Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040224638 A1
Publication typeApplication
Application numberUS 10/423,490
Publication dateNov 11, 2004
Filing dateApr 25, 2003
Priority dateApr 25, 2003
Also published asCA2517817A1, CA2517817C, CA2707756A1, CN1765059A, CN101320872A, CN101320872B, CN101320985A, CN101320985B, CN101320986A, CN101320986B, CN101320987A, CN101320987B, DE202004021334U1, DE202004021385U1, DE202004021386U1, DE202004021490U1, DE202004021494U1, DE202004021620U1, DE202004021812U1, DE202004021813U1, EP1618675A1, EP1618675A4, EP1618675B1, EP2019351A2, EP2019351A3, EP2026546A2, EP2026546A3, EP2026546B1, EP2034616A1, EP2034616B1, EP2244154A2, EP2244154A3, EP2244154B1, EP2251763A2, EP2251763A3, EP2251763B1, US7627343, US7751853, US7783070, US8050714, US8078224, US8165634, US8190205, US8271038, US8467829, US20080123285, US20080125031, US20090018682, US20090191732, US20100087099, US20110151724, US20110151725, US20120115414, US20120315864, US20130173035, WO2004098079A1
Publication number10423490, 423490, US 2004/0224638 A1, US 2004/224638 A1, US 20040224638 A1, US 20040224638A1, US 2004224638 A1, US 2004224638A1, US-A1-20040224638, US-A1-2004224638, US2004/0224638A1, US2004/224638A1, US20040224638 A1, US20040224638A1, US2004224638 A1, US2004224638A1
InventorsAnthony Fadell, Stephen Zadesky, John Filson
Original AssigneeApple Computer, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Media player system
US 20040224638 A1
Abstract
A media player system is disclosed. One aspect of the media player system pertains to a docking station that allows a media player to communicate with other media devices. Another aspect of the media player system pertains to a wireless media player system that includes a hand held media player capable of transmitting information over a wireless connection and one or more media devices capable of receiving information over the wireless connection. Another aspect of the media player system pertains to a method of wirelessly connecting the hand held media player to another device. The method includes selecting a media item on the hand held media player; selecting one or more remote recipients on the hand held media player; and transmitting the media item locally to the hand held media player, and wirelessly to the selected remote recipients. Another aspect of the media player system pertains to a hand held music player that includes a transmitter for transmitting information over a wireless connection. The transmitter is configured to at least transmit a continuous music feed to one or more personal tuning devices that each include a receiver capable of receiving information from the transmitter over the wireless connection. Yet another aspect of the media player system pertains to a connector that includes a housing and a plurality of spatially separated contacts mounted within the housing. A first set of contacts are directed at a first functionality and a second set of contacts are directed at a second functionality that is different than the first functionality.
Images(17)
Previous page
Next page
Claims(25)
What is claimed is:
1. A docking station that allows a media player to communicate with other media devices, the media player having a media connector, the docking station comprising:
a housing;
a media bay disposed inside the housing, the media bay being capable of receiving the media player, the media bay including a media bay opening and a media bay connector, the media bay opening providing access to the media bay connector, the media bay connector being configured for removable engagement with the media connector of the media player, the media and media bay connectors providing a connection interface that allows data and power transmissions therethrough; and
one or more output connectors that are operatively coupled to the media bay connector, at least one of the output connectors being configured to allow data transmission therethrough for communication with the other media devices.
2. The docking station as recited in claim 1 wherein the connection interface includes a plurality of different interfaces, the different interfaces being selected from PS/2, serial, parallel, network, USB, and Firewire interfaces.
3. The docking station as recited in claim 2 wherein the different interfaces are further selected from remote, dedicated audio, dedicated video, dedicated charging or dedicated powering interfaces.
4. The docking station as recited in claim 3 wherein the different interfaces include at least two data interfaces.
5. The docking station as recited in claim 3 wherein the two data interfaces are USB and Firewire interfaces.
6. The docking station as recited in claim 1 wherein the media bay is configured to receive a back side of the media player.
7. The docking station as recited in claim 1 wherein the media bay is configured to receive a bottom end of the media player.
8. The docking station as recited in claim 1 wherein the media bay is configured to receive the entire media player.
9. The docking station as recited in claim 1 wherein the media bay is configured to receive a portion of the media player.
10. The docking station as recited in claim 1 wherein the media player is an MP3 music player, the MP3 music player having a hard drive for storing data associated with songs, the hard drive being operatively coupled to the media connector, and wherein the connector interface is configured to upload or download data associated with songs between the MP3 music player and the other media devices when the media connector of the MP3 music player is operatively coupled to the media bay connector of the docking station and when the output connector of the docking station is operatively coupled to the other media devices.
11. The docking station as recited in claim 1 wherein the docking station is a stand alone device.
12. The docking station as recited in claim 1 wherein the docking station is integrated with at least one media device, the media device being selected from a notebook computer, general purpose computer, sound system, photo display or mobile radio.
13. A wireless media player system, comprising
a hand held media player configured to transmit media over a wireless connection;
one or more media devices configured to receive media over the wireless connection.
14. The wireless media player system as recited in claim 13 wherein the hand held media player includes a transmitter, and wherein the one or more media devices includes a receiver capable of receiving transmissions from the transmitter.
15 The wireless media player system as recited in claim 13 wherein the hand held media player is configured to receive media over the wireless connection and wherein the one or more media devices are configured to transmit media over the wireless connection.
16. The wireless media player system as recited in claim 15 wherein the hand held media player and the one or more media devices each include a transceiver capable of receiving and transmitting media therebetween.
17. The wireless media player system as recited in claim 13 wherein the wireless connection is provided by one of FM, RF, Bluetooth, 802.11, UWB, IR and magnetic links.
18. The wireless media player system as recited in claim 11 wherein the hand held media player is selected from a music player, game player, video player and video camera and wherein the media devices are selected from other media players, desktop computers, notebook computers, PDAs, audio equipment, video equipment, peripheral devices, personal mobile radios, personal tuning devices or personal display devices.
19. The wireless media player system as recited in claim 18 wherein the hand held media player is a first music player and wherein at least one of the media devices is a second music player or a personal tuning device capable of processing audio communications.
20. The wireless media player system as recited in claim 19 wherein the music player is a MP3 music player.
21. The wireless media player system as recited in claim 19 wherein the first music player includes a transmitter for transmitting information over the wireless connection, the transmitter being configured to at least transmit a continuous music feed to one or more second music players or personal tuning devices that each include a receiver capable of receiving information from the transmitter over the wireless connection.
22. The wireless media player system as recited in claim 13 wherein the media player and one or more media devices each include a processor, a user interface, a storage block, input/output circuitry and a communication terminal.
23. The wireless media player system as recited in claim 22 wherein the storage block includes a hard drive.
24. A method of wirelessly connecting a hand held media player to another device, the method comprising:
selecting a media item on the hand held media player;
selecting one or more remote recipients on the hand held media player; and
transmitting the media item locally to the hand held media player, and wirelessly to the selected remote recipients.
25. A connector for use in a media player system, the connector comprising:
a housing; and
a plurality of spatially separated contacts mounted within the housing, a first set of contacts being appropriated for Firewire, a second set of contacts being appropriated for USB.
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates generally to a media player. More particularly, the present invention relates to improved features for connecting the media player to external devices.

[0003] 2. Description of the Related Art

[0004] The hand held consumer electronics market is exploding, and an increasing number of those products are including mechanism for expanding connections thereto. By way of example, hand held consumer electronic products may correspond to cellular phones, personal digital assistants (PDAs), video games, radios, MP3 players, CD players, DVD players, televisions, game players, cameras, etc. Most of these devices include some sort of connector for making connections to other devices (e.g., Firewire, USB, audio out, video in, etc.). Some of these devices have been capable of connections to other devices through docking stations. For example, cellular phones have included docking stations for charging the cellular phones and PDAs have included docking stations for communicating with a host computer. Other devices have been capable of wireless connections therebetween. For example, cellular phones use wireless connections to communicate back and forth (e.g., include wireless receivers).

[0005] MP3 music players in particular have typically made connections to other devices through connectors. For example, the MP3 music player known as the Ipod manufactured by Apple Computer of Cupertino, Calif. has included a Firewire connector for communicating with a computer. The Firewire connector through a cable connected to the computer generally allows data transmissions to travel back and forth between the MP3 music player and the computer. As should be appreciated, MP3 music players are configured to play MP3 formatted songs. These songs may be uploaded from the computer and thereafter stored in the MP3 player. As is generally well known, the MP3 format is a compression system for digital music that helps reduce the size of a digitized song without hurting the sound quality, i.e., compress a CD-quality song without losing the CD sound quality. By way of example, a 32 MB song on a CD may compress down to about a 3 MB song using the MP3 format. This generally lets a user download a song in minutes rather than hours.

[0006] Although current media players such as MP3 music players work well, there is a continuing need for improved features for connecting or coupling media players to one or more external devices (e.g., input or output).

SUMMARY OF THE INVENTION

[0007] The invention relates, in one embodiment, to a docking station that allows a media player to communicate with other media devices. The media player (e.g., music player) having a first media connector for connection to the docking station. The docking station includes a housing and a media bay disposed inside the housing. The media bay is capable of receiving the media player. The media bay includes a media bay opening and a second media connector. The media bay opening provides access to the media bay connector. The media bay connector is configured for removable engagement with the first media connector of the media player. The first and second media connectors are configured to allow data and power transmissions therethrough. The data transmission includes at least two data formats. The docking station also includes one or more outputs that are operatively coupled to the second media bay connector. The outputs are configured to allow at least data transmissions therethrough.

[0008] The invention relates, in another embodiment, to a wireless media player system. The wireless media player system includes a hand held media player (e.g., music player) capable of transmitting information over a wireless connection. The wireless media player system also includes one or more media devices (e.g., tuning devices) capable of receiving information over the wireless connection.

[0009] The invention relates, in another embodiment, to a method of wirelessly connecting a hand held media player to another device. The method includes selecting a media item on the hand held media player. The method also includes selecting one or more remote recipients on the hand held media player. The method further includes transmitting the media item locally to the hand held media player, and wirelessly to the selected remote recipients.

[0010] The invention relates, in another embodiment, to a hand held music player (e.g., MP3 player) that includes a transmitter for transmitting information over a wireless connection. The transmitter is configured to at least transmit a continuous music feed to one or more personal tuning devices that each include a receiver capable of receiving information from the transmitter over the wireless connection.

[0011] The invention relates, in yet another embodiment, to a connector for use in a media player system. The connector includes a housing and a plurality of spatially separated contacts mounted within the housing. A first set of contacts are appropriated for Firewire transmissions, a second set of contacts being appropriated for USB transmissions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:

[0013]FIG. 1 is a perspective view of a media player, in accordance with one embodiment of the present invention.

[0014]FIG. 2 is a diagram of a media player system, in accordance with one embodiment of the present invention.

[0015]FIGS. 3A and 3B are diagrams of a docking station, in accordance with one embodiment of the present invention.

[0016]FIGS. 4A and 4B are diagrams of a docking station, in accordance with one embodiment of the present invention.

[0017]FIG. 5 is a block diagram of a media player system, in accordance with one embodiment of the present invention.

[0018]FIG. 6A is a top view of a connector assembly, in accordance with one embodiment of the present invention.

[0019]FIG. 6B is a front view of a connector assembly, in accordance with one embodiment of the present invention.

[0020]FIGS. 6C is a pin designation chart, in accordance with one embodiment of the present invention.

[0021]FIG. 7A is a perspective diagram of a stand alone docking station, in accordance with one embodiment of the present invention.

[0022]FIG. 7B is a top view of a stand alone docking station, in accordance with one embodiment of the present invention.

[0023]FIG. 7C is a top view of a stand alone docking station with its cover removed, in accordance with one embodiment of the present invention.

[0024]FIG. 7D is a back view of a stand alone docking station, in accordance with one embodiment of the present invention.

[0025]FIG. 7E is a side view of a stand alone docking station, in accordance with one embodiment of the present invention.

[0026]FIG. 8 is a diagram of a media player docking station in use, in accordance with one embodiment of the invention.

[0027]FIG. 9A is a diagram of a cable adapter, in accordance with one embodiment of the present invention.

[0028]FIG. 9B is a diagram of a cable adapter, in accordance with one embodiment of the present invention.

[0029]FIG. 9C is a diagram of a cable adapter, in accordance with one embodiment of the present invention.

[0030]FIG. 9D is a functional diagram of a cable adapter, in accordance with one embodiment of the present invention.

[0031]FIG. 10 is a diagram of a notebook computer with a built-in docking station, in accordance with another embodiment of the present invention.

[0032]FIG. 11 is a diagram of a desktop computer with a built-in docking station, in accordance with another embodiment of the present invention.

[0033]FIG. 12 is a diagram of a boom box with a built-in docking station, in accordance with another embodiment of the present invention.

[0034]FIG. 13 is a diagram of a photo frame with a built-in docking station, in accordance with another embodiment of the present invention.

[0035]FIG. 14 is a diagram of a family radio with a built-in docking station, in accordance with another embodiment of the present invention.

[0036]FIG. 15 is a diagram of a of a wireless communication system, in accordance with another embodiment of the present invention.

[0037]FIG. 16 is a block diagram of a of a wireless communication system, in accordance with another embodiment of the present invention.

[0038]FIG. 17 is a flow diagram of a wireless transmission method, in accordance with one embodiment of the present invention

[0039]FIG. 18 is a perspective diagram of a wireless communication network in use, in accordance with another embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0040] The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.

[0041]FIG. 1 is a perspective diagram of a media player 100, in accordance with one embodiment of the present invention. The term “media player” generally refers to computing devices that are dedicated to processing media such as audio, video or other images, as for example, music players, game players, video players, video recorders, cameras, and the like. In some cases, the media players contain single functionality (e.g., a media player dedicated to playing music) and in other cases the media players contain multiple functionality (e.g., a media player that plays music, displays video, stores pictures and the like). In either case, these devices are generally portable so as to allow a user to listen to music, play games or video, record video or take pictures wherever the user travels.

[0042] In one embodiment, the media player is a handheld device that is sized for placement into a pocket of the user. By being pocket sized, the user does not have to directly carry the device and therefore the device can be taken almost anywhere the user travels (e.g., the user is not limited by carrying a large, bulky and often heavy device, as in a laptop or notebook computer). For example, in the case of a music player, a user may use the device while working out at the gym. In case of a camera, a user may use the device while mountain climbing. In the case of a game player, the user can use the device while traveling in a car. Furthermore, the device may be operated by the users hands, no reference surface such as a desktop is needed. In the illustrated embodiment, the media player 100 is a pocket sized hand held MP3 music player that allows a user to store a large collection of music (e.g., in some cases up to 4,000 CD-quality songs). Although used primarily for storing and playing music, the MP3 music player shown herein may also include additional functionality such as storing a calendar and phone lists, storing and playing games, storing photos and the like. In fact, in some cases, it may act as a highly transportable storage device.

[0043] By way of example, the MP3 music player may correspond to the Ipod MP3 player manufactured by Apple Computer of Cupertino, Calif. The pocket sized Ipod has a width of about 2.4 inches, a height of about 4 inches and depths ranging from about 0.72 to about 0.84 inches.

[0044] As shown in FIG. 1, the media player 100 includes a housing 102 that encloses internally various electrical components (including integrated circuit chips and other circuitry) to provide computing operations for the media player 100. In addition, the housing may also define the shape or form of the media player. That is, the contour of the housing 102 may embody the outward physical appearance of the media player 100. The integrated circuit chips and other circuitry contained within the housing may include a microprocessor (e.g., CPU), memory (e.g., ROM, RAM), a power supply (e.g., battery), a circuit board, a hard drive, other memory (e.g., flash) and/or various input/output (I/O) support circuitry. The electrical components may also include components for inputting or outputting music or sound such as a microphone, amplifier and a digital signal processor (DSP). The electrical components may also include components for capturing images such as image sensors (e.g., charge coupled device (CCD) or complimentary oxide semiconductor (CMOS)) or optics (e.g., lenses, splitters, filters). The electrical components may also include components for sending and receiving media (e.g., antenna, receiver, transmitter, transceiver, etc.).

[0045] In the illustrated embodiment, the media player 100 includes a hard drive thereby giving the media player massive storage capacity. For example, a 20 GB hard drive can store up to 4000 songs or about 266 hours of music. In contrast, flash-based media players on average store up to 128 MB, or about two hours, of music. The hard drive capacity may be widely varied (e.g., 5, 10, 20 MB, etc.). In addition to the hard drive, the media player 100 shown herein also includes a battery such as a rechargeable lithium polymer battery. These type of batteries are capable of offering about 10 hours of continuous playtime to the media player.

[0046] The media player 100 also includes a user interface 103. The user interface 103 allows the user of the media player 100 to initiate actions on the media player 100 and provides the user with output associated with using the media player (e.g., audio, video, images, etc.). The user interface 103 may be widely varied. By way of example, the user interface 103 may include switches, buttons, keys, dials, trackballs, joysticks, touch pads, touch screens, displays, microphones, speakers, cameras, and the like.

[0047] In the illustrated embodiment, the media player 100 includes a display screen 104 and related circuitry. The display screen 104 is used to display a graphical user interface as well as other information to the user (e.g., text, objects, graphics). By way of example, the display screen 104 may be a liquid crystal display (LCD). In one particular embodiment, the display screen corresponds to a 160-by-128-pixel high-resolution display, with a white LED backlight to give clear visibility in daylight as well as low-light conditions. As shown, the display screen 104 is visible to a user of the media player 100 through an opening 105 in the housing 102, and through a transparent wall 106 that is disposed in front of the opening 105. Although transparent, the transparent wall 106 may be considered part of the housing 102 since it helps to define the shape or form of the media player 100.

[0048] In addition to the display screen 104, the media player 100 also includes a touch pad 110. The touch pad is an intuitive interface that provides easy one-handed operation, i.e., lets a user interact with the media player with one or more fingers. The touch pad 110 is configured to provide one or more control functions for controlling various applications associated with the media player 100. For example, the touch initiated control function may be used to move an object or perform an action on the display screen 104 or to make selections or issue commands associated with operating the media player 100. In order to implement the touch initiated control function, the touch pad 110 may be arranged to receive input from a finger moving across the surface of the touch pad 110, from a finger holding a particular position on the touch pad and/or by a finger tapping on a particular position of the touch pad. The touch pad may be widely varied. For example, the touch pad may be a conventional touch pad based on a Cartesian coordinate system, or the touch pad may be a touch pad based on a Polar coordinate system. Furthermore, the touch pad 110 may be used in a relative and/or absolute mode. In absolute mode, the touch pad 110 reports the absolute coordinates of where it is being touched. For example x, y in the case of the Cartesian coordinate system or (r, θ) in the case of the Polar coordinate system. In relative mode, the touch pad 110 reports the direction and/or distance of change. For example, left/right, up/down, and the like.

[0049] The touch pad 110 generally consists of a touchable outer surface 111 for receiving a finger for manipulation on the touch pad 110. Although not shown in FIG. 1, beneath the touchable outer surface 111 is a sensor arrangement. The sensor arrangement includes a plurality of sensors that are configured to activate as the finger sits on, taps on or passes over them. In the simplest case, an electrical signal is produced each time the finger is positioned over a sensor. The number of signals in a given time frame may indicate location, direction, speed and acceleration of the finger on the touch pad, i.e., the more signals, the more the user moved his or her finger. In most cases, the signals are monitored by an electronic interface that converts the number, combination and frequency of the signals into location, direction, speed and acceleration information. This information may then be used by the media player 100 to perform the desired control function on the display screen 104.

[0050] The position of the display screen 104 and touch pad 110 relative to the housing 102 may be widely varied. For example, they may be placed at any external surface (e.g., top, side, front, or back) of the housing 102 that is accessible to a user during manipulation of the media player 100. In most cases, the touch sensitive surface 111 of the touch pad 110 is completely exposed to the user. In the illustrated embodiment, the touch pad 110 is located in a lower, front area of the housing 102. Furthermore, the touch pad 110 may be recessed below, level with, or extend above the surface of the housing 102. In the illustrated embodiment, the touch sensitive surface 111 of the touch pad 110 is substantially flush with the external surface of the housing 102.

[0051] The shape of the display screen 104 and the touch pad 110 may also be widely varied. For example, they may be circular, rectangular, triangular, and the like. In general, the outer perimeter of the shaped touch pad defines the working boundary of the touch pad. In the illustrated embodiment, the display screen is rectangular and the touch pad 110 is circular. More particularly, the touch pad is annular, i.e., shaped like or forming a ring. When annular, the inner and outer perimeter of the shaped touch pad defines the working boundary of the touch pad.

[0052] In addition to above, the media player 100 may also include one or more buttons 112. The buttons 112 are configured to provide one or more dedicated control functions for making selections or issuing commands associated with operating the media player 100. By way of example, in the case of an MP3 music player, the button functions may be associated with opening a menu, playing a song, fast forwarding a song, seeking through a menu and the like. In most cases, the button functions are implemented via a mechanical clicking action. The position of the buttons 112 relative to the touch pad 110 may be widely varied. For example, they may be adjacent one another or spaced apart. In the illustrated embodiment, the buttons 112 are configured to surround the inner and outer perimeter of the touch pad 110. In this manner, the buttons 112 may provide tangible surfaces that define the outer boundaries of the touch pad 110. As shown, there are four buttons 112A that surround the outer perimeter and one button 112B disposed in the center or middle of the touch pad 110. By way of example, the plurality of buttons 112 may consist of a menu button, play/stop button, forward seek button and a reverse seek button, and the like.

[0053] Moreover, the media player 100 may also include a hold switch 114. The hold switch 114 is configured to activate or deactivate the touch pad and/or buttons. This is generally done to prevent unwanted commands by the touch pad and/or buttons, as for example, when the media player is stored inside a user's pocket. When deactivated, signals from the buttons and/or touch pad are not sent or are disregarded by the media player. When activated, signals from the buttons and/or touch pad are sent and therefore received and processed by the media player.

[0054] The media player 100 may also include one or more connectors for receiving and transmitting data to and from the media player. By way of example, the media player may include one or more audio jacks, video jacks, data ports and the like. The media player 100 may also include one or more connectors for receiving and transmitting power to and from the media player 100.

[0055] In the illustrated embodiment, the media player includes a headphone jack 116 and a data port 118. The headphone jack 116 is capable of receiving a headphone or speaker plug associated with headphones/speakers configured for listening to sound being outputted by the media device 100. The data port 118, on the other hand, is capable of receiving a data plug/cable assembly configured for transmitting and receiving data to and from a host device such as a general purpose computer (e.g., desktop computer, portable computer). By way of example, the data port 118 may be used to upload or down load audio, video and other images to and from the media device 100. For example, the data port may be used to download songs and play lists, audio books, ebooks, photos, and the like into the storage mechanism of the media player.

[0056] The data port 118 may be widely varied. For example, the data port may be a PS/2 port, a serial port, a parallel port, network interface port, a USB port, a Firewire port and/or the like. In some cases, the data port 118 may be a wireless link such as a radio frequency (RF) link or an optical infrared (IR) link in order to eliminate the need for a cable. Although not shown in FIG. 1, the media player 100 may also include a power port that receives a power plug/cable assembly configured for delivering powering to the media player 100. In some cases, the data port 118 may serve as both a data and power port.

[0057] Although only one data port is provided, it should be noted that this is not a limitation and that multiple data ports may be incorporated into the media player. In a similar vein, the data port may include multiple data functionality, i.e., integrating the functionality of multiple data ports into a single data port. Furthermore, it should be noted that the position of the hold switch, headphone jack and data port on the housing may be widely varied. That is, they are not limited to the positions shown in FIG. 1. They may be positioned almost anywhere on the housing (e.g., front, back, sides, top, bottom). For example, the data port may be positioned on the top, sides, back, front surfaces of the housing rather than the bottom surface as shown. Although it should be noted that having the data port on the bottom surface provides some benefits when connecting to other devices.

[0058]FIG. 2 is a diagram of a media player system 150, in accordance with one embodiment of the present invention. The media player system comprises a media player 152 and one or more media devices 154 that are connected via a media link 156. As mentioned above, the term “media player” generally refers to computing devices that are dedicated to processing media such as audio, video or other images, as for example, music players, game players, video players, video recorders, cameras, and the like. By way of example, the media player 152 may correspond to the media player 100 shown in FIG. 1. Media devices 154 are similar to the media player 152 in that they process media such as audio, video or other images. The media devices may be widely varied. By way of example, the media devices may correspond to other media players, desktop computers, notebook computers, personal digital assistants, video or imaging equipment (e.g., cameras, monitors), audio equipment (home stereos, car stereos, boom boxes), family radios (e.g., walkie talkies), peripheral devices (e.g., keyboards, mice, displays, printers, scanners), personal media devices (discussed in greater detail below) and the like.

[0059] The media devices 154 and the media player 152 are configured to communicate with one another through media link 156. The protocol under which they communicate may be widely varied. By way of example, the communication protocol may be a master/slave communication protocol, server/client communication protocol, peer/peer communication protocol, and the like. Using a master/slave communication protocol, one of the devices is a master and the other is a slave. The master controls the slave. Using a client/server communication protocol, a server program responds to requests from a client program. The server program may operate on the media player or the media device. Using a peer to peer communication protocol either of the two devices can initiate a communication session.

[0060] The media link 156 may be wired and/or wireless. For example, the media link 156 may be made through connectors and ports or through receivers, transmitters and/or transceivers. The media link may also be one way or two way. For example, in the case of one way, the media player may be configured to transmit signals to the media device but not to receive information from the media device (or vice versa) or in the case of two way, both the media player and media device may be enabled to receive and transmit signals therebetween. The signals may be data (analog, digital), power (AC, DC), and/or the like. In most cases, the data corresponds to data associated with the media player as for example audio, video, images and the like.

[0061] Both the media player 152 and the media device 154 include a media terminal 158A and 158B, respectively. The media terminals 158 may provide a direct connection between the media player 152 and the media device 154 (e.g., integrally formed with the media device) or it may provide an indirect connection between the media player 152 and the media device 154 (e.g., a stand alone device). The media terminals 158 provide the media link 156 through one or more connection interfaces. As such, the media player 152 may serve the media devices 154 and/or the media devices 154 may serve the media player 152. The connection interfaces associated with the media terminals 158 may be wired or wireless connection interfaces.

[0062] In wired connections, the media terminals 158 are configured to physically connect so as to operatively couple the media player 152 to the media device 154. For example, the media player 152 and the media device 154 may include a mating connection made up of connector and port. By way of example, the connection interface may include one or more of the following interfaces: PS/2, serial, parallel, network (e.g., Ethernet), USB, Firewire and/or the like. The connection interface may also include one or more remote, audio (digital or analog), video (digital or analog), and/or charging interfaces. In one embodiment, the media terminal 158B is a part of docking station that permits the media player 152 to connect with the media device 154. The docking station may be integrally formed with the media device 154 thereby providing a direction connection with the media player 152 or it may be a standalone device that provides an indirect connection between the media player 154 and the media device 152.

[0063] In wireless connections, the media terminals 158 do not physically connect. For example, the media player 152 and the media device 154 may include a receiver and transmitter for wireless communications therebetween. By way of example, the connection interface may include one or more of the following interfaces: FM, RF, Bluetooth, 802.11 UWB (ultra wide band), IR, magnetic link (induction) and/or the like.

[0064] In brief, FM (frequency modulation) is a method of impressing data onto an alternating-current (AC) wave by varying the instantaneous frequency of the wave. This scheme can be used with analog or digital data. RF generally refers to alternating current AC having characteristics such that, if the current is input to an antenna, an electromagnetic field is generated suitable for wireless broadcasting and/or communications. The frequencies associated with RF cover a wide range of the electromagnetic radiation spectrum as for example from about 9 kHz to thousands of GHz. Bluetooth generally refers to a computing and telecommunications industry specification that describes how mobile phones, computers and personal digital assistants can easily interconnect with each other using short range wireless connection. 802.11 generally refers to a family of specification for wireless local area networks (WLANs) developed by a working group of the Institute of Electrical and Electronics Engineers (IEEE). UWB refers to a wireless technology for transmitting large amounts of digital data over a wide specrum of frequency bands with very low power for a short distance. IR generally refers wireless technoilogies that convey data through infrared radiation.

[0065]FIGS. 3 and 4 are diagrams of docking stations 170 and 172, respectively, in accordance with several embodiment of the present invention. The docking stations 170 and 172 are hardware components that include a set of connection interfaces that allow a media player 174 to communicate with other media devices (not shown) that are not usually taken along with the media player 174. That is, the docking stations 170 and 172 make available additional functionality that would not otherwise be achieved through the media player 174 and/or the other media devices. The docking stations 170 and 172 may be built into the media device (e.g., hard wired) or they may be stand-alone devices that are connected to the media device through a separate connection (e.g., cord). By way of example, the media player 174 may generally correspond to the media player shown in FIG. 1.

[0066] As shown, each of the docking stations includes a housing 178. The housings 178 are configured with a media bay 180 capable of receiving the media player 174 for direct or indirect connection to a media device. The media bay 180 includes a media bay opening 182 in the surface 184 of the housing 178. The media bay opening 182 is configured to physically receive the media player 174. In other words, the media player 174 can be inserted into the media bay opening 182. Once the media player 174 is inserted into the media bay opening 182 (as shown in FIGS. 3B and 4B), the functionality provided by a media device operatively coupled to the docking stations 170 and 172 becomes available for use by the media player 174. Additionally or alternatively, the functionality provided by the media player 174 may become available for use by the media device operatively coupled to the docking stations 170 and 172. In most cases, a connector 186 of the media player 174 couples to a corresponding connector 188 within the media bay 180 when the media player 174 is placed in the inserted position. The media player 180 essentially becomes a fixed location device when coupled to the docking stations 170 and 172 through the media bay 180 (unless the docking station happens to be in another mobile device). When the media player 174 is taken out, it becomes mobile again. As should be appreciated, the docking stations 172 and 174 let a user simultaneously enjoy expansion possibilities with the portability of a smaller device.

[0067] The media bays 180 of the docking stations 170 and 172 may be widely varied. In most cases, the media bay openings 182 are dimensioned to receive the media players 174. That is, the inner peripheral surfaces of the media bay openings 182 are sized to receive the outer peripheral surfaces of the media player 174 (allowing for some tolerances). In FIG. 3, the media bay 180 is configured to receive the back end of the media player 174 while in FIG. 4 the media bay 180 is configured to receive a bottom end of the media player 174. In either case, the connector 186 on the media player 174 is configured to connect with the connector 188 on the docking station 170 and 172 when the media player 174 is inserted in the media bay 180. The position of the inserted media player 174 relative to the housing 178 may be widely varied. For example, the media bay 180 may be configured to receive the entire media player 174 as shown in FIG. 3 or it may only be configured to receive a portion of the media player 174 as shown in FIG. 4.

[0068] The inserted media player 174 is typically retained within the media bay 180 until it is removed from the media bay 180 (e.g., doesn't slide out). For example, a retention mechanism such as a snap, a spring loaded latch or a magnet may be used to hold the media player 174 within the media bay opening 182. The media player 174 may also be held within the opening 182 by the force of the engaged connectors 186/188 or under its own weight (e.g., gravity). An ejection mechanism may additionally be used to release the media player 174 from the media bay 180 (e.g., to overcome any holding forces). In some cases (as shown in FIG. 3), the user interface 175 of the media player 174 is completely exposed to the user so that it is accessible to a user while inserted in the media bay 180. In cases such as these, the user interface 175 (e.g., front surface of the media player) may be recessed below, level with, or extend above the external surface of the housing 178. In the illustrated embodiment of FIG. 3, the front surface 190 of the media player 174 is substantially flush with the external surface 184 of the housing 178.

[0069]FIG. 5 is a block diagram of a media player/docking station system 200, in accordance with one embodiment of the present invention. The system 200 generally includes a media player 202 and a docking station 204. By way of example, the media player and docking station may correspond to the media player and docking station shown in FIGS. 3 and 4. As shown, the media player 202 includes a processor 206 (e.g., CPU or microprocessor) configured to execute instructions and to carry out operations associated with the media player 202. For example, using instructions retrieved for example from memory, the processor 206 may control the reception and manipulation of input and output data between components of the media player 202. In most cases, the processor 206 executes instruction under the control of an operating system or other software. The processor 206 can be a single-chip processor or can be implemented with multiple components.

[0070] In most cases, the processor 206 together with an operating system operates to execute computer code and produce and use data. The computer code and data may reside within a program storage block 208 that is operatively coupled to the processor 206. Program storage block 208 generally provides a place to hold data that is being used by the system 200. By way of example, the program storage block 208 may include Read-Only Memory (ROM), Random-Access Memory (RAM), hard disk drive, flash memory and/or the like. As is generally well known, RAM is used by the processor as a general storage area and as scratch-pad memory, and can also be used to store input data and processed data. ROM can be used to store instructions or program code followed by the processor as well as other data. Hard disk drives can be used to store various types of data and can permit fast access to large amounts of stored data. The computer code and data could also reside on a removable program medium and loaded or installed onto the computer system when needed.

[0071] In one embodiment, program storage block 208 is configured to store an audio program for controlling the distribution of audio in the media player 202. The audio program may contain song lists associated with songs also stored in the storage block 208. The songs may be accessed through a user interface 210 operatively coupled to the processor 206. The user interface 210 may include a display for visually displaying the song lists (as part of a GUI interface) and a touch pad or buttons for selecting a song to be played or reviewing and/or customizing the song lists, i.e., the user may quickly and conveniently review the lists and make changes or selections thereto.

[0072] The media player also includes an input/output (I/O) controller 212 that is operatively coupled to the processor 206. The (I/O) controller 212 may be integrated with the processor 206 or it may be a separate component as shown. The I/O controller 212 is generally configured to control interactions with one or more media devices 214 that can be coupled to the media player 202. The I/O controller 212 generally operates by exchanging data (and/or power) between the media player 202 and the media devices 214 that desire to communicate with the media player 202. In some cases, the media devices 214 may be connected to the I/O controller 212 through wired connections and in other cases the media devices 214 may be connected to the I/O controller 212 through wireless connections. In the illustrated embodiment, the media device 214 is capable of being connected to the I/O controller 212 through a wired connection.

[0073] The media player 202 also includes a connector 216 capable of connecting to a corresponding connector 218 located within the docking station 204. The docking station 204 is operatively coupled to the media device 214 through transfer circuitry 220. The transfer circuitry 220 may provide a direct or indirect link to the media device 214. For example, the transfer circuitry 220 may be hard wired to the media device 214 as for example when the docking station 204 is integrated with the media device 214 or it may be passively wired as through a cord that temporarily plugs into the media device 214.

[0074] The connector arrangement 216/218 used to connect the media player 202 and the docking station 204 may be widely varied. However, in the illustrated embodiment, the connector arrangement 216/218 includes both power and data contacts. The power contacts 222 of the media player 202 are operatively coupled to a battery 224 of the media player 202 and the data contacts 226 of the media player 202 are operatively coupled to the I/O controller 212. As should be appreciated, the power contacts 222A of the connector 216 are configured to engage the power contacts 222B of the connector 218 so as to provide operational or charging power to the media player 202, and the data contacts 226A of the connector 216 are configured to engage the data contacts 226B of the connector 218 so as to provide data transmissions to and from the media player 202. The data contacts may be widely varied. For example, they may be configured to provide one or more data transmitting functionalities including Firewire, USB, USB 2.0, Ethernet, and the like. The connectors may also include a variety of other contacts 230 for transmitting other types of data as for example remote control, video (in/out), audio (in/out), analog TV, and the like.

[0075]FIGS. 6A and 6B are diagrams of a connector assembly pin arrangement 235, in accordance with one embodiment of the present invention. As shown, the arrangement 235 includes a first connector 236 and a second connector 238. The connectors 236 and 238 may be placed in a media player, docking station, at the end of a cord or cable and/or the like. By way of example, the connectors 236 and 238 may generally correspond to the connectors 216/218 of FIG. 5. The first and second connectors 236 and 238 each include a housing 240 and 242 and a plurality of corresponding contacts 244 and 246 that when engaged operatively couple the connectors 236 and 238 together. The housing is generally formed from an insulating material such as plastic and the contacts are generally formed from an electrically conductive material such as a copper alloy. In the illustrated embodiment, the contacts 244 protrude from the housing 240 for insertion into corresponding contacts 246 that are recessed within the housing 242 (e.g., male-female connection). In some cases, the contacts 244 are configured to snugly fit into the contacts 246 so that the connectors are held together. Additionally or alternatively, the connectors 236 and 238 may include a locking means for locking the connectors together. For example, one of the connectors may include a latch that engages and disengages to and from a portion of the other connector. The configuration of the contacts may be widely varied (e.g., spacing, # of rows or columns, etc.). In the illustrated embodiment, the contacts are spaced apart in a single row. The connectors may be manufactured using a variety of techniques. By way of example, the connectors may be manufactured using techniques similar to those used by JAE of Japan.

[0076] The signals carried by the contacts may be widely varied. For example, a portion of the contacts may be dedicated to Firewire signals while another portion may be dedicated to USB signals. The contacts may also be used for grounds, charging, powering, protocols, accessory identification, audio, line-in, line-out, and the like. Additional contacts may be used for grounding the housing of the connector. The number of contacts may also be widely varied. The number generally depends on the signals needed to support the devices using the connectors. In one embodiment, some of the contacts are used to support Firewire while other contacts are used to support USB. In this embodiment, the minimum number of contacts corresponds to the number required to support these devices. In most cases, however, the number of contacts tends to be greater than this number (other signals are needed). In the illustrated embodiment, each of the connectors includes at least 30 contacts, including Firewire contacts, USB contacts, grounding contacts, powering contacts, reserved contacts and the like. An example of a pin count which may used can be seen in FIG. 6C. Although this pin count is shown, it should be noted that it is not a limitation and that any configuration of the functions described therein may be used.

[0077] FIGS. 7A-E are diagrams of a stand alone docking station 250, in accordance with one embodiment of the present invention. The stand alone docking station 250 allows a media player 252 to communicate with other media devices (not shown). By stand alone, it is meant that it is physically separated from but operatively connectable to the media device (rather than being integrated therewith). As shown, the docking station 250 includes a housing 254 that encloses internally various electrical and structural components and that defines the shape or form of the docking station 250. The shape of the housing may be widely varied. For example, it may be rectangular, circular, triangular, cubical, and the like. In the illustrated embodiment, the housing 254 has a rectangular shape. The housing 254 may be formed by one or more housing components. For example, as shown, the housing 254 may be made up of a top member 256 and a base member 258. The manner in which the members 256 and 258 are connected may be widely varied (e.g., screws, bolts, snaps, latch, etc.).

[0078] Within a top surface 260 of the housing as shown in FIG. 7A, 7B and 7E there is provided a media bay opening 262 for physically receiving a bottom portion 264 of the media player 252. As shown, the media bay opening 262 has shape that coincides with the shape of the media player 252, i.e., the bottom portion 264 of the media player 252 may be inserted within the media bay opening 262. The depth of the opening 262 is generally configured to keep the user interface of the media player 252 exposed to the user. The opening 262 may be vertical or sloped. As shown in FIG. 7E, the opening 262 is sloped so that the media player 252 rests in a tilted position within the docking station 250. As should be appreciated, a tilted media player 252 is easier to use (e.g., more ergonomic). The slope may be widely varied. For example, it may tilt the media player 252 about 5 to about 25 degrees and more particularly about 15 degrees.

[0079] Inside the opening 262 there is provided a first connector 266 for engaging a corresponding connector disposed on the bottom surface of the media player 252. The first connector 266 is typically exposed through the housing 254 so that the media player connector can engage it. By way of example, the connector arrangement may correspond to the connector arrangement shown in FIG. 6. In the illustrated embodiment, the media player connector is a female port and the docking station connector 266 is a male plug. The plug is generally dimension for a tight fit within the port so as to secure the connection between the media player 252 and the docking station 250 (e.g., no interlock except for connector). The first connector 266 is generally sloped to a similar angle as the opening 262 so that engagement occurs between the first connector and the media player connector when the media player 252 is slid into the opening 262. As should be appreciated, the sides of the opening 262 serve as guides for placing the connectors in the correct engagement position.

[0080] The first connector 266 may be operatively coupled to one or more second connectors, each of which may be used to connect to some external device such as a media device, power plug and the like. In some cases, the information passing through the first connector 266 is directed to a single second connector while in other cases the information is split into multiple second connectors. For example, the contacts of a single connector 266 may be split into different connectors such as one or more data lines, power lines, audio lines and the like. The second connectors may be similar to the first connector or they may be different. Furthermore, multiple second connectors may be similar or they may be different from one another. The second connectors are also exposed through the housing. In some cases, the second connectors are indirectly coupled to the docking station 250. For example, they may be coupled to the docking station 250 through a cord or cable that is attached to the docking station 250. One end of the cord is coupled to the docking station 250 while the other end, which includes the second connector is free to be engaged with an external device. In other cases, the second connectors are directly coupled to the docking station 250. For example, they may be attached to a portion of the docking station 250 without using a cord or cable. In cases such as these, the second connectors are free to be engaged directly to an external device or they may be coupled through a removable cord or cable. Alternatively or additionally, the cord it self may be used to split information, i.e., a Y cord or cable.

[0081] The internal components of the docking station 250 can best seen in FIG. 7C. FIG. 7C shows the docking station 250 with the top member 256 of the housing 254 removed. As shown, the internal components include at least a first connector 266 and a second connector 268 (both of which may correspond to a connector arrangement shown in FIG. 6). The internal components may also include an audio out connector 270. The connectors 266-270 are connected via a flex cable 272. The connectors 266-270 are positioned on one or more printed circuit boards 274 that are attached to the base member 258 of the housing 254. The first connector 266 is located at a position that places it within the opening 262 of the housing 254 (as shown in FIG. 7B). The second connector 268 and the audio out connector 270 are located at positions that place them within openings 276 at the backside of the housing 254 for external connection therefrom (as shown in FIG. 7D). Also contained within the housing 254 is a ballast 278 enabling the docking station 250 to support the media player 252 when inserted therein. An EMI shield may also be placed over the flex cable 272 to provide shielding.

[0082]FIG. 8 is an illustration showing the docking station 250 of FIG. 7 in use, in accordance with one embodiment of the present invention. As shown, the docking station 250 is operatively coupled to a media device 280 through a cable 282, i.e., the first end of the cable 282 is engaged with the second connector 268 of the docking station 250 and the second end of the cable 282 is engaged with a connector positioned on the media device 280. Furthermore, the media player 252 is operatively coupled to the docking station 250 via the above mentioned connector arrangement, i.e., the media player 252 is positioned in the media bay opening 262 of the docking station 250 such that the connectors are engaged. Through these connections, the media player 252 may communicate with the media device 280, i.e., data and/or power may be passed therebetween. In the illustrated embodiment, the media player 252 is a music player and the media device 280 is a desktop computer. As such, the user, for example using the user interface on the media player 252, may upload or down load songs between the media player 252 and the desktop computer 280 via the docking station 250. When uploading and downloading are completed, the user may simply remove the media player 252 from the docking station 250 and walk away.

[0083]FIGS. 9A-9C are diagrams of cable adapters 300, 302 and 304, respectively, that may be used with the docking station 250 of FIG. 7, in accordance with several embodiments of the present invention. In all three figures, the cable adapters 300, 302 and 304 include a docking station connector 306. The docking station connector 306 is configured to be received by the second connector 268 of the docking station 250. Although this connector arrangement may be widely varied, in the illustrated embodiment, the connector arrangement corresponds to the connector arrangement shown in FIG. 6.

[0084] As shown in FIG. 9A, the cable adapter 300 includes a cable 308. The docking station connector 306 is disposed at one end of the cable 308 and a media device connector 310 is disposed at the other end of the cable 308. The media device connector 310 may be widely varied. For example, it may correspond to a power connector, a Firewire connector, a USB connector and the like. It may also correspond to a connector similar to the docking station connector. In the illustrated embodiment, the media device connector 310 is a Firewire connector. An example of a cable adapter 300 including a docking station connector 306 using the pin count of FIG. 6C and a media device connector 310 using a 6 pin Firewire is shown in FIG. 9D.

[0085] Referring to FIG. 9B, the cable adapter 302 includes a pair of cables 312 and 314. The docking station connector 306 is disposed at one end of the cables 312 and 314 and a plurality of media device connectors 316 are disposed at the other ends of the cables 312 and 314. Each of the media device connectors 312 and 314 may be widely varied. For example, they may correspond to a power connector, a Firewire connector, a USB connector and the like. In the illustrated embodiment, the first media device connector 316A is a power connector and the second media device connector 316B is a USB connector.

[0086] As shown in FIG. 9C, the cable adapter 304 is configured to be used with a car stereo. The cable adapter includes a cable 318. The docking station connector 306 is disposed at one end of the cable 318 and a media device connector 320 is disposed at the other end of the cable 318. In this particular embodiment, the media device connector 320 is in the form of a cassette for insertion into a cassette deck of the car stereo. The cable adapter 304 also includes a power adapter plug 322 configured for insertion into a car power jack (e.g., cigarette lighter). The power adapter plug 322 extends from the docking station connector 306. In order to use the cable adapter 304, the user simply places the power adapter plug 322 in the power jack (this supports the docking station as well as provides power therethrough for powering or charging the media player) and the media device connector 320 in the cassette deck of the car stereo. The user may then select a song to be played through the car stereo using the user interface of the media player.

[0087] Although the cable adapters are shown as separate components of the docking station, it should be noted that in some embodiments they may be integrated therewith. That is, instead of having a docking station connector, the ends of the cables may be attached to the docking station.

[0088] Referring to FIGS. 10-14, integrated docking stations will be described in greater detail. Like stand alone docking stations, the integrated docking stations allow a media player to communicate with other media devices. However, unlike the stand alone docking station, the integrated docking station is integrated with or built into the media device. As should be appreciated, the electrical and structural components of the integrated docking station are typically enclosed via the housing of the media device, i.e., the docking stations do not have their own housing. The housing of the media devices also typically defines the media bay in which the media player is placed for connectivity to the media device. That is, the media devices themselves include one or more media bays for receiving the media players. The media bays are typically externally accessible to the media players so that media players can be easily be inserted into or removed from the media bays. The media bays may be any of those previously described. The removability of the media players allows the media player to support a variety of different types of media devices in a flexible manner. By way of example, the media devices may correspond to desktop computers, notebook computers, home sound systems, car sound systems, portable sound systems, home theater systems, video projectors, displays, audio or video recording equipment, cameras (e.g., photos, video), telephones, and the like. They may also include peripheral computing devices such as scanners, printers, keyboards, and the like.

[0089]FIG. 10 is a notebook computer 350 with an integrated docking station 352, in accordance with one embodiment of the present invention. The notebook computer 350 includes a lid 354 and a base 356. The docking station 352 is integrated within the base 356. The docking station 352 includes a media bay 358 that may be placed anywhere on the base 356, as for example, the sides, top, front, back or bottom surfaces. The media bay 358 may be configured to receive any surface of a media player 359 so long as a connection is made between the media player 359 and the docking station 352. For example, it may be configured to receive the back of the media player as shown in FIG. 3 or it may be configured to receive the bottom of the media player as shown in FIG. 4. In the illustrated embodiment, the media bay 358 is configured to receive the back side of the media player 359 thus exposing the user interface of the media player 359 to the user. In some cases, the user interface may be the primary user interface of the notebook computer 350. For example, the touch pad of the media player shown in FIG. 1 may be used to perform actions on the notebook computer 350. By way of example, the notebook computer may correspond to any of those manufactured by Apple Computer of Cupertino, Calif.

[0090]FIG. 11 is a perspective diagram of a general purpose computer 360 with an integrated docking station 362, in accordance with one embodiment of the present invention. The computer 360 generally includes a base 364 and a display 366 operatively coupled to the base 364. The base 364 and the display 366 may be separate components, i.e., they each have their own housing, as in traditional computers or they may be integrated into a single housing so as form an all in one machine (as shown). The docking station 362 is integrated within the base 364. The docking station 362 includes a media bay 368 that may be placed anywhere on the base, as for example, the sides, top, front, back or bottom surfaces. The media bay 368 may be configured to receive any surface of a media player 369 so long as a connection is made between the media player 369 and the docking station 362. For example, it may be configured to receive the back of the media player as shown in FIG. 3 or it may be configured to receive the bottom of the media player as shown in FIG. 4. In the illustrated embodiment, the media bay 368 is configured to receive the bottom side of the media player 369. In some cases, the user interface of the media player 369 may be exposed and in other cases, the user interface may be completely covered within the media bay 358. By way of example, the general purpose computer may correspond to any of those manufactured by Apple Computer of Cupertino, Calif.

[0091]FIG. 12 is front view of a sound system 370 with an integrated docking station 372, in accordance with one embodiment of the present invention. The sound system may be widely varied. For example, it may be a substantially fixed or portable unit. In the illustrated embodiment, the sound system 370 is a flat panel unit that includes a base 374 and a pair of speakers 376. The docking station 372 is integrated within the base 374. The docking station 372 includes a media bay 378 that may be placed anywhere on the base 374, as for example, the sides, top, front, back or bottom surfaces. The media bay 378 may be configured to receive any surface of a media player 379 so long as a connection is made between the media player 379 and the docking station 372. For example, it may be configured to receive the back of the media player as shown in FIG. 3 or it may be configured to receive the bottom of the media player as shown in FIG. 4. In the illustrated embodiment, the media bay 378 is configured to receive the back side of the media player 379. In some cases, the user interface of the media player 379 may be the primary user interface of the sound system 370 and in other cases, the user interface is secondary to a user interface of the sound system 370.

[0092]FIG. 13 is a photo display 380 with an integrated docking station 382, in accordance with one embodiment of the present invention. The photo display 380 is configured to showcase one or more images. For example, the photo display may be set on a desk or placed on a wall to display one or more family photos in a controlled manner. The photo display 380 generally includes a base 384 and a display 386 that is disposed in the base 384. The docking station 382 is integrated within the base 384. The docking station 382 includes a media bay 388 that may be placed anywhere on the base 384, as for example, the sides, top, front, back or bottom surfaces. The media bay 388 may be configured to receive any surface of a media player 389 so long as a connection is made between the media player 389 and the docking station 382. For example, it may be configured to receive the back of the media player as shown in FIG. 3 or it may be configured to receive the bottom of the media player as shown in FIG. 4. In the illustrated embodiment, the media bay 388 is configured to receive the back side of the media player 389. In some cases, the user interface of the media player 389 may be the primary user interface of the photo display system and in other cases, the user interface is secondary to a user interface of the photo display system.

[0093]FIG. 14 is a mobile radio 390 with an integrated docking station 392, in accordance with one embodiment of the present invention. The mobile radio allows a user to connect to other users in a local area, as for example when two parties are outdoors in different locations. For example, the mobile radio may provide voice communications, messaging (pager, email), digital one way radio (one to one and group), digital two way radio (one to one and group), data services (wireless web and private networks). In one embodiment, the mobile radio 390 allows a media player 399 to act as a mobile broadcasting station. For example, the user may broadcast music from the media player 399 to other media devices in a local area or within a local network. The mobile radio 390 generally includes a base 394 that includes the radio broadcast components (e.g., antenna, transmitter, receiver, volume controls, squelch controls, frequency controls, etc.).

[0094] The docking station 392 is integrated within the base 394. The docking station 392 includes a media bay 398 that may be placed anywhere on the base, as for example, the sides, top, front, back or bottom surfaces. The media bay 398 may be configured to receive any surface of the media player 399 so long as a connection is made between the media player 399 and the docking station 392. For example, it may be configured to receive the back of the media player as shown in FIG. 3 or it may be configured to receive the bottom of the media player as shown in FIG. 4. In the illustrated embodiment, the media bay 398 is configured to receive the back side of the media player 399 so that the user interface is exposed to the user. As such, the user may select a song and thereafter broadcast it to other users in the network.

[0095] Although the mobile radio and media device are shown as separate devices, it should be noted that they may be integrated thus eliminating the need for a docking station. For example, the radio broadcasting components such as receivers, transmitters, microphones, speakers and the like may be built into the media player as for example the media player shown in FIG. 1. The radio broadcasting components may be widely varied. For example, they may be associated with technologies including FM, RF, Bluetooth, 802.11 UWB (ultra wide band), IR, magnetic link (induction) and/or the like.

[0096]FIG. 15 is a diagram of a wireless communication system 400, in accordance with one embodiment of the present invention. The wireless communication system 400 generally includes a media player 402 and one or more media devices 404. The media player 402 is configured to send media via a wireless communication link 406 to the media devices 404 and the media devices 404 are configured to receive the media sent by the media player 402 over the wireless communication link 406. The media player is essentially configured to act as a personal transmitting station so that the user can transmit media stored on the media player to other devices. In some cases, the media devices 404 may also send media to the media player 402 and the media player 402 may also receive media from the media devices 404. By way of example, the media may generally correspond to audio, video, images, text and the like.

[0097] In order to send and receive media, the players and devices 402 and 404 generally include a transmitter, a receiver or a transceiver as well as some sort of antenna. The media is generally sent via the transmitter and the media is generally received via the receiver. In one embodiment, the media player includes a transmitter while the media devices include a receiver (for one way communications). In another embodiment, both devices include a transceiver (for two way communications). The antenna may be fully contained within the players/devices 402 and 404 or they may extend outside the devices (as shown). By way of example, the wireless communication link may correspond to FM, RF, Bluetooth, 802.11, UWB (ultra wide band), IR (infrared), magnetic link (induction) and/or the like.

[0098] The media player 402 may be widely varied. In the illustrated embodiment, the media player corresponds to the media player shown in FIG. 1. The media devices 404 may also be widely varied. These devices generally depend on the type of media being sent by the media player 402. By way of example, the media devices 404 may generally correspond to a personal mobile radio 404A, a personal tuning device 404B, a personal display device 404C, and the like. Personal generally refers to the fact that these devices pertain to a particular user. In one embodiment, these devices are handheld devices that are sized for placement into a pocket of the user. By being pocket sized, the user does not have to directly carry the device and therefore the device can be taken almost anywhere the user travels.

[0099] Personal mobile radios 404A generally include a microphone and speaker (or audio jack) so as to allow voice communications. The mobile radios may be based on push to talk (PTT) whereby pressing a button opens the communication line from the mobile radio to the media player. The mobile radios typically include an antenna such as a rugged rubber duck that consists of a coiled up element encased in rubber. The mobile radios may also include a channel tuner for selecting which channel to receive and send information, and a volume control dial for adjusting the volume of the audio signal. The mobile radios may also include a small display showing the selected channel, received signal strength, output power and the like. Mobile radios are generally well known and will not be described in greater detail.

[0100] Personal tuning devices 404B generally include a speaker (or headphone jack) and a volume control dial so as to listen to audio based media (e.g., music) being sent by the media player 402. The personal tuning devices may also include an antenna and a frequency tuner for selecting which channel to receive and send information. In one embodiment, the personal tuning device 404B corresponds to a radio (e.g., the media player may include an FM transmitter and the radio may include an FM receiver).

[0101] Personal display devices 404C generally include a display so as to view video or imaged based media being sent by the media player 402. In some cases, the personal display device 404C additionally includes speakers and volume control so that both photos/video and audio based media may be received from the media player. The video or photos may be produced by the media player through a camera located thereon. The video or photos may also be stored in a storage component located within the media player. In one embodiment, the personal display device corresponds to a television or TV (e.g., the media player may include a VHF or UHF transmitter and the TV may include a VHF or UHF receiver).

[0102] The media devices may also include a media player 404D, a notebook computer 404E or a general purpose computer 404F. The second media player 404D may be similar to the first media player 402 or it may be a different device altogether. By way of example, the second media player 404D may generally correspond to the media player shown in FIG. 1. Both the notebook computer 404E and the general purpose computer 404F may include the hardware necessary for communicating over the wireless communication link (e.g., antenna, receivers, transceivers) or they may be connected to a wireless hub 410 that includes the required hardware.

[0103]FIG. 16 is a block diagram of a wireless communication system 420, in accordance with one embodiment of the present invention. The system 420 generally includes a media player 422 and a media device 424 that connect via a wireless communication link 426. Both the media player 422 and the media device 424 may be widely varied. For ease of discussion, the media device 424 corresponds to a second media player that is similar to the first media player. Both media players include a processor 428 that is operatively coupled to a user interface 430, a storage block 432, input/output circuitry 434 and a communication terminal 436.

[0104] The processor 428 is configured to execute instructions and to carry out operations associated with the media players 422, 424. For example, using instructions retrieved for example from memory, the processor 428 may control the reception and manipulation of input and output data between components of the media players 422, 424. In most cases, the processor 428 executes instruction under the control of an operating system or other software. The processor 428 can be a single-chip processor or can be implemented with multiple components.

[0105] The user interface 430 allows the user of the media players 422, 424 to initiate actions on the media players 422, 424 and provides the user with output associated with using the media players 422, 424 (e.g., audio, video, images, etc.). The user interface 430 may be widely varied. By way of example, the user interface 430 may include switches, buttons, keys, dials, trackballs, joysticks, touch pads, touch screens, displays, microphones, speakers, cameras, and the like.

[0106] The storage block 432 provides a place to hold data that is being used by the media players 422, 424. By way of example, the storage block 432 may include Read-Only Memory (ROM), Random-Access Memory (RAM), hard disk drive, flash memory and/or the like. In the illustrated embodiment, the storage block includes at least a hard drive.

[0107] The input/output (I/O) support circuitry 434 controls interactions with one or more I/O devices 440 that can be coupled to the media players 422, 424. The I/O support circuitry 434 may be integrated with the processor 428 or it may be a separate component (as shown). The I/O support circuitry 434 generally operates by exchanging data (and/or power) between the media players 422,424 and the I/O devices 440 that desire to communicate with the media players 422,424. In most cases, the I/O devices 440 may be connected to the I/O support circuitry 434 through one or more connectors, wires or cables. By way of example, the I/O devices 440 may be internal or peripheral devices such as other media players, notebook computers, personal digital assistants, general purpose computers, storage devices, additional user interfaces, audio equipment (e.g., speakers, headphones), video or imaging equipment (e.g., cameras), network cards, and the like. In the illustrated embodiment, the I/O device 440 corresponds to a head set. The head set may be connected to the media player through a headphone jack.

[0108] The communication terminal 436 controls interactions with one or more media devices 424 that can be coupled to the media player 422 through a wireless link. The communication terminal 436 may include a transmitter, receiver or transceiver. In one embodiment, the first media player 422 includes a transmitter and the second media player 424 includes a receiver thereby providing one way communication therebetween. In the illustrated embodiment, the first media player 422 includes a first transceiver and the second media player includes a second transceiver 424 for two way communication therebetween. The transmitter is configured to transmit information over the wireless communication link and the receiver is configured to receive information over the wireless communication link while the transceiver is configured to both transmit and receive information over the wireless communication link. The components of the receivers, transmitters and transceiver are generally well known within the technological filed from which they come (e.g., FM, RF, Bluetooth, 802.11 UWB, IR, magnetic link) and therefore they will not be described in greater detail.

[0109]FIG. 17 is a flow diagram of a wireless transmission method 450, in accordance with one embodiment of the present invention. The method may be implemented by a media player, as for example the media player shown in FIGS. 15 or 16. The method generally begins at block 452 where a media item is selected. This is generally accomplished by user operating the media player via the user interface of the media player. Depending on the application, the user may conveniently move through a list of media items and thereafter make a selection once the desired media item is found. In the case of music, the user may scroll through a list of songs until a desired song is found. In the case of images, the user may move through a proof sheet until a desired image is found.

[0110] Following block 452, the flow proceeds to block 454 where the remote recipients are selected. Remote recipients generally refer to other devices that are capable of receiving the selected media item from the media player. Selecting the remote recipients may include selecting a signal channel as for example in the case of a broadcast (e.g., FM) or selecting a desired address as for example in the case of a network connection (e.g., Bluetooth). In broadcasting, a media item is transmitted over airwaves for public reception by anyone with a receiver tuned to the right signal channel, i.e., the media item is cast or thrown in all directions at the same time. In networking, a media item is transmitted to one or more unique addresses, i.e., each media device has its own unique address. When utilizing broadcasting, the user may simply select a channel via the user interface of the media player. For example, the user of the media player may select FM 98.1 and therefore the user of the media device must select FM 98.1 in order to receive the media item. When utilizing networking, the user may select one or more addresses via the user interface of the media player. For example, the user may enter one or more unique address directly or the user may select one or more unique addresses from a preexisting group stored in the media player. In some cases, the unique addresses may be stored as a buddy list.

[0111] Following block 454, the flow proceeds to block 456 where the media item(s) is transmitted. The media item may be transmitted locally to the media player and/or it may be transmitted wirelessly to the remote recipient. In most cases, the media item is transmitted to both the media player as well as to the remote recipients.

[0112] The various aspects of the method described above can be used alone or in various combinations. The method is preferably implemented by a combination of hardware and software, but can also be implemented in hardware or software. The method can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, hard drive, flash memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves.

[0113]FIG. 18 is an illustration showing a personal transmitting station 500 in use, in accordance with one embodiment of the present invention. By way of example, the personal transmitting station 500 may correspond to the media player shown in FIG. 1. The personal transmitting station 500 is wirelessly connected to one or more personal media devices 502 through one or more wireless links 504. These devices 500 and 502 are connected via a wireless communication signal such as any of those previously described.

[0114] Although the personal transmitting station 500 may be configured to transmit several types of data to the personal media devices 502, in the illustrated embodiment, the personal transmitting station 500 is configured to transmit audio data in the form of music 502 (e.g., the personal transmitting station includes MP3 functionality for example) to one or more personal media devices 502 acting as personal tuning devices. As such, the user of the personal transmitting station 500 can perform disc jockey functions, i.e., the user can determine what songs to be played on both the personal transmitting station 500 as well as the personal tuning devices 502.

[0115] In this particular illustration, a first skier 506 holds the personal transmitting station 500 while second, third and fourth skiers 508, 510 and 512 each hold personal tuning devices 502. As shown, the first skier 506 is located away from the second, third and fourth skiers 508, 510 and 512. The first skier 506 is located on a first hill 514, the second and third skiers 508 and 510 are located on a ski lift 516, and the fourth skier 502 is skiing down a second hill 518. As should be appreciated, all of these locations are within the broadcasting or networking range of the personal transmitting station 500.

[0116] The personal transmitting station 500 is configured to send a music signal to the personal tuning devices 502 held by the second, third and fourth skiers 508, 510 and 512 and the personal tuning devices 502 are configured to receive the music signal sent from the personal transmitting station 500. The first skier 506 can therefore effect changes to what is being listened to by the second, third and fourth skiers 508, 510 and 512 by simply selecting a different song to be played on the personal transmitting station 500 (even though he is in a different location than the rest of the skiers). For example, the first skier 506 may end a first song and select a second song to be played therefore causing the personal transmitting station 500 to send the second song to the personal tuning devices 502.

[0117] Both the personal transmitting station 500 as well as the personal tuning devices 502 include a means for outputting sound. For example, they may contain speakers or jacks for coupling to headphones. These devices may also include a means for adjusting the volume. For example, they may contain dials or buttons for increasing or decreasing the volume. In some cases, the personal tuning devices may include a means for making song requests, i.e., text messaging or voice communications.

[0118] While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. For example, although the invention has been described in terms of an MP3 music player, it should be appreciated that certain features of the invention may also be applied to other types of media players such as video recorders, cameras, and the like. Furthermore, the MP3 music player described herein is not limited to the MP3 music format. Other audio formats such as MP3 VBR (variable bit rate), AIFF and WAV formats may be used. Moreover, certain aspects of the invention are not limited to handheld devices. For example, the touch pad may also be used in other computing devices such as a portable computer, personal digital assistants (PDA), cellular phones, and the like. The touch pad may also be used a stand alone input device that connects to a desktop or portable computer. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. For example, although the touch pad has been described in terms of being actuated by a finger, it should be noted that other objects may be used to actuate it in some cases. For example, a stylus or other object may be used in some configurations of the touch pad. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6973360 *Aug 23, 2004Dec 6, 2005Inventec CorporationPortable computer system with a rotatable plate for playing multimedia data directly
US7024160 *Aug 7, 2003Apr 4, 2006Compal Electronics, IncWireless transceiver with enhanced protection against interference
US7206868 *Jan 27, 2006Apr 17, 2007Microsoft CorporationMethod and system for providing a peripheral service to a host computing device
US7260417 *May 4, 2004Aug 21, 2007Lsi CorporationWireless storage enterprise connectivity
US7260423 *May 4, 2004Aug 21, 2007Lsi CorporationWireless storage device connectivity
US7280802 *Jul 8, 2003Oct 9, 2007Netalog, Inc.FM transmitter and power supply/charging assembly for MP3 player
US7293122 *Jun 30, 2006Nov 6, 2007Apple Inc.Connector interface system facilitating communication between a media player and accessories
US7305506 *Jun 27, 2006Dec 4, 2007Apple Inc.Method and system for transferring status information between a media player and an accessory
US7310089 *May 16, 2005Dec 18, 2007Interlink Electronics, Inc.Annular potentiometric touch sensor
US7373110 *Dec 9, 2004May 13, 2008Mcclain JohnPersonal communication system, device and method
US7415563 *Jun 27, 2006Aug 19, 2008Apple Inc.Method and system for allowing a media player to determine if it supports the capabilities of an accessory
US7417202Sep 2, 2005Aug 26, 2008White Electronic Designs CorporationSwitches and systems employing the same to enhance switch reliability and control
US7429108Aug 22, 2006Sep 30, 2008Outland Research, LlcGaze-responsive interface to enhance on-screen user reading tasks
US7438414May 3, 2006Oct 21, 2008Outland Research, LlcGaze discriminating electronic control apparatus, system, method and computer program product
US7439465Jun 1, 2007Oct 21, 2008White Electronics Designs CorporationSwitch arrays and systems employing the same to enhance system reliability
US7441058Sep 11, 2006Oct 21, 2008Apple Inc.Method and system for controlling an accessory having a tuner
US7441062 *Apr 27, 2004Oct 21, 2008Apple Inc.Connector interface system for enabling data communication with a multi-communication device
US7444130Aug 18, 2006Oct 28, 2008Nextstep, Inc.Tethered digital butler consumer electronic device and method
US7444388Apr 13, 2006Oct 28, 2008Concert Technology CorporationSystem and method for obtaining media content for a portable media player
US7474677Aug 12, 2003Jan 6, 2009Bose CorporationWireless communicating
US7477507Sep 21, 2005Jan 13, 2009Klipsch, LlcAdjustable receiver for digital sound storage devices
US7487226 *Jul 31, 2003Feb 3, 2009Hewlett-Packard Development Company, L.P.System and method for transferring digital content on a memory card
US7525216Jan 7, 2005Apr 28, 2009Apple Inc.Portable power source to provide power to an electronic device via an interface
US7535465Sep 2, 2003May 19, 2009Creative Technology Ltd.Method and system to display media content data
US7540788Jan 5, 2007Jun 2, 2009Apple Inc.Backward compatible connector system
US7541776Dec 10, 2004Jun 2, 2009Apple Inc.Method and system for operating a portable electronic device in a power-limited manner
US7552009Jul 14, 2006Jun 23, 2009Honda Motor Co., Ltd.System and method for synchronizing data for use in a navigation system
US7554531Dec 2, 2005Jun 30, 2009Interlink Electronics, Inc.Annular potentiometric touch sensor
US7555291 *Aug 26, 2005Jun 30, 2009Sony Ericsson Mobile Communications AbMobile wireless communication terminals, systems, methods, and computer program products for providing a song play list
US7558894 *Sep 11, 2006Jul 7, 2009Apple Inc.Method and system for controlling power provided to an accessory
US7567847 *Aug 8, 2005Jul 28, 2009International Business Machines CorporationProgrammable audio system
US7573159Mar 9, 2005Aug 11, 2009Apple Inc.Power adapters for powering and/or charging peripheral devices
US7580254Oct 19, 2006Aug 25, 2009David AndersonApparatus, system, and method for secure storage bay for an electronic handheld device
US7580255Aug 24, 2005Aug 25, 2009Apple Inc.Docking station for hand held electronic devices
US7581036Oct 13, 2004Aug 25, 2009Microsoft CorporationOffline caching of control transactions for storage devices
US7581119Jan 7, 2005Aug 25, 2009Apple Inc.Method and system for discovering a power source on a peripheral bus
US7603414Dec 14, 2006Oct 13, 2009Outland Research, LlcSystem, method and computer program product for collaborative background music among portable communication devices
US7609824Apr 8, 2009Oct 27, 2009Nexstep, Inc.Tethered digital butler consumer electronic device and method
US7624417Jan 27, 2006Nov 24, 2009Robin DuaMethod and system for accessing media content via the internet
US7632114 *Mar 30, 2006Dec 15, 2009Apple Inc.Interface connecter between media player and other electronic devices
US7632146May 1, 2009Dec 15, 2009Apple Inc.Backward compatible connector system
US7633076Oct 24, 2006Dec 15, 2009Apple Inc.Automated response to and sensing of user activity in portable devices
US7634296Dec 2, 2005Dec 15, 2009General Instrument CorporationSet top box with mobile phone interface
US7634605 *May 22, 2006Dec 15, 2009Apple Inc.Method and system for transferring stored data between a media player and an accessory
US7649744Feb 27, 2009Jan 19, 2010Apple Inc.Handheld computing device
US7656623Nov 10, 2005Feb 2, 2010Apple Inc.Methods and apparatus for charging a battery in a peripheral device
US7660831Jan 7, 2007Feb 9, 2010Apple Inc.Synchronization methods and systems
US7664796 *Oct 13, 2004Feb 16, 2010Microsoft CorporationElectronic labeling for offline management of storage devices
US7669130Apr 15, 2005Feb 23, 2010Apple Inc.Dynamic real-time playback
US7673083 *Sep 11, 2006Mar 2, 2010Apple Inc.Method and system for controlling video selection and playback in a portable media player
US7675746Aug 31, 2008Mar 9, 2010Apple Inc.Docking station for hand held electronic devices
US7680959Jul 11, 2006Mar 16, 2010Napo Enterprises, LlcP2P network for providing real time media recommendations
US7685341May 6, 2005Mar 23, 2010Fotonation Vision LimitedRemote control apparatus for consumer electronic appliances
US7694048 *May 6, 2005Apr 6, 2010Fotonation Vision LimitedRemote control apparatus for printer appliances
US7714265Jan 5, 2007May 11, 2010Apple Inc.Integrated proximity sensor and light sensor
US7724532Aug 7, 2006May 25, 2010Apple Inc.Handheld computing device
US7728316Nov 15, 2006Jun 1, 2010Apple Inc.Integrated proximity sensor and light sensor
US7734256 *Oct 11, 2005Jun 8, 2010Belkin International, Inc.System for interfacing with an audio player, and method of manufacturing same
US7739410Jan 7, 2007Jun 15, 2010Apple Inc.Synchronization methods and systems
US7743187Jan 4, 2007Jun 22, 2010Telechips, Inc.Audio system, and USB/UART common communication system for the same
US7745717Mar 16, 2008Jun 29, 2010Yamaha CorporationWearable electronic device
US7746032Mar 9, 2009Jun 29, 2010Apple Inc.Method and system for operating a portable electronic device in a power-limited manner
US7747272Aug 30, 2006Jun 29, 2010Ortronics, Inc.Wireless access point with temperature control system
US7751853 *Apr 3, 2009Jul 6, 2010Apple Inc.Female receptacle data pin connector
US7756553Jan 5, 2007Jul 13, 2010Apple Inc.Folded flex assembly for personal media device
US7756915Feb 20, 2007Jul 13, 2010Catch MediaAutomatic digital music library builder
US7761414Jan 7, 2007Jul 20, 2010Apple Inc.Asynchronous data synchronization amongst devices
US7765192Mar 29, 2006Jul 27, 2010Abo Enterprises, LlcSystem and method for archiving a media collection
US7766698Jan 26, 2007Aug 3, 2010Apple Inc.Power adapters for powering and/or charging peripheral devices
US7767901Apr 17, 2006Aug 3, 2010Contois Music Technology, LlcControl of musical instrument playback from remote management station
US7769363 *Nov 15, 2006Aug 3, 2010Chew Gregory T HUser-initiated communications during multimedia content playback on a mobile communications device
US7770036Feb 27, 2006Aug 3, 2010Apple Inc.Power management in a portable media delivery system
US7778971Jan 7, 2007Aug 17, 2010Apple Inc.Synchronization methods and systems
US7780231Nov 7, 2006Aug 24, 2010Audiovox CorporationEntertainment system mountable in a vehicle seat and methods for mounting and displaying same
US7783070Sep 25, 2008Aug 24, 2010Apple Inc.Cable adapter for a media player system
US7785138Oct 20, 2004Aug 31, 2010Ortronics, Inc.Wireless access point installation on an outlet box
US7787904 *Nov 9, 2005Aug 31, 2010Qurio Holdings, Inc.Personal area network having media player and mobile device controlling the same
US7791586Nov 6, 2006Sep 7, 2010Audiovox CorporationEntertainment system mountable in a vehicle seat
US7792859Jul 9, 2009Sep 7, 2010Hb Media, LlcMedia/data card
US7792970Dec 2, 2005Sep 7, 2010Fotonation Vision LimitedMethod for establishing a paired connection between media devices
US7801900 *Jun 30, 2006Sep 21, 2010Sony CorporationContents data reproduction apparatus and contents data reproduction method
US7805403Jan 7, 2007Sep 28, 2010Apple Inc.Synchronization methods and systems
US7816811Mar 31, 2009Oct 19, 2010Apple Inc.Portable power source to provide power to an electronic device via an interface
US7839646Mar 26, 2009Nov 23, 2010Apple Inc.Handheld computing device
US7840740Jun 5, 2007Nov 23, 2010Apple Inc.Personal media device docking station having an accessory device detector
US7844915Jan 7, 2007Nov 30, 2010Apple Inc.Application programming interfaces for scrolling operations
US7869195Mar 9, 2006Jan 11, 2011Patton Michael AIntegrated personal media player and portable DVD/CD player
US7872652Jan 7, 2007Jan 18, 2011Apple Inc.Application programming interfaces for synchronization
US7873771Aug 18, 2008Jan 18, 2011Apple Inc.Smart dock for chaining accessories
US7881456Sep 13, 2006Feb 1, 2011Kyocera CorporationMusic phone, station, and system and method of using same
US7885622Oct 27, 2005Feb 8, 2011Chestnut Hill Sound Inc.Entertainment system with bandless tuning
US7886072Jun 12, 2008Feb 8, 2011Apple Inc.Network-assisted remote media listening
US7890783Jul 21, 2009Feb 15, 2011Apple Inc.Method and system for discovering a power source on a peripheral bus
US7903115Jan 7, 2007Mar 8, 2011Apple Inc.Animations
US7904189Apr 21, 2009Mar 8, 2011International Business Machines CorporationProgrammable audio system
US7904628 *Jun 26, 2008Mar 8, 2011Microsoft CorporationSmart docking system
US7907709Apr 12, 2010Mar 15, 2011Nexstep, Inc.Tethered digital butler consumer electronic master device and method
US7907710Apr 12, 2010Mar 15, 2011Nexstep, Inc.Tethered digital butler consumer electronic remote control device and method
US7908415 *Jan 8, 2010Mar 15, 2011Apple Inc.Method and system for controlling video selection and playback in a portable media player
US7909397 *Jan 3, 2007Mar 22, 2011Audiovox CorporationIn-vehicle docking station for a portable media player
US7911771May 23, 2007Mar 22, 2011Apple Inc.Electronic device with a metal-ceramic composite component
US7917784Jan 7, 2007Mar 29, 2011Apple Inc.Methods and systems for power management in a data processing system
US7931505Jul 9, 2008Apr 26, 2011Bose CorporationPortable device interfacing
US7940026Dec 9, 2009May 10, 2011Apple Inc.Methods and apparatus for charging a battery in a peripheral device
US7949333Jul 29, 2010May 24, 2011Qurio Holdings, Inc.Personal area network having media player and mobile device controlling the same
US7949634Feb 8, 2010May 24, 2011Apple Inc.Synchronization methods and systems
US7954894Mar 4, 2005Jun 7, 2011Audiovox CorporationHeadrest mountable video system
US7957696 *Sep 25, 2006Jun 7, 2011Silicon Laboratories Inc.System and method for selecting channels for short range transmissions to broadcast receivers
US7957762Jan 7, 2007Jun 7, 2011Apple Inc.Using ambient light sensor to augment proximity sensor output
US7979868Jan 7, 2007Jul 12, 2011Apple Inc.Method and apparatus for intercommunications amongst device drivers
US7991738Aug 9, 2010Aug 2, 2011Apple Inc.Synchronization methods and systems
US8001400Dec 1, 2006Aug 16, 2011Apple Inc.Power consumption management for functional preservation in a battery-powered electronic device
US8004493Jun 8, 2007Aug 23, 2011Apple Inc.Methods and systems for providing sensory information to devices and peripherals
US8006002Dec 12, 2006Aug 23, 2011Apple Inc.Methods and systems for automatic configuration of peripherals
US8006020Sep 1, 2010Aug 23, 2011Apple Inc.Personal media device docking station having an accessory device detector
US8010047 *Aug 22, 2005Aug 30, 2011Sony CorporationRadio communication system, radio communication device, and radio communication method
US8010728Nov 7, 2006Aug 30, 2011Koninklijke Philips Electronics N.V.Multi-function docking assembly for portable digital media storage and playback device
US8031164Jan 5, 2007Oct 4, 2011Apple Inc.Backlight and ambient light sensor system
US8037155Mar 21, 2007Oct 11, 2011Infovalue Computing, Inc.Multimedia control center
US8060477Jun 23, 2010Nov 15, 2011Abo Enterprises, LlcSystem and method for archiving a media collection
US8068336Jan 25, 2010Nov 29, 2011Apple Inc.Docking station for hand held electronic devices
US8068882Apr 27, 2006Nov 29, 2011Plantronics, Inc.Portable media player emulator for facilitating wireless use of an accessory
US8068925Jun 28, 2007Nov 29, 2011Apple Inc.Dynamic routing of audio among multiple audio devices
US8069356Jan 27, 2010Nov 29, 2011Apple Inc.Accessory power management
US8073980Dec 13, 2010Dec 6, 2011Apple Inc.Methods and systems for automatic configuration of peripherals
US8085963 *Feb 22, 2008Dec 27, 2011Harman International Industries, IncorporatedCombined power and audio dock for handheld device
US8086332Feb 27, 2006Dec 27, 2011Apple Inc.Media delivery system with improved interaction
US8103035Dec 22, 2006Jan 24, 2012Bose CorporationPortable audio system having waveguide structure
US8106630Apr 28, 2010Jan 31, 2012Apple Inc.Method and system for operating a portable electronic device in a power-limited manner
US8116889 *Sep 29, 2005Feb 14, 2012Openpeak Inc.Method, system, and computer program product for managing controlled residential or non-residential environments
US8126138Jan 5, 2007Feb 28, 2012Apple Inc.Integrated speaker assembly for personal media device
US8126845Sep 24, 2010Feb 28, 2012Apple Inc.Synchronization methods and systems
US8136138 *Dec 15, 2005Mar 13, 2012Visteon Global Technologies, Inc.Display replication and control of a portable device via a wireless interface in an automobile
US8145203Apr 28, 2011Mar 27, 2012Qurio Holdings, Inc.Personal area network having media player and mobile device controlling the same
US8145928Mar 3, 2011Mar 27, 2012Apple Inc.Methods and systems for power management in a data processing system
US8146244Oct 13, 2010Apr 3, 2012Apple Inc.Method of manufacturing a handheld computing device
US8149224Apr 28, 2009Apr 3, 2012Integrated Device Technology, Inc.Computing system with detachable touch screen device
US8150376Jun 22, 2010Apr 3, 2012Videopression LlcUser-initiated communications during multimedia content playback on a mobile communications device
US8150916 *Oct 28, 2004Apr 3, 2012Sony CorporationMethod, apparatus, and system for transmitting information
US8174502Mar 4, 2008May 8, 2012Apple Inc.Touch event processing for web pages
US8176101May 6, 2007May 8, 2012Google Inc.Collaborative rejection of media for physical establishments
US8184430 *Jun 28, 2006May 22, 2012Harman International Industries, IncorporatedVehicle media system
US8185579Sep 19, 2008May 22, 2012Eloy Technology, LlcSystem and method for obtaining media content for a portable media player
US8196153Jan 7, 2007Jun 5, 2012Apple Inc.Method and apparatus for associating device drivers via a device tree
US8200629 *Apr 6, 2009Jun 12, 2012Apple Inc.Image scaling arrangement
US8207906Jan 7, 2008Jun 26, 2012Apple Inc.Antenna insert
US8209540Jun 28, 2007Jun 26, 2012Apple Inc.Incremental secure backup and restore of user settings and data
US8222773Jul 16, 2010Jul 17, 2012Apple Inc.Power adapters for powering and/or charging peripheral devices
US8229160Jun 17, 2008Jul 24, 2012Apple Inc.Systems and methods for identifying objects and providing information related to identified objects
US8230124Jul 22, 2011Jul 24, 2012Apple Inc.Methods and systems to dynamically manage performance states in a data processing system
US8230242Nov 8, 2011Jul 24, 2012Apple Inc.Accessory power management
US8230412Aug 31, 2007Jul 24, 2012Apple Inc.Compatible trust in a computing device
US8232672Jun 1, 2011Jul 31, 2012Apple Inc.Power adapters for powering and/or charging peripheral devices
US8234672Sep 2, 2003Jul 31, 2012Creative Technology LtdMethod and system to control playback of digital media
US8239504Jan 7, 2007Aug 7, 2012Apple Inc.Synchronization methods and systems
US8239688Jan 7, 2007Aug 7, 2012Apple Inc.Securely recovering a computing device
US8244179May 12, 2005Aug 14, 2012Robin DuaWireless inter-device data processing configured through inter-device transmitted data
US8246359 *Jan 18, 2011Aug 21, 2012Apple Inc.Multi-pin connector for advanced signaling
US8253684 *Nov 2, 2010Aug 28, 2012Google Inc.Position and orientation determination for a mobile computing device
US8254568Jan 7, 2007Aug 28, 2012Apple Inc.Secure booting a computing device
US8254828 *Nov 30, 2007Aug 28, 2012Apple Inc.Methods and systems for mixing media with communications
US8254846Aug 20, 2009Aug 28, 2012Belkin International, Inc.Connectivity device and method of providing same
US8264820 *Jan 11, 2010Sep 11, 2012Apple Inc.Handheld computing device
US8271713Oct 13, 2006Sep 18, 2012Philips Electronics North America CorporationInterface systems for portable digital media storage and playback devices
US8275924 *Dec 8, 2010Sep 25, 2012Apple Inc.Smart dock for chaining accessories
US8285499Sep 24, 2009Oct 9, 2012Apple Inc.Event recognition
US8291480Jan 7, 2007Oct 16, 2012Apple Inc.Trusting an unverified code image in a computing device
US8296791Sep 11, 2008Oct 23, 2012Anonymous Media Research LLCMedia usage monitoring and measurement system and method
US8306252Jan 5, 2007Nov 6, 2012Apple Inc.Integrated microphone assembly for personal media device
US8307092Feb 21, 2007Nov 6, 2012Napo Enterprises, LlcMethod and system for collecting information about a user's media collections from multiple login points
US8323040Sep 5, 2008Dec 4, 2012Apple Inc.Docking station with moveable connector for hand-held electronic device
US8332664Jun 13, 2008Dec 11, 2012Apple Inc.Systems and methods for providing device-to-device handshaking through a power supply signal
US8348704Sep 29, 2009Jan 8, 2013Apple Inc.Reduced size multi-pin female receptacle connector
US8358787 *Dec 20, 2007Jan 22, 2013Apple Inc.Method and apparatus for acoustics testing of a personal mobile device
US8369558 *May 21, 2010Feb 5, 2013Baby Trend Inc.Cup-shaped portable speaker with music player adapter
US8375112Aug 3, 2012Feb 12, 2013Apple Inc.Synchronization methods and systems
US8391844Jan 7, 2007Mar 5, 2013Apple Inc.Voicemail systems and methods
US8402182Nov 30, 2011Mar 19, 2013Apple Inc.Methods and systems for automatic configuration of peripherals
US8411061May 4, 2012Apr 2, 2013Apple Inc.Touch event processing for documents
US8416196Mar 4, 2008Apr 9, 2013Apple Inc.Touch event model programming interface
US8417180 *Jul 30, 2012Apr 9, 2013Apple Inc.Methods and systems for mixing media with communications
US8417841 *Oct 8, 2009Apr 9, 2013Sony CorporationCommunication system, host device, and terminal device
US8428893Aug 30, 2011Apr 23, 2013Apple Inc.Event recognition
US8437392Apr 15, 2005May 7, 2013Apple Inc.Selective reencoding for GOP conformity
US8438408Apr 20, 2010May 7, 2013Apple Inc.Control of accessory components by portable computing device
US8442019Feb 3, 2005May 14, 2013Bose CorporationMethod and apparatus for avoiding wireless audio signal transmission interferences
US8443096Mar 25, 2009May 14, 2013Apple Inc.Accessory identification for mobile computing devices
US8447174Oct 14, 2009May 21, 2013Voxx International CorporationPortable video system
US8451599 *Jun 23, 2011May 28, 2013Victor MohoneyDocking system for MP3 players and other portable electronic devices
US8452903Jun 5, 2009May 28, 2013Apple Inc.Mobile computing device capabilities for accessories
US8463184Jul 24, 2012Jun 11, 2013Robin DuaWireless media system-on-chip and player
US8469810 *Oct 19, 2005Jun 25, 2013Nintendo Co., Ltd.Storage medium having game program stored thereon and game apparatus
US8473761May 9, 2012Jun 25, 2013Apple Inc.Accessory power management
US8473764Feb 24, 2012Jun 25, 2013Apple Inc.Methods and systems for power efficient instruction queue management in a data processing system
US8481832 *Jan 30, 2012Jul 9, 2013Bruce LloydDocking station system
US8494132Mar 14, 2011Jul 23, 2013Nexstep, Inc.Tethered digital butler consumer electronic remote control device and method
US8503709Feb 24, 2011Aug 6, 2013Bose CorporationPortable audio system having waveguide structure
US8510768Sep 11, 2008Aug 13, 2013Anonymous Media Research, LlcMedia usage monitoring and measurement system and method
US8531465Jan 14, 2011Sep 10, 2013Apple Inc.Animations
US8532722Jun 11, 2010Sep 10, 2013Apple Inc.Folded flex assembly for personal media device
US8536507Mar 30, 2010Sep 17, 2013Apple Inc.Integrated proximity sensor and light sensor
US8548381Jul 24, 2012Oct 1, 2013Robin DuaWireless audio device and wireless media player to communicate and playback audio, and method of operation
US8549415Feb 27, 2008Oct 1, 2013Apple Inc.Automatically adjusting media display in a personal display system
US8552988 *Oct 31, 2005Oct 8, 2013Hewlett-Packard Development Company, L.P.Viewing device having a touch pad
US8553038Jan 14, 2011Oct 8, 2013Apple Inc.Application programming interfaces for synchronization
US8553856Jan 7, 2007Oct 8, 2013Apple Inc.Voicemail systems and methods
US8560975Nov 6, 2012Oct 15, 2013Apple Inc.Touch event model
US8572025 *Dec 21, 2009Oct 29, 2013Tau Cygnus, LlcData management system for portable media devices and other display devices
US8572257Nov 22, 2009Oct 29, 2013Robin DuaMethod and system to share media content between devices via near field communication (NFC) and wireless communication
US8576046Aug 2, 2006Nov 5, 2013SuncorporationPlayback control apparatus and audio system
US8583044Jul 24, 2012Nov 12, 2013Robin DuaNear field communication (NFC) enabled wireless media system and player and method of operation
US8600430Apr 28, 2011Dec 3, 2013Apple Inc.Using ambient light sensor to augment proximity sensor output
US8605008May 2, 2008Dec 10, 2013Apple Inc.Head-mounted display
US8606238Feb 8, 2012Dec 10, 2013Videopression LlcUser-initiated communications during multimedia content playback on a mobile communications device
US8611962 *Jun 29, 2007Dec 17, 2013Microsoft CorporationActivity illumination
US8619050Jul 19, 2011Dec 31, 2013Apple Inc.Methods and systems for providing sensory information to devices to determine an orientation of a display
US8621488Jun 30, 2011Dec 31, 2013Apple Inc.Method and apparatus for intercommunications amongst device drivers
US8630088 *Dec 22, 2009Jan 14, 2014Qualcomm IncorporatedPortable docking station for a portable computing device
US8630684 *Dec 8, 2008Jan 14, 2014Verizon Patent And Licensing Inc.Accessory devices for mobile phones
US8633679Dec 20, 2011Jan 21, 2014Apple Inc.Method and system for operating a portable electronic device in a power-limited manner
US8635763Apr 14, 2010Jan 28, 2014Apple Inc.Method for manufacturing a portable computing device
US8645740Jun 8, 2007Feb 4, 2014Apple Inc.Methods and systems to dynamically manage performance states in a data processing system
US8645834Jan 5, 2010Feb 4, 2014Apple Inc.Dynamic real-time playback
US8648799 *Sep 30, 2011Feb 11, 2014Google Inc.Position and orientation determination for a mobile computing device
US8649506Feb 2, 2012Feb 11, 2014Apple Inc.Integrated speaker assembly for personal media device
US8653785Dec 22, 2009Feb 18, 2014Qualcomm IncorporatedSystem and method of managing power at a portable computing device and a portable computing device docking station
US8656311Jan 7, 2007Feb 18, 2014Apple Inc.Method and apparatus for compositing various types of content
US8659889May 20, 2011Feb 25, 2014Apple Inc.Docking station for providing digital signage
US8666524 *Apr 21, 2004Mar 4, 2014Catch Media, Inc.Portable music player and transmitter
US8667198Jan 7, 2007Mar 4, 2014Apple Inc.Methods and systems for time keeping in a data processing system
US8671279Jun 19, 2012Mar 11, 2014Apple Inc.Incremental secure backup and restore of user settings and data
US8677389Sep 11, 2008Mar 18, 2014Anonymous Media Research, LlcMedia usage monitoring and measurement system and method
US8682387Oct 18, 2006Mar 25, 2014William Frederick RyannMobile device interface platform
US8688967Jul 25, 2012Apr 1, 2014Apple Inc.Secure booting a computing device
US8693877Oct 12, 2007Apr 8, 2014Apple Inc.Integrated infrared receiver and emitter for multiple functionalities
US8698727Jun 28, 2007Apr 15, 2014Apple Inc.Backlight and ambient light sensor system
US8707061Dec 23, 2009Apr 22, 2014Qualcomm IncorporatedSystem and method of providing scalable computing between a portable computing device and a portable computing device docking station
US8724837Mar 9, 2007May 13, 2014Apple Inc.Personal media device docking station having an acoustic interface
US8726488Jul 30, 2012May 20, 2014Apple Inc.Method of manufacturing a handheld computing device
US8745501Mar 20, 2007Jun 3, 2014At&T Knowledge Ventures, LpSystem and method of displaying a multimedia timeline
US20060047426 *Aug 31, 2005Mar 2, 2006Vitito Christopher JVehicle entertainment system
US20060111182 *Oct 19, 2005May 25, 2006Nintendo Co., Ltd.Storage medium having game program stored thereon and game apparatus
US20070008307 *Jul 10, 2006Jan 11, 2007Infocus CorporationDual function control device
US20070139878 *Jun 28, 2006Jun 21, 2007Michael GiffinVehicle media system
US20070143798 *Dec 15, 2005Jun 21, 2007Visteon Global Technologies, Inc.Display replication and control of a portable device via a wireless interface in an automobile
US20070149247 *May 8, 2006Jun 28, 2007Wong C MIntermediate bridge
US20090009495 *Jul 1, 2008Jan 8, 2009Samsung Electronics Co., Ltd.USB display driver, and small-scale mobile monitor and USB display system having the USB display diriver
US20090249209 *Mar 24, 2009Oct 1, 2009Alpine Electronics, Inc.Content reproducing apparatus and content reproducing method
US20100095026 *Oct 8, 2009Apr 15, 2010Sony Computer Entertainment Inc.Communication System, Host Device, and Terminal Device
US20100144392 *Dec 8, 2008Jun 10, 2010Verizon Data Services LlcAccessory devices for mobile phones
US20100161090 *Dec 21, 2009Jun 24, 2010Tau Cygnus, LlcData management system for portable media devices and other display devices
US20100211655 *Jul 11, 2008Aug 19, 2010Soren Borup JensenAssembly comprising a handheld device
US20100246119 *Dec 22, 2009Sep 30, 2010Qualcomm IncorporatedPortable docking station for a portable computing device
US20110070777 *Oct 15, 2010Mar 24, 2011Chestnut Hill Sound, Inc.Electrical connector adaptor system for media devices
US20110102344 *Oct 28, 2010May 5, 2011Chang Nai HengPortable electronic device and tablet personal computer
US20110111642 *Jan 18, 2011May 12, 2011Apple Inc.Multi-pin connector for advanced signaling
US20110145581 *Dec 14, 2009Jun 16, 2011Verizon Patent And Licensing, Inc.Media playback across devices
US20110286622 *May 21, 2010Nov 24, 2011Baby Trend Inc.Cup-shaped portable speaker with music player adapter
US20110295393 *May 28, 2010Dec 1, 2011Apple Inc.Using a processing device as a dock for a media player
US20120038825 *Jul 18, 2011Feb 16, 2012Uri KanonichCircuits systems & method for computing over a wireless communication architecture
US20120102409 *Oct 25, 2010Apr 26, 2012At&T Intellectual Property I, L.P.Providing interactive services to enhance information presentation experiences using wireless technologies
US20120194994 *Jan 30, 2012Aug 2, 2012Bruce LloydDocking Station System
US20130072309 *May 31, 2011Mar 21, 2013Tovis Co., Ltd.Game machine
US20130332635 *Jun 7, 2012Dec 12, 2013Apple Inc.Protocol translating adapter
USRE41224Jan 18, 2006Apr 13, 2010Japan Aviation Electronics Industry, LimitedConnector
USRE43780Nov 5, 2009Oct 30, 2012Apple Inc.Plug connector
USRE43796Nov 5, 2009Nov 6, 2012Apple Inc.Receptacle connector
CN101120413BDec 21, 2005May 7, 2014苹果公司高便携性媒体装置
CN101512476BJul 10, 2007Jan 2, 2013阿丽雅企业Portable modular multi-function communication device
DE202008007933U1Jun 13, 2008Feb 12, 2009Apple Inc., CupertinoSystem zum Bereitstellen von Handshaking von Gerät zu Gerät über ein Energieversorgungs-Signal
EP1691263A1 *Sep 6, 2005Aug 16, 2006Apple Computer, Inc.Display actuator
EP1878237A2 *Apr 14, 2006Jan 16, 2008Audiovox CorporationA video system for a vehicle
EP1886314A2 *May 31, 2006Feb 13, 2008Plantronics, Inc.Portable media reproduction system
EP1894279A2 *Jun 20, 2006Mar 5, 2008Belkin International, IncMulti-standard connection hub and method of manufacturing same
EP1901176A2 *Jan 5, 2007Mar 19, 2008Telechips Inc.Audio system, and USB/UART common communication system for the same
EP1921630A1 *Aug 2, 2006May 14, 2008SuncorporationPlayback control device and audio system
EP1940111A2 *Dec 20, 2007Jul 2, 2008Sony CorporationContent playback system, playback device, playback control method and program
EP1965365A1 *Feb 27, 2007Sep 3, 2008Dioptas Holding AgSystem for broadcasting local information
EP2001198A1Jun 6, 2008Dec 10, 2008Apple Inc.File protocol for transaction based communication
EP2001199A1Jun 6, 2008Dec 10, 2008Apple Inc.Multiplexed data stream protocol
EP2024855A2 *May 31, 2007Feb 18, 2009Macrovision CorporationMethods and apparatus for transferring media across a network using a network interface device
EP2074822A2 *Oct 9, 2007Jul 1, 2009Philips Electronics N.V.Interface systems for portable digital media storage and playback devices
EP2142975A1 *Apr 24, 2008Jan 13, 2010Hewlett-Packard Development Company, L.P.Playback of audio information through a wireless docking station
EP2151782A1Jul 27, 2009Feb 10, 2010Apple Inc.Ticket authorized secure installation and boot
EP2237130A1May 6, 2008Oct 6, 2010Apple Inc.Methods and systems for providing sensory information to devices and peripherals
EP2256740A2 *Dec 21, 2005Dec 1, 2010Apple Inc.Highly portable media device
EP2256741A2 *Dec 21, 2005Dec 1, 2010Apple Inc.Highly portable media device
EP2264712A2 *Dec 21, 2005Dec 22, 2010Apple Inc.Highly portable media device
EP2400781A1 *Dec 21, 2007Dec 28, 2011Bose CorporationPortable audio system having waveguide structure
EP2434370A2Dec 18, 2007Mar 28, 2012Apple Inc.Methods and systems for power management in a data processing system
EP2444874A2Jun 13, 2008Apr 25, 2012Apple Inc.Systems and methods for providing device-to-device handshaking through a power supply signal
EP2530917A2May 31, 2012Dec 5, 2012Apple Inc.Intelligent telephone number processing
EP2538325A1Jan 4, 2008Dec 26, 2012Apple Inc.Animations
EP2570886A2Jun 13, 2008Mar 20, 2013Apple Inc.Systems and methods for providing device-to-device handshaking through a power supply signal
EP2587478A2Sep 26, 2012May 1, 2013Apple Inc.Speech recognition repair using contextual information
EP2637393A1Oct 19, 2007Sep 11, 2013Apple Inc.Automated Response to and Sensing of User Activity in Portable Devices
EP2672383A2May 29, 2013Dec 11, 2013Apple Inc.Adaptive process importance
EP2672398A1Jan 3, 2008Dec 11, 2013Apple Inc.Synchronization methods and systems
WO2006065228A1 *Dec 12, 2005Jun 22, 2006Hiap Chew ChuaCradle for a media player
WO2006073891A2 *Dec 21, 2005Jul 13, 2006Apple ComputerHighly portable media device
WO2006086439A2 *Feb 7, 2006Aug 17, 2006Louis RosenbergAutomated arrangement for playing of a media file
WO2006088499A1 *Aug 11, 2005Aug 24, 2006Apple ComputerDisplay actuator
WO2006130784A2 *May 31, 2006Dec 7, 2006Altec Lansing Technologies IncPortable media reproduction system
WO2006132937A2 *Jun 2, 2006Dec 14, 2006Bose CorpPortable device interfacing
WO2007034441A2 *Sep 22, 2006Mar 29, 2007Koninkl Philips Electronics NvDevice comprising a detector for detecting an uninterrupted looping movement
WO2007041284A2 *Sep 29, 2006Apr 12, 2007Openpeak IncProduct for managing controlled residential or non-residential environment
WO2007069234A2 *Dec 3, 2006Jun 21, 2007Infra Com LtdWireless infrared multimedia system
WO2007076498A2 *Dec 26, 2006Jul 5, 2007Motorola IncA method and apparatus for a user interface
WO2007101218A2 *Feb 27, 2007Sep 7, 2007Aerielle IncMethod and apparatus for wired/wireless transfer of content and/or data between multimedia players
WO2007117788A2 *Mar 5, 2007Oct 18, 2007Signalogix IncMethod of wireless conversion by emulation of a non-wireless device
WO2008008791A2 *Jul 10, 2007Jan 17, 2008Aria Entpr IncPortable modular multi-function communication device
WO2008029358A1 *Sep 5, 2007Mar 13, 2008Paul VictorA music playing arrangement
WO2008033670A2 *Aug 29, 2007Mar 20, 2008Apple IncHighly portable media devices
WO2008051472A1Oct 19, 2007May 2, 2008Apple IncAutomated response to and sensing of user activity in portable devices
WO2008055187A2 *Oct 30, 2007May 8, 2008Jonatan CvetkoUniversal mobile electronics integrator
WO2008080089A2 *Dec 21, 2007Jul 3, 2008Bose CorpPortable audio system having waveguide structure
WO2008085780A2 *Dec 28, 2007Jul 17, 2008Apple IncBackward compatible connector system
WO2008104318A2 *Feb 21, 2008Sep 4, 2008Dioptas Holding AgSystem for broadcasting local information in a vehicle
WO2008130511A1Apr 11, 2008Oct 30, 2008Apple IncPersonal area network systems and devices and methods for use thereof
WO2008136950A1Apr 24, 2008Nov 13, 2008Hewlett Packard Development CoPlayback of audio information through a wireless docking station
WO2009005563A1May 14, 2008Jan 8, 2009Apple IncDynamic routing of audio among multiple audio devices
WO2009053123A1 *Jul 11, 2008Apr 30, 2009Bang & Olufsen AsAn assembly comprising a handheld device
WO2010039193A2 *Sep 24, 2009Apr 8, 2010Entourage Systems, Inc.Multi-display handheld device and supporting system
WO2011088251A1Jan 13, 2011Jul 21, 2011Apple Inc.Portable storage interface
WO2011088253A1Jan 13, 2011Jul 21, 2011Apple Inc.Specialized network fileserver
WO2011088255A1Jan 13, 2011Jul 21, 2011Apple Inc.Accessing specialized fileserver
WO2011130600A2Apr 15, 2011Oct 20, 2011Apple Inc.Connectors and cables with an optical transmitter
Classifications
U.S. Classification455/66.1, 455/41.2
International ClassificationH04M1/725
Cooperative ClassificationG06F17/00, H04M1/72527, G06F1/1632, H04M1/72558, H02J7/0044, H04R2205/021
European ClassificationG06F1/16P6
Legal Events
DateCodeEventDescription
Mar 8, 2013FPAYFee payment
Year of fee payment: 4
Aug 24, 2010CCCertificate of correction
May 25, 2010CCCertificate of correction
Jun 29, 2007ASAssignment
Owner name: APPLE INC., CALIFORNIA
Free format text: CORRECTIV;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019507/0132
Effective date: 20070109
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NUMBER FROM 11/228,515 TO 11/228,414. DOCUMENT PREVIOUSLY RECORDED AT REEL AND FRAME 019249 FRAME 0023.;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019507/0132
Owner name: APPLE INC.,CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APP;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100302;REEL/FRAME:19507/132
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APP;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100518;REEL/FRAME:19507/132
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APP;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019507/0132
May 3, 2007ASAssignment
Owner name: APPLE INC., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019249/0023
Effective date: 20070109
Owner name: APPLE INC.,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100302;REEL/FRAME:19249/23
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100518;REEL/FRAME:19249/23
Aug 12, 2003ASAssignment
Owner name: APPLE COMPUTER, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FADELL, ANTHONY M;ZADESKY, STEPHEN PAUL;FILSON, JOHN BENJAMIN;REEL/FRAME:014370/0318
Effective date: 20030709