US20040229833A1 - Therapeutic use of cis-element decays in vivo - Google Patents

Therapeutic use of cis-element decays in vivo Download PDF

Info

Publication number
US20040229833A1
US20040229833A1 US10/850,994 US85099404A US2004229833A1 US 20040229833 A1 US20040229833 A1 US 20040229833A1 US 85099404 A US85099404 A US 85099404A US 2004229833 A1 US2004229833 A1 US 2004229833A1
Authority
US
United States
Prior art keywords
binding
decoys
decoy
endogenous
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/850,994
Inventor
Victor Dzau
Gary Gibbons
Ryuichi Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22509818&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040229833(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/850,994 priority Critical patent/US20040229833A1/en
Publication of US20040229833A1 publication Critical patent/US20040229833A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/13Decoys
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3517Marker; Tag

Definitions

  • the field of this invention is therapeutic treatment of disease with double stranded nucleic acids which bind transcription factors.
  • a wide variety of diseases result from the over- or under-expression of one or more genes.
  • Given cells may make insufficient amounts of a protein (e.g. insulin) or too much of a protein, be it a normal protein (e.g. TNF), a mutant protein (e.g. an oncogene), or a non-host protein (e.g. HIV tat).
  • a protein e.g. insulin
  • TNF normal protein
  • mutant protein e.g. an oncogene
  • a non-host protein e.g. HIV tat
  • the invention provides for the therapeutic treatment of diseases associated with the binding of endogenous transcription factors to genes involved in cell growth, differentiation and signalling or to viral genes.
  • Methods and compositions are provided for blocking the capacity of endogenous trans-activating factors to modulate gene expression and thereby regulating pathological processes including inflammation, intimal hyperplasia, angiogenesis, neoplasia, immune responses and viral infection.
  • the methods comprise administering to a patient double stranded nucleic acid “decoys” in a form such that the decoys are capable of entering target cells of the patient and specifically binding an endogenous transcription factor, thereby competitively inhibiting the transcription factor from binding to an endogenous gene.
  • the decoys are administered in amounts and under conditions whereby binding of the endogenous transcription factor to the endogenous gene is effectively competitively inhibited without significant host toxicity.
  • the methods can effect up- or down-regulation of gene expression.
  • the subject compositions comprise the decoy molecules in a context which provides for pharmacokinetics sufficient for effective therapeutic use.
  • FIG. 1 Effect of NRE “decoy” on renin gene expression in cultured SMG cells.
  • SCA-9 cells expressed renin as shown by immunohistochemistry (panel A). Primer extension analysis demonstrated that this was exclusively Ren 2 (panel B). These cells effectively took up FITC labeled double stranded decoy oligomer corresponding to the NRE (panel C).
  • RNA was prepared 24 hours after transfection from control and “decoy” treated SCA-9 cells. Note that Ren 1 mRNA could be observed after exposure of the cells to the NRE decoy (panel B, lane 4).
  • FIG. 2 Detection of the NRE binding protein in cultured SMG cells. Nuclear extracts were prepared from SCA-9 cells and incubated with 32P end-labeled mouse renin NRE oligonucleotide. Competition analysis was performed with 50- and 100-fold excess of unlabeled NRE oligonucleotide. Note that a specific NRE:NRE binding protein complex formation was observed.
  • FIG. 3 In Vivo Expression of CAT in the Mouse SMG. Ten ug of renin gene CAT construct was transfected directly into the SMG of DBA/2J mice using the HVJ-DNA-Liposome technique. Four days after transfection, the SMG was removed, cell extracts prepared and CAT activity measured.
  • FIG. 4 Schematic diagram of the factors influencing renin gene expression.
  • the hatched bar represents the CRE/NRE region present in the renin gene.
  • the CRE binding protein and the NRE binding protein compete for binding to this region.
  • the triangle represents the 150 base pair insert which is present in the Ren 2 gene.
  • Ren 1 expression in the kidney, the CRE binding protein binds tighter, blocking the binding of the NRE binding protein, and allowing expression of the Ren 1 gene.
  • an inhibitory protein forms an inactive complex with the CRE binding protein, allowing the NRE binding protein to bind, silencing expression of Ren 1.
  • Ren 2 expression The 150 bp insertion interferes with the NRE function in the Ren 2 gene, resulting in Ren 2 expression in the SMG and kidney.
  • Methods and compositions are provided for modulating gene expression in vivo.
  • the methods involve administering a composition to a patient so as to introduce into a target cell molecular decoys comprising double-stranded nucleic acid, usually DNA, to which transcription factors endogenous to the target cell bind.
  • a target cell molecular decoys comprising double-stranded nucleic acid, usually DNA, to which transcription factors endogenous to the target cell bind.
  • Various methods are employed for in vivo administration of the decoys such that sufficient decoys enter into the target cells to competitively inhibit transcription factor binding to an endogenous gene regulatory region.
  • compositions which are employed comprise “decoys”: double-stranded nucleic acid molecules with high binding affinity for the targeted transcription factors.
  • the targeted transcription factors are endogenous, sequence-specific double-stranded DNA binding proteins which modulate (increase or decrease) the rate of transcription of one or more specific genes in the target cell.
  • any such transcription factor (henceforth, “transcription factor”) can be targeted so long as a specific decoy capable of competitively inhibiting binding to the endogenous gene can be identified.
  • transcription factors and their binding sequences are known in the art as are methods for identifying such complements, see e.g. Wang and Reed (1993) Nature 364, 121 and Wilson et al. (1991) Science 252, 1296.
  • endogenous means that the gene or transcription factor is present in the target cell at the time the decoy is introduced.
  • the transcription factors will, for the most part and depending on the clinical indication, regulate the transcription of genes associated with cell growth, differentiation and signalling or viral genes resident in the target cell.
  • genes necessary for mitosis particularly going from G o to S, such as proteins associated with check points in the proliferative cycle, cyclins, cyclin dependent kinases, proteins associated with complexes, where the cyclin or cdk is part of the complex, Rosenblatt et al., Proc. Natl. Acad. Sci . 89, 2824 (1992) and Pagano et al., Science 255, 1144 (1992).
  • genes or the transcription factors themselves will be oncogene products or cellular counterparts, e.g.
  • Target transcription factors also include host and host-cell resident viral transcription factors which activate viral genes present in infected host cells.
  • Preferred target transcription factors are activated (i.e. made available in a form capable of binding DNA) in a limited number of specifically activated cells.
  • a stimulus such as a wound, allergen, infection, etc may activate a metabolic pathway that is triggered by the transient availability of one or more transcription factors.
  • transcription factors may be made available by a variety of mechanisms such as release from sequestering agents or inhibitors (e.g. NF ⁇ B bound to I ⁇ B), activation by enzymes such as kinases, translation of sequestered message, etc.
  • the target transcription factor(s) will be associated with genes other than genes whose lack of expression results in cytotoxicity. For the most part, it is desirable not to kill the cell, but rather to inhibit or activate specific gene transcription.
  • Exemplary transcription factors and related cis elements include: Cis-elemnt Txn Factor Cellular Process Therapeutic Application E2F cell proliferation neointimal hyperplasia, neoplasia glomerulonephritis, angiogenesis, inflammation AP-1 cell growth, differentiation, neointimal hyperplasia, cardiac growth factor expression myocyte growth/differentiation NFkB cytokine expression, leukocyte inflammation, immune response, adhesion molecule expression, transplant rejection, ischemia- oxidant stress response, cAMP reperfusion injury, and protein kinase C activation, glomerulonephritis Ig expression SSRE response to shear stress: growth neointimal hyperplasia, bypass factor expression vasoactive grafts, angiogenesis, collateral substances, matrix proteins, formation.
  • CREB cAMP response cAMP activated events MEF-2 cardiac myocyte differentiation cardiac myocyte differentiation and hypertrophy and growth.
  • Heat shock heat shock response cellular stresses e.g. ischemia, RE hypoxia SRE growth factor responses cell proliferation/differentiation AP-2 cAMP and protein kinase cell proliferation.
  • TRE Transforming growth factor beta cell growth, differentiation, TGFb induced cellular processes migration, angiogenesis, intimal responsive hyperplasia, matrix generation, apoptosis.
  • the length, structure and nucleotide sequence of the decoy will vary depending on the targeted transcription factor, the indication, route of administration, etc. For example, targeted transcription factors frequently bind with different degrees of affinity to a variety of sequences, normally sharing a high degree of homology. Accordingly, one may choose to use a sequence associated with a particular target gene or use a consensus sequence based on the nucleotide at each site which occurs most frequently in the binding sequences to which the particular transcription factor binds. For example, when targeting a host transcription factor involved in viral transcription, it may be possible to minimize undesirable effects on host transcriptions preferable by employing the viral-specific binding sequence.
  • transcription is mediated by a multimeric complex
  • Herpes virus transcription one may target the viral VP16 without concomitant targeting of the promiscuous host Oct protein.
  • the decoys are also selected for binding specificity.
  • the decoys will be highly specific for the target transcription factor(s) such that their effect on nontarget cells and nontargeted metabolic processes of target cells are minimized.
  • selection is accomplished in vitro by comparative binding to known transcription factors and nuclear extracts and in culture and in vivo by assaying nontargeted cell function and effects on nontargeted cell types.
  • the decoys contain sufficient nucleotide sequence to ensure target transcription factor binding specificity and affinity sufficient for therapeutic effectiveness.
  • the target transcription factors will require at least six base pairs, usually at least about eight base pairs for sufficient binding specificity and affinity.
  • flanking sequences ranging from about 5 to 50 bp
  • cis element flanking regions may be present and concatemer oligonucleotides may be constructed with serial repetitions of the binding and/or cis element flanking sequences.
  • the decoys are non-replicative oligonucleotides fewer than 100 bp, usually fewer than 50 bp and usually free of coding sequence, being primarily from the non-coding 5′ region of a gene.
  • the decoys may comprise a portion of a larger plasmid, including viral vectors, capable of episomal maintenance or constitutive replication in the target cell to provide longer term or enhanced intracellular exposure to the decoy sequence. Plasmids are selected based on compatibility with the target cell, size and restriction sites, replicative frequency, copy number maintenance, etc.
  • plasmids with relatively short half-lives in the target cell are preferred in situations where it is desirable to maintain therapeutic transcriptional modulation for less than the lifetime of the target cell.
  • exemplary plasmids include pUC expression vectors driven by a beta-actin promoter and CMV enhancer, vectors containing elements derived from RSV or SV40 enhancers, etc.
  • the adeno-associated viral vector preferentially integrates in chromosome 19 and may be utilized for longer term expression.
  • the oligonucleotides which are employed may be naturally occurring or other than naturally occurring, where the synthetic nucleotides may be modified in a wide variety of ways, see e.g. Bielinska et al (1990) Science 250, 997.
  • oxygens may be substituted with nitrogen, sulfur or carbon; phosphorus substituted with carbon; deoxyribose substituted with other sugars, or individual bases substituted with an unnatural base.
  • any change will be evaluated as to the effect of the modification on the binding of the oligonucleotide to the target transcription factor, as well as any deleterious physiological effects.
  • anti-sense oligonucleotides so that their safety and retention of binding affinity are well established in the literature. See, for example, Wagner et al., Science 260, 1510-1513 (1993).
  • the strands may be synthesized in accordance with conventional ways using phosphoramidite synthesis, commercially available automatic synthesizes, and the like.
  • the administered compositions may comprise individual or mixtures of decoys. Usually the mixture will not exceed 4 different decoys usually not exceed 2.
  • the decoys are administered to a host in a form permitting cellular internalization of the decoys in an amount sufficient to competitively inhibit the binding of the targeted transcription factor to an endogenous gene.
  • the host is typically a mammal, usually a human.
  • the selected method of administration depends principally upon the target cell, the nature of the decoy, the host, the size of the decoy. Exemplary methods are described in the examples below; additional methods including transfection with a retrovirus, viral coat protein-liposome mediated transfection, lipofectin etc. are described in Dzau et al., Trends in Biotech 11, 205-210 (1993).
  • the decoy concentration in the lumen will generally be in the range of about 0.1 uM to 50 uM per decoy, more usually about 1 uM to 10 uM, most usually about 3 uM.
  • the application rate usually one will determine the application rate empirically, using conventional techniques to determine desired ranges.
  • the decoy source may be desirable to provide the decoy source with an agent which targets the target cells, such as an antibody specific for a surface membrane protein on the target cell, a ligand for a receptor on the target cell, etc.
  • an agent which targets the target cells such as an antibody specific for a surface membrane protein on the target cell, a ligand for a receptor on the target cell, etc.
  • cells expressing HIV gene products or CD4 may be specifically targeted with gene product or CD4-specific binding compounds.
  • liposomes are involved, one may wish to include proteins associated with endocytosis, where the proteins bind to a surface membrane protein associated with endocytosis.
  • capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life.
  • the application of the subject therapeutics are preferably local, so as to be restricted to a histological site of interest e.g. localized inflammation, neoplasia or infection.
  • a histological site of interest e.g. localized inflammation, neoplasia or infection.
  • Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access, or the like.
  • an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing the subject compositions, the subject compositions may be painted onto the organ, or may be applied in any convenient way.
  • systemic administration of the decoy using e.g.
  • lipofection liposomes with tissue targeting (e.g. antibody), etc. may be practiced.
  • Systemic administration is most applicable where the distribution of the targeted transcription factor is primarily limited to targeted cell types, e.g. virus-specific transcription factors limited to infected cells, mutant oncogenic transcription factors limited to transformed cells, etc.
  • Optimal treatment parameters will vary with the indication, decoy, clinical status, etc., and are generally determined empirically, using the guidance provided herein.
  • Several exemplary indications, routes and vehicles of administration and decoy combinations are disclosed in the following table.
  • asialoglycoprotein element to receptor targeting increase LDL with lipsomes receptors vein bypass grafts topical/intraluminal polymer, E2F liposomes glomerulonephritis intravenous, polymer, E2F, NF ⁇ B intrarenal liposomes myocardial intracoronary liposomes, NF ⁇ B, E2F, AP-1 infarction polymer organ transplant intravascular, ex liposomes, NF ⁇ B esp. cardiac/renal vivo polymer
  • a wide variety of indications may be treated, either prophylactically or therapeutically with the subject compositions.
  • prophylactic treatment may inhibit mitosis or proliferation or inflammatory reaction prior to a stimulus which would otherwise activate proliferation or inflammatory response, where the extent of proliferation and cellular migration may be undesirable.
  • a therapeutic application is provided by a situation where proliferation or the inflammatory response is about to be initiated or has already been initiated and is to be controlled.
  • the methods and compositions find use, particularly in acute situations, where the number of administrations and time for administration is relatively limited.
  • Conditions for treatment include such conditions as neoproliferative diseases including inflammatory disease states, where endothelial cells, inflammatory cells, glomerular cells may be involved, restenosis, where vascular smooth muscle cells are involved, myocardial infarction, where heart muscle cells may be involved, glomerular nephritis, where kidney cells are involved, hypersensitivity such as transplant rejection where hematopoietic cells may be involved, cell activation resulting in enhancement of expression of adhesion molecules where leukocytes are recruited, or the like.
  • Adhesion molecules include homing receptors, addressins, integrins, selectins, and the like.
  • vascular smooth muscle cells were stimulated by serum until confluent. After confluent, the cells were made quiescent by placing in serum free medium for 48 h. After the transfection of decoy oligodeoxynucleotides (“ODN”; 14 bp) essentially as described in Morishita et al. (1993) Proc. Natl. Acad. Sci. USA , 90, 8474-8478, cells were stimulated by 5% serum. After 6 h, RNA was extracted by RNAzol (Tel-Test Inc, Texas) Chomczynski and Sacchi (1987) Anal Biochem 162, 156-159.
  • ODN decoy oligodeoxynucleotides
  • PCNA, cdc2 and beta-actin mRNAs were measured by RT-PCR (Morishita et al. (1993) supra).
  • the PCNA primer (nucleotides 150-177 of rat PCNA cDNA) and the cdc2 5′ primer (nucleotides 54-75 of human cdc2 cDNA) were previously described (Morishita et al. (1993) supra).
  • the primers complementary to the rat beta-actin gene were obtained from Clontech Laboratories Inc. (Palo Alto, Calif.). Aliquots of RNA were amplified simultaneously by PCR (30 cycles) and compared with a negative control (primers without RNA).
  • Amplification products were electrophoresed through 2% agarose gels stained with ethidium bromide.
  • a gel mobility shift assay was performed as previously described (Horiuchi et al., J. Biol. Chem . 266, 16247-16254 (1991).
  • the 14 bp double-strand ODN effectively abolished the binding of the E2F transcription factor to a specific binding site in serum stimulated VSMCs. See also, Hiebert et al. (1989) PNAS 86, 3594. Transfection of the E2F decoy ODN markedly inhibited the induction of c-myc, cdc2 and PCNA mRNA expression in response to serum stimulation. The E2F decoy ODN had no effect on beta-actin mRNA expression. Furthermore, the control missense E2F element ODN containing two base pair substitutions that eliminate E2F binding failed to inhibit the induction of c-myc, cdc2 and PCNA RNA expression in response to serum stimulation.
  • Liposomes were prepared as follows: Phosphatidylserine phosphatidylcholine, and cholesterol were mixed in a weight ratio (1:4.8:2) to create a lipid mixture. Lipid was hydrated in a balanced salt solution containing ODN (110 nmol). Purified HVJ(Z) strain was inactivated by UV radiation just before use. The liposome suspension was mixed with HVJ (Z strain) (20,000 hemagglutinating units), incubated, then free HVJ removed by sucrose density gradient centrifugation. The final concentration of encapsulated DNA was calculated as previously reported (Morishita et al. (1993) supra). This method results in a more rapid cellular uptake and nuclear concentration, leading to a 100-fold higher transfection efficiency of ODN than lipofection or passive uptake methods.
  • decoys-2 5′-GATCA AAAGCGCG AATCA AAAGCGCG AATC-3′ 3′-CTAGT TTTCGCGC TTAGT TTTCGCGC TTAG-5′ mismatched-1; 5′-GATCAAA GAACT GAATCAAA GAACT GAATC-3′ 3′-CTAGTTT CTTGA CTTAGTTT CTTGA CTTAG-5′
  • Rat aortic VSMC (passage 4-10) were studied in a confluent, quiescent state in serum-free media (Morishita et al, J. Clin. Invest . 91, 2580-2585 (1993)). The cells were incubated with hemagglutinating virus Japan (HVJ) liposomes (3 ⁇ M) at 4° C. for 5 min and 37° C. for 30 min. Three days after transfection in either calf serum (CS) or serum-free media, cell number was determined by Coulter-Counter (Coulter, Fla.).
  • HVJ hemagglutinating virus Japan
  • a 2 French Fogarty catheter was used to induce vascular injury in male Sprague-Dawley rats (400-500 g; Charles River Breeding Laboratories) (Hanke et al., Circ. Res . 67, 651-659 (1990)). These rats were anesthetized, and a cannula introduced into the left common carotid via the external carotid artery. After vascular injury of the common carotid, the distal injured segment was transiently isolated by temporary ligatures. The HVJ complex was infused into the segment and incubated for 10 min at room temperature. No adverse neurological or vascular effects were observed in any animal undergoing this procedure.
  • RNA analysis vessels were harvested at 6 h, (c-myc and beta-actin) and one day (cdc2 kinase, PCNA and beta-actin) after transfection.
  • RNA was extracted from mismatched or E2F decoy ODN (3 ⁇ M) treated injured or untreated intact vessels by RNAzol (Tel-Test Inc., Texas). RT-PCR was performed as described above.
  • BrdU staining BrdU was injected into rats (100 mg/kg subcutaneous and 30 mg/kg intraperitoneal at 18 h prior, and then 30 mg/kg intraperitoneal at 12 h prior to sacrifice (Hanke et al., supra)). Rats were sacrificed after day four after transfection.
  • the carotid artery was removed after perfusion-fixation with 4% paraformaldehyde, and processed for immunohistochemistry in a standard manner using anti-BrdU antibodies (Amersham).
  • the proportion of BrdU positive cells was determined by cell counts under light microscopy in a blinded fashion.
  • HVJ-ODN complex (3 ⁇ M) was administered into the rat carotid injured arteries. At two weeks after transfection, rats were sacrificed and vessels were perfusion-fixed with 4% paraformaldehyde. Three individual sections from the middle of transfected segments were analyzed. In addition, three sections from the middle section of the injured untransfected region were also analyzed. Animals were coded so that the operation and analysis were performed without knowledge of which treatment individual animals received. Intimal and medial areas were measured on a digitizing tablet (Southern Micro Instruments, Georgia). Analysis of variance with subsequent Duncan's test was used to determine significant differences in multiple comparisons. P ⁇ 0.05 was considered significant.
  • PRE progesterone responsive element

Abstract

The invention provides for the use of oligodeoxynucleotide decoys for the prophylactic or therapeutic treatment of diseases associated with the binding of endogenous transcription factors to genes involved in cell growth, differentiation and signalling or to viral genes. By inhibiting endogenous trans-activating factors from binding transcription regulatory regions, the decoys modulate gene expression and thereby regulating pathological processes including inflammation, intimal hyperplasia, angiogenesis, neoplasia, immune responses and viral infection. The decoys are administered in amounts and under conditions whereby binding of the endogenous transcription factor to the endogenous gene is effectively competitively inhibited without significant host toxicity. The subject compositions comprise the decoy molecules in a context which provides for pharmacokinetics sufficient for effective therapeutic use.

Description

    TECHNICAL FIELD
  • The field of this invention is therapeutic treatment of disease with double stranded nucleic acids which bind transcription factors. [0001]
  • BACKGROUND
  • A wide variety of diseases result from the over- or under-expression of one or more genes. Given cells may make insufficient amounts of a protein (e.g. insulin) or too much of a protein, be it a normal protein (e.g. TNF), a mutant protein (e.g. an oncogene), or a non-host protein (e.g. HIV tat). The ultimate goal of therapeutic intervention in such diseases is a selective modulation of gene expression. [0002]
  • A variety if methods of transcriptional modulation in vitro have been reported including the use of anti-sense nucleic acids capable of binding nascent message, intracellular immunization with dominant negative mutants. [0003]
  • With the broad potential therapeutic applications, massive efforts have been extended by prominent laboratories and clinics around the world to extend these methods in vivo. To date, the transcription factor decoy strategy has never been successfully adopted in vivo. [0004]
  • Relevant Literature
  • Description of the roles of transcription factors may be found in Nevins, [0005] Science 258, 424-429 (1992); Dalton, EMBO J. 11, 11797 (1992); Yee et al. ibid. 6, 2061 (1987), Weintraub et al., Nature 358, 259-261 (1992), Pagano et al., Science 255, 1144-1147 (1992). Viral coat protein-liposome mediated transfection is described by Kaneda et al., Science 243, 375 (1989). Ritzenthaler et al. (1991) Biochem J 280, 157-162; Ritzenthaler et al (1993) J Biol Chem 268, 13625-13631; Bielinska et al., Science 16, 997-1000 (1990) and Sullenger et al., Cell 63, 601-608 (1990) describe inhibition of transcription with double stranded nucleic acids.
  • A general discussion concerning the mechanism of restenosis may be found in Libby et al., [0006] Circulation 86, III-47 (1992) and Clowes et al., J. Cardiovasc. Pharmacol. 14, S12-15 (1989).
  • SUMMARY OF THE INVENTION
  • The invention provides for the therapeutic treatment of diseases associated with the binding of endogenous transcription factors to genes involved in cell growth, differentiation and signalling or to viral genes. Methods and compositions are provided for blocking the capacity of endogenous trans-activating factors to modulate gene expression and thereby regulating pathological processes including inflammation, intimal hyperplasia, angiogenesis, neoplasia, immune responses and viral infection. [0007]
  • The methods comprise administering to a patient double stranded nucleic acid “decoys” in a form such that the decoys are capable of entering target cells of the patient and specifically binding an endogenous transcription factor, thereby competitively inhibiting the transcription factor from binding to an endogenous gene. The decoys are administered in amounts and under conditions whereby binding of the endogenous transcription factor to the endogenous gene is effectively competitively inhibited without significant host toxicity. Depending on the transcription factor, the methods can effect up- or down-regulation of gene expression. The subject compositions comprise the decoy molecules in a context which provides for pharmacokinetics sufficient for effective therapeutic use.[0008]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. Effect of NRE “decoy” on renin gene expression in cultured SMG cells. SCA-9 cells expressed renin as shown by immunohistochemistry (panel A). Primer extension analysis demonstrated that this was exclusively Ren 2 (panel B). These cells effectively took up FITC labeled double stranded decoy oligomer corresponding to the NRE (panel C). RNA was prepared 24 hours after transfection from control and “decoy” treated SCA-9 cells. Note that Ren 1 mRNA could be observed after exposure of the cells to the NRE decoy (panel B, lane 4). [0009]
  • FIG. 2. Detection of the NRE binding protein in cultured SMG cells. Nuclear extracts were prepared from SCA-9 cells and incubated with 32P end-labeled mouse renin NRE oligonucleotide. Competition analysis was performed with 50- and 100-fold excess of unlabeled NRE oligonucleotide. Note that a specific NRE:NRE binding protein complex formation was observed. [0010]
  • FIG. 3. In Vivo Expression of CAT in the Mouse SMG. Ten ug of renin gene CAT construct was transfected directly into the SMG of DBA/2J mice using the HVJ-DNA-Liposome technique. Four days after transfection, the SMG was removed, cell extracts prepared and CAT activity measured. [0011]
  • FIG. 4. Schematic diagram of the factors influencing renin gene expression. The hatched bar represents the CRE/NRE region present in the renin gene. The CRE binding protein and the NRE binding protein compete for binding to this region. The triangle represents the 150 base pair insert which is present in the [0012] Ren 2 gene.
  • Ren 1 expression: in the kidney, the CRE binding protein binds tighter, blocking the binding of the NRE binding protein, and allowing expression of the [0013] Ren 1 gene. In the SMG, an inhibitory protein forms an inactive complex with the CRE binding protein, allowing the NRE binding protein to bind, silencing expression of Ren 1.
  • Ren 2 expression: The 150 bp insertion interferes with the NRE function in the [0014] Ren 2 gene, resulting in Ren 2 expression in the SMG and kidney.
  • DESCRIPTION OF SPECIFIC EMBODIMENTS
  • Methods and compositions are provided for modulating gene expression in vivo. The methods involve administering a composition to a patient so as to introduce into a target cell molecular decoys comprising double-stranded nucleic acid, usually DNA, to which transcription factors endogenous to the target cell bind. Various methods are employed for in vivo administration of the decoys such that sufficient decoys enter into the target cells to competitively inhibit transcription factor binding to an endogenous gene regulatory region. [0015]
  • The compositions which are employed comprise “decoys”: double-stranded nucleic acid molecules with high binding affinity for the targeted transcription factors. The targeted transcription factors are endogenous, sequence-specific double-stranded DNA binding proteins which modulate (increase or decrease) the rate of transcription of one or more specific genes in the target cell. Essentially any such transcription factor (henceforth, “transcription factor”) can be targeted so long as a specific decoy capable of competitively inhibiting binding to the endogenous gene can be identified. Numerous transcription factors and their binding sequences are known in the art as are methods for identifying such complements, see e.g. Wang and Reed (1993) Nature 364, 121 and Wilson et al. (1991) Science 252, 1296. As used herein, endogenous means that the gene or transcription factor is present in the target cell at the time the decoy is introduced. [0016]
  • The transcription factors will, for the most part and depending on the clinical indication, regulate the transcription of genes associated with cell growth, differentiation and signalling or viral genes resident in the target cell. Examples include genes necessary for mitosis, particularly going from G[0017] o to S, such as proteins associated with check points in the proliferative cycle, cyclins, cyclin dependent kinases, proteins associated with complexes, where the cyclin or cdk is part of the complex, Rosenblatt et al., Proc. Natl. Acad. Sci. 89, 2824 (1992) and Pagano et al., Science 255, 1144 (1992). Often such genes or the transcription factors themselves will be oncogene products or cellular counterparts, e.g. fos, jun, myc, etc. Other examples include genes encoding secreted proteins and peptides such as hormones e.g. growth factors, cytokines, e.g. interleukins, clotting factors, etc. Target transcription factors also include host and host-cell resident viral transcription factors which activate viral genes present in infected host cells.
  • Preferred target transcription factors are activated (i.e. made available in a form capable of binding DNA) in a limited number of specifically activated cells. For example, a stimulus such as a wound, allergen, infection, etc may activate a metabolic pathway that is triggered by the transient availability of one or more transcription factors. Such transcription factors may be made available by a variety of mechanisms such as release from sequestering agents or inhibitors (e.g. NFκB bound to IκB), activation by enzymes such as kinases, translation of sequestered message, etc. Desirably, the target transcription factor(s) will be associated with genes other than genes whose lack of expression results in cytotoxicity. For the most part, it is desirable not to kill the cell, but rather to inhibit or activate specific gene transcription. [0018]
  • Exemplary transcription factors and related cis elements, the cellular processes impacted and therapeutic indication include: [0019]
    Cis-elemnt
    Txn Factor Cellular Process Therapeutic Application
    E2F cell proliferation neointimal hyperplasia, neoplasia
    glomerulonephritis,
    angiogenesis, inflammation
    AP-1 cell growth, differentiation, neointimal hyperplasia, cardiac
    growth factor expression myocyte growth/differentiation
    NFkB cytokine expression, leukocyte inflammation, immune response,
    adhesion molecule expression, transplant rejection, ischemia-
    oxidant stress response, cAMP reperfusion injury,
    and protein kinase C activation, glomerulonephritis
    Ig expression
    SSRE response to shear stress: growth neointimal hyperplasia, bypass
    factor expression vasoactive grafts, angiogenesis, collateral
    substances, matrix proteins, formation.
    adhesion molecules.
    CREB cAMP response cAMP activated events
    MEF-2 cardiac myocyte differentiation cardiac myocyte differentiation
    and hypertrophy and growth.
    CArG box cardiac myocyte differentiation cardiac myocyte growth and
    differentiation.
    tax viral replication HTLV infection
    VP16 viral replication Herpes infection
    TAR/tat viral replication HIV infection
    GRE/HRE glucocorticoid, mineralocorticoid steroid hormone processes e.g.
    MRE induced events (breast or prostate cell growth).
    Heat shock heat shock response cellular stresses e.g. ischemia,
    RE hypoxia
    SRE growth factor responses cell proliferation/differentiation
    AP-2 cAMP and protein kinase cell proliferation.
    response, retinoic acid response
    sterol modulation of LDL cholesterol hypercholesterolemia
    response receptor expression
    element
    TRE Transforming growth factor beta cell growth, differentiation,
    TGFb induced cellular processes migration, angiogenesis, intimal
    responsive hyperplasia, matrix generation, apoptosis.
    element
  • The length, structure and nucleotide sequence of the decoy will vary depending on the targeted transcription factor, the indication, route of administration, etc. For example, targeted transcription factors frequently bind with different degrees of affinity to a variety of sequences, normally sharing a high degree of homology. Accordingly, one may choose to use a sequence associated with a particular target gene or use a consensus sequence based on the nucleotide at each site which occurs most frequently in the binding sequences to which the particular transcription factor binds. For example, when targeting a host transcription factor involved in viral transcription, it may be possible to minimize undesirable effects on host transcriptions preferable by employing the viral-specific binding sequence. Similarly, where transcription is mediated by a multimeric complex, it is often desirable to target a single transcription factor to minimize effects on non-targeted genes. For example, in the case of Herpes virus transcription, one may target the viral VP16 without concomitant targeting of the promiscuous host Oct protein. [0020]
  • In addition to binding affinity, the decoys are also selected for binding specificity. Desirably, the decoys will be highly specific for the target transcription factor(s) such that their effect on nontarget cells and nontargeted metabolic processes of target cells are minimized. Such selection is accomplished in vitro by comparative binding to known transcription factors and nuclear extracts and in culture and in vivo by assaying nontargeted cell function and effects on nontargeted cell types. [0021]
  • The decoys contain sufficient nucleotide sequence to ensure target transcription factor binding specificity and affinity sufficient for therapeutic effectiveness. For the most part, the target transcription factors will require at least six base pairs, usually at least about eight base pairs for sufficient binding specificity and affinity. Frequently, providing the decoys with flanking sequences (ranging from about 5 to 50 bp) beside the binding site enhance binding affinity and/or specificity. Accordingly, cis element flanking regions may be present and concatemer oligonucleotides may be constructed with serial repetitions of the binding and/or cis element flanking sequences. [0022]
  • In one embodiment, the decoys are non-replicative oligonucleotides fewer than 100 bp, usually fewer than 50 bp and usually free of coding sequence, being primarily from the non-coding 5′ region of a gene. Alternatively, the decoys may comprise a portion of a larger plasmid, including viral vectors, capable of episomal maintenance or constitutive replication in the target cell to provide longer term or enhanced intracellular exposure to the decoy sequence. Plasmids are selected based on compatibility with the target cell, size and restriction sites, replicative frequency, copy number maintenance, etc. For example, plasmids with relatively short half-lives in the target cell are preferred in situations where it is desirable to maintain therapeutic transcriptional modulation for less than the lifetime of the target cell. Exemplary plasmids include pUC expression vectors driven by a beta-actin promoter and CMV enhancer, vectors containing elements derived from RSV or SV40 enhancers, etc. The adeno-associated viral vector preferentially integrates in chromosome 19 and may be utilized for longer term expression. [0023]
  • The oligonucleotides which are employed may be naturally occurring or other than naturally occurring, where the synthetic nucleotides may be modified in a wide variety of ways, see e.g. Bielinska et al (1990) [0024] Science 250, 997. Thus, oxygens may be substituted with nitrogen, sulfur or carbon; phosphorus substituted with carbon; deoxyribose substituted with other sugars, or individual bases substituted with an unnatural base. In each case, any change will be evaluated as to the effect of the modification on the binding of the oligonucleotide to the target transcription factor, as well as any deleterious physiological effects. These modifications have found wide application for “anti-sense” oligonucleotides, so that their safety and retention of binding affinity are well established in the literature. See, for example, Wagner et al., Science 260, 1510-1513 (1993). The strands may be synthesized in accordance with conventional ways using phosphoramidite synthesis, commercially available automatic synthesizes, and the like.
  • The administered compositions may comprise individual or mixtures of decoys. Usually the mixture will not exceed 4 different decoys usually not exceed 2. The decoys are administered to a host in a form permitting cellular internalization of the decoys in an amount sufficient to competitively inhibit the binding of the targeted transcription factor to an endogenous gene. The host is typically a mammal, usually a human. The selected method of administration depends principally upon the target cell, the nature of the decoy, the host, the size of the decoy. Exemplary methods are described in the examples below; additional methods including transfection with a retrovirus, viral coat protein-liposome mediated transfection, lipofectin etc. are described in Dzau et al., [0025] Trends in Biotech 11, 205-210 (1993).
  • Where administered in liposomes, the decoy concentration in the lumen will generally be in the range of about 0.1 uM to 50 uM per decoy, more usually about 1 uM to 10 uM, most usually about 3 uM. For other techniques, usually one will determine the application rate empirically, using conventional techniques to determine desired ranges. [0026]
  • In some situations it may be desirable to provide the decoy source with an agent which targets the target cells, such as an antibody specific for a surface membrane protein on the target cell, a ligand for a receptor on the target cell, etc. For example, for intervention in HIV infection, cells expressing HIV gene products or CD4 may be specifically targeted with gene product or CD4-specific binding compounds. Also, where liposomes are involved, one may wish to include proteins associated with endocytosis, where the proteins bind to a surface membrane protein associated with endocytosis. Thus, one may use capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. [0027]
  • The application of the subject therapeutics are preferably local, so as to be restricted to a histological site of interest e.g. localized inflammation, neoplasia or infection. Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access, or the like. Where an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing the subject compositions, the subject compositions may be painted onto the organ, or may be applied in any convenient way. Alternatively, systemic administration of the decoy using e.g. lipofection, liposomes with tissue targeting (e.g. antibody), etc. may be practiced. Systemic administration is most applicable where the distribution of the targeted transcription factor is primarily limited to targeted cell types, e.g. virus-specific transcription factors limited to infected cells, mutant oncogenic transcription factors limited to transformed cells, etc. [0028]
  • Optimal treatment parameters will vary with the indication, decoy, clinical status, etc., and are generally determined empirically, using the guidance provided herein. Several exemplary indications, routes and vehicles of administration and decoy combinations are disclosed in the following table. [0029]
    INDICATION ROUTE VEHICLE PLASMD/OLIGO
    HIV infection intravenous inj. gp160 in TAR containing
    neutral liposomes oligo
    solid tumor intratumoral inj. tumor-specific Ab E2F
    with liposomes
    Inflammatory skin topical polymer NFκB, E2F
    disease and
    dermatitis
    Hypercholesterolemia intravenous inj. cationic liposomes sterol responsive
    portal vein inj. asialoglycoprotein element to
    receptor targeting increase LDL
    with lipsomes receptors
    vein bypass grafts topical/intraluminal polymer, E2F
    liposomes
    glomerulonephritis intravenous, polymer, E2F, NFκB
    intrarenal liposomes
    myocardial intracoronary liposomes, NFκB, E2F, AP-1
    infarction polymer
    organ transplant intravascular, ex liposomes, NFκB
    esp. cardiac/renal vivo polymer
  • A wide variety of indications may be treated, either prophylactically or therapeutically with the subject compositions. For example, prophylactic treatment may inhibit mitosis or proliferation or inflammatory reaction prior to a stimulus which would otherwise activate proliferation or inflammatory response, where the extent of proliferation and cellular migration may be undesirable. Similarly, a therapeutic application is provided by a situation where proliferation or the inflammatory response is about to be initiated or has already been initiated and is to be controlled. The methods and compositions find use, particularly in acute situations, where the number of administrations and time for administration is relatively limited. [0030]
  • Conditions for treatment include such conditions as neoproliferative diseases including inflammatory disease states, where endothelial cells, inflammatory cells, glomerular cells may be involved, restenosis, where vascular smooth muscle cells are involved, myocardial infarction, where heart muscle cells may be involved, glomerular nephritis, where kidney cells are involved, hypersensitivity such as transplant rejection where hematopoietic cells may be involved, cell activation resulting in enhancement of expression of adhesion molecules where leukocytes are recruited, or the like. By administering the decoys to the organ ex vivo prior to implantation and/or after implantation, upregulation of the adhesion molecules may be inhibited. Adhesion molecules include homing receptors, addressins, integrins, selectins, and the like. [0031]
  • The following examples are offered by way of illustration and not by way of limitation. [0032]
  • EXPERIMENTAL EXAMPLE 1 Transfection of E2F Decoys into Cultured Cells
  • For the nuclear extracts, vascular smooth muscle cells (“VSMCs”) were stimulated by serum until confluent. After confluent, the cells were made quiescent by placing in serum free medium for 48 h. After the transfection of decoy oligodeoxynucleotides (“ODN”; 14 bp) essentially as described in Morishita et al. (1993) [0033] Proc. Natl. Acad. Sci. USA, 90, 8474-8478, cells were stimulated by 5% serum. After 6 h, RNA was extracted by RNAzol (Tel-Test Inc, Texas) Chomczynski and Sacchi (1987) Anal Biochem 162, 156-159. Levels of PCNA, cdc2 and beta-actin mRNAs were measured by RT-PCR (Morishita et al. (1993) supra). The PCNA primer (nucleotides 150-177 of rat PCNA cDNA) and the cdc2 5′ primer (nucleotides 54-75 of human cdc2 cDNA) were previously described (Morishita et al. (1993) supra). The primers complementary to the rat beta-actin gene were obtained from Clontech Laboratories Inc. (Palo Alto, Calif.). Aliquots of RNA were amplified simultaneously by PCR (30 cycles) and compared with a negative control (primers without RNA). Amplification products were electrophoresed through 2% agarose gels stained with ethidium bromide. A gel mobility shift assay was performed as previously described (Horiuchi et al., J. Biol. Chem. 266, 16247-16254 (1991).
  • The 14 bp double-strand ODN effectively abolished the binding of the E2F transcription factor to a specific binding site in serum stimulated VSMCs. See also, Hiebert et al. (1989) PNAS 86, 3594. Transfection of the E2F decoy ODN markedly inhibited the induction of c-myc, cdc2 and PCNA mRNA expression in response to serum stimulation. The E2F decoy ODN had no effect on beta-actin mRNA expression. Furthermore, the control missense E2F element ODN containing two base pair substitutions that eliminate E2F binding failed to inhibit the induction of c-myc, cdc2 and PCNA RNA expression in response to serum stimulation. In association with effective inhibition of cell cycle regulatory gene expression, transfection of the 14 bp E2F decoy also abolished serum-stimulated VSMC proliferation. In contrast, the missense E2F element ODN had no effect on mitogenesis induced by serum. [0034]
  • To further confirm the specificity of this response to the E2F decoy, a 30 bp double-stranded ODN which contained two 8 base pair E2F cis elements capable of specific binding to E2F was employed (Weintraub et al., [0035] Nature 358, 259-261 (1992)). In the 30 bp E2F decoy the fifth nucleotide of the 8 bp E2F cis elements was changed from C to G. Despite these differences in flanking sequences and nucleotide composition, both E2F decoys effectively bind E2F and inhibit serum-stimulated vascular smooth muscle cell (VSMC) proliferation. Moreover, a 30 bp missense E2F element ODN with 5 bp substitutions with the 8 bp E2F consensus elements fails to bind E2F and also fails to inhibit serum-stimulated VSMC proliferation. Thus, these in vitro studies documented that transfection of the E2F cis element decoy ODN binds the E2F transcription factor, blocked the induction of cell cycle regulatory gene expression and inhibited VSMC proliferation in a sequence specific manner.
  • EXAMPLE 2 E2F Decoys in vivo
  • Liposomes were prepared as follows: Phosphatidylserine phosphatidylcholine, and cholesterol were mixed in a weight ratio (1:4.8:2) to create a lipid mixture. Lipid was hydrated in a balanced salt solution containing ODN (110 nmol). Purified HVJ(Z) strain was inactivated by UV radiation just before use. The liposome suspension was mixed with HVJ (Z strain) (20,000 hemagglutinating units), incubated, then free HVJ removed by sucrose density gradient centrifugation. The final concentration of encapsulated DNA was calculated as previously reported (Morishita et al. (1993) supra). This method results in a more rapid cellular uptake and nuclear concentration, leading to a 100-fold higher transfection efficiency of ODN than lipofection or passive uptake methods. [0036]
  • The sequences of the phosphorothioate ODN utilized: [0037]
    decoys-1 5′-CTAGA TTTCCCGC G-3′
         3′-T AAAGGGCG CCTAG-5′
    mismatched-1 5′-CTAGATTTC GA GCG-3′
         3′-TAAAG CT CGCCTAG-5′
  • We also examined another set of decoy ODNs containing two binding sites: [0038]
    decoys-2: 5′-GATCA AAAGCGCG AATCA AAAGCGCG AATC-3′
    3′-CTAGT TTTCGCGC TTAGT TTTCGCGC TTAG-5′
    mismatched-1; 5′-GATCAAA GAACT GAATCAAA GAACT GAATC-3′
    3′-CTAGTTT CTTGA CTTAGTTT CTTGA CTTAG-5′
  • Rat aortic VSMC (passage 4-10) were studied in a confluent, quiescent state in serum-free media (Morishita et al, [0039] J. Clin. Invest. 91, 2580-2585 (1993)). The cells were incubated with hemagglutinating virus Japan (HVJ) liposomes (3 μM) at 4° C. for 5 min and 37° C. for 30 min. Three days after transfection in either calf serum (CS) or serum-free media, cell number was determined by Coulter-Counter (Coulter, Fla.).
  • EXAMPLE 3 Effect of Decoy ODN on in vivo Gene Expression
  • A 2 French Fogarty catheter was used to induce vascular injury in male Sprague-Dawley rats (400-500 g; Charles River Breeding Laboratories) (Hanke et al., [0040] Circ. Res. 67, 651-659 (1990)). These rats were anesthetized, and a cannula introduced into the left common carotid via the external carotid artery. After vascular injury of the common carotid, the distal injured segment was transiently isolated by temporary ligatures. The HVJ complex was infused into the segment and incubated for 10 min at room temperature. No adverse neurological or vascular effects were observed in any animal undergoing this procedure.
  • For RNA analysis, vessels were harvested at 6 h, (c-myc and beta-actin) and one day (cdc2 kinase, PCNA and beta-actin) after transfection. RNA was extracted from mismatched or E2F decoy ODN (3 μM) treated injured or untreated intact vessels by RNAzol (Tel-Test Inc., Texas). RT-PCR was performed as described above. For BrdU staining, BrdU was injected into rats (100 mg/kg subcutaneous and 30 mg/kg intraperitoneal at 18 h prior, and then 30 mg/kg intraperitoneal at 12 h prior to sacrifice (Hanke et al., supra)). Rats were sacrificed after day four after transfection. The carotid artery was removed after perfusion-fixation with 4% paraformaldehyde, and processed for immunohistochemistry in a standard manner using anti-BrdU antibodies (Amersham). The proportion of BrdU positive cells was determined by cell counts under light microscopy in a blinded fashion. [0041]
  • Transfection procedures were described above. HVJ-ODN complex (3 μM) was administered into the rat carotid injured arteries. At two weeks after transfection, rats were sacrificed and vessels were perfusion-fixed with 4% paraformaldehyde. Three individual sections from the middle of transfected segments were analyzed. In addition, three sections from the middle section of the injured untransfected region were also analyzed. Animals were coded so that the operation and analysis were performed without knowledge of which treatment individual animals received. Intimal and medial areas were measured on a digitizing tablet (Southern Micro Instruments, Georgia). Analysis of variance with subsequent Duncan's test was used to determine significant differences in multiple comparisons. P<0.05 was considered significant. [0042]
  • The scrambled and progesterone responsive element (PRE) decoy sequences utilized as control ODNs are as follows: [0043]

Claims (7)

1-12. (canceled)
13. A method for treating an NFκB-associated inflammatory disease or condition is a mammal, comprising introducing an NFκB decoy into a cell of said mammal.
14. The method of claim 13, wherein said mammal is human.
15. The method of claim 13, wherein said decoy is introduced into said cell in vivo.
16. The method of claim 13, wherein said decoy comprises dsDNA.
17. The method of claim 14, wherein said inflammatory disease or condition is an inflammatory skin disease.
18. The method of claim 17 wherein said inflammatory skin disease is dermatitis.
US10/850,994 1993-10-29 2004-05-20 Therapeutic use of cis-element decays in vivo Abandoned US20040229833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/850,994 US20040229833A1 (en) 1993-10-29 2004-05-20 Therapeutic use of cis-element decays in vivo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14471793A 1993-10-29 1993-10-29
US08/524,206 US6774118B1 (en) 1993-10-29 1995-09-08 Therapeutic use of CIS-element decoys in vivo
US09/875,305 US20020128217A1 (en) 1993-10-29 2001-06-05 Therapeutic use of cis-element decoys in vivo
US10/850,994 US20040229833A1 (en) 1993-10-29 2004-05-20 Therapeutic use of cis-element decays in vivo

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/875,305 Continuation US20020128217A1 (en) 1993-10-29 2001-06-05 Therapeutic use of cis-element decoys in vivo

Publications (1)

Publication Number Publication Date
US20040229833A1 true US20040229833A1 (en) 2004-11-18

Family

ID=22509818

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/524,206 Expired - Fee Related US6774118B1 (en) 1993-10-29 1995-09-08 Therapeutic use of CIS-element decoys in vivo
US09/839,752 Expired - Fee Related US6821956B2 (en) 1993-10-29 2001-04-19 Therapeutic use of cis-element decoys in vivo
US09/875,305 Abandoned US20020128217A1 (en) 1993-10-29 2001-06-05 Therapeutic use of cis-element decoys in vivo
US10/424,011 Abandoned US20030186922A1 (en) 1993-10-29 2003-04-25 Therapeutic use of cis-element decoys in vivo
US10/850,994 Abandoned US20040229833A1 (en) 1993-10-29 2004-05-20 Therapeutic use of cis-element decays in vivo

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US08/524,206 Expired - Fee Related US6774118B1 (en) 1993-10-29 1995-09-08 Therapeutic use of CIS-element decoys in vivo
US09/839,752 Expired - Fee Related US6821956B2 (en) 1993-10-29 2001-04-19 Therapeutic use of cis-element decoys in vivo
US09/875,305 Abandoned US20020128217A1 (en) 1993-10-29 2001-06-05 Therapeutic use of cis-element decoys in vivo
US10/424,011 Abandoned US20030186922A1 (en) 1993-10-29 2003-04-25 Therapeutic use of cis-element decoys in vivo

Country Status (8)

Country Link
US (5) US6774118B1 (en)
EP (3) EP1350514A3 (en)
AT (1) ATE395065T1 (en)
DE (1) DE69435100D1 (en)
DK (1) DK0732929T3 (en)
ES (1) ES2307293T3 (en)
PT (1) PT732929E (en)
WO (1) WO1995011687A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040162251A1 (en) * 2001-02-20 2004-08-19 Ryuichi Morishita Pharmaceutical composition containing decoy and method of using the same
US20070259826A1 (en) * 2004-10-22 2007-11-08 Ryuichi Morishita Chimeric (Double) Decoy
US20080300209A1 (en) * 2007-05-11 2008-12-04 Adynxx, Inc. Gene expression and pain
US9700624B2 (en) 2012-05-10 2017-07-11 Adynxx, Inc. Formulations for the delivery of active ingredients
US10287583B2 (en) 2014-08-15 2019-05-14 Adynxx, Inc. Oligonucleotide decoys for the treatment of pain

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1350514A3 (en) * 1993-10-29 2004-07-07 The Brigham And Women's Hospital, Inc. Therapeutic use of cis-element decoys in vivo
US6399376B1 (en) * 1993-11-05 2002-06-04 Isis Pharmaceuticals, Inc. Modulation of vascular cell adhesive molecule expression through oligonucleotide interactions
AU3881095A (en) * 1994-11-17 1996-06-17 Taiho Pharmaceutical Co., Ltd. Double-stranded oligonucleotide and carcinostatic agent containing the same as active ingredient
DE69636997T2 (en) 1995-05-12 2007-07-12 Anges MG Inc., Ibaraki HEALING AND PREVENTION OF AF-kappaB-CAUSED DISEASES
US6946246B1 (en) 1997-04-08 2005-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Production of functional proteins: balance of shear stress and gravity
WO2000006696A2 (en) * 1998-07-30 2000-02-10 University Of South Florida Method for the modulation of function of transcription factors
CA2300328A1 (en) 1999-09-14 2001-03-14 Cardiogene Gentherap. Systeme Ag Modulating transcription of genes in vascular cells
CA2420724A1 (en) * 2000-08-30 2002-03-07 North Carolina State University Transgenic plants containing molecular decoys that alter protein content therein
US20030055014A1 (en) * 2000-12-14 2003-03-20 Bratzler Robert L. Inhibition of angiogenesis by nucleic acids
DE10148828B4 (en) * 2001-10-04 2005-05-19 Avontec Gmbh Modulation of the expression of STAT-1-dependent genes
WO2003063911A1 (en) * 2002-02-01 2003-08-07 Anges Mg, Inc. Decoy-containing pharmaceutical compositions and method of using the same
US20030224992A1 (en) * 2002-03-15 2003-12-04 Praecis Pharmaceuticals Inc. Transcription factor modulators and uses thereof
CN1240439C (en) 2002-03-28 2006-02-08 南京凯基生物科技发展有限公司 Genetic switch medicine for treating tumor
KR100874798B1 (en) 2002-04-26 2008-12-19 이인규 Circular dumbbell-shaped decoyoligonucleotides containing DNA binding sites during transcription
DE10240417A1 (en) * 2002-09-02 2004-03-11 Avontec Gmbh Decoy oligonucleotide inhibition of CD40 expression
DE10242319A1 (en) * 2002-09-12 2004-03-25 Avontec Gmbh New double-stranded oligonucleotides, useful for treating e.g. cardiovascular disease and arthritis, are decoys that lift inhibition of expression of endothelial nitric oxide synthase
US20040266712A1 (en) * 2003-04-08 2004-12-30 Mcevoy Leslie M. Selective inhibition of vascular smooth muscle cell proliferation
WO2005035547A2 (en) * 2003-10-06 2005-04-21 Corgentech, Inc. E2f oligonucleotide decoy molecules
US7824857B2 (en) 2003-12-02 2010-11-02 Musc Foundation For Research Development Methods and compositions for diagnosing epithelial cell cancer
WO2005079217A2 (en) * 2003-12-19 2005-09-01 University Of Cincinnati Oligonucleotide decoys and methods of use
US8372966B2 (en) * 2003-12-19 2013-02-12 University Of Cincinnati Oligonucleotide decoys and methods of use
US7981616B2 (en) 2004-02-27 2011-07-19 Musc Foundation For Research Development Enhanced detection of RNA using a panel of truncated gene-specific primers for reverse transcription
US7482158B2 (en) * 2004-07-01 2009-01-27 Mathison Brian H Composite polynucleic acid therapeutics
JP2008505644A (en) 2004-07-09 2008-02-28 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Identification of markers in esophageal cancer, colon cancer, head and neck cancer, and melanoma
US20060293264A1 (en) * 2004-07-22 2006-12-28 Grandis Jennifer R STAT3 decoy oligonucleotides and uses therefor
US7585848B2 (en) 2005-01-11 2009-09-08 Rush University Medical Center Methods and compositions for treating, inhibiting and reversing disorders of the intervertebral disc
US20060234973A1 (en) * 2005-04-14 2006-10-19 Kevin Fitzgerald Transcription factor RNA interference reagents and methods of use thereof
WO2006132204A1 (en) 2005-06-06 2006-12-14 Anges Mg, Inc. Transcription factor decoy
EP1978096A1 (en) 2005-12-22 2008-10-08 Genomidea Inc Novel oligonucleotide and nf-kappa b decoy comprising the same
WO2007071069A1 (en) * 2005-12-22 2007-06-28 Institut De Cardiologie De Montreal Transcription factor decoy oligodeoxynucleotides having multiple cis elements
US8501478B2 (en) * 2006-06-15 2013-08-06 University Of Cincinnati Trehalose click polymers for delivery of biologically active molecules
EP2415783B1 (en) 2006-10-16 2016-12-14 Genelux Corporation Modified vaccinia virus strains for use in a diagnostic and therapeutic method
JP5384120B2 (en) 2007-02-16 2014-01-08 アンジェスMg株式会社 Therapeutic agent for periodontal diseases and alveolar bone defects caused by surgery
WO2009117484A2 (en) 2008-03-18 2009-09-24 University Of South Florida Small molecule e2f inhibitor
KR20100127300A (en) 2008-03-28 2010-12-03 안게스 엠지 인코포레이티드 Composition for external application comprising transcription factor decoy as active ingredient
WO2011084694A1 (en) 2009-12-17 2011-07-14 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Stabilized stat3 decoy oligonucleotides and uses therefor
CN104661664B (en) 2012-07-13 2020-07-03 波涛生命科学有限公司 Chiral control
WO2015031628A1 (en) * 2013-08-28 2015-03-05 Oregon Health & Science University Synthetic oligonucleotides for detection of nucleic acid binding proteins
EP3366773A4 (en) * 2015-10-23 2019-06-12 Rena Therapeutics Inc. Nucleic acid complex
WO2018067165A1 (en) * 2016-10-07 2018-04-12 Miami University Engineered oncolytic viruses containing hyper-binding sites to sequester and suppress activity of oncogenic transcription factors as a novel treatment for human cancer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631237A (en) * 1992-12-22 1997-05-20 Dzau; Victor J. Method for producing in vivo delivery of therapeutic agents via liposomes
US5683985A (en) * 1991-04-18 1997-11-04 The Salk Institute For Biological Studies Oligonucleotide decoys and methods relating thereto
US5804374A (en) * 1980-12-05 1998-09-08 Massachusetts Insti. Technology Nuclear factors associates with transcriptional regulation
US6150090A (en) * 1986-01-09 2000-11-21 Massachusetts Institute Of Technology Nuclear factors associated with transcriptional regulation
US6262033B1 (en) * 1995-02-11 2001-07-17 Fujisawa Pharmaceutical Co., Ltd. Remedy for diseases associated with NF-κB
US6399376B1 (en) * 1993-11-05 2002-06-04 Isis Pharmaceuticals, Inc. Modulation of vascular cell adhesive molecule expression through oligonucleotide interactions
US20030186922A1 (en) * 1993-10-29 2003-10-02 Dzau Victor J. Therapeutic use of cis-element decoys in vivo

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
WO1991011535A1 (en) * 1990-01-30 1991-08-08 Childrens Hospital Of Los Angeles Inhibition of transcription by double-stranded oligonucleotides
US6262022B1 (en) * 1992-06-25 2001-07-17 Novartis Ag Pharmaceutical compositions containing cyclosporin as the active agent
US6699985B2 (en) * 1991-08-21 2004-03-02 Arsinur Burcoglu Method of treating HIV infection and related secondary infections thereof
WO1993003770A1 (en) * 1991-08-23 1993-03-04 Board Of Regents Of The University Of Nebraska Method and compositions for cellular reprogramming
AU3584993A (en) * 1992-01-27 1993-09-01 Trustees Of The University Of Pennsylvania, The Methods and compositions for neutralizing intracellular nucleic acid-binding protein biological activity in a cell, including methods and compositions useful to regulate gene function
WO1993015227A1 (en) * 1992-01-29 1993-08-05 Duke University Method of assaying for the oncogenic state of cells
US5821234A (en) 1992-09-10 1998-10-13 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of proliferation of vascular smooth muscle cell
US5863757A (en) * 1992-10-29 1999-01-26 Medical Research Council Transcription factor DP-1
WO1995011684A1 (en) * 1993-10-29 1995-05-04 Shunichi Shiozawa Antagonistic inhibitor against mesenchymal cell growth
EP1008352A4 (en) * 1997-07-04 2005-03-16 Fujisawa Pharmaceutical Co Brain-protective agent
US20050203612A1 (en) * 2000-12-22 2005-09-15 Avantec Vascular Corporation Devices delivering therapeutic agents and methods regarding the same
US20050125054A1 (en) * 2000-12-22 2005-06-09 Avantec Vascular Corporation Devices delivering therapeutic agents and methods regarding the same
EP1690544B1 (en) * 2001-02-20 2017-09-13 AnGes MG, Inc. Pharmaceutical composition containing decoy and method of using the same
EP1449541A4 (en) * 2001-11-22 2006-05-31 Anges Mg Inc Compositions inhibiting rejection in organ transplantation and method of using the same
WO2003063911A1 (en) * 2002-02-01 2003-08-07 Anges Mg, Inc. Decoy-containing pharmaceutical compositions and method of using the same
AU2002241343A1 (en) * 2002-03-29 2003-10-13 Anges Mg, Inc. Decoy compositions for treating and preventing brain diseases and disorders
JPWO2003099339A1 (en) * 2002-05-29 2005-09-22 アンジェスMg株式会社 Decoy composition for treating and preventing inflammatory diseases
WO2004060317A2 (en) * 2002-12-31 2004-07-22 Genta Incorporated Combination of gallium compounds with nonchemotherapeutic anticancer agents in the treatment of neoplasia
US20040191779A1 (en) * 2003-03-28 2004-09-30 Jie Zhang Statistical analysis of regulatory factor binding sites of differentially expressed genes
EP1462111A1 (en) * 2003-03-28 2004-09-29 Universiteit Utrecht Holding B.V. Composition for inducing immunotolerance
EP1691817A2 (en) * 2003-12-02 2006-08-23 Corgentech, Inc. NF-kB OLIGONUCLEOTIDE DECOY MOLECULES
US7585848B2 (en) * 2005-01-11 2009-09-08 Rush University Medical Center Methods and compositions for treating, inhibiting and reversing disorders of the intervertebral disc
US20060258604A1 (en) * 2005-05-10 2006-11-16 Warren Strober Compositions and methods for the treatment of inflammatory bowel disease utilizing NF-kappaB decoy polynucleotides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804374A (en) * 1980-12-05 1998-09-08 Massachusetts Insti. Technology Nuclear factors associates with transcriptional regulation
US6150090A (en) * 1986-01-09 2000-11-21 Massachusetts Institute Of Technology Nuclear factors associated with transcriptional regulation
US6410516B1 (en) * 1986-01-09 2002-06-25 President & Fellows Of Harvard College Nuclear factors associated with transcriptional regulation
US5683985A (en) * 1991-04-18 1997-11-04 The Salk Institute For Biological Studies Oligonucleotide decoys and methods relating thereto
US5631237A (en) * 1992-12-22 1997-05-20 Dzau; Victor J. Method for producing in vivo delivery of therapeutic agents via liposomes
US20030186922A1 (en) * 1993-10-29 2003-10-02 Dzau Victor J. Therapeutic use of cis-element decoys in vivo
US6399376B1 (en) * 1993-11-05 2002-06-04 Isis Pharmaceuticals, Inc. Modulation of vascular cell adhesive molecule expression through oligonucleotide interactions
US6262033B1 (en) * 1995-02-11 2001-07-17 Fujisawa Pharmaceutical Co., Ltd. Remedy for diseases associated with NF-κB

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012417B2 (en) * 2001-02-20 2015-04-21 Anges Mg, Inc. Topical administration of NF-kappaB decoy to treat atopic dermatitis
US20040162251A1 (en) * 2001-02-20 2004-08-19 Ryuichi Morishita Pharmaceutical composition containing decoy and method of using the same
US8067384B2 (en) 2004-10-22 2011-11-29 Anges Mg, Inc. Chimera (double) decoy
US20070259826A1 (en) * 2004-10-22 2007-11-08 Ryuichi Morishita Chimeric (Double) Decoy
US8093225B2 (en) 2007-05-11 2012-01-10 Adynxx, Inc. Gene expression and pain
US20110166212A1 (en) * 2007-05-11 2011-07-07 Adynxx, Inc. Gene expression and pain
US7943591B2 (en) 2007-05-11 2011-05-17 Adynxx, Inc. Gene expression and pain
US8741864B2 (en) 2007-05-11 2014-06-03 Adynxx, Inc Gene expression and pain
US20080300209A1 (en) * 2007-05-11 2008-12-04 Adynxx, Inc. Gene expression and pain
US9290762B2 (en) 2007-05-11 2016-03-22 Adynxx, Inc. Gene expression and pain
US10041069B2 (en) 2007-05-11 2018-08-07 Adynxx, Inc. Gene expression and pain
US9700624B2 (en) 2012-05-10 2017-07-11 Adynxx, Inc. Formulations for the delivery of active ingredients
US10434178B2 (en) 2012-05-10 2019-10-08 Adynxx Sub, Inc. Formulations for the delivery of active ingredients
US10287583B2 (en) 2014-08-15 2019-05-14 Adynxx, Inc. Oligonucleotide decoys for the treatment of pain
US10683502B2 (en) 2014-08-15 2020-06-16 Adynxx Sub, Inc. Oligonucleotide decoys for the treatment of pain

Also Published As

Publication number Publication date
ATE395065T1 (en) 2008-05-15
DE69435100D1 (en) 2008-06-26
EP0732929A1 (en) 1996-09-25
EP0732929B1 (en) 2008-05-14
ES2307293T3 (en) 2008-11-16
EP1350514A2 (en) 2003-10-08
DK0732929T3 (en) 2008-09-01
US20020052333A1 (en) 2002-05-02
EP1340505A3 (en) 2004-07-14
EP0732929A4 (en) 2001-11-14
US6774118B1 (en) 2004-08-10
US20020128217A1 (en) 2002-09-12
WO1995011687A1 (en) 1995-05-04
US6821956B2 (en) 2004-11-23
US20030186922A1 (en) 2003-10-02
EP1350514A3 (en) 2004-07-07
EP1340505A2 (en) 2003-09-03
PT732929E (en) 2008-08-26

Similar Documents

Publication Publication Date Title
US6821956B2 (en) Therapeutic use of cis-element decoys in vivo
JP7442574B2 (en) Compositions and methods for inhibiting gene expression of LPA
Morishita et al. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides.
Morishita et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo.
US8647820B2 (en) Circular dumbbell decoy oligodeoxynucleotides (CDODN) containing DNA bindings sites of transcription
JP3231779B2 (en) Antisense oligonucleotide regulation of raf gene expression
JPH08510130A (en) Antisense oligonucleotides that inhibit aberrant splicing and methods of using the same
IL194419A (en) Dsrna for inhibiting the expression of human eg5 gene in a cell, a pharmaceutical composition comprising same, method and vector
JPH09507381A (en) Inhibition of vascular smooth muscle cell proliferation
US20080207552A1 (en) Decoy compositions for treating and preventing brain diseases and disorders
US20110257250A1 (en) Treating Insulin Secreting Cells
JP4787409B2 (en) Therapeutic phosphodiesterase inhibitors
KR20060129504A (en) Decoy nucleic acid to synoviolin gene promoter
CN111304249A (en) Novel CRISPR Cas13a-gRNA expression vector and application thereof
US20030060433A1 (en) Inhibition of stress activated protein kinase (sapk) pathway and sensitization of cells to cancer therapies
KR20010042848A (en) Insulin-like growth factor ⅱ antisense oligonucleotide sequences and methods of using same to modulate cell growth
US20090048191A1 (en) Therapeutic molecules for modulating stability of vegf
JPH10512559A (en) Combination therapy for hyperproliferative disease
EP1758999B1 (en) METHODS OF INHIBITING TUMOR CELL PROLIFERATION WITH FOXM1 siRNA
US20040220131A1 (en) Method for treatment of cancerous angiogenic disorders
KR102519059B1 (en) Composition for Preventing or Treating Dmentia Comprising Peptide Nucleic Acid Complex with Blood-Brain Barrier Permeability
JP2000506866A (en) Oligonucleotides targeted to angiotensinogen mRNA
JP2003512442A (en) Cancer Treatment
CN117778474A (en) Expression vector based on CRISPR-Cas13a targeting knockdown oncogene and application thereof
KR20230128689A (en) Composition for Preventing or Treating Alzheimer’s disease Comprising Nucleic Acid Complex

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE