US20040211098A1 - Excavator with trenching attachment - Google Patents

Excavator with trenching attachment Download PDF

Info

Publication number
US20040211098A1
US20040211098A1 US10/420,245 US42024503A US2004211098A1 US 20040211098 A1 US20040211098 A1 US 20040211098A1 US 42024503 A US42024503 A US 42024503A US 2004211098 A1 US2004211098 A1 US 2004211098A1
Authority
US
United States
Prior art keywords
turret
undercarriage
trencher
backhoe
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/420,245
Other versions
US6804903B1 (en
Inventor
Mark Cooper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vermeer Manufacturing Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/420,245 priority Critical patent/US6804903B1/en
Assigned to VERMEER MANUFACTURING COMPANY reassignment VERMEER MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOPER, MARK
Application granted granted Critical
Publication of US6804903B1 publication Critical patent/US6804903B1/en
Publication of US20040211098A1 publication Critical patent/US20040211098A1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/06Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with digging elements mounted on an endless chain
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • the present invention relates to machines for excavating soils as necessary in construction projects. More specifically it relates to a machine that is adapted specifically for long narrow trenches and at the same time for more general excavations.
  • a trencher 10 includes a trenching boom 40 , with a boom frame 42 that supports an excavation chain 44 routed around and supported by end idler 46 .
  • the trenching boom 10 is mounted to a mobile chassis 12 capable of propelling the boom through the ground while the boom is lowered into the ground such that the end idler 46 is in a position to excavate to the desired depth.
  • chassis There are two basic types of chassis, a track chassis and a rubber tire chassis.
  • FIG. 1 illustrates a rubber tire chassis, and that type of trencher is thus known as a rubber tire trencher.
  • Rubber tire trenchers have an advantage over track trenchers in that they are less disruptive to the ground. Thus, they are utilized in applications where maintaining the ground is important, such as when trenching through established yards. In this application the needed excavation varies widely.
  • rubber tire trenchers typically include a variety of excavating attachments and can include a vibrating gearbox and mount for a plow on the rear of the machine beside the trenching boom, not shown, while including a backhoe 20 and blade 30 attached to the front of the rubber tire trencher 10 .
  • the rubber tire trencher offers great flexibility, its capability for general excavation with the backhoe 20 is somewhat limited by the chassis.
  • the backhoe can be positioned around its pivot axis 22 while being controlled by an operator positioned in operator station 14 . Any additional movement of the backhoe requires movement of the entire chassis.
  • the compact excavator 110 has evolved to include two basic parts, an undercarriage or chassis 112 and turret/turntable 116 .
  • the undercarriage 112 includes the chassis and typically tracks. It supports the turret/turntable 116 and typically also supports a backfill blade 130 , which is positioned with cylinder 132 .
  • the upper structure, turret or turntable 116 includes the power unit, typically a diesel engine and hydraulic system, the operator's station 114 , and a backhoe 120 mounted on a pivot 122 .
  • the power unit typically a diesel engine and hydraulic system
  • the operator's station 114 and a backhoe 120 mounted on a pivot 122 .
  • the swivel joint supports the turret 116 and further provides a valve to provide a flow path for oil to be transferred from the pump, a component of the power unit, to the track drive motors and cylinder that positions the backfill blade 130 .
  • This valve is constructed to allow the turret to rotate freely.
  • the operator's station 114 is mounted on the turret 116 , and the pivot for the backhoe 122 is positioned directly in front of the operator's station.
  • This arrangement provides good visibility of the backhoe 120 , and provides for flexibility in applications. Examples of this flexibility are illustrated in FIG. 3 where the excavator 110 is shown digging near to an existing wall 2 .
  • the chassis 112 can be positioned near the wall 2 , the turret 116 rotated such that the backhoe pivot 122 is adjacent the wall, and the backhoe 120 positioned parallel to the wall.
  • the bucket can scoop in a direction parallel to the wall to form trench 4 .
  • the backhoe 120 rotated in order to position the backhoe and bucket to a second position 120 a , away from the wall, to drop the excavated material in a pile or into a truck.
  • FIG. 4 illustrates the use of a compact excavator 110 , positioned in four different locations 110 a , 110 b , 110 c , and 110 d , as would be necessary to dig a trench.
  • the compact excavator is operated in the first position 110 a , while the backhoe 120 is utilized to dig a first section of the trench.
  • the chassis is moved to a second position 110 b , and the trench extended. This process is repeated 110 c , and 110 d until the trench is the desired length. This process requires a substantial amount of operator involvement.
  • the rubber tire trencher is illustrated in FIG. 1 will require less operator involvement.
  • This involvement includes first controlling the trenching boom 40 during a plunge-cut, as the boom is rotated clockwise to move the end idler 46 from a position above the ground, to a position where a trench of the desired depth is being formed. Subsequent operator control then involves adjusting the ground speed of the rubber tire trencher 10 to match the excavation capacity of the trenching boom 40 .
  • Trenchers have not previously been installed onto compact excavators.
  • a broad object of the present invention is to provide an excavator with a trencher.
  • Another object of the present invention is to provide an excavator with a trencher in a way that will automatically prevent a backhoe portion of the excavator from coming in contact with the trencher.
  • Still another object of the invention is to employ such an excavator with a trencher in a way that will automatically prevent a backhoe portion of the excavator from coming in contact with the trencher, but also use a mounting structure for the backhoe which allows the backhoe to move around 360 degrees once the mounting structure and trencher is removed.
  • FIG. 1 is a side view of prior art machine adapted for digging a trench known as a rubber tire trencher;
  • FIG. 2 is an isometric view of prior art machine adapted for general excavation known as a compact excavator
  • FIG. 3 is a top view of a prior art compact excavator illustrating the digging boom in various positions
  • FIG. 4 is a side view of a prior art compact excavator illustrating the process of digging a trench
  • FIG. 5 is an isometric view of the compact excavator of the present invention including a trenching boom;
  • FIG. 6 is a top view of a compact excavator of the present invention including a trenching boom with portions cutaway to show some of the components of the alternate embodiment shown schematically in FIG. 12;
  • FIG. 7 is an isometric view from a low position and with one of the tracks removed and the trencher removed to expose the mounting structure for the trenching boom;
  • FIG. 8 is a top view with the trencher in the same position as illustrated in FIG. 6, with a portion of the turret cut-away to show a stop structure;
  • FIG. 9 is a view similar to FIG. 8 with the turntable rotated to the position where it is stopped against the second stop, with a portion of the turret cut-away to show a portion of a stop structure;
  • FIG. 10 is an exploded isometric view showing the compact excavator, the trencher boom mount and the trenching boom;
  • FIG. 11 is an isometric view showing the compact excavator, with the trenching boom raised into a transport position
  • FIG. 12 is a schematic view of an alternate embodiment.
  • FIG. 5 illustrates a preferred embodiment of the present invention, a compact excavator 110 with a trenching boom 140 attached to the undercarriage 112 , supported on tracks 113 .
  • the trenching boom 140 includes boom frame 142 , excavating chain 144 , and end idler 146 .
  • the trenching boom 140 will function in a manner identical to that described for the rubber tire trencher of FIG. 1, including the ability to pivot about axis 148 between a lowered position, as illustrated, and a raised position. In the lowered position, the end idler 146 has been lowered to position the excavating chain 144 to form a trench of the desired depth.
  • the excavating chain 144 engages the ground while the boom frame 142 forces it into this engagement with a down-force sufficient to make the excavation efficient.
  • the boom frame 142 is positioned by cylinder 150 which transfers a portion of the overall weight of the compact excavator 110 from the tracks 113 to the boom frame 142 . This weight transfer is optimized by keeping the pivot 148 of boom frame 142 near to the center of gravity of the compact excavator 110 .
  • FIG. 6 illustrates the mounting of the trenching boom 140 to the compact excavator 110 .
  • the mounting is accomplished with two main components including a trencher attachment frame 160 and trencher mount frame 152 .
  • the attachment frame or sub-frame 160 includes a trencher mounting pad 162 that is positioned in close proximity to the tracks 113 , leaving clearance required for proper function of the tracks.
  • the attachment frame or sub-frame 160 could have attachments other than the illustrated chain trencher, such as rock wheel trenchers, plows for installing utility lines, etc.
  • the trencher mounting pad 162 is configured to include a series of mounting holes 163 , shown in FIG. 5, that allow the trencher mount frame 152 to attach in a number of different locations, in order to change the location of the trenching boom 140 relative to the tracks.
  • the trencher-mount frame 152 further provides support for cylinder 150 , for the rotational connection that defines pivot axis 148 and for the trencher motor 154 . In this manner the trenching boom 140 is positioned such that a sufficient down-force can be generated to provide for efficient excavation.
  • the backhoe 120 could contact the trenching boom 140 , or its mounting components.
  • the ability to freely rotate the turntable 116 will be restricted, as the backhoe 120 , depending on where it is positioned relative to the turntable 116 , may interfere with the trenching boom 140 or its mounting components.
  • the present invention places an attachment, a trenching boom 140 , onto a compact excavator in a position where it limits the rotational travel of the turntable.
  • the operator will be required to be aware of the position of the backhoe 120 whenever the turntable is rotated to avoid interference of the components.
  • a further aspect of the present invention is to provide limits that will reduce the burden on the operator, by introducing an automatic limitation to reduce the probability of damage.
  • a preferred embodiment is illustrated in FIGS. 7 and 10.
  • the trencher attachment frame or sub frame 160 includes the trencher mounting pad 162 on a first end, and is adapted to attach to the undercarriage 112 on the opposite end with an adapter pad 164 . It further includes stop arms 166 supporting stop pads 168 as shown in FIGS. 8-10.
  • the trencher attachment frame or sub frame 160 is configured to be easily attached to the undercarriage 112 and can easily be removed when the trencher boom 140 will not be used. In this manner, when the trencher attachment frame or sub frame 160 is removed from the compact excavator 110 , the stop pads 168 are also removed.
  • FIGS. 8 and 9 illustrate the function of the stop pads 168 .
  • the turntable 116 has been rotated clockwise to a position where a turntable stop bracket 118 has contacted the first stop pad 168 .
  • the turntable stop bracket 118 attaches to the turntable, extending from the bottom surface as shown in FIG. 7.
  • Stop bracket 118 is a V-shaped bracket with a first surface 118 a and a second surface 118 b .
  • surface 118 a is illustrated in the cut-away section of the turntable 116 in contact with the first stop pad 168 .
  • the backhoe 120 can still be positioned to interfere with the trenching boom 40 , for instance if the boom were pivoted counterclockwise around its pivot 122 from the illustrated position in FIG. 6. However, when the backhoe 120 is centered, as illustrated in FIG. 6, the backhoe will not interfere. The potential for interference is higher when the trenching boom 140 is in a raised, transport position as illustrated in FIG. 11. However, with the compact excavator of the present invention, the operator has simply to position the backhoe in the center position, and then can be confident that there will not be any interference when rotating the turntable in order to operate the trenching boom.
  • FIG. 6 illustrates the mechanical elements that control the position of the backhoe, and of the turntable.
  • the backhoe is positioned by a hydraulic cylinder 208 , which is typically directly controlled by a joystick, actuated by the operator.
  • the position the backhoe could be determined with a device 202 capable of measuring the linear travel of cylinder 208 .
  • a rotary actuator such as a hydraulic motor, positions the turntable which powers a gear 206 mounted onto the turntable that engages a gear 207 mounted onto the chassis.
  • the position of the turntable can be determined, in a variety of methods, for example with a transducer 204 mounted by and actuated from the gears.
  • transducer 204 is mounted on the turntable such that it detects whenever it travels past a tooth of gear 207 . By constantly monitoring this transducer, the position of the turntable can be continuously monitored.
  • Another example would be to place transducer 204 on the turntable such that it detects certain targets mounted onto the chassis, such that it is possible to detect certain positions of the turntable.
  • FIG. 12 An alternative embodiment that would further reduce the burden on the operator is illustrated schematically in FIG. 12, and would incorporate an electronic controller 200 to control the stopped positions as a function of the position of the backhoe 120 .
  • the electronic controller 200 would be capable receiving inputs from transducers 202 and 204 , described previously as detecting the position of the backhoe and the position of the turntable. It will further be capable of receiving inputs 220 from the operator. In response it will control valve 210 , that controls hydraulic power to the cylinder 208 that positions the backhoe, and the hydraulic motor that rotates gear 206 to control the rotational position of the turntable. Controller 200 will include memory and computational capacity such that the turntable would be stopped at various positions, depending on where the operator had left the backhoe, as necessary to prevent interference between the backhoe and the trencher.
  • Controller 200 includes computational capacity such that the position of the backhoe will be controlled based on the position of the turntable. Thus, when the turntable is rotated such that the operator is in the vicinity of the trencher boom, the backhoe is prevented from being rotated around its axis into a position where it could interfere with the trencher boom.

Abstract

An undercarriage having tracks or the like is attached thereto is provided for moving the undercarriage along the ground. A turret is attached to the undercarriage along a first substantially vertical axis so that the turret can rotate. A backhoe is pivotally attached to the turret along a second substantially vertical axis. A trencher is operatively attached to the turret and occupies an area adjacent the undercarriage. Structure is provided for preventing the backhoe from moving into an area occupied by the trencher.

Description

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable [0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to machines for excavating soils as necessary in construction projects. More specifically it relates to a machine that is adapted specifically for long narrow trenches and at the same time for more general excavations. [0002]
  • Long narrow trenches are required for installation of many utilities including water and sewer, gas, electrical power, and cable for communications. These utilities are often installed using machines known as trenchers, one example is illustrated in FIG. 1. A [0003] trencher 10 includes a trenching boom 40, with a boom frame 42 that supports an excavation chain 44 routed around and supported by end idler 46. The trenching boom 10 is mounted to a mobile chassis 12 capable of propelling the boom through the ground while the boom is lowered into the ground such that the end idler 46 is in a position to excavate to the desired depth. There are two basic types of chassis, a track chassis and a rubber tire chassis. FIG. 1 illustrates a rubber tire chassis, and that type of trencher is thus known as a rubber tire trencher.
  • Rubber tire trenchers have an advantage over track trenchers in that they are less disruptive to the ground. Thus, they are utilized in applications where maintaining the ground is important, such as when trenching through established yards. In this application the needed excavation varies widely. Thus, rubber tire trenchers typically include a variety of excavating attachments and can include a vibrating gearbox and mount for a plow on the rear of the machine beside the trenching boom, not shown, while including a [0004] backhoe 20 and blade 30 attached to the front of the rubber tire trencher 10.
  • While the rubber tire trencher offers great flexibility, its capability for general excavation with the [0005] backhoe 20 is somewhat limited by the chassis. The backhoe can be positioned around its pivot axis 22 while being controlled by an operator positioned in operator station 14. Any additional movement of the backhoe requires movement of the entire chassis.
  • Different machines have been developed for general excavation, and are generally known as Excavators, an example being a [0006] compact excavator 110 as illustrated in FIG. 2. The compact excavator 110 has evolved to include two basic parts, an undercarriage or chassis 112 and turret/turntable 116. The undercarriage 112 includes the chassis and typically tracks. It supports the turret/turntable 116 and typically also supports a backfill blade 130, which is positioned with cylinder 132.
  • The upper structure, turret or [0007] turntable 116 includes the power unit, typically a diesel engine and hydraulic system, the operator's station 114, and a backhoe 120 mounted on a pivot 122. There is no limitation of the rotation of the turntable, it is able to rotate fully, mounted to the undercarriage 112 at the swivel joint, supported by a slew bearing. The swivel joint supports the turret 116 and further provides a valve to provide a flow path for oil to be transferred from the pump, a component of the power unit, to the track drive motors and cylinder that positions the backfill blade 130. This valve is constructed to allow the turret to rotate freely.
  • The operator's [0008] station 114 is mounted on the turret 116, and the pivot for the backhoe 122 is positioned directly in front of the operator's station. This arrangement provides good visibility of the backhoe 120, and provides for flexibility in applications. Examples of this flexibility are illustrated in FIG. 3 where the excavator 110 is shown digging near to an existing wall 2. In these illustrations it can be seen how the chassis 112 can be positioned near the wall 2, the turret 116 rotated such that the backhoe pivot 122 is adjacent the wall, and the backhoe 120 positioned parallel to the wall. As positioned, the bucket can scoop in a direction parallel to the wall to form trench 4. Once the bucket is full it can be lifted, and the backhoe 120 rotated in order to position the backhoe and bucket to a second position 120 a, away from the wall, to drop the excavated material in a pile or into a truck.
  • Excavators have become a preferred arrangement for general excavation. However, when a job involves specifically forming a trench of a specific depth and width, this arrangement is not as productive as the trenching boom described earlier as a part of the rubber tire trencher, particularly when the trench is narrow. [0009]
  • FIG. 4 illustrates the use of a [0010] compact excavator 110, positioned in four different locations 110 a, 110 b, 110 c, and 110 d, as would be necessary to dig a trench. The compact excavator is operated in the first position 110 a, while the backhoe 120 is utilized to dig a first section of the trench. After completion, the chassis is moved to a second position 110 b, and the trench extended. This process is repeated 110 c, and 110 d until the trench is the desired length. This process requires a substantial amount of operator involvement.
  • By contrast, the rubber tire trencher is illustrated in FIG. 1 will require less operator involvement. This involvement includes first controlling the trenching boom [0011] 40 during a plunge-cut, as the boom is rotated clockwise to move the end idler 46 from a position above the ground, to a position where a trench of the desired depth is being formed. Subsequent operator control then involves adjusting the ground speed of the rubber tire trencher 10 to match the excavation capacity of the trenching boom 40.
  • Trenchers have not previously been installed onto compact excavators. [0012]
  • BRIEF SUMMARY OF THE INVENTION
  • According to the present invention there is provided a modification to a compact excavator by adding an optional component, a chain trencher. [0013]
  • A broad object of the present invention is to provide an excavator with a trencher. [0014]
  • Another object of the present invention is to provide an excavator with a trencher in a way that will automatically prevent a backhoe portion of the excavator from coming in contact with the trencher. [0015]
  • Still another object of the invention is to employ such an excavator with a trencher in a way that will automatically prevent a backhoe portion of the excavator from coming in contact with the trencher, but also use a mounting structure for the backhoe which allows the backhoe to move around 360 degrees once the mounting structure and trencher is removed. [0016]
  • Other objects, advantages, and novel features of the present invention will become apparent from the following detailed description of the invention in conjunction with the accompanying drawings. [0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of prior art machine adapted for digging a trench known as a rubber tire trencher; [0018]
  • FIG. 2 is an isometric view of prior art machine adapted for general excavation known as a compact excavator; [0019]
  • FIG. 3 is a top view of a prior art compact excavator illustrating the digging boom in various positions; [0020]
  • FIG. 4 is a side view of a prior art compact excavator illustrating the process of digging a trench; [0021]
  • FIG. 5 is an isometric view of the compact excavator of the present invention including a trenching boom; [0022]
  • FIG. 6 is a top view of a compact excavator of the present invention including a trenching boom with portions cutaway to show some of the components of the alternate embodiment shown schematically in FIG. 12; [0023]
  • FIG. 7 is an isometric view from a low position and with one of the tracks removed and the trencher removed to expose the mounting structure for the trenching boom; [0024]
  • FIG. 8 is a top view with the trencher in the same position as illustrated in FIG. 6, with a portion of the turret cut-away to show a stop structure; [0025]
  • FIG. 9 is a view similar to FIG. 8 with the turntable rotated to the position where it is stopped against the second stop, with a portion of the turret cut-away to show a portion of a stop structure; [0026]
  • FIG. 10 is an exploded isometric view showing the compact excavator, the trencher boom mount and the trenching boom; [0027]
  • FIG. 11 is an isometric view showing the compact excavator, with the trenching boom raised into a transport position; and [0028]
  • FIG. 12 is a schematic view of an alternate embodiment. [0029]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, like reference numerals designate identical or corresponding parts throughout the several views. The included drawings reflect the current preferred and alternate embodiments. There are many additional embodiments that may utilize the present invention. The drawings are not meant to include all such possible embodiments. [0030]
  • FIG. 5 illustrates a preferred embodiment of the present invention, a [0031] compact excavator 110 with a trenching boom 140 attached to the undercarriage 112, supported on tracks 113. The trenching boom 140 includes boom frame 142, excavating chain 144, and end idler 146. The trenching boom 140 will function in a manner identical to that described for the rubber tire trencher of FIG. 1, including the ability to pivot about axis 148 between a lowered position, as illustrated, and a raised position. In the lowered position, the end idler 146 has been lowered to position the excavating chain 144 to form a trench of the desired depth. During the excavation process, the excavating chain 144 engages the ground while the boom frame 142 forces it into this engagement with a down-force sufficient to make the excavation efficient. The boom frame 142 is positioned by cylinder 150 which transfers a portion of the overall weight of the compact excavator 110 from the tracks 113 to the boom frame 142. This weight transfer is optimized by keeping the pivot 148 of boom frame 142 near to the center of gravity of the compact excavator 110.
  • FIG. 6 illustrates the mounting of the [0032] trenching boom 140 to the compact excavator 110. The mounting is accomplished with two main components including a trencher attachment frame 160 and trencher mount frame 152. The attachment frame or sub-frame 160 includes a trencher mounting pad 162 that is positioned in close proximity to the tracks 113, leaving clearance required for proper function of the tracks. The attachment frame or sub-frame 160 could have attachments other than the illustrated chain trencher, such as rock wheel trenchers, plows for installing utility lines, etc.
  • The [0033] trencher mounting pad 162 is configured to include a series of mounting holes 163, shown in FIG. 5, that allow the trencher mount frame 152 to attach in a number of different locations, in order to change the location of the trenching boom 140 relative to the tracks. The trencher-mount frame 152 further provides support for cylinder 150, for the rotational connection that defines pivot axis 148 and for the trencher motor 154. In this manner the trenching boom 140 is positioned such that a sufficient down-force can be generated to provide for efficient excavation.
  • In this FIG. 5 position, without the [0034] stop structure 118 and stop pads 168 described below, the backhoe 120 could contact the trenching boom 140, or its mounting components. Thus when the trenching boom 140 is mounted to the compact excavator the ability to freely rotate the turntable 116 will be restricted, as the backhoe 120, depending on where it is positioned relative to the turntable 116, may interfere with the trenching boom 140 or its mounting components.
  • The present invention places an attachment, a [0035] trenching boom 140, onto a compact excavator in a position where it limits the rotational travel of the turntable. The operator will be required to be aware of the position of the backhoe 120 whenever the turntable is rotated to avoid interference of the components.
  • A further aspect of the present invention is to provide limits that will reduce the burden on the operator, by introducing an automatic limitation to reduce the probability of damage. A preferred embodiment is illustrated in FIGS. 7 and 10. The trencher attachment frame or [0036] sub frame 160 includes the trencher mounting pad 162 on a first end, and is adapted to attach to the undercarriage 112 on the opposite end with an adapter pad 164. It further includes stop arms 166 supporting stop pads 168 as shown in FIGS. 8-10. The trencher attachment frame or sub frame 160 is configured to be easily attached to the undercarriage 112 and can easily be removed when the trencher boom 140 will not be used. In this manner, when the trencher attachment frame or sub frame 160 is removed from the compact excavator 110, the stop pads 168 are also removed.
  • FIGS. 8 and 9 illustrate the function of the [0037] stop pads 168. In FIG. 8 the turntable 116 has been rotated clockwise to a position where a turntable stop bracket 118 has contacted the first stop pad 168. The turntable stop bracket 118 attaches to the turntable, extending from the bottom surface as shown in FIG. 7. Stop bracket 118 is a V-shaped bracket with a first surface 118 a and a second surface 118 b. In FIG. 8 surface 118 a is illustrated in the cut-away section of the turntable 116 in contact with the first stop pad 168.
  • In FIG. 9, the turntable has been rotated counter-clockwise until the [0038] second surface 118 b of turntable stop bracket 118 has contacted the second stop pad 168. In this manner, whenever the trencher attachment frame 160, including the stop pads 168, is mounted to the compact excavator 110, the rotation of the turntable 116 will be limited.
  • With this limitation, the [0039] backhoe 120 can still be positioned to interfere with the trenching boom 40, for instance if the boom were pivoted counterclockwise around its pivot 122 from the illustrated position in FIG. 6. However, when the backhoe 120 is centered, as illustrated in FIG. 6, the backhoe will not interfere. The potential for interference is higher when the trenching boom 140 is in a raised, transport position as illustrated in FIG. 11. However, with the compact excavator of the present invention, the operator has simply to position the backhoe in the center position, and then can be confident that there will not be any interference when rotating the turntable in order to operate the trenching boom.
  • FIG. 6 illustrates the mechanical elements that control the position of the backhoe, and of the turntable. The backhoe is positioned by a [0040] hydraulic cylinder 208, which is typically directly controlled by a joystick, actuated by the operator. The position the backhoe could be determined with a device 202 capable of measuring the linear travel of cylinder 208.
  • A rotary actuator, such as a hydraulic motor, positions the turntable which powers a [0041] gear 206 mounted onto the turntable that engages a gear 207 mounted onto the chassis. The position of the turntable can be determined, in a variety of methods, for example with a transducer 204 mounted by and actuated from the gears. In this example transducer 204 is mounted on the turntable such that it detects whenever it travels past a tooth of gear 207. By constantly monitoring this transducer, the position of the turntable can be continuously monitored. Another example would be to place transducer 204 on the turntable such that it detects certain targets mounted onto the chassis, such that it is possible to detect certain positions of the turntable.
  • An alternative embodiment that would further reduce the burden on the operator is illustrated schematically in FIG. 12, and would incorporate an [0042] electronic controller 200 to control the stopped positions as a function of the position of the backhoe 120. The electronic controller 200 would be capable receiving inputs from transducers 202 and 204, described previously as detecting the position of the backhoe and the position of the turntable. It will further be capable of receiving inputs 220 from the operator. In response it will control valve 210, that controls hydraulic power to the cylinder 208 that positions the backhoe, and the hydraulic motor that rotates gear 206 to control the rotational position of the turntable. Controller 200 will include memory and computational capacity such that the turntable would be stopped at various positions, depending on where the operator had left the backhoe, as necessary to prevent interference between the backhoe and the trencher.
  • [0043] Controller 200 includes computational capacity such that the position of the backhoe will be controlled based on the position of the turntable. Thus, when the turntable is rotated such that the operator is in the vicinity of the trencher boom, the backhoe is prevented from being rotated around its axis into a position where it could interfere with the trencher boom.
  • Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. [0044]

Claims (18)

1. An excavator comprising:
(a) an undercarriage;
(b) a turret operatively attached to the undercarriage, said turret being capable of unlimited rotation around a substantially vertical axis;
(c) a backhoe operatively attached to said turret;
(d) a trencher operatively mounted to said undercarriage; and
(e) a first component on the turret and a second component on the trencher wherein the first and second components cooperate to restrict the rotation of the turret such that the turret cannot rotate into a zone where the backhoe interferes with the trencher.
2. (Cancelled)
3. (Cancelled)
4. The excavator of claim 1 including means operatively attached to the undercarriage for selectively moving the undercarriage along the ground.
5. (Cancelled)
6. (Cancelled)
7. (Cancelled)
8. The excavator of claim 16 wherein the stops and stop brackets are positioned for preventing the backhoe from contacting the trencher and the turret is rotated, at least at such times when the backhoe is centered.
9. The excavator of claim 8 wherein the turret can rotate 360 degrees when the sub-frame is removed from the undercarriage.
10. (Cancelled)
11. The excavator of claim 17 wherein the at least one stop and at least one stop bracket are positioned for preventing the backhoe from contacting the trencher and the turret is rotated, at least at such times when the backhoe is centered.
12. The excavator of claim 11 wherein the turret can rotate 360 degrees when the sub-frame is removed from the undercarriage.
13. An apparatus comprising:
(a) a undercarriage;
(b) means operatively attached to said from for moving the undercarriage along the ground;
(c) a turret operatively rotatably attached to the undercarriage along a first substantially vertical axis;
(d) a backhoe operatively pivotally attached to the turret along a second substantially vertical axis;
(e) a trencher operatively attached to the undercarriage and occupying an area adjacent the undercarriage; and
(f) means operatively attached to at least one of the turret and the undercarriage for automatically preventing the backhoe from moving into an area occupied by the trencher.
14. An excavator comprising:
(a) an undercarriage;
(b) a turret capable of unlimited rotation around a swivel axis defined in the undercarriage including a stop; and
(c) a chain trencher including a trencher attachment frame for mounting to the undercarriage, the trencher attachment frame including at least one component that cooperates with said stop on the turret to restrict the rotation of the turret whenever the trencher is mounted to said excavator.
15. The excavator of claim 14 including means operatively attached to the undercarriage for selectively moving the undercarriage along the ground.
16. An excavator comprising:
(a) an undercarriage;
(b) a turret operatively attached to the undercarriage, said turret being capable of unlimited rotation around a substantially vertical axis;
(c) a backhoe operatively attached to said turret;
(d) a trencher operatively mounted to said undercarriage;
(e) a sub-frame selectively attached or detached from said undercarriage, said sub-frame having the trencher operatively attached thereto;
(f) a pair of stop members operatively attached to the sub-frame; and
(g) a pair of stop brackets operatively attached to the turret for contact with respective ones of said stop members when the turret rotates, whereby the rotation of the turret is limited when the sub-frame is attached to the undercarriage.
17. An excavator comprising:
(a) an undercarriage;
(b) a turret operatively attached to the undercarriage, said turret being capable of unlimited rotation around a substantially vertical axis;
(c) a backhoe operatively attached to said turret;
(d) a trencher operatively mounted to said undercarriage;
(e) a sub-frame selectively attached or detached from said undercarriage, said sub-frame having the trencher operatively attached thereto;
(f) at least one stop member operatively attached to the sub-frame; and
(g) at least one stop bracket operatively attached to the turret for contact with said at least one stop members when the turret rotates, whereby the rotation of the turret is limited when the sub-frame is attached to the undercarriage.
18. An excavator comprising:
(a) an undercarriage;
(b) a turret operatively attached to the undercarriage, said turret being capable of unlimited rotation around a substantially vertical axis;
(c) a backhoe operatively attached to said turret;
(d) a trencher operatively mounted to said undercarriage; and
(e) means for automatically preventing the backhoe from contacting the trencher.
US10/420,245 2003-04-22 2003-04-22 Excavator with trenching attachment Expired - Fee Related US6804903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/420,245 US6804903B1 (en) 2003-04-22 2003-04-22 Excavator with trenching attachment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/420,245 US6804903B1 (en) 2003-04-22 2003-04-22 Excavator with trenching attachment

Publications (2)

Publication Number Publication Date
US6804903B1 US6804903B1 (en) 2004-10-19
US20040211098A1 true US20040211098A1 (en) 2004-10-28

Family

ID=33131483

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/420,245 Expired - Fee Related US6804903B1 (en) 2003-04-22 2003-04-22 Excavator with trenching attachment

Country Status (1)

Country Link
US (1) US6804903B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997962A2 (en) * 2007-05-26 2008-12-03 J.C. Bamford Excavators Limited Method of operating a working machine with several tools
FR2924447A1 (en) * 2007-12-04 2009-06-05 Maxime Jouannet Hydraulic trencher for trenching ground to pass e.g. telecommunication cable pipes, has pinion driven by rotational effect caused by motor and in parallel with advancement of tow-hoe that permits to trench and form channel in ground
JP2012006132A (en) * 2010-06-28 2012-01-12 Hitachi Constr Mach Co Ltd Double-arm working machine
US20150191894A1 (en) * 2008-07-14 2015-07-09 Hudson Bay Holding B.V. Mobile Device
US10246853B2 (en) * 2013-04-12 2019-04-02 Hudson Bay Holding B.V. Mobile apparatus with operating system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004280583A1 (en) * 2003-10-03 2005-04-21 Michael T. Lumbers Multi-function work machine
US8024875B2 (en) * 2005-12-02 2011-09-27 Clark Equipment Company Compact excavator implement interface
US7654017B2 (en) * 2008-05-09 2010-02-02 Allan Black Trenching attachment having an internal combustion engine
US9303386B2 (en) * 2009-03-29 2016-04-05 Stephen T. Schmidt Tool attachments on an auto-powered mobile machine
US8347529B2 (en) 2009-04-09 2013-01-08 Vermeer Manufacturing Company Machine attachment based speed control system
US20140317967A1 (en) * 2013-04-24 2014-10-30 Caterpillar Inc. Excavator with Expanded Work Implement Compatibility
GB2531762A (en) 2014-10-29 2016-05-04 Bamford Excavators Ltd Working machine
US20160369477A1 (en) * 2015-06-18 2016-12-22 Kegan J. Lance Tool Module for Heavy Equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042236A (en) * 1959-12-14 1962-07-03 John S Pilch Trencher turret rotating apparatus
US3099098A (en) * 1961-11-20 1963-07-30 Charles J Davis Crawler trencher with tiltable body
US3603010A (en) * 1969-05-15 1971-09-07 Charles J Polinek Backhoe excavator with endless bucket attachment
US3710472A (en) * 1971-05-03 1973-01-16 G Gremillion Method of attaching a working implement to a back hoe bucket
US3911602A (en) * 1974-08-07 1975-10-14 A & A Mfg Co Inc Hydraulic and mechanical no-cut earth working machine
US4222186A (en) * 1978-06-26 1980-09-16 Molby Lloyd A Adaptable combination of vehicle and attachments
US4526425A (en) * 1983-04-04 1985-07-02 J. I. Case Company Dual wheel mounting arrangement
US5237888A (en) * 1992-04-22 1993-08-24 Vermeer Manufacturing Company Apparatus for remote motion control
US5970634A (en) * 1997-11-03 1999-10-26 Dann; James A. Semi-submersible machine for remediation of constructed drainage areas
US6351900B1 (en) * 2000-07-13 2002-03-05 Dewind Gregory A. Shaft driven trencher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552439A (en) * 1978-10-13 1980-04-16 Ishikawajima Harima Heavy Ind Co Ltd Back hoe trencher
JPS5673732A (en) * 1979-11-21 1981-06-18 Kawabe Nouken Sangyo Kk Excavation of trench by trencher and back-hoe
JPS6121239A (en) * 1984-07-05 1986-01-29 Hikoma Seisakusho Kk Excavator with trencher

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042236A (en) * 1959-12-14 1962-07-03 John S Pilch Trencher turret rotating apparatus
US3099098A (en) * 1961-11-20 1963-07-30 Charles J Davis Crawler trencher with tiltable body
US3603010A (en) * 1969-05-15 1971-09-07 Charles J Polinek Backhoe excavator with endless bucket attachment
US3710472A (en) * 1971-05-03 1973-01-16 G Gremillion Method of attaching a working implement to a back hoe bucket
US3911602A (en) * 1974-08-07 1975-10-14 A & A Mfg Co Inc Hydraulic and mechanical no-cut earth working machine
US4222186A (en) * 1978-06-26 1980-09-16 Molby Lloyd A Adaptable combination of vehicle and attachments
US4526425A (en) * 1983-04-04 1985-07-02 J. I. Case Company Dual wheel mounting arrangement
US5237888A (en) * 1992-04-22 1993-08-24 Vermeer Manufacturing Company Apparatus for remote motion control
US5970634A (en) * 1997-11-03 1999-10-26 Dann; James A. Semi-submersible machine for remediation of constructed drainage areas
US6351900B1 (en) * 2000-07-13 2002-03-05 Dewind Gregory A. Shaft driven trencher

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997962A2 (en) * 2007-05-26 2008-12-03 J.C. Bamford Excavators Limited Method of operating a working machine with several tools
EP1997962A3 (en) * 2007-05-26 2012-03-21 J.C. Bamford Excavators Limited Method of operating a working machine with several tools
FR2924447A1 (en) * 2007-12-04 2009-06-05 Maxime Jouannet Hydraulic trencher for trenching ground to pass e.g. telecommunication cable pipes, has pinion driven by rotational effect caused by motor and in parallel with advancement of tow-hoe that permits to trench and form channel in ground
US20150191894A1 (en) * 2008-07-14 2015-07-09 Hudson Bay Holding B.V. Mobile Device
JP2012006132A (en) * 2010-06-28 2012-01-12 Hitachi Constr Mach Co Ltd Double-arm working machine
US10246853B2 (en) * 2013-04-12 2019-04-02 Hudson Bay Holding B.V. Mobile apparatus with operating system

Also Published As

Publication number Publication date
US6804903B1 (en) 2004-10-19

Similar Documents

Publication Publication Date Title
US6804903B1 (en) Excavator with trenching attachment
GB2242657A (en) Hydraulic excavator vehicle
CN110468896A (en) A kind of crawler type ditching machine
US5596826A (en) Level indicating mechanism for a work machine
EP3901377B1 (en) System and method for performing an earthmoving operation
JP2890109B2 (en) General-purpose equipment for underwater civil engineering work
EP2999822A2 (en) Founding of a pile
CN210288523U (en) Excavator suitable for side wall operation
CN213952337U (en) Ditching and backfilling machine for skid steer loader
EP3974585B1 (en) Construction machine
KR100228235B1 (en) Operating machine
CN211621749U (en) Chain bucket type excavator
CN211621732U (en) Hydraulic excavator for municipal construction
RU2684646C2 (en) Universal pipe-laying module
CN112177080A (en) Ditching and backfilling machine for skid steer loader
JP3747448B2 (en) Mizobori machine
US20040221490A1 (en) Apparatus for adjusting the position of an earth moving blade
JPS59370Y2 (en) Continuous trench drilling equipment
JP2022036792A (en) Heavy equipment system
JPH077397Y2 (en) Ditching unit
EP0955415A1 (en) Hydraulic shovel
JPH018601Y2 (en)
JPH11107667A (en) Machine for foundation work
JP2529859Y2 (en) Vehicle-mounted construction machinery
JP3151146B2 (en) Crane for pipe laying work

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERMEER MANUFACTURING COMPANY, IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOPER, MARK;REEL/FRAME:014244/0701

Effective date: 20030417

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20081019