventional chemical porcelain saddles, zircon-based ceramic bodies (Ty-Pak™ Heat Sink Media (HSM) from Norton Chemical Process Inc., Akron, Ohio) and the alkali-resistant saddles in accordance with the present invention were buried under pure potassium carbonate (melting point 891° C.). The saddles and the K[0023] 2CO3 were heated to 950° C. and kept at that temperature for 8 hours. This allowed molten K2CO3 to contact the specimens on all sides. The specimens were then cooled, washed with water, and dried.
    TABLE 3
    Corrosion resistance of porcelain, zircon-based ceramic (Ty-
    Pak ™ HSM), and alkali-resistant saddles in accordance with
    the present invention after 8 hours in molten K2CO3
    Weight
    Weight after Weight
    before Test Change
    Test W2 (%)
    W1 (gm.) (gm.) ΔW
    Porcelain 11.0625 8.1572 −26.3%
    Saddles
    Ty-Pak ™ HSM 4.6687 4.4869 −3.9%
    Alkali 10.2478 11.0957 0.2%
    Resistant
    Saddles
  • As shown in Table 3, porcelain saddles and Ty-Pak™ HSM lost 26% and 3.9% of their original weights, respectively, due to K[0024] 2CO3 corrosion. The weight change for alkali-resistant saddles in accordance with the present invention was only 0.2%. At high temperatures, K2CO3 reacted with SiO2, the main component of porcelain, to form a 1-mm layer of glassy, water-soluble K2SiO4. After washing with water, the porcelain saddles lost 26% of their mass. In contrast, little glaze formed on the alkali-resistant saddles in accordance with the present invention, and they lost very little mass when washed.
  • Physical examination revealed that the size of the porcelain saddle decreased due to corrosion. The surface of the Ty-Pak™ HSM also revealed some corrosion, and surface flaking. In contrast, the alkali-resistant saddles in accordance with the present invention showed very little change on the surface. [0025]
  • 2. Ash Build-Up Resistance Test: [0026]
  • Porcelain saddles, zircon-based ceramic bodies, and alkali-resistant saddles in accordance with the present invention were buried under wood ash. The wood ash was heated to 870° C. and maintained at that temperature for 40 hours. The specimens were then washed, dried and weighed. [0027]
    TABLE 4
    Build-up of residue on porcelain, zircon-based
    ceramic (Ty-Pak ™ HSM),
    and alkali-resistant saddles in accordance with the
    present invention after 40 hours in wood ash
    Weight Weight
    before after
    Test Test Weight
    W1 W2 Change (%)
    (gm.) (gm.) ΔW
    Porcelain 10.6687 11.1168 4.2
    Saddles
    Ty-Pak ™ HSM 12.1354 12.2946 1.31
    Alkali 11.2245 11.2918 0.6
    Resistant
    Saddles
  • As can be seen in Table 4, the alkali-resistant saddles in accordance with the present invention saddles showed the lowest weight change, suggesting good resistance to wood ash build-up. The alkali-resistant saddles did not significantly react with alkaline components of wood ash. The surface of the alkali-resistant saddles was covered with the deposits of the low-melting-point components in wood ash, which washed off easily. In contrast, the SiO[0028] 2 in the porcelain saddles reacted with the wood ash at high temperature. The wood ash was therefore chemically bound to the porcelain saddles. With a combination of physical and chemical attachment, the overall weight of the porcelain saddles increased significantly.
  • 3. Stress Test: [0029]
  • Porcelain saddles, zircon-based ceramic bodies (Ty-Pak™ HSM), and alkali-resistant saddles in accordance with th present invention were heated to 870° C. and the temperature maintained for 30 min. The saddles were then allowed cool in ambient air. This test was repeated until the saddles cracked. [0030]
    TABLE 5
    Thermal stress test of porcelain, zircon-based
    ceramic (Ty-Pak ™ HSM), and alkali-
    resistant saddles in accordance with the
    present invention
    Alkali
    Breakage after Porcelain Resistant
    cycles Saddles Ty-Pak ™ HSM Saddles
    10 3% 0% 0%
    20 10% 0% 0%
    50 100% 0% 0%
    100 0% 2%
  • The normal operating temperature of RTOs is 850° C. The specimens were heated to 870° C. for this test, or 20° C. higher than normal operating temperature. This test showed that alkali-resistant saddles in accordance with the present invention have good resistance to thermal stress. [0031]
  • 4. Crushing Strength, Water Absorption, and Porosity: [0032]
  • The crushing strength of the material was measured by the ASTM C515 standard test method. The water absorption and porosity were measured by the ASTM C373 standard test method. The results were as follows: [0033]
    TABLE 6
    Properties of conventional porcelain and alkali-resistant
    ceramic saddles in accordance with the present invention
    Crushing
    Strength of Water
    Saddles (N/m2) Absorption (%) Porosity (%)
    Porcelain 1,270 0.2 0.5
    Saddles
    Alkali 2,168 0.4 1.1
    Resistant
    Saddles
  • EXAMPLE 2
  • A batch of alkali-resistant saddles with slightly different composition was prepared and tested the same way as in Example 1. [0034]
    Alkali-Resistant Ceramic Material
    Chemical
    Composition
    of the Raw
    Raw Material Materials
    (weight %) (weight %)
    Light Magnesia 40 MgO 44.6
    Powdered Talc 27 SiO2 38.2
    Ceramic Clay 30 Al2O3 10.4
    Calcium Carbonate 3 CaO 1.6
    Carboxymethyl 1 K2O 1.8
    Cellulose
    Na2O 0.9
    Fe2O3 0.5
  • Test results: [0035]
  • Accelerated Alkali Corrosion Test: ΔW (%)=0.6% [0036]
  • Thermal Stress Test: Breakage after 20 cycles=0% [0037]
  • EXAMPLE 3
  • A batch of alkali-resistant saddles with slightly different composition was prepared and tested the same way as in Example 1. [0038]
    Alkali-Resistant Ceramic Material
    Chemical
    Composition
    of the Raw
    Raw Material Materials
    (weight %) (weight %)
    Light Magnesia 22 MgO 25.4
    Powdered Talc 16 SiO2 47.2
    Ceramic Clay 54 Al2O3 20.1
    Barium Carbonate 3 BaO 1.6
    Water Glass 4 CaO 2.4
    Carboxymethyl 1 K2O 1.0
    Cellulose
    Na2O 1.2
    Fe2O3 0.5
  • Test results: [0039]
  • Accelerated Alkali Corrosion Test: ΔW (%)=1.8% [0040]
  • Thermal Stress Test: Breakage after 20 cycles=2.0% [0041]
  • EXAMPLE 4
  • A mixture of 80 wt % roasted magnesia, 10 wt % ceramic clay, 9.0 wt % limestone, 1 wt % water glass, and 1 wt % carboxymethyl cellulose was ground to a particle size of less than 30 microns. This mixture was then applied as a coating onto saddles made of ordinary clay (75 wt % SiO[0042] 2, 20 wt % Al2O3, 4 wt % K2O or Na2O, 2 wt % Fe2O3). The saddles were then dried at 110° C., and fired at 1,300° C. in a kiln.
  • Test results: [0043]
  • Accelerated Alkali Corrosion Test: ΔW (%)=0.8% [0044]
  • Thermal Stress Test: Breakage after 20 cycles=10% [0045]
  • From the above examples and data, it will therefore be clear that, by controlling the composition as taught in the present invention, it is possible to produce a ceramic material that is substantially resistant to attack by alkali salts within the operating environment of a RTO. [0046]

Claims (33)

I claim:
1) An alkali-resistant material comprising:
20 to 80% by weight of MgO;
10 to 50% by weight of SiO2;
5 to 30% by weight Al2O3; and
1 to 10% by weight Fe2O3, CaO, and alkali oxides.
2) The alkali-resistant material of claim 1 wherein the dominant crystalline phases are forsterite and spinel.
3) The alkali-resistant material of claim 1 wherein the alkali oxide is Ka2O.
4) The alkali-resistant material of claim 1 wherein the alkali oxide is Na2O.
5) The alkali-resistant material of claim 1 wherein the MgO is derived from oxides of magnesium.
6) The alkali-resistant material of claim 1 wherein the MgO is derived from talc.
7) The alkali-resistant material of claim 1 wherein the SiO2 is derived from clay.
8) The alkali-resistant material of claim 1 wherein the Al2O3 is derived from clay.
9) A process for the production of an alkali-resistant ceramic body comprising the steps of:
a) grinding together a mixture comprising 0% to 50% by weight of light magnesia, 0% to 85% by weight of roasted magnesia, 10% to 60% by weight of ceramic clay, 0% to 15% by weight of limestone, 0% to 3% by weight of water glass, 0% to 3% by weight of carboxymethyl cellulose, 0% to 30% by weight of talc, and 0% to 30% by weight of calcium or barium carbonate to a particle size of less than 50 microns for 80% of the particles;
b) mixing the ground mixture with water to produce a paste containing less than 30% by weight of water;
c) shaping the paste to a desired shape;
d) drying the shaped product at a temperature greater than 100 degrees centigrade to make it suitable for firing in a kiln; and
e) firing the dried shaped product in a kiln at 1,250 to 1,450 degrees centigrade.
10) A process for coating a conventional ceramic body with an alkali-resistant ceramic coating comprising the steps of:
i) preparing an alkali resistant ceramic coating by grinding together 75% to 85% by weight of roasted magnesia, 5% to 10% by weight of ceramic clay, 0% to 15% by weight of limestone, 0% to 2% by weight of water glass, and 0.5% to 2% by weight of carboxymethyl cellulose to a particle size of less than 40 microns for 80% of the particles;
ii) mixing the ground mixture with water to produce a paste containing less than 30% by weight of water;
iii) applying a coating of the alkali resistant material paste to the surface of the conventional ceramic body;
iv) drying the coated ceramic body at a temperature greater than 100 degrees centigrade; and
v) firing the dried coated ceramic body in a kiln at 1,200 to 1,400 degrees centigrade.
11) An alkali-resistant ceramic body comprising:
20 to 80% by weight of MgO;
10 to 50% by weight of SiO2;
5 to 30% by weight Al2O3; and
1 to 10% by weight Fe2O3, CaO, and alkali oxides.
12) The alkali-resistant ceramic body of claim 11 wherein the dominant crystalline phases are forsterite and spinel.
13) The alkali-resistant ceramic body of claim 11 wherein the alkali oxide is Ka2O.
14) The alkali-resistant ceramic body of claim 11 wherein the alkali oxide is Na2O.
15) The alkali-resistant ceramic body of claim 11 wherein the MgO is derived from oxides of magnesium.
16) The alkali-resistant ceramic body of claim 11 wherein the MgO is derived from talc.
17) The alkali-resistant ceramic body of claim 11 wherein the SiO2 is derived from clay.
18) The alkali-resistant ceramic body of claim 11 wherein the Al2O3 is derived from clay.
19) The alkali-resistant ceramic body of claim 11 wherein the porosity is less than 5% by volume.
20) The alkali-resistant ceramic body of claim 11 wherein the water absorption is less than 5% by weight
21) The alkali-resistant ceramic body of claim 11 wherein the compressive strength of the ceramic material is greater than 2×108 Newtons per square meter.
22) The alkali-resistant ceramic body of claim 11 wherein the loss in weight of the alkali-resistant ceramic body is less than one percent when exposed to molten potassium carbonate.
23) The alkali-resistant ceramic body of claim 11 wherein the gain in weight of the alkali-resistant ceramic body is less than one percent when exposed to wood ash at greater than 800 degrees centigrade.
24) A ceramic body coated with an alkali-resistant material, the alkali resistant coating comprising:
20 to 80% by weight of MgO;
10 to 50% by weight of SiO2;
5 to 30% by weight Al2O3;
and 1 to 10% by weight Fe2O3, CaO, and alkali oxides.
25) The ceramic body of claim 24 wherein the dominant crystalline phases of the alkali resistant coating are forsterite and spinel.
26) The ceramic body of claim 24 wherein the porosity of the alkali resistant coating is less than 5% by volume.
27) The ceramic body of claim 24 wherein the water absorption of the alkali resistant coating is less than 5% by weight.
28) The ceramic body of claim 24 wherein the alkali oxide is Ka2O.
29) The ceramic body of claim 24 wherein the alkali oxide is Na2O.
30) The alkali-resistant material of claim 24 wherein the MgO is derived from oxides of magnesium.
31) The alkali-resistant material of claim 24 wherein the MgO is derived from talc.
32) The alkali-resistant material of claim 24 wherein the SiO2 is derived from clay.
33) The alkali-resistant material of claim 24 wherein the Al2O3 is derived from clay.
US10/810,092 2002-04-16 2004-03-26 Alkali resistant ceramic media Abandoned US20040180777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/810,092 US20040180777A1 (en) 2002-04-16 2004-03-26 Alkali resistant ceramic media

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37295302P 2002-04-16 2002-04-16
US10/444,446 US6800242B2 (en) 2002-04-16 2003-04-14 Process for making an alkali resistant ceramic material
US10/810,092 US20040180777A1 (en) 2002-04-16 2004-03-26 Alkali resistant ceramic media

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/444,446 Continuation US6800242B2 (en) 2002-04-16 2003-04-14 Process for making an alkali resistant ceramic material

Publications (1)

Publication Number Publication Date
US20040180777A1 true US20040180777A1 (en) 2004-09-16

Family

ID=29406723

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/444,446 Expired - Fee Related US6800242B2 (en) 2002-04-16 2003-04-14 Process for making an alkali resistant ceramic material
US10/810,092 Abandoned US20040180777A1 (en) 2002-04-16 2004-03-26 Alkali resistant ceramic media

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/444,446 Expired - Fee Related US6800242B2 (en) 2002-04-16 2003-04-14 Process for making an alkali resistant ceramic material

Country Status (1)

Country Link
US (2) US6800242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155612A1 (en) * 2006-01-05 2007-07-05 Saint-Gobain Ceramics & Plastics, Inc. Thermally stable ceramic media for use in high temperature environments

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054797A1 (en) * 2003-08-09 2007-03-08 Thomas Ronald J Siliceous clay slurry
US7105466B2 (en) 2003-08-09 2006-09-12 H.C. Spinks Clay Company, Inc. Siliceous clay slurry
EP1741980A1 (en) * 2005-07-04 2007-01-10 Siemens Aktiengesellschaft Ceramic element with hot gas resistant surface and manufacturing method
CN105330274A (en) * 2014-08-07 2016-02-17 湖北金海达新型材料有限公司 Ultrathin ultra-white talc constructional ceramic tile and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792537A (en) * 1985-07-13 1988-12-20 Murata Manufacturing Co., Ltd. Dielectric ceramic composition for high frequencies
US5250474A (en) * 1991-02-07 1993-10-05 Schott Glaswerke Glass powder which is crystallizable to yield a sintered glass ceramic containing hexagonal cordierite as the principal crystalline phase
US6440883B2 (en) * 2000-03-28 2002-08-27 Kyocera Corporation Dielectric porcelain composition, and dielectric resonator and nonradiative dielectric strip using same
US6642162B2 (en) * 2000-04-03 2003-11-04 Minolta Co., Ltd. Glass composition for crystallized glass
US6645891B2 (en) * 2000-04-03 2003-11-11 Minolta Co., Ltd. Glass composition for crystallized glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972263A (en) * 1995-06-13 1999-10-26 Ecc International Ltd. Process for producing clay compositions for use in slip casting
US5731250A (en) 1996-12-02 1998-03-24 Norton Chemical Process Products Corporation Corrosion resistant ceramic bodies
US7014771B2 (en) * 2002-03-29 2006-03-21 Council Of Scientific And Industrial Research Process for preparing water having an arsenic level of less than 10 PPB

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792537A (en) * 1985-07-13 1988-12-20 Murata Manufacturing Co., Ltd. Dielectric ceramic composition for high frequencies
US5250474A (en) * 1991-02-07 1993-10-05 Schott Glaswerke Glass powder which is crystallizable to yield a sintered glass ceramic containing hexagonal cordierite as the principal crystalline phase
US6440883B2 (en) * 2000-03-28 2002-08-27 Kyocera Corporation Dielectric porcelain composition, and dielectric resonator and nonradiative dielectric strip using same
US6642162B2 (en) * 2000-04-03 2003-11-04 Minolta Co., Ltd. Glass composition for crystallized glass
US6645891B2 (en) * 2000-04-03 2003-11-11 Minolta Co., Ltd. Glass composition for crystallized glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155612A1 (en) * 2006-01-05 2007-07-05 Saint-Gobain Ceramics & Plastics, Inc. Thermally stable ceramic media for use in high temperature environments
US7354879B2 (en) 2006-01-05 2008-04-08 Saint-Gobain Ceramics & Plastics, Inc. Thermally stable ceramic media for use in high temperature environments
US20080187470A1 (en) * 2006-01-05 2008-08-07 John Stewart Reid Thermally stable ceramic media for use in high temperature environments
US7708957B2 (en) * 2006-01-05 2010-05-04 Saint-Gobain Ceramics & Plastics Inc. Thermally stable ceramic media for use in high temperature environments

Also Published As

Publication number Publication date
US6800242B2 (en) 2004-10-05
US20030211370A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
JP5739934B2 (en) Potassium silicate frit for coating metal
AU741065B2 (en) Repairing material for bricks of carbonizing chamber in coke oven and repairing method
KR101036093B1 (en) Glaze compositions
EP0007646B1 (en) Coke oven patching and sealing material, method of patching and sealing cracks in coke ovens
KR0139421B1 (en) Refractory materials bonded by a sialon matrix and method of preparation
JP2007277349A (en) Alumina-silica brick for cdq
EP2188078A1 (en) Calcium enriched refractory material by the addition of a calcium carbonate
WO1995015932A1 (en) Chromium-free brick
US5731250A (en) Corrosion resistant ceramic bodies
US6800242B2 (en) Process for making an alkali resistant ceramic material
CN1420100A (en) High-temp alkali-resistant material and use therreof in ceramic filler
AU721113B2 (en) Improved refractory compositions suitable for use in fluid bed chlorinators
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
Guo et al. Bonding of Cement Clinker onto Doloma‐Based Refractories
Boulaiche et al. Valorisation of Industrial Soda-Lime Glass Waste and Its Effect on the Rheological Behavior, Physical-Mechanical and Structural Properties of Sanitary Ceramic Vitreous Bodies
CN111559906A (en) Anti-skinning castable for carbide slag cement kiln smoke chamber and preparation method thereof
CN112573910A (en) Wear-resistant quartz ceramic material and preparation method thereof
US2079715A (en) Process and batch for making ceramic bodies
JP2000111024A (en) Alkaline waste liquid incinerating furnace
CN1265161A (en) Flame-spraying powdery repair mixture
Zaidan et al. Protection of Oil Refinery Furnaces Bricks Using Coatings of Nano Zirconia-Glass Composites
KR100628972B1 (en) Refractory mending materials of Fused Silica
SU1237652A1 (en) Refractory body
CA1244486A (en) Insulating refractory
CN101921117B (en) Shaped refractory brick with peeling resistance and erosion resistance, preparation method thereof and refractory wall

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION