Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS20040191443 A1
Publication typeApplication
Application numberUS 10/822,182
Publication dateSep 30, 2004
Filing dateApr 9, 2004
Priority dateSep 25, 1989
Also published asCA2025962A1, CA2025962C, DE69002295D1, DE69002295T2, EP0420488A1, EP0420488B1, US5270086, US6132824, US20040207127
Publication number10822182, 822182, US 2004/0191443 A1, US 2004/191443 A1, US 20040191443 A1, US 20040191443A1, US 2004191443 A1, US 2004191443A1, US-A1-20040191443, US-A1-2004191443, US2004/0191443A1, US2004/191443A1, US20040191443 A1, US20040191443A1, US2004191443 A1, US2004191443A1
InventorsRobert Hamlin
Original AssigneeSchneider (Usa) Inc., A Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multilayer catheter balloon
US 20040191443 A1
A method of producing laminated inflatable, substantially inextensible expander members having composite properties enhancing their use on intravascular catheters, such as angioplasty catheters is described. Diverse polymeric compounds of differing properties are coextruded to create a multilayer parison. The parison is subsequently drawn and expanded in a blow molding operation to yield an expander member exhibiting enhanced properties including lubricity, burst-strength, limited radial expansion, bondability, and rupture characteristics.
Previous page
Next page
1-25 (Canceled)
26. A method of producing a laminated expander member, the method comprising:
coextruding different polymeric materials to form a multilayer parison comprising a first layer comprising a first polymeric material including a liquid crystal polymer, and a second layer comprising a second polymeric material different from the first polymeric material; and
forming the parison into the expander member.
27. The method of claim 26, further comprising coextruding a third layer disposed towards an exterior of the expander member relative to the first and second layers, the third layer enhancing the lubricity of the expander member.
28. The method of claim 26, further comprising biaxially orienting the first layer.
29. The method of claim 26, wherein the first layer consists essentially of liquid crystal polymer.
30. The method of claim 26, wherein the second layer is an adhesion layer.
31. The method of claim 30, wherein the adhesion layer is disposed toward the interior of the expander member relative to the first layer.
32. The method of claim 26, wherein the expander member has a radial expansion not exceeding three percent when inflated to seven atmospheres.
33. The method of claim 26, wherein forming the parison into the expander member comprises drawing the parison and expanding the parison in a blow molding operation.

[0001] I. Field of the Invention

[0002] This invention relates generally to balloon catheters, and more particularly to a method for fabricating a multi-layer balloon composite exhibiting enhanced characteristics attributable to the properties of the individual layers.

[0003] II. Discussion of the Prior Art

[0004] As an alternative to open-heart, coronary bypass surgery, a technique referred to coronary transluminal angioplasty has been developed following the pioneering introduction of the technique by A. Gruntzig. In carrying out this procedure, a dilatation catheter having an inflatable expander member (balloon) on the distal end thereof is routed through the vascular system to a location within a coronary artery containing a stenotic lesion. Following placement of the expander member across the lesion, a fluid is introduced into the proximal end of the catheter and is used to inflate the expander member to a predetermined relatively high pressure whereby the lesion is compressed into the vessel wall restoring patency to the previously occluded vessel.

[0005] It is desirable that the composite expander member exhibit the following characteristics:

[0006] 1. High burst (tensile) strength;

[0007] 2. Low radial expansion at elevated pressures;

[0008] 3. Ease of bonding to a catheter body;

[0009] 4. Failure characteristics avoiding pinhole ruptures; and

[0010] 5. Low coefficient of friction.

[0011] The Schjeldahl et al. U.S. Pat. No. 4,413,989 owned by applicants' assignee discloses a coronary transluminal angioplasty catheter in which the expander member is formed from polyethylene terephthalate in a drawing and blow molding process so as to provide biaxial orientation to the material. Such PET balloons are found to exhibit the desirable property of high burst strength and relatively low radial expansion when inflated to seven atmospheres or more. However, because the catheter body itself is generally fabricated from a formulation containing silicon rubber, polyethylene, PET or polyurethane, a problem exists when attempts are made to bond the expander member to the distal end portion of the catheter body. The PET polyester balloon tends not to adhere easily to the catheter body especially in a thermal bonding process.

[0012] Moreover, experience with polyethylene, PVC and polypropylene expansion members has shown that at relatively high pressures, pinhole leaks form which may create a high velocity jet of inflation fluid capable of perforating the blood vessel when it impinges on the vessel wall. Thus it would be desirable if the expander member can be fabricated in such a way that it exhibits a controlled mode of failure, i.e., a rapid rupture so that the pressure is released over a significant area in a short time frame.


[0013] The above-listed desirable characteristics are achieved in accordance with the present invention by forming a multi-layer balloon where the individual layers afford a desirable property to the composite. It has been found that a layer of medium or relatively high melt temperature material which also exhibits high tensile strength with relatively low distensibility can be used to provide the required high burst or tensile strength and low radial expansion at high pressures required by the expander member in a composite structure. This layer may be referred to as the tensile layer or tensile ply. It may be a biaxially-oriented film of relatively high crystallinity.

[0014] In the composite structure, the tensile layer is combined as an outer layer with a chemically and physically compatible adhesion or bonding inner layer which is fabricated from materials having superior glue bonding or melt bonding characteristics. The bonding layer also must have good interlayer adhesion characteristics with the material used for the tensile layer. The bonding layer imparts the necessary adhesion properties to properly bond the expander member to the distal end portion of the catheter body. If melt bonding is the desired mode, the material of the bonding layer should have a lower melting point than that of the tensile layer so that melt bonding of the composite may be readily achieved in the fabrication process with minimal effect on the tensile ply. In this regard, it should be noted that the bonding layer may or may not be continuous or coextensive with the entire inner surface of the tensile layer inasmuch as it is required generally only in the vicinity of the expander/catheter interface surfaces.

[0015] Examples of materials exhibiting the required high tensile, low distensibility and having medium melt temperatures include certain copolymers such as ABS (acrylonitrile-butadiene-styrene), ABS/nylon, ABS/polyvinyl chloride (PVC) and ABS/polycarbonate. Such materials having high melt temperatures include acrylonitrile copolymer, polyacrylamiede, polyacrylate and polyacrylsulfone. Other materials having suitable characteristics include high melt temperature polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), liquid crystal polymer (LCP), polyester/polycaprolactone and polyester/polyadipate; and high melt temperature polyethers including polyetheretherketone (PEEK), polyethersulfone (PES), polyetherimide (PEI) and polyetherketone (PEK), polymenthylpentene, polyphenylene ether, polyphenylene sulfide, and styrene acrylonitrile (SAN). It should be noted that LCP has a very high melt temperature and SAN, a lower melt temperature than the other listed polyethers. Additional compounds having the required tensile properties which have a medium melt temperature include polyamides such as nylon 6, nylon 6/6, nylon 6/66, nylon 6/9, nylon 6/10, nylon 6/12, nylon 11 and nylon 12.

[0016] Suitable adhesion materials for the bonding layer having a high distensibility but excellent melt bond and glue adhesion properties with relatively low melt temperatures include ethylene, propylene, ethylene vinylacetate and ethylene vinyl alcohol (EVA), various ionomers, polyethylene type I-IV, polyolefins, polyurethane, polyvinyl chloride, and polysiloxanes (silicones). Those with low to medium melt temperatures include fluorocarbons such as polychlorotriethylene (CTFE), poly[ethylene-co-chlorotrifluoroethylene] (ECTFE) copolymer ethylene tetrafluoroethylene (ETFE), copolymer tetrafluoroethylene and hexafluoropropylene (FEP), perfluoroalkane (PFA) and poly[vinylidene fluoride] (PVDF).

[0017] It will be appreciated that the particular combination chosen would depend on the particular application and particular catheter involved, and that an array of multilayer expanders of different composition combinations particularly applicable to different situations can be produced. In addition, specific properties required for addressing a specific stenosis could be utilized to produce a tailor-made expander.

[0018] More particularly with respect to the process, a tubular parison is first generated in a co-extrusion process whereby different polymeric materials are coaxially layered. Subsequently, the parison is inserted in a blow molding fixture, allowing the tube to be longitudinally drawn and radially expanded until the composite film is oriented, the maximum O.D. of the expander member is defined and a desired film thickness is achieved. For example, in forming the parison, PET of a predetermined viscosity may be coextruded with polyethylene where, forming the parison, the polyethylene lines the lumen thereof. When the expander member is formed from the parison in the blow molding operation, the PET layer affords the desired burst strength and limited radial expansion characteristic while the polyethylene layer enhances the ability to bond the resulting balloon to the catheter body.

[0019] The characteristic of lubricity may also be added by coating the exterior of the composite with a suitably lubricious plastic exhibiting high hydrophilic characteristics. Suitable lubricious hydrophilic materials include polycaprolactam polyvinylindol, N-vinylpyrrolidone, various hydrogels, and other hydrophilic lubricious polymeric materials.

[0020] One successful embodiment of the system of the invention utilizes a combination of polyethylene terephthalate (PET) as the tensile layer in combination with a bonding layer of polyethylene. The composite PET/polyethylene balloon was coated on the exterior of the PET with polycaprolactam. By forming a three-layer tubular parison having a layer of plastic with known rupture characteristics, the polyethylene layer may provide the bondability attribute, the PET, the limited radial expansion characteristic and/or the controlled rupture characteristic while polycaprolactam again affords the lubricity.

[0021] Of course, the known rupture or failure characteristics involve the failure by bursting or large scale rupture of the tensile layer rather than the development of small or pin hole leaks in which a small stream of high pressure fluid is released. This minimizes possible damage to surrounding tissue caused by high pressure fluid leakage from the membrane.


[0022] The various features, characteristics and advantages of the invention will become apparent to those skilled in the art from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying drawings in which:

[0023]FIG. 1 is a process flow chart illustrative of the present invention;

[0024]FIG. 2 is a partial schematic illustration of apparatus for manufacturing parisons in a co-extrusion process;

[0025]FIG. 3 is a cross-sectional view of a two-component co-extrusion die useful in forming a two-layer parison;

[0026]FIG. 4 illustrates schematically an apparatus for blow molding the parison into a biaxially oriented multilayer expander member;

[0027]FIG. 5 shows the expander joined to the distal end of a catheter; and

[0028]FIG. 6 depicts an alternative embodiment of the multilayer expander member.


[0029] With reference to FIG. 1, in fabricating the multilayer expander member in accordance with the present invention, the first step in the process is to create a parison which when heated and then drawn and blown creates a balloon or expander member for use on an intravascular catheter. The extruding apparatus is indicated generally by numeral 10 in FIG. 2 and is seen to comprise a motor 12 coupled in driving relationship to a gear box 14 whose output shaft comprises a coarse-pitched archimedian screw 16 rotating within a heated barrel 18. In accordance with known practice, the screw generally has three distinct sections. In the “feed” section 20, directly beneath the feed hopper 22, the screw channel depth is constant and relatively large and serves to convey solid polymer material from the hopper. The depth of the flute in the “compression” section 24 is uniformly tapered and designed to compact the plastic and force it into contact with the barrel 18 to enhance melting. The melting is achieved mainly by a combination of heat conducted from electrical heating elements 26 contained in the barrel and the heat generated by the intense shearing in the molten layer formed between the barrel and the solid material. Numeral 28 identifies the “metering” section of the screw in which the flute depth is constant and relatively small. It controls the output from the extruder in terms of quantity, steadiness and homogeneity. Disposed at the end of the screw 16 is an extruder die 30 which, in the case of the present invention, provides for co-extrusion of at least two different plastics. The first plastic passing through extruder 10 combines with a second plastic exiting a substantially identical extruder shown schematically at 32 to create a concentrically layered tubular parison, the cross-section of which is seen in the view of FIG. 4.

[0030]FIG. 3 is a cross-sectional view taken through a two-port co-extrusion die. For example, the output from the metering section 28 of the extruder 10 may be fed into die port A in FIG. 3 while that from the metering section of the screw of extruder 32 feeds port A. The molten plastic flows together to form a layer with the plastic entering port B surrounding the plastic entering port A. As the plastic is made to flow through the die, air is also introduced through the central bore 34 of the die 30 to prevent the collapse of the tubular shaped exudate.

[0031] In accordance with one aspect of the invention, the plastic entering port A, for example, may comprise a polyolefin or PVC while that forced into port B may be a homopolyester, preferably PET, of a predetermined viscosity. With these two constituents, the resulting tubular parison will have the PVC as the inner tubular layer and the PET as its outer layer. The thickness of the individual layers will be determined by the mass flow ratios provided by the respective extruders. The final diameter of the parison is determined by the size of the die exit opening, the total flow of material into ports A and B and the take-away or draw speed.

[0032] The balloon itself is fabricated in a blow molding operation wherein the parison 40 is inserted into the blow mold 42 as shown in FIG. 4 and air or other suitable fluid is introduced through the port 44 at a predetermined pressure. The mold 42 has a cavity 46 corresponding to the desired size of the balloon to be produced.

[0033] After the tubular parison is disposed in the mold, the mold is heated to thereby raise the tubing temperature to a point between the second order transition temperature and the first order transition temperature of the polyester polymer.

[0034] Of course, the inner layer can be caused to adhere to and attach the balloon to the exterior of the tubular catheter body in any desired manner. The material of the inner layer may be such that relatively low melt temperature material can be utilized to achieve a permanent melt bond. Preferably, the exterior of the tubular catheter body is provided with a coating of the same or similar material to that of the inner layer of the multilayer balloon structure such that the materials bonded are substantially identical. This also allows the continuous joint to be made utilizing melt bonding the materials. In this regard, it is desired that the material forming the bonding layer of the multilayer system have a melting temperature sufficiently below that of the material of the tensile layer so that the melt bonding can be achieved without affecting the future physical characteristics of the system.

[0035] As described above, it is desirable that the expander member itself exhibits rather high tensile strength properties. This means exhibiting a burst pressure well in excess of 7 atmospheres while undergoing a radial expansion less than about 3-10 percent. The actual strength, of course, will depend on the relative tensile strength of the material and thickness of the material layer. In addition, these extruded materials are ones not prone to pinhole leaks in the process of the invention in most cases results in a mode of failure, should failure occur, in the form of a rapid rupture which releases the internal pressure over a considerable area in a short time frame so that damage to the vessel is minimized.

[0036] By first drawing the tubular parison and subsequently blow molding same, biaxial orientation takes place whereby the PET layer 56, while remaining flexible, becomes strong as regards the inflation pressure at which the material will burst. When it is desired to bond the finished balloon onto the catheter body as illustrated in FIG. 5, the inner layer 48 of PVC can readily be bonded to an outer PVC tubular body 50 and to an inner tubular body 52, such as by adding adhesive 54 between the outer layer 56 and the inner layer 48. The space between the coaxially disposed tubes allows for injection of a balloon inflation fluid. Balloons produced in accordance with the invention may exhibit a burst pressure well in excess of 7 atmospheres while radially expanding less than about 3-10 percent. While the PVC layer 48 adds little to the burst strength of the composite, it does facilitate the attachment of the balloon to the exterior of the tubular catheter body.

[0037] If it is desired to increase the lubricity of the composite balloon, this may be accomplished by dipping or other coating the multilayer balloon in a suitable hydrophilic material such as polyvinylidol, N-vinylpyrolodone, hydrogels, etc.

[0038] With reference to FIG. 6 and rather than utilizing PET in combination with PVC, a balloon having enhanced properties maybe created by co-extruding a high molecular weight crystalline polyester 60 with a lower molecular weight amorphous polyester 62 in forming the parison. An outer layer of filled polymer 64 adds lubricity. As known in the art, adhesive 66, 68 may be juxtaposed between layers 60, 62 and 64. Following drawing and radial expansion in a blow molding operation, the resulting balloon is found to exhibit high burst strength, low radial expansion and superior bondability as compared to conventional PET single-layer balloons.

[0039] The rupture characteristics of a polymer layer can be modified to increase the rupture rate by adding filler material. The filler materials may be an inert type, such as calcium carbonate, generally in powder form, carbon in fiber form, or an incompatible second phase polymer. Incompatible phase polymer systems afford many advantageous characteristics and are a function of the dispersion between the two phases. Materials which might be candidates for this are polypropylene and selected rubbers, polyester and polypropylene.

[0040] This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2732977 *Jan 19, 1950Jan 31, 1956 charpiat
US2780378 *Nov 13, 1953Feb 5, 1957Romano MoseCollapsible container
US2915222 *Mar 22, 1956Dec 1, 1959Purinton Bernard SFlower watering mechanisms
US3083877 *Oct 25, 1960Apr 2, 1963Moulded Products Australasia LCollapsible container with corrugations to facilitate the collapse of its walls
US3156383 *Aug 6, 1962Nov 10, 1964Maison Ind Tecnico Chimiche NeExpansible single use dispensing container
US4197890 *Dec 18, 1978Apr 15, 1980Simko James FInsulating jacket for bottles
US4413989 *Aug 17, 1981Nov 8, 1983Angiomedics CorporationExpandable occlusion apparatus
US4490421 *Jul 5, 1983Dec 25, 1984E. I. Du Pont De Nemours And CompanyBalloon and manufacture thereof
US4799717 *Sep 2, 1987Jan 24, 1989Mace CorporationTorque lock fitting arrangement
US4886194 *Mar 25, 1988Dec 12, 1989Schiemann Dr WolframDischarge tube
US4976697 *Oct 26, 1989Dec 11, 1990Becton, Dickinson And CompanyCatheter obturator with automatic feed and control
US5041125 *Mar 26, 1990Aug 20, 1991Cordis CorporationBalloon catheter
US5195969 *Apr 26, 1991Mar 23, 1993Boston Scientific CorporationCo-extruded medical balloons and catheter using such balloons
US5242422 *Nov 29, 1991Sep 7, 1993Professional Medical Products, Inc.One piece molded syringe with tethered cap
US5248071 *Jun 26, 1991Sep 28, 1993Ray Cecil DRe-sealable nozzle and cap assembly
US5248305 *Aug 24, 1992Sep 28, 1993Cordis CorporationExtruded tubing and catheters having helical liquid crystal fibrils
US5288529 *Jun 18, 1990Feb 22, 1994Foster-Miller Inc.Liquid crystal polymer film
US5589236 *Mar 24, 1994Dec 31, 1996Superex Polymer Inc.Coextrusion of liquid crystal polymers and thermoplastic polymers
US5755690 *Oct 21, 1994May 26, 1998C. R. BardMultiple layer high strength balloon for dilatation catheter
US5797877 *May 24, 1996Aug 25, 1998Boston Scientific CorporationMedical device balloons containing thermoplastic elastomers
US5833657 *May 3, 1996Nov 10, 1998Ethicon, Inc.Single-walled balloon catheter with non-linear compliance characteristic
US5879369 *Oct 10, 1996Mar 9, 1999Terumo Kabushiki KaishaCatheter balloon and balloon catheter
US5908406 *Jan 29, 1997Jun 1, 1999E. I. Du Pont De Nemours And CompanyDilatation catheter balloons with improved puncture resistance
US5961765 *Sep 24, 1997Oct 5, 1999Schneider (Europe) A. G.Method of making a catheter
US6004289 *Mar 28, 1997Dec 21, 1999Medtronic Ave, Inc.Multiple layer high strength balloon for dilatation catheter
US6027477 *Apr 2, 1998Feb 22, 2000Schneider (Europe) A.G.Catheter with multilayer tube
US6059751 *Feb 5, 1999May 9, 2000E. I. Du Pont De Nemours And CompanyDilatation catheter balloons with improved puncture resistance
US6086556 *Aug 4, 1998Jul 11, 2000Boston Scientific CorporationMedical device balloons containing thermoplastic elastomers
US6132824 *Aug 6, 1997Oct 17, 2000Schneider (Usa) Inc.Multilayer catheter balloon
US6136258 *Apr 24, 1995Oct 24, 2000Boston Scientific CorporationMethod of forming a co-extruded balloon for medical purposes
US6270522 *Dec 21, 1999Aug 7, 2001Advanced Cardiovascular Systems, Inc.High pressure catheter balloon
US6319228 *Apr 25, 1997Nov 20, 2001Schneider (Europe) A.G.Multilayer interventional catheter
US6336936 *Jun 13, 2001Jan 8, 2002Advanced Cardiovascular Systems, IncHigh pressure catheter balloon
US6464683 *Oct 24, 2000Oct 15, 2002Schneider (Usa) Inc.Trilayer, extruded medical tubing and medical devices incorporating such tubbing
US6471673 *May 24, 1999Oct 29, 2002Schneider (Europe) A.G.Catheter with multilayer tube
US6482348 *Apr 3, 2000Nov 19, 2002Boston Scientific CorporationMethod of forming a co-extruded balloon for medical purposes
US6485457 *Sep 27, 2000Nov 26, 2002Terumo Kabushiki KaishaCatheter
US6488655 *Dec 15, 2000Dec 3, 2002Advanced Cardiovascular Systems, Inc.Polymer jacket with adhesive inner layer
US6659977 *Oct 15, 2001Dec 9, 2003Schneider (Europe) A.G.Multilayer interventional catheter
US20040207127 *May 5, 2004Oct 21, 2004Schneider (Usa) Inc., A CorporationMethod of making multilayer angioplasty catheter balloon
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7828766Dec 20, 2005Nov 9, 2010Advanced Cardiovascular Systems, Inc.Non-compliant multilayered balloon for a catheter
US7906066Jun 30, 2006Mar 15, 2011Abbott Cardiovascular Systems, Inc.Method of making a balloon catheter shaft having high strength and flexibility
US8052638Nov 8, 2011Abbott Cardiovascular Systems, Inc.Robust multi-layer balloon
US8070719Nov 26, 2008Dec 6, 2011Abbott Cardiovascular Systems, Inc.Low compliant catheter tubing
US8382738Jun 15, 2007Feb 26, 2013Abbott Cardiovascular Systems, Inc.Balloon catheter tapered shaft having high strength and flexibility and method of making same
US8388575Apr 16, 2012Mar 5, 2013Abbott Cardiovascular Systems Inc.Non-compliant multilayered balloon for a catheter
US8388602Mar 5, 2013Abbott Cardiovascular Systems Inc.Balloon catheter shaft having high strength and flexibility
US8394055Mar 12, 2013Abbott Cardiovascular Systems Inc.Non-compliant multilayered balloon for a catheter
US8403885Dec 17, 2007Mar 26, 2013Abbott Cardiovascular Systems Inc.Catheter having transitioning shaft segments
US8535596Feb 15, 2012Sep 17, 2013Abbott Cardiovascular Systems, Inc.Non-compliant multilayered balloon for a catheter
US8613722Sep 22, 2011Dec 24, 2013Abbott Cardiovascular Systems, Inc.Robust multi-layer balloon
US8657782Jul 31, 2012Feb 25, 2014Abbott Cardiovascular Systems, Inc.Catheter having transitioning shaft segments
US8721624Feb 25, 2013May 13, 2014Abbott Cardiovascular Systems Inc.Balloon catheter shaft having high strength and flexibility
US8771332May 29, 2008Jul 8, 2014Boston Scientific Scimed, Inc.Multi-layer balloon design for use in combination with catheter assemblies, and methods of making the same
US9056190Feb 25, 2013Jun 16, 2015Abbott Cardiovascular Systems Inc.Balloon catheter tapered shaft having high strength and flexibility and method of making same
US9095689Feb 25, 2013Aug 4, 2015Abbott Cardiovascular Systems Inc.Non-compliant multilayered balloon for a catheter
US20040207127 *May 5, 2004Oct 21, 2004Schneider (Usa) Inc., A CorporationMethod of making multilayer angioplasty catheter balloon
WO2009146280A1 *May 20, 2009Dec 3, 2009Boston Scientific Scimed, Inc.Multi-layer balloon design for use in combination with catheter assemblies, and methods of making the same
U.S. Classification428/35.2
International ClassificationA61L29/00, B01J13/02, A61M29/02, A61F2/958, A61L29/04, A61M25/00, A61L29/12, A61L29/06, B29C49/22, B29C49/04
Cooperative ClassificationA61M25/1029, A61M2025/1075, A61M25/1034, Y10T428/1393, B29C49/22, A61L29/041, A61M2025/1031, B29K2023/06, A61M25/0009, Y10T428/1397, B29L2031/7542, B29C49/04, A61L29/06, A61M25/0045, Y10T428/139, A61L29/126, B29K2023/083, B29K2067/00, Y10T428/1334
European ClassificationA61M25/10G1, A61L29/04B, A61L29/12D, A61L29/06, A61M25/00S1, B29C49/22, A61M25/00G
Legal Events
Oct 30, 2006ASAssignment
Effective date: 20050101
Effective date: 19990427
Effective date: 20050101