Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040193260 A1
Publication typeApplication
Application numberUS 10/819,499
Publication dateSep 30, 2004
Filing dateApr 6, 2004
Priority dateDec 5, 2001
Also published asCA2468787A1, DE60239145D1, EP1450733A2, EP1450733A4, EP1450733B1, US6908478, US20030105520, US20050149182, WO2003049648A2, WO2003049648A3, WO2003049648A8
Publication number10819499, 819499, US 2004/0193260 A1, US 2004/193260 A1, US 20040193260 A1, US 20040193260A1, US 2004193260 A1, US 2004193260A1, US-A1-20040193260, US-A1-2004193260, US2004/0193260A1, US2004/193260A1, US20040193260 A1, US20040193260A1, US2004193260 A1, US2004193260A1
InventorsClifton Alferness, John Adams, Mark Mathis, David Reuter
Original AssigneeAlferness Clifton A., Adams John M., Mathis Mark L., Reuter David G.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Anchor and pull mitral valve device and method
US 20040193260 A1
Abstract
A device, system, and method effects mitral valve annulus geometry of a heart. The device includes a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A cable is fixed to the first anchor and extends proximately therefrom and slidingly through a second anchor which is positioned and fixed in the heart proximal to the first anchor. A lock locks the cable to the second anchor when tension is applied to the cable for effecting the mitral valve annulus geometry.
Images(4)
Previous page
Next page
Claims(12)
1.-43. (Canceled)
44. An assembly for effecting the condition of a mitral valve annulus of a heart comprising:
a mitral valve therapy device that reshapes the mitral valve annulus of the heart when placed within the coronary sinus of the heart adjacent the mitral valve annulus, the mitral valve therapy device having a proximal end including a coupling structure; a catheter having a lumen that directs the mitral valve therapy device into the coronary sinus of the heart;
a second coupling structure that is lockable on the device coupling structure; and a locking member that locks the device coupling structure to the second coupling structure and that releases the device coupling structure from the second coupling structure.
45. The assembly of claim 44 further including a pusher member that pushes the device through the catheter lumen, the pusher member having a distal end that engages the device proximal end.
46. The assembly of claim 45 wherein the pusher member carries the second coupling structure at the distal end of the pusher member.
47. The assembly of claim 44 wherein the device coupling structure and the second coupling structure comprise a pair of interlocking structures and wherein the locking member comprises a slide-lock sheath closely fitted to the interlocking structures.
48. The assembly of claim 47 wherein the interlocking structures are formed from tubing and wherein the slide-lock sheath is tubular.
49. An assembly for effecting the condition of a mitral valve annulus of a heart comprising:
device means for reshaping the mitral valve annulus of the heart when placed within the coronary sinus of the heart adjacent the mitral valve annulus, the device means having a proximal end including a coupling means for coupling the device means;
catheter means having a lumen that directs the mitral valve therapy device into the coronary sinus of the heart;
second coupling means for locking with the device coupling means; and locking means for locking the device coupling means to the second coupling means and releasing the device coupling means from the second coupling means.
50. The assembly of claim 49 further comprising a pusher means for pushing the device means through the catheter means lumen, the pusher means having a lumen, and wherein the second coupling means and the locking means extend through the pusher means lumen.
51. The assembly of claim 49 wherein the device coupling means and the second coupling means comprise interlocking means for releasably locking the device coupling means and the second coupling means, and wherein the locking means includes retaining means for retaining the interlocking means in an interlocked condition.
52. The assembly of claim 51 wherein the retaining means is displaceable for releasing the interlocked condition of the interlocking means.
53. An assembly for effecting the condition of a mitral 30 valve annulus of a heart comprising:
a mitral valve therapy device that reshapes the mitral valve annulus of the heart when placed within the coronary sinus of the heart adjacent the mitral valve annulus, the mitral valve therapy device having a proximal end including a coupling structure;
a guide member that directs the mitral valve therapy device into the coronary sinus of the heart;
a second coupling structure that is lockable on the device coupling structure; and
a locking member that locks the device coupling structure to the second coupling structure and that releases the device coupling structure from the second coupling structure.
54. An assembly for effecting the condition of a mitral valve annulus of a heart comprising:
device means for reshaping the mitral valve annulus of the heart when placed within the coronary sinus of the heart adjacent the mitral valve annulus, the device means having a proximal end including a coupling means for coupling the device means;
guide means for directing the mitral valve therapy device into the coronary sinus of the heart;
second coupling means for locking with the device coupling means; and
locking means for locking the device coupling means to the second coupling means and releasing the device coupling means from the second coupling means.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention generally relates to a device and method for treating dilated cardiomyopathy of a heart. The present invention more particularly relates to a device and method for reshaping the mitral valve annulus.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve. The mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle. The mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
  • [0003]
    The valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction. In a healthy mitral valve, the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
  • [0004]
    The normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects. For example, certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation. Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
  • [0005]
    One method of repairing a mitral valve having impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
  • [0006]
    Various other surgical procedures have been developed to correct the deformation of the mitral valve annulus and thus retain the intact natural heart valve function. These surgical techniques involve repairing the shape of the dilated or deformed valve annulus. Such techniques, generally known as annuloplasty, require surgically restricting the valve annulus to minimize dilation. Here, a prosthesis is typically sutured about the base of the valve leaflets to reshape the valve annulus and restrict the movement of the valve annulus during the opening and closing of the mitral valve.
  • [0007]
    Many different types of prostheses have been developed for use in such surgery. In general, prostheses are annular or partially annular shaped members which fit about the base of the valve annulus. The annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
  • [0008]
    While the prior art methods mentioned above have been able to achieve some success in treating mitral regurgitation, they have not been without problems and potential adverse consequences. For example, these procedures require open heart surgery. Such procedures are expensive, are extremely invasive requiring considerable recovery time, and pose the concomitant mortality risks associated with such procedures. Moreover, such open heart procedures are particularly stressful on patients with a comprised cardiac condition. Given these factors, such procedures are often reserved as a last resort and hence are employed late in the mitral regurgitation progression. Further, the effectiveness of such procedures is difficult to assess during the procedure and may not be known until a much later time. Hence, the ability to make adjustments to or changes in the prostheses to obtain optimum effectiveness is extremely limited. Later corrections, if made at all, require still another open heart surgery.
  • [0009]
    An improved therapy to treat mitral regurgitation without resorting to open heart surgery has recently been proposed. This is rendered possible by the realization that the coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein. As used herein, the term “coronary sinus” is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein. The therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
  • [0010]
    The device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus. The device partially encircles and exerts an inward pressure on the mitral valve. The inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
  • [0011]
    The device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads. One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device. The introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium. To promote guidance, an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath. The sheath is then partially retracted to permit the device to assume its unstressed arched configuration. Once the device is properly positioned, the introducer is then decoupled from the device and retracted through the sheath. The procedure is then completed by the retraction of the sheath. As a result, the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
  • [0012]
    The foregoing therapy has many advantages over the traditional open heart surgery approach. Since the device, system and method may be employed in a comparatively noninvasive procedure, mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
  • [0013]
    Another approach to treat mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral valve dilation may be localized and nonuniform. Hence, the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus. Such localized therapy would have all the benefits of the generalized therapy. In addition, a localized therapy device may be easier to implant and adjust. The present invention provides a still further alternative for treating mitral regurgitation with a device placed in the coronary sinus adjacent to the mitral valve annulus.
  • SUMMARY OF THE INVENTION
  • [0014]
    The present invention provides a device for effecting mitral valve annulus geometry of a heart. The device includes a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. As a result, when the first and second anchors are fixed within the heart, the cable is drawn proximally, and the cable is locked on the second anchor, the geometry of the mitral valve is effected.
  • [0015]
    The second anchor may be configured to be positioned and fixed in the coronary sinus. Alternatively, the second anchor may be configured to be positioned and fixed in the right atrium.
  • [0016]
    The first anchor may be self-expanding to fix the first anchor in the coronary sinus. Similarly, the second anchor may be self-expanding to fix the second anchor in the heart.
  • [0017]
    The second anchor may include the lock. The lock may include a ratchet. Further, the cable may include a coupling configured for releasable connection to a cable tension assembly.
  • [0018]
    The present invention further provides a device for effecting mitral valve annulus geometry in a heart including first anchor means for anchoring within the coronary sinus of the heart adjacent to the mitral valve annulus and second anchor means for anchoring within the heart proximal to the first anchor means. The device further includes cable means fixed to the first anchor means and extending proximally from the first anchor means, the cable means being slidably received by the second anchor means for spanning between the first and second anchor means, and lock means for locking the second anchor means to the cable means.
  • [0019]
    The present invention still further provides a method of effecting mitral valve annulus geometry in a heart. The method includes the steps of fixing a first anchor within the coronary sinus of the heart adjacent to the mitral valve annulus, anchoring a second anchor within the heart proximal to the first anchor, fixing a cable to the first anchor, the cable extending proximally from the first anchor and slidably through the second anchor, displacing the cable proximally relative to the second anchor to create tension in the cable, and locking the second anchor to the cable.
  • [0020]
    The present invention still further provides a system for effecting mitral valve annulus geometry. The system includes a mitral valve annulus device comprising a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent to mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. The system further includes a delivery assembly that deploys the mitral valve annulus device, the delivery assembly including a first push tool that engages the first anchor to position the first anchor within the coronary sinus, a second push tool that engages the second anchor to position the second anchor in the heart, and a tensioning member connectable to the cable that provides tension to the cable between the first and second anchors.
  • [0021]
    The present invention still further provides a method of effecting mitral valve geometry of a heart including the steps of advancing a guide catheter into the coronary sinus of the heart adjacent to the mitral valve annulus, pushing a self-deploying first anchor down and out of the guide catheter to deploy the first anchor in the coronary sinus adjacent to the mitral valve annulus, providing the first anchor with a cable extending proximally from the first anchor and through a second self-deploying anchor, and displacing the second self-deploying anchor down the guide catheter to a position proximal to the first anchor. The method further includes the steps of withdrawing the guide catheter while holding the second anchor to deploy the second anchor, pulling on the cable to create tension in the cable, and locking the cable to the second anchor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0022]
    The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further aspects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, and the several figures of which like reference numerals identify identical elements, and wherein:
  • [0023]
    [0023]FIG. 1 is a superior view of a human heart with the atria removed;
  • [0024]
    [0024]FIG. 2 is a superior view of a human heart similar to FIG. 1 illustrating a deployed mitral valve device embodying the present invention;
  • [0025]
    [0025]FIG. 3 is a superior view of a human heart similar to FIG. 2 illustrating an intermediate step in the deployment of the mitral valve device of FIG. 2 embodying the present invention;
  • [0026]
    [0026]FIG. 4 is a perspective view with portions cut away of the device of FIG. 2 and a delivery assembly for deploying the device in accordance with an embodiment of the present invention;
  • [0027]
    [0027]FIG. 5 is a perspective view illustrating details of the coupling and locking mechanisms employed in the device and assembly of FIGS. 3 and 4; and
  • [0028]
    [0028]FIG. 6 is a further superior view of a human heart similar to that of FIG. 1 illustrating a further mitral valve device embodying the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0029]
    Referring now to FIG. 1, it is a superior view of a human heart 10 with the atria removed to expose the mitral valve 12, the coronary sinus 14, the coronary artery 15, and the circumflex artery 17 of the heart 10 to lend a better understanding of the present invention. Also generally shown in FIG. 1 are the pulmonary valve 22, the aortic valve 24, and the tricuspid valve 26 of the heart 10.
  • [0030]
    The mitral valve 12 includes an anterior cusp 16, a posterior cusp 18 and an annulus 20. The annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction. As is well known, the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20. As is also known, the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy device of the present invention therein.
  • [0031]
    [0031]FIG. 2 shows a mitral valve therapy device 30 embodying the present invention. As may be noted in FIG. 2, the device 30 includes a first anchor 32, a cable 34, and a second anchor 36.
  • [0032]
    The first anchor 32 is located at the distal end of the device 30. The anchor 32 is self-expanding so as to be self-deployable when released in the coronary sinus 14. More specifically, the anchor 32 may be formed of a material such as Nitinol, a nickel/titanium alloy of the type well known in the art having shape memory. The anchor 32 has a toggle bolt-like configuration which expands when released to engage the inner wall of the coronary sinus 14 for anchoring or fixing the anchor 32 therein. Preferably, the anchor 32 is positioned just proximally to the crossover point 19 of the coronary sinus 14 and a circumflex artery 17.
  • [0033]
    The cable 34, which may be a single wire, a multi-stranded wire, a polymer cable or a Nitinol cable, is fixed to the first anchor 32 and extends proximally therefrom. The cable extends through the second anchor 36 which is positioned proximally from the first anchor 32. Here it will be noted that the second anchor is positioned within the coronary sinus just distal to the ostium 21 of the coronary sinus 14. The second anchor 36 may have a similar toggle bolt-like configuration and is also preferably self-expanding to be self-deployable.
  • [0034]
    The cable 34 terminates in a coupling 38. As may best be seen in FIG. 5, the coupling 38 is configured to releasably interlock with a corresponding coupling 40 carried by a tension cable 42.
  • [0035]
    As may further be noted in FIG. 5, the second or proximal anchor 36 also includes a locking mechanism 44. Here, the locking mechanism 44 takes the form of a ratchet or ratchet-like mechanism 46 for locking the second anchor 36 to the cable 32.
  • [0036]
    When the device 30 is deployed as shown in FIG. 2, the first anchor 32 is fixed within the coronary sinus 14. The cable 34 extends proximally from the anchor 32 and slidably through the second anchor 36. The second anchor 36 is then positioned in its desired location within the heart proximal to the first anchor 32 and permitted to self-expand for being anchored within the heart. Then, the tension cable is used to pull proximally on the cable while the second anchor 36 is preferably held in its fixed position. Once a desired amount of tension is applied to the cable, the ratchet positively and permanently locks the cable 34 to the second anchor 36. With the cable 34 now under tension, the geometry of the mitral valve annulus 20 is now advantageously effected. The tension in the cable may be further adjusted while monitoring a parameter indicative of mitral regurgitation such as Doppler echo while adjusting the tension. The tension may be further adjusted by pushing the deployed proximal anchor 36 further down the cable 34 thereby shortening the distance between the proximal and the distal anchors. Once the proximal anchor position and proper cable tension is achieved, the tension cable assembly may be removed in a manner as more fully described hereinafter.
  • [0037]
    As will further be noted in FIG. 2, the cable 34 is provided with a covering 33. The covering 33 is preferably formed of a compressible material and serves to distribute forces of the cable applied against the inner wall of the coronary sinus 14. This force distribution precludes damage to the coronary sinus by the cable 34.
  • [0038]
    [0038]FIGS. 3 and 4 show further details of the device 30 and its deployment assembly 50. As will be noted in FIG. 4, the deployment assembly 50 includes a catheter 52. The catheter 52 has a lumen 54 dimensioned for slidably receiving the device 30 in its predeployed state. The catheter 52 is advanced into the coronary sinus until its distal end 56 is at a desired position within the coronary sinus.
  • [0039]
    The assembly 50 further includes a first push tube 58 which engages a collar 33 of the first anchor 32. The push tube 58 may then be used to push the first anchor 32 to its desired position and out of the catheter 52 whereupon, the first anchor 32 self-expands for deployment. Once the first anchor 32 is fixed within the coronary sinus, the push tube 58 may then be removed.
  • [0040]
    The assembly 50 further includes a second push tube 60 coaxially arranged with the catheter 52 and first push tube 58 which may be fed down the catheter to engage the second anchor 36. The second push tube 60 is then used to push the second anchor 36 along the cable 34 to its desired position. Then, the catheter 52 is retracted to release the second anchor 36 to permit it to self-expand and be deployed.
  • [0041]
    The tension cable 42 is then coupled to the coupling 38 of the cable 34 and covered with a sheath 62 to maintain the coupling of the couplings 38 and 40. Tension is then applied to the cable 34 by proximally pulling on the tension cable 42 while the second push tube 60 holds the second anchor 36 stationary. When the desired tension is placed on the cable 34, further adjustment may be made as previously described. When this is completed, the first anchor 32 and the second anchor 36 are fixed in position with a tension in the cable 34. The catheter 52, the sheath 62, the second push tube 60, and the tension cable 42 may be removed to complete the deployment process.
  • [0042]
    [0042]FIG. 6 shows another mitral valve device 70 embodying the present invention. The device 70 is similar to the device 30 previously described except that its second or proximal anchor 76 is located and fixed within the right atrium 23 of the heart 10. To this end, the device 70 includes a first anchor 32, a cable 34, and a force distributor 33 as previously described. The second anchor 76 is configured so that when it self-expands, it engages the inner wall 25 of the right atrium 23 to hold it in place. In all other respects, the device 70 may be identical to the device 30.
  • [0043]
    While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US626899 *May 27, 1898Jun 13, 1899 Device for moistening and sealing envelops
US3974526 *Jan 23, 1975Aug 17, 1976Dardik Irving IVascular prostheses and process for producing the same
US4164046 *May 16, 1977Aug 14, 1979Cooley DentonValve prosthesis
US4588395 *Oct 28, 1980May 13, 1986Lemelson Jerome HCatheter and method
US4830023 *Nov 27, 1987May 16, 1989Medi-Tech, IncorporatedMedical guidewire
US5099838 *Dec 15, 1988Mar 31, 1992Medtronic, Inc.Endocardial defibrillation electrode system
US5104404 *Jun 20, 1991Apr 14, 1992Medtronic, Inc.Articulated stent
US5350420 *May 25, 1993Sep 27, 1994Baxter International Inc.Flexible annuloplasty ring and holder
US5433727 *Aug 16, 1994Jul 18, 1995Sideris; Eleftherios B.Centering buttoned device for the occlusion of large defects for occluding
US5449373 *Mar 17, 1994Sep 12, 1995Medinol Ltd.Articulated stent
US5507295 *Jun 29, 1993Apr 16, 1996British Technology Group LimitedMedical devices
US5507802 *Oct 7, 1994Apr 16, 1996Cardiac Pathways CorporationMethod of mapping and/or ablation using a catheter having a tip with fixation means
US5514161 *Apr 4, 1995May 7, 1996Ela Medical S.A.Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5554177 *Mar 27, 1995Sep 10, 1996Medtronic, Inc.Method and apparatus to optimize pacing based on intensity of acoustic signal
US5601600 *Sep 8, 1995Feb 11, 1997Conceptus, Inc.Endoluminal coil delivery system having a mechanical release mechanism
US5733325 *May 6, 1996Mar 31, 1998C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system
US5741297 *Aug 28, 1996Apr 21, 1998Simon; MorrisDaisy occluder and method for septal defect repair
US5752969 *Jun 16, 1994May 19, 1998Sofamor S.N.C.Instrument for the surgical treatment of an intervertebral disc by the anterior route
US5800519 *Nov 4, 1996Sep 1, 1998Kopin CorporationTubular medical prosthesis for use in a body lumen
US5871501 *Jan 12, 1998Feb 16, 1999Datascope Investment Corp.Guide wire with releasable barb anchor
US5891193 *Apr 11, 1997Apr 6, 1999C.R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5895391 *Sep 27, 1996Apr 20, 1999Target Therapeutics, Inc.Ball lock joint and introducer for vaso-occlusive member
US5899882 *Apr 4, 1996May 4, 1999Novoste CorporationCatheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5908404 *Mar 3, 1998Jun 1, 1999Elliott; James B.Methods for inserting an implant
US5928258 *Sep 26, 1997Jul 27, 1999Corvita CorporationMethod and apparatus for loading a stent or stent-graft into a delivery sheath
US5935161 *Apr 11, 1997Aug 10, 1999C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5954761 *Mar 25, 1997Sep 21, 1999Intermedics Inc.Implantable endocardial lead assembly having a stent
US6022371 *Jul 21, 1998Feb 8, 2000Scimed Life Systems, Inc.Locking stent
US6027517 *May 13, 1997Feb 22, 2000Radiance Medical Systems, Inc.Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6053900 *Oct 7, 1998Apr 25, 2000Brown; Joe E.Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US6077295 *Jul 15, 1996Jun 20, 2000Advanced Cardiovascular Systems, Inc.Self-expanding stent delivery system
US6077297 *Jan 12, 1998Jun 20, 2000C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US6080182 *Dec 19, 1997Jun 27, 2000Gore Enterprise Holdings, Inc.Self-expanding defect closure device and method of making and using
US6096064 *Sep 19, 1997Aug 1, 2000Intermedics Inc.Four chamber pacer for dilated cardiomyopthy
US6099549 *Jun 11, 1999Aug 8, 2000Cordis CorporationVascular filter for controlled release
US6099552 *Nov 12, 1997Aug 8, 2000Boston Scientific CorporationGastrointestinal copression clips
US6171320 *Oct 7, 1997Jan 9, 2001Niti Alloys Technologies Ltd.Surgical clip
US6183512 *Apr 16, 1999Feb 6, 2001Edwards Lifesciences CorporationFlexible annuloplasty system
US6190406 *Feb 2, 1999Feb 20, 2001Nitinal Development CorporationIntravascular stent having tapered struts
US6200336 *Jun 2, 1999Mar 13, 2001Cook IncorporatedMultiple-sided intraluminal medical device
US6210432 *Jun 30, 1999Apr 3, 2001Jan Otto SolemDevice and method for treatment of mitral insufficiency
US6228098 *Jul 10, 1998May 8, 2001General Surgical Innovations, Inc.Apparatus and method for surgical fastening
US6241757 *Feb 3, 1998Jun 5, 2001Solco Surgical Instrument Co., Ltd.Stent for expanding body's lumen
US6254628 *Dec 9, 1996Jul 3, 2001Micro Therapeutics, Inc.Intracranial stent
US6267783 *Jul 27, 2000Jul 31, 2001Cordis CorporationStent which is easily recaptured and repositioned within the body
US6275730 *Sep 7, 1999Aug 14, 2001Uab Research FoundationMethod and apparatus for treating cardiac arrythmia
US6334864 *May 17, 2000Jan 1, 2002Aga Medical Corp.Alignment member for delivering a non-symmetric device with a predefined orientation
US6342067 *Jan 9, 1998Jan 29, 2002Nitinol Development CorporationIntravascular stent having curved bridges for connecting adjacent hoops
US6345198 *Jul 29, 1999Feb 5, 2002Pacesetter, Inc.Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6352553 *Jul 18, 1997Mar 5, 2002Gore Enterprise Holdings, Inc.Stent-graft deployment apparatus and method
US6352561 *Dec 23, 1996Mar 5, 2002W. L. Gore & AssociatesImplant deployment apparatus
US6358195 *Mar 9, 2000Mar 19, 2002Neoseed Technology LlcMethod and apparatus for loading radioactive seeds into brachytherapy needles
US6395017 *Nov 15, 1996May 28, 2002C. R. Bard, Inc.Endoprosthesis delivery catheter with sequential stage control
US6402781 *Jan 31, 2000Jun 11, 2002MitralifePercutaneous mitral annuloplasty and cardiac reinforcement
US6503271 *Dec 7, 2000Jan 7, 2003Cordis CorporationIntravascular device with improved radiopacity
US6537314 *Jan 30, 2001Mar 25, 2003Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty and cardiac reinforcement
US6562067 *Jun 8, 2001May 13, 2003Cordis CorporationStent with interlocking elements
US6599314 *Jun 8, 2001Jul 29, 2003Cordis CorporationApparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
US6602289 *Jun 8, 1999Aug 5, 2003S&A Rings, LlcAnnuloplasty rings of particular use in surgery for the mitral valve
US6623521 *Dec 14, 2000Sep 23, 2003Md3, Inc.Expandable stent with sliding and locking radial elements
US6689164 *Oct 10, 2000Feb 10, 2004Jacques SeguinAnnuloplasty device for use in minimally invasive procedure
US6721598 *Aug 31, 2001Apr 13, 2004Pacesetter, Inc.Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US6743219 *Aug 2, 2000Jun 1, 2004Cordis CorporationDelivery apparatus for a self-expanding stent
US6773446 *Aug 2, 2000Aug 10, 2004Cordis CorporationDelivery apparatus for a self-expanding stent
US6881220 *Aug 8, 2003Apr 19, 2005Bard Peripheral Vascular, Inc.Method of recapturing a stent
US6899734 *Mar 23, 2001May 31, 2005Howmedica Osteonics Corp.Modular implant for fusing adjacent bone structure
US6935404 *Nov 8, 2002Aug 30, 2005Thomas DuerigIntravascular device with improved radiopacity
US7175653 *May 3, 2001Feb 13, 2007Xtent Medical Inc.Selectively expandable and releasable stent
US20010018611 *Feb 5, 2001Aug 30, 2001Solem Jan OttoMethod and device for treatment of mitral insufficiency
US20020016628 *Oct 1, 2001Feb 7, 2002Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20020035361 *Jul 3, 2001Mar 21, 2002Houser Russell A.Apparatus and methods for treating tissue
US20030018358 *Jul 3, 2002Jan 23, 2003Vahid SaadatApparatus and methods for treating tissue
US20030069636 *Nov 26, 2002Apr 10, 2003Solem Jan OttoMethod for treatment of mitral insufficiency
US20030083613 *Dec 6, 2002May 1, 2003Schaer Alan K.Catheter positioning system
US20040010305 *May 2, 2003Jan 15, 2004Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20040102840 *Nov 13, 2003May 27, 2004Solem Jan OttoMethod and device for treatment of mitral insufficiency
US20050004667 *May 10, 2004Jan 6, 2005Cardiac Dimensions, Inc. A Delaware CorporationDevice, system and method to affect the mitral valve annulus of a heart
US20050010240 *May 5, 2004Jan 13, 2005Cardiac Dimensions Inc., A Washington CorporationDevice and method for modifying the shape of a body organ
US20050021121 *Jun 3, 2004Jan 27, 2005Cardiac Dimensions, Inc., A Delaware CorporationAdjustable height focal tissue deflector
US20050027351 *Dec 19, 2003Feb 3, 2005Cardiac Dimensions, Inc. A Washington CorporationMitral valve regurgitation treatment device and method
US20050027353 *Aug 24, 2004Feb 3, 2005Alferness Clifton A.Mitral valve therapy device, system and method
US20050033419 *Aug 24, 2004Feb 10, 2005Alferness Clifton A.Mitral valve therapy device, system and method
US20050038507 *Aug 24, 2004Feb 17, 2005Alferness Clifton A.Mitral valve therapy device, system and method
US20050060030 *Jul 19, 2004Mar 17, 2005Lashinski Randall T.Remotely activated mitral annuloplasty system and methods
US20050065598 *Aug 4, 2004Mar 24, 2005Mathis Mark L.Device, assembly and method for mitral valve repair
US20050096666 *Sep 20, 2004May 5, 2005Gordon Lucas S.Percutaneous mitral valve annuloplasty delivery system
US20050096740 *Nov 1, 2004May 5, 2005Edwards Lifesciences AgTransluminal mitral annuloplasty
US20050119673 *Sep 20, 2004Jun 2, 2005Gordon Lucas S.Percutaneous mitral valve annuloplasty device delivery method
US20050137449 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc.Tissue shaping device with self-expanding anchors
US20050137450 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc., A Washington CorporationTapered connector for tissue shaping device
US20050137451 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc. A Washington CorporationTissue shaping device with integral connector and crimp
US20050137685 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc., A Washington CorporationReduced length tissue shaping device
US20050149179 *Nov 19, 2004Jul 7, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050149180 *Nov 19, 2004Jul 7, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050149182 *Feb 28, 2005Jul 7, 2005Alferness Clifton A.Anchor and pull mitral valve device and method
US20050177228 *Dec 15, 2004Aug 11, 2005Solem Jan O.Device for changing the shape of the mitral annulus
US20050187619 *Nov 19, 2004Aug 25, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20060041305 *Aug 17, 2005Feb 23, 2006Karl-Lutz LauterjungProsthetic repair of body passages
US20070066879 *Oct 17, 2006Mar 22, 2007Mathis Mark LBody lumen shaping device with cardiac leads
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6960229May 2, 2003Nov 1, 2005Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7666224Jul 7, 2005Feb 23, 2010Edwards Lifesciences LlcDevices and methods for heart valve treatment
US7670368Mar 2, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7674287Mar 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7678145Jul 1, 2005Mar 16, 2010Edwards Lifesciences LlcDevices and methods for heart valve treatment
US7682385Jul 3, 2006Mar 23, 2010Boston Scientific CorporationArtificial valve
US7695425Feb 17, 2004Apr 13, 2010Edwards Lifesciences LlcHeart wall tension reduction apparatus and method
US7722523Jul 9, 2002May 25, 2010Edwards Lifesciences LlcTransventricular implant tools and devices
US7722666Apr 15, 2005May 25, 2010Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7758639Jul 20, 2010Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US7766812Apr 14, 2006Aug 3, 2010Edwards Lifesciences LlcMethods and devices for improving mitral valve function
US7776053Dec 12, 2006Aug 17, 2010Boston Scientific Scimed, Inc.Implantable valve system
US7780627Aug 24, 2010Boston Scientific Scimed, Inc.Valve treatment catheter and methods
US7780722Aug 24, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7794496Dec 19, 2003Sep 14, 2010Cardiac Dimensions, Inc.Tissue shaping device with integral connector and crimp
US7799038Jan 20, 2006Sep 21, 2010Boston Scientific Scimed, Inc.Translumenal apparatus, system, and method
US7814635Oct 19, 2010Cardiac Dimensions, Inc.Method of making a tissue shaping device
US7828841Nov 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7828842Nov 9, 2010Cardiac Dimensions, Inc.Tissue shaping device
US7828843Aug 24, 2004Nov 9, 2010Cardiac Dimensions, Inc.Mitral valve therapy device, system and method
US7837728Dec 19, 2003Nov 23, 2010Cardiac Dimensions, Inc.Reduced length tissue shaping device
US7837729Sep 20, 2004Nov 23, 2010Cardiac Dimensions, Inc.Percutaneous mitral valve annuloplasty delivery system
US7854755Dec 21, 2010Boston Scientific Scimed, Inc.Vascular catheter, system, and method
US7854761Dec 19, 2003Dec 21, 2010Boston Scientific Scimed, Inc.Methods for venous valve replacement with a catheter
US7857846May 2, 2003Dec 28, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7867274Jan 11, 2011Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7878966Feb 1, 2011Boston Scientific Scimed, Inc.Ventricular assist and support device
US7883539Apr 23, 2002Feb 8, 2011Edwards Lifesciences LlcHeart wall tension reduction apparatus and method
US7887582May 5, 2004Feb 15, 2011Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7892276Feb 22, 2011Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US7951189Jul 27, 2009May 31, 2011Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US7967853Jun 28, 2011Boston Scientific Scimed, Inc.Percutaneous valve, system and method
US8002824Jul 23, 2009Aug 23, 2011Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US8006594Aug 11, 2008Aug 30, 2011Cardiac Dimensions, Inc.Catheter cutting tool
US8012198Sep 6, 2011Boston Scientific Scimed, Inc.Venous valve, system, and method
US8062358Nov 22, 2011Cardiac Dimensions, Inc.Body lumen device anchor, device and assembly
US8070805Jan 25, 2010Dec 6, 2011Edwards Lifesciences LlcDevices and methods for heart valve treatment
US8075608Dec 13, 2011Cardiac Dimensions, Inc.Medical device delivery system
US8128681Dec 19, 2003Mar 6, 2012Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US8133270Jan 8, 2008Mar 13, 2012California Institute Of TechnologyIn-situ formation of a valve
US8137394Jan 14, 2011Mar 20, 2012Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US8172898Mar 8, 2010May 8, 2012Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US8182529May 22, 2012Cardiac Dimensions, Inc.Percutaneous mitral valve annuloplasty device delivery method
US8187323May 29, 2012Edwards Lifesciences, LlcValve to myocardium tension members device and method
US8226711Jul 24, 2012Edwards Lifesciences, LlcValve to myocardium tension members device and method
US8250960Aug 29, 2011Aug 28, 2012Cardiac Dimensions, Inc.Catheter cutting tool
US8267852Jul 8, 2010Sep 18, 2012Edwards Lifesciences, LlcHeart wall tension reduction apparatus and method
US8348999Jan 8, 2013California Institute Of TechnologyIn-situ formation of a valve
US8414641Apr 9, 2013Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US8439971Dec 18, 2009May 14, 2013Cardiac Dimensions, Inc.Adjustable height focal tissue deflector
US8460173Jun 11, 2013Edwards Lifesciences, LlcHeart wall tension reduction apparatus and method
US8460365Jun 11, 2013Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US8470023Jun 22, 2011Jun 25, 2013Boston Scientific Scimed, Inc.Percutaneous valve, system, and method
US8506624Dec 2, 2011Aug 13, 2013Edwards Lifesciences, LlcDevices and methods for heart valve treatment
US8512399Dec 28, 2009Aug 20, 2013Boston Scientific Scimed, Inc.Valve apparatus, system and method
US8672997Apr 24, 2012Mar 18, 2014Boston Scientific Scimed, Inc.Valve with sinus
US8721717Jan 27, 2012May 13, 2014Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US8828079Jul 26, 2007Sep 9, 2014Boston Scientific Scimed, Inc.Circulatory valve, system and method
US8932349Aug 22, 2011Jan 13, 2015Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US8974525Oct 19, 2010Mar 10, 2015Cardiac Dimensions Pty. Ltd.Tissue shaping device
US9028542Sep 6, 2011May 12, 2015Boston Scientific Scimed, Inc.Venous valve, system, and method
US9101338May 3, 2007Aug 11, 2015Mayo Foundation For Medical Education And ResearchSoft body tissue remodeling methods and apparatus
US9198757Jul 7, 2009Dec 1, 2015Edwards Lifesciences, LlcMethods and devices for improving mitral valve function
US9301843Nov 10, 2010Apr 5, 2016Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US9320600Mar 9, 2015Apr 26, 2016Cardiac Dimensions Pty. Ltd.Tissue shaping device
US9370419Nov 30, 2010Jun 21, 2016Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20030171776 *Mar 6, 2002Sep 11, 2003Cardiac Dimensions, Inc.Transvenous staples, assembly and method for mitral valve repair
US20030225454 *May 2, 2003Dec 4, 2003Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20030236569 *May 2, 2003Dec 25, 2003Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20040010305 *May 2, 2003Jan 15, 2004Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20040133240 *Jan 7, 2003Jul 8, 2004Cardiac Dimensions, Inc.Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US20040186566 *Mar 17, 2004Sep 23, 2004Hindrichs Paul J.Body tissue remodeling methods and apparatus
US20040220657 *Dec 19, 2003Nov 4, 2004Cardiac Dimensions, Inc., A Washington CorporationTissue shaping device with conformable anchors
US20050004667 *May 10, 2004Jan 6, 2005Cardiac Dimensions, Inc. A Delaware CorporationDevice, system and method to affect the mitral valve annulus of a heart
US20070282375 *May 3, 2007Dec 6, 2007St. Jude Medical, Inc.Soft body tissue remodeling methods and apparatus
US20090043381 *Oct 5, 2005Feb 12, 2009Macoviak John AAtrioventricular valve annulus repair systems and methods including retro-chordal anchors
WO2006041877A2 *Oct 5, 2005Apr 20, 2006Ample Medical, Inc.Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
Classifications
U.S. Classification623/2.11, 623/2.36
International ClassificationA61F2/24
Cooperative ClassificationA61F2/2451, A61F2/2466
European ClassificationA61F2/24R14, A61F2/24R4
Legal Events
DateCodeEventDescription
Apr 17, 2007ASAssignment
Owner name: CARDIAC DIMENSIONS, INC., WASHINGTON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALFERNESS, CLIFTON A.;ADAMS, JOHN M.;MATHIS, MARK L.;ANDOTHERS;REEL/FRAME:019176/0519
Effective date: 20011205