US20040253703A1 - Novel aminopeptidase derived from bacilius licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof - Google Patents

Novel aminopeptidase derived from bacilius licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof Download PDF

Info

Publication number
US20040253703A1
US20040253703A1 US10/481,531 US48153103A US2004253703A1 US 20040253703 A1 US20040253703 A1 US 20040253703A1 US 48153103 A US48153103 A US 48153103A US 2004253703 A1 US2004253703 A1 US 2004253703A1
Authority
US
United States
Prior art keywords
aminopeptidase
ala
amino acid
val
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/481,531
Other versions
US7098018B2 (en
Inventor
Young-Phil Lee
Seung-Won Lee
Chul-ho Jung
Hyung-Cheol Kim
Song-Yong Choi
Jin-Suk Kim
Hyun-Sik Kim
Jung-Woo Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Life Sciences Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2002-0030798A external-priority patent/KR100477062B1/en
Application filed by LG Life Sciences Ltd filed Critical LG Life Sciences Ltd
Assigned to LG LIFE SCIENCES LTD. reassignment LG LIFE SCIENCES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, SOON-YONG, JUNG, CHUL-HO, KIM, HYUNG-CHEOL, KIM, HYUN-SIK, KIM, JIN-SUK, LEE, SEUNG-WON, LEE, YOUNG-PHIL, SEO, JUNG-WOO
Publication of US20040253703A1 publication Critical patent/US20040253703A1/en
Application granted granted Critical
Publication of US7098018B2 publication Critical patent/US7098018B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus

Definitions

  • the present invention relates to novel aminopeptidase derived from Bacillus licheniformis , a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof.
  • the present invention relates to a gene encoding aminopeptidase which is cloned and manufactured using the recombinant DNA technique, an expression vector containing the gene, a cell transformant transfected with the expression vector and a recombinant aminopeptidase which is necessary to produce recombinant human growth hormone in a natural type protein and can be expressed in a high yield more stably and advantageously, compared with conventional methods for the purification.
  • recombinant proteins are made as non-natural types when they are expressed in a large scale through the gene manipulation in microbes.
  • most of the recombinant proteins having a initiator, methionine (MET), in the amino terminus, which were treated inappropriately are produced.
  • the recombinant proteins containing methionine at the amino terminus might induce immunogenic reactions or become being unstable so as not to play an intrinsic role of the protein, in case of being administered to human or other animals. Therefore, it is very important to develop a new method for preparing such a recombinant protein as its natural type protein (See Nature, 1987, 326, 315; J. Bacteriol., 1987, 169, 751-757 ; Bio/Technology, 1990, 8, 1036-1040 ; Appl. Microbiol. Biotechnol., 1991, 36, 211-215).
  • Human growth hormone is a polypeptide hormone which has 22,125 Da of molecular weight, contains a sequence of Phe-Pro-Thr at the amino terminus and is composed of 191 amino acids secreted from human pituitary gland and mostly has been applied to treat pituitary dwarfism (See Raben, M. S., J. Clin. Endocr., 1958, 18, 901).
  • human growth hormone has been extracted and purified from pituitary glands of the dead, but is hard to be provided for all the patients due to the limited supply.
  • Recently, several studies regarding expression and separation of the human growth hormone from Escherichia coli , yeast and the like by gene manipulation have been performed.
  • a human growth hormone is produced by using the recombinant DNA technology described above, one methionine residue, an initiation codon for protein synthesis is bound additionally at the amino terminus except 191 amino acid residues consisting in a natural type human growth hormone and thus a methionyl human growth hormone which is started from the sequence of Met-Phe-Pro-Thr of the amino terminus and composed of 192 amino acid residues is produced.
  • the methionyl human growth hormone has the same biological activities as that of the natural type of human growth hormone (Moore, J. A., Endocrinology, 1988, 122, 2920-2926) and is not reported yet to provoke side effects by presence of the methionine at the amino terminus.
  • antibodies might be generated on rare occasions due to the methionine and are reported to be produced in a higher ratio than those from the natural type hormone (Lancet, 1986, March 29, 697).
  • the human growth hormone is produced by one method in which the amino terminus is fused with the carboxy terminus of another protein; and then digested by using a specific protease (See PCT International Application WO 89/12678; European Patent Application EP 20209; European Patent EP 321940); and by another method which comprises (1) expressing growth hormone within cells; (2) digesting methionine while secreted out of host cells; and (3) obtaining a natural type human growth hormone from culture media (See European Patent EP 008832; USA Patent U.S. Pat. No.
  • exogenous protein produced by using recombinant DNA technologies include an extra amino acid at the amino terminus
  • the aminopeptidase can be exploited to remove the extra amino acid and as a result, the exogenous protein having the same structure with the natural type protein can be yielded easily.
  • specific aminopeptidase which cuts selectively only methionine residue present at the amino terminus of the methionyl human growth hormone purified through conventional methods can be used in order to produce a natural type human growth hormone (See PCT International Application WO 86/04609 and WO 86/204527 A1).
  • aminopeptidases have been demonstrated to prepare a natural type human growth hormone.
  • the aminopeptidase purified from Aeromonas proteolytica See PCT Internatinal Application WO 86/01229; European Patent EP 0489711, A3, BTG company; Prescott and Wilks, Method in Enzymology, 1976, 44, 530-543
  • the aminopeptidase purified from porcine kidney See PCT International Application WO 86/204527 A1; Bio/Technology, 1987, 5, 824-827, Takeda company
  • the dipeptidyl aminopeptidase purified from Dictyostelium discoidium See European Patent EP 557076; U.S. Pat. No. 5,126,249, Al, Eli Lilly company
  • aminopeptidase from Streptomyces thermonitripican were reported.
  • the aminopeptidase should not work on the amino acid sequence of a natural type protein although it removes unnecessary amino acid residues present at the amino terminus of the recombinant protein. Namely, when the original protein has a amino acid sequence starting from X-Y-Z at the amino terminus and the recombinant protein has the amino acid sequence of Met-X-Y-Z-containing an additional methionine at the amino terminus, the aminopeptidase should cut only the methionine residue and not work onto other amino acids (X-Y-Z-) afterward so as to produce the recombinant protein having the same amino acid sequence as that of the natural type protein. Therefore, the aminopeptidase satisfying such an object should be compatible in its substrate specificity depending upon the target protein for industrial applications. Although the enzyme has such a characteristic, it is advantageous to have higher intrinsic activities itself.
  • aminopeptidases have various properties in view of molecular weight, essential metal ions, optimal condition of the reaction, substrate specificity and so on according to microbes, although they have common activities in view of the digestion in amino acid residues at the amino terminus of the protein (See FEMS Microbiol. Rev., 1996, 18, 319-344).
  • Such an aminopeptidase is classified to an exopeptidase and has a property to isolate a amino acid from the amino terminus of substrate protein in orders.
  • aminopeptidases are purified and analyzed for their enzymatic properties by using leucine-p-nitroanilide, and several dipeptides or the like as a substrate.
  • oligopeptides starting from the sequence of Met-X-Pro at the amino termini or proteins starting from Met-X-Pro at the amino termini are not used as a substrate in order to measure enzymatic activities. Therefore, it is not verified yet that these aminopeptidases might be applied to the methionine removal in recombinant proteins containing Met-X-Pro sequence at their amino termini.
  • aminopeptidases derived from Bacillus licheniformis have been illustrated as follows. Rodriguez et al. have purified the aminopeptidase derived from Bacillus licheniformis ATCC 12759 and examined its enzymatic property. Also, the inventors of the present invention have disclosed the method for preparing a natural type human growth hormone using the aminopeptidase derived from Bacillus licheniformis , the characterization of the purified aminopeptidase in its enzymatic properties and its amino acid sequence at the amino terminus (Korean Patent Laid-open No. 1998-071239).
  • the inventors of the present invention have reported that the aminopeptidase could remove only methionine residue in synthetic substrates, oligopeptides, proteins and the like and recognize the specific amino acid sequence of Met-X-Pro (hereinafter, X denotes any amino acid regardless of its kind) and thus be suitable for the production of the natural type human growth hormone (Korean Patent Laid-open No. 1998-071239).
  • X denotes any amino acid regardless of its kind
  • X denotes any amino acid regardless of its kind
  • the aminopeptidase can be produced from Bacillus licheniformis and exploited to produce a natural type recombinant protein. Besides, they have provided only the information about the partial amino acid sequence of the amino terminus and the total gene of aminopeptidase has not determined yet.
  • the object of the present invention is to provide novel aminopeptidase derived from Bacillus licheniformis , a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof, which can be used to manufacture a recombinant protein as well as applied to other enzymatic reactions usefully.
  • the present invention provides an aminopeptidase derived from Bacillus licheniformis.
  • the aminopeptidase contains one of amino acid sequence selected from the group comprising the amino acid sequence with the full length of SEQ. ID NO: 1 or a amino acid sequence selected from sequence which comprises the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1.
  • the aminopeptidase contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1 at the amino terminus, carboxy terminus or both termini.
  • the aminopeptidase contains the aminopeptidase according to claim 3 , which contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted partially at the amino terminus of the amino sequence with the full length of SEQ. ID NO: 1, in between 30th alanine and 31st alanine, between 39th lysine and 40th asparagine, between 40th asparagine and 41st valine, between 41st valine and 42nd glutamine or between 42nd glutamine and 43rd lysine.
  • aminopeptidase contains an amino acid sequence deleted partially at the carboxy terminus, in between 443th serine and 444th tyrosine of SEQ. ID NO: 1.
  • the present invention provides a gene encoding the aminopeptidase derived from Bacillus licheniformis.
  • the gene encoding the aminopeptidase contains one of nucleotide sequence selected from the group comprising the nucleotide sequence with the full length of SEQ. ID NO: 2 or a nucleotide sequences selected from sequence group which comprises the nucleotide sequences deleted onto one or more of the nucleotide sequence with the full length of SEQ. ID NO: 2.
  • the present invention provides an expression vector pLAP132 which contains the gene encoding the aminopeptidase with the nucleotide sequence in the full length of SEQ. ID NO: 2.
  • the present invention provides an Escherichia coli transformant XLOLR/LAP132 which is transfected with the expression vector pLAP132 (accession number: KCTC 1000 BP).
  • the present invention provides a process for preparing a natural type protein which comprises steps as follows: (1) purification step of the recombinant proteins containing Met-X-Pro sequence at the amino terminus; (2) addition step of said aminopeptidase into said purification mixture; and (3) digestion step of Met-X-Pro sequence at the amino terminus of the recombinant protein by using the aminopeptidase.
  • X of the Met-X-Pro can be any kind of amino acid.
  • FIG. 1 depicts the determination of amino acid sequences in peptide fragments of the aminopeptidase obtained after treating trypsin.
  • FIG. 2 depicts the analysis of the aminopeptidase derived from Bacillus licheniformis and expressed from Escherichia coli transformant by performing SDS-polyacrylamide gel electrophoresis.
  • FIG. 3 depicts the analysis of the aminopeptidase derived from Bacillus licheniformis and expressed from Bacillus subtilis transformant by performing SDS-polyacrylamide gel electrophoresis.
  • FIG. 4 depicts the examination of enzymatic activities in the aminopeptidase derived from Bacillus licheniformis and expressed from Bacillus subtilis transformant schematically.
  • the aminopeptidase of the present invention is identified to have enzymatic activities in a polypeptide state before signal peptide is not deleted (the sequence composed of 1st amino acid through 30th amino acid in SEQ. ID NO: 1) and after signal peptide is deleted. Although some amino acids at the amino terminus and at the carboxy terminus are cut in addition to the deletion of signal peptide, the enzymatic activities are maintained. Therefore, the aminopeptidase containing the amino acid sequence of SEQ. ID NO: 1 as well as the aminopeptidases deleted partially at the amino terminus or at the carboxy terminus from the amino acid sequence of SEQ. ID NO: 1 can be within the scope of the present invention.
  • the aminopeptidase of the present invention contains the amino acid sequence deleted partially at the amino terminus, in between 30th alanine and 31st alanine, between 39th lysine and 40th asparagine, between 40th asparagine and 41st valine, between 41st valine and 42nd glutamine or between 42nd glutamine and 43rd lysine of SEQ. ID NO: 1. More preferably, the aminopeptidase contains the amino acid sequence deleted partially at the amino terminus, in between 30th alanine and 31st alanine, between 42nd glutamine and 43rd lysine.
  • the aminopeptidase of the present invention contains the amino acid sequence deleted partially at the carboxy terminus, in between 443rd serine and 444th tyrosine of SEQ. ID NO: 1.
  • the aminopeptidase contains the amino acid sequence deleted partially at the amino terminus in between 42nd glutamine and 43rd lysine of SEQ. ID NO: 1 and at the carboxy terminus, in between 443rd serine and 444th tyrosine of SEQ. ID NO: 1.
  • genes of the present invention encoding the aminopeptidase derived from Bacillus licheniformis can include the gene encoding amino acid sequence of SEQ. ID NO: 1, the gene encoding all of the deleted form of aminopeptidase mentioned above and the gene of SEQ. ID NO: 2.
  • polypeptides having the enzymatic activities of the aminopeptidase derived from Bacillus licheniformis are cloned from the chromosomal DNA of Bacillus licheniformis .
  • polypeptides having the enzymatic activities of the aminopeptidase derived from Bacillus licheniformis are purified, digested with trypsin so as to collect a number of peptide fragments and then determined the amino acid sequences.
  • amino acid sequences The information of the amino acid sequences is exploited to synthesize oligonucleotides for use of primers and then DNA fragments corresponding to a part of the aminopeptidase gene are amplified. Afterward, by utilizing these DNA fragments for probes, the aminopeptidase gene can be found from the chromosomal library derived from Bacillus licheniformis.
  • aminopeptidase polypeptide obtained according to the present invention is screened by using data base for genetic informations and this gene is identified a novel DNA sequence that have never reported and have a enzymatic activities of the aminopeptidase when it is expressed in recombinant microbes.
  • the matured aminopeptidase is also detected to be digested partially.
  • the aminopeptidase purified from the recombinant bacterial transformant and the aminopeptidase purified from natural host cells, Bacillus licheniformis are examined to determine molecular weights with mass spectrometry. Consequently, in both 2 cases 6 amino acid residues are verified to be cut from the carboxy terminus.
  • aminopeptidase according to the present invention is confirmed to become mature that the aminopeptidase were expressed in the cell and then, the signal peptide was deleted at the amino terminus during the extracellular secretion. Besides, the matured aminopeptidase is also digested partially.
  • aminopeptidase polypeptide maintains enzymatic activities with presence of the signal peptide and even partially being cut at the amino terminus or at the carboxy terminus with absence of the signal peptide.
  • the present inventors have performed the procedure as follows in order to purify aminopeptidase protein from Bacillus licheniformis.
  • Sterilized media containing tryptone 10 g, yeast extract 5 g, NaCl 10 g per 1 L were prepared in flasks and Bacillus licheniformis KCTC 3058 strain was inoculated so as to be cultivated for seed-culture at 40° C., 120 rpm for about 16 hours.
  • the seed culture broth obtained above was inoculated again to new media and cultivated at 40° C., 200-400 rpm agitation, more than 30 of dissolved oxygen. Then, the concentrations of glucose were measured with an hour interval and the cultivation was completed when the activity of aminopeptidase reached more than 35 U/ml.
  • culture broth containing peptone 2 kg, yeast extract 6 kg, potassium phosphate 4 kg, NaCl 1 kg, SAG, MgSO 4 .7H 2 O 15 g, FeSO 4 .7H 2 O 1.53 g, ZnSO 4 .7H 2 O 1.53 g, MnSO 4 1.53 g, and glucose 10 kg per distilled water 200 L in 400 L fermentor was prepared in a sterilized state. After the cultivation was completed, continuous centrifuge was utilized to remove cell debris and recovered the supernatants. The supernatant obtained above was concentrated with a concentrator and then ZnSO 4 was added to reach about 0.3 mM. Through 3 steps of column chromatography, aminopeptidase was purified from the concentrated solution.
  • the resulted aminopeptidase was precipitated by using 10% trichloroacetic acid (TCA), washed with acetone and dried.
  • TCA trichloroacetic acid
  • the dried protein precipitate was dissolved with 8 M urea and 0.4 M ammonium bicarbonate and treated with dithiothreitol (DTT) and iodoacetamide in turns so that disulfide bonds in the aminopeptidase were cleaved.
  • the treated sample was dissolved again in distilled water, added about 0.05 mg of trypsin per 2 mg of aminopeptidase and treated at 37° C. for about 8 hours.
  • the sample treated with trypsin was injected into the reverse phase high pressure chromatography (RP-HPLC) and collected to fractions of major peptide peaks.
  • RP-HPLC reverse phase high pressure chromatography
  • Vydac C18 reverse S phase column was adopted and a linear concentration gradient using solvent A (highly purified water containing 0.05% trifluoroacetic acid (TFA)) and solvent B (highly purified water containing 0.05% TFA and 80% acetonitrile) was applied.
  • solvent A highly purified water containing 0.05% trifluoroacetic acid (TFA)
  • solvent B highly purified water containing 0.05% TFA and 80% acetonitrile
  • the resulted peptide sample was analyzed with a mass spectrometry respectively and peptides composed of more than 15 amino acids were selected.
  • the selected sample was determined the amino acid sequence with the amino acid sequence analyzer.
  • FIG. 1 depicted the amino acid sequence of the selected peptide by using 1 character denoting an amino acid.
  • Each peptide was numbered in orders arbitrarily in accordance with elution time through reverse phase chromatography and the arrow part depicted in FIG. 1 was used to give information for synthesizing the primers of oligonucleotides.
  • the sample denoted as T4 among these peptide samples were deduced to contain 2 different peptides coincidently since 2 amino acids appeared at the same time in each cycle by performing the sequence analysis of amino acids.
  • T4 described in SEQ. ID NO: 4 and 5, T6 in SEQ. ID NO: 6, T7 in SEQ. ID NO: 7, T9 in SEQ. ID NO: 8, T11 in SEQ. ID NO: 9, T13 in SEQ. ID NO: 10, T16 in SEQ. ID NO: 11, T17 in SEQ. ID NO: 12 respectively, which is disclosed in Sequence List independently.
  • oligonucleotide primers for PCR of aminopeptidase genes were synthesized. Precisely, 5′-upstream primer (LAP-5) described in SEQ. ID NO: 13 and 3′-downstream primer (LAP-3) described in of SEQ. ID NO: 14 were utilized, which were manufactured by using the amino acid sequences described in SEQ. ID NO: 15 and SEQ. ID NO: 16 among amino acid sequences determined in Example 1 (1-1).
  • PCR was performed 32 times repeatedly with the DNA thermal cycler; denaturation at 94° C. for 30 seconds, annealing at 40° C. for 45 seconds, and extension at 72° C. for 1 minute and chromosomal DNA of Bacillus licheniformis was used as a template. As a result, DNA fragment with about 390 bp size was obtained.
  • genomic DNA of Bacillus licheniformis was made by exploiting Murray and Thompson's method and digested partially with the restriction enzyme Sau3A and separated it through 0.8% agarose gel then isolated the DNA fragments corresponding to 2 ⁇ 3 kb.
  • the DNA fragment was ligated into X ZAP expression vector (Stratagene, LaJolla, USA) digested with BamHI and added to packaging extract. Then, the packaging mixture was transferred to E. coli XL-1 Blue MRF′.
  • This library filter prepared above was screened by using 32 P-labelled PCR fragment and detected for clones containing aminopeptidase gene. As a result, the selected clone was verified to include DNA insert with about 2.6 kb size and named it “LAP 132” clone.
  • the nucleotide sequence of LAP 132 was analyzed and the result was described in SEQ. ID NO: 2. In detail, it was composed of ATG initiation codon starting at 192 nucleotide and TAA termination codon at 1,539 and contained 1,347 bp ORF (open reading frame) as shown in SEQ. ID NO: 2 and in SEQ. ID NO: 3.
  • the nucleotide was identified to encode 449 amino acids.
  • the amino acid sequence encoded from the nucleotide sequence information elucidated above, were identical completely with the result determined by the amino acid sequence analysis of peptide fragments derived from aminopeptidase purified above.
  • the domain of amino terminus of the aminopeptidase according to the present invention contained hydrophobic amino acid residues contiguous to cationic amino acid residues, which was similar to the signal sequence needed for the secretion.
  • the aminopeptidase was deduced to be digested in between 30th alanine and 31st alanine when secreted.
  • the aminopeptidase was disclosed that amino terminus mainly starts from amino acid sequences described in SEQ. ID NO: 17 and heterogeneous type forms of aminopeptidases of which their cleaved sites are somewhat different with the present invention.
  • the aminopeptidase according to the present invention was compared in the amino acid sequence with other aminopeptidase recorded in Genebank by using BLAST searching. As a result, it was shown to have 62% homology with the aminopeptidase derived from Bacillus subtilis , and 58% homology with aminopeptidase derived from Bacillus halodurans .
  • the aminopeptidase according to the present invention identified as a new aminopeptidase not reported previously.
  • the inventors of the present invention have transformed the aminopeptidase gene, “LAP 132” derived from Bacillus licheniformis , into E. coli XLOLR strain and have named with “ E. coli XLOLR/LAP 132”. They have deposited with International Deposit Organization, the Korean Collection for Type Cultures (KCTC) of the Korean Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea on Apr. 26, 2001, and identified as accession number, KCTC 1000 BP.
  • KCTC Korean Collection for Type Cultures
  • the aminopeptidase gene cloned according to the present invention was subcloned into the expression vector pBK-CMV (Stratagene, USA) and named the expression vector “pLAP32” so as to be used as a source of aminopeptidase gene. Then, the PCR fragment with about 1.2 kb size containing a region encoding aminopeptidase was subcloned into the vector pET11a (Stratagene, USA) and named the expression vector pETLAP45. The expression vector was transformed into E. coli BL21(DE3) and exploited it to express a fused protein attaching His-tag peptide.
  • aminopeptidase in the expression system described above was verified by performing SDS-PAGE. As illustrated in FIG. 2, the molecular weight of aminopeptidase was examined to reach about 45 kDa onto SDS-PAGE and identical to that deduced from its gene.
  • lane M depicted a standard marker of molecular weights; lane 1, E. coli transformed into the expression vector pET11a (not inducing the expression); lane 2, E. coli transformed into the expression vector pET11a (inducing the activation of T7 promoter); lane 3, E. coli transformed into the expression vector pETLAP45 (not included the expression); and lane 4, E. coli transformed into the expression vector pETLAP45 (inducing the activation of T7 promoter).
  • the arrow depicted in FIG. 2 denoted the aminopeptidase.
  • the inventors of the present invention have tried to detect enzymatic activities of aminopeptidase secreted from E. coli transformant after expression the gene. Above all, when the E. coli transformant was sonicated and analyzed, the enzymatic activities of the aminopeptidase from the E. coli transformant were found in soluble fractions. As a result, the aminopeptidase according to the present invention was identified to have the same size with that deduced from the gene and to show the enzymatic activities.
  • DNA fragment digested with HindIII-SacI containing a region encoding aminopeptidase as well as promoter, 3′-untranslated region, having about 2.6 kb size and was subcloned into the Bacillus vector pRB373 and the resulted expression vector was named pRB373-LAP.
  • the expression vector was transformed into Bacillus subtilis , and cultivated and then the cultured broth was analyzed by using SDS-PAGE. The aminopeptidase was observed to be secreted from the cultured solution and to have about 45 kDa of molecular weight, which was compatible with that from Bacillus licheniformis (See FIG. 3).
  • FIG. 3 See FIG.
  • lane M depicted a standard marker of molecular weight; lane 1, Bacillus subtilis transformed into the expression vector pRB373; lane 2, Bacillus subtilis transformed into the expression vector pRB373-LAP; and lane 3, aminopeptidase purified from Bacillus licheniformis .
  • the arrow depicted in FIG. 3 denoted the aminopeptidase.
  • the inventors of the present invention measured the aminopeptidase activity using cell lysate solution sonicated in case of recombinant E. coli transformant and using cultured solution obtained in Example 3 (3-1) in case of recombinant Bacillus subtilis transformant.
  • Pflleiderer's method was utilized in order to estimate enzymatic activities of the aminopeptidase produced in Example 2 and Example 3 (Pflleiderer, Meth. Enzymol., 1970, 19, 514-521).
  • 50 ⁇ l of cultured solution was added into the mixture of 1 M Tris (pH 8.5) (950 ⁇ l), and 0.1 M leucine-p-nitroanilide (20 ⁇ l) in DMSO, reacted for 3 minutes at 60° C., added 100 ⁇ l of 70% acetic acid, ended the reaction and detected the absorbance at 405 nm.
  • the gene encoding the aminopeptidase derived from Bacillus licheniformis is cloned and expressed by using recombinant bacterial transformant and is identified to be novel gene not reported previously.
  • the aminopeptidase purified and elucidated according to the present invention can be exploited usefully to manufacture natural type recombinant proteins as well as applied to other enzymatic reactions widely.

Abstract

The present invention relates to novel aminopeptidase derived from Bacillus licheniformis, a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof. More particularly, the present invention relates to a gene encoding aminopeptidase which is cloned and manufactured using the recombinant DNA technique, an expression vector containing the gene, a cell transformant transfected with the expression vector and a recombinant aminopeptidase which is necessary to produce recombinant human growth hormone in a natural type protein and can be expressed in a high yield more stably and advantageously, compared with conventional methods for the purification.

Description

    TECHNICAL FIELD
  • The present invention relates to novel aminopeptidase derived from [0001] Bacillus licheniformis, a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof. More particularly, the present invention relates to a gene encoding aminopeptidase which is cloned and manufactured using the recombinant DNA technique, an expression vector containing the gene, a cell transformant transfected with the expression vector and a recombinant aminopeptidase which is necessary to produce recombinant human growth hormone in a natural type protein and can be expressed in a high yield more stably and advantageously, compared with conventional methods for the purification.
  • BACKGROUND ART
  • Generally, recombinant proteins are made as non-natural types when they are expressed in a large scale through the gene manipulation in microbes. In detail, most of the recombinant proteins having a initiator, methionine (MET), in the amino terminus, which were treated inappropriately are produced. The recombinant proteins containing methionine at the amino terminus might induce immunogenic reactions or become being unstable so as not to play an intrinsic role of the protein, in case of being administered to human or other animals. Therefore, it is very important to develop a new method for preparing such a recombinant protein as its natural type protein (See Nature, 1987, 326, 315; J. Bacteriol., 1987, 169, 751-757[0002] ; Bio/Technology, 1990, 8, 1036-1040; Appl. Microbiol. Biotechnol., 1991, 36, 211-215).
  • Human growth hormone is a polypeptide hormone which has 22,125 Da of molecular weight, contains a sequence of Phe-Pro-Thr at the amino terminus and is composed of 191 amino acids secreted from human pituitary gland and mostly has been applied to treat pituitary dwarfism (See Raben, M. S., J. Clin. Endocr., 1958, 18, 901). Up to now, human growth hormone has been extracted and purified from pituitary glands of the dead, but is hard to be provided for all the patients due to the limited supply. Recently, several studies regarding expression and separation of the human growth hormone from [0003] Escherichia coli, yeast and the like by gene manipulation have been performed. Actually, the human growth hormone produced through the DNA technology has been used for clinical applications (in case of Escherichia coli, See Korean Patent Publication No. 89-1244 and No. 87-701; Korean Patent Laid-open No. 87-2258 and No. 84-8695; in case of yeast, See Korean Patent Publication No. 92-99; Korean Patent Laid-open No. 90-9973 and No. 90-9976).
  • However, if a human growth hormone is produced by using the recombinant DNA technology described above, one methionine residue, an initiation codon for protein synthesis is bound additionally at the amino terminus except 191 amino acid residues consisting in a natural type human growth hormone and thus a methionyl human growth hormone which is started from the sequence of Met-Phe-Pro-Thr of the amino terminus and composed of 192 amino acid residues is produced. The methionyl human growth hormone has the same biological activities as that of the natural type of human growth hormone (Moore, J. A., Endocrinology, 1988, 122, 2920-2926) and is not reported yet to provoke side effects by presence of the methionine at the amino terminus. However, antibodies might be generated on rare occasions due to the methionine and are reported to be produced in a higher ratio than those from the natural type hormone (Lancet, 1986, March 29, 697). [0004]
  • Hence, there are several approaches to produce a natural type hormone which do not contain the methionine. Concretely, the human growth hormone is produced by one method in which the amino terminus is fused with the carboxy terminus of another protein; and then digested by using a specific protease (See PCT International Application WO 89/12678; European Patent Application EP 20209; European Patent EP 321940); and by another method which comprises (1) expressing growth hormone within cells; (2) digesting methionine while secreted out of host cells; and (3) obtaining a natural type human growth hormone from culture media (See European Patent EP 008832; USA Patent U.S. Pat. No. 4,755,465; Japanese Patent JP 01273591; European Patent Application EP 306673; Korean Patent Application No. 92-10932). But, there are some disadvantages in these methods illustrated above. Precisely, it is required of complicating construction a new expression vectors and steps of transforming host cells and coincidently to optimize the expression conditions with extra trials. [0005]
  • On the other hand, in case that exogenous protein produced by using recombinant DNA technologies include an extra amino acid at the amino terminus, the aminopeptidase can be exploited to remove the extra amino acid and as a result, the exogenous protein having the same structure with the natural type protein can be yielded easily. Concretely, specific aminopeptidase which cuts selectively only methionine residue present at the amino terminus of the methionyl human growth hormone purified through conventional methods can be used in order to produce a natural type human growth hormone (See PCT International Application WO 86/04609 and WO 86/204527 A1). [0006]
  • Presently, various kinds of aminopeptidases have been demonstrated to prepare a natural type human growth hormone. In detail, the aminopeptidase purified from [0007] Aeromonas proteolytica (See PCT Internatinal Application WO 86/01229; European Patent EP 0489711, A3, BTG company; Prescott and Wilks, Method in Enzymology, 1976, 44, 530-543), the aminopeptidase purified from porcine kidney (See PCT International Application WO 86/204527 A1; Bio/Technology, 1987, 5, 824-827, Takeda company), the dipeptidyl aminopeptidase purified from Dictyostelium discoidium (See European Patent EP 557076; U.S. Pat. No. 5,126,249, Al, Eli Lilly company), and the aminopeptidase from Streptomyces thermonitripican were reported.
  • In order to attain the above object, the aminopeptidase should not work on the amino acid sequence of a natural type protein although it removes unnecessary amino acid residues present at the amino terminus of the recombinant protein. Namely, when the original protein has a amino acid sequence starting from X-Y-Z at the amino terminus and the recombinant protein has the amino acid sequence of Met-X-Y-Z-containing an additional methionine at the amino terminus, the aminopeptidase should cut only the methionine residue and not work onto other amino acids (X-Y-Z-) afterward so as to produce the recombinant protein having the same amino acid sequence as that of the natural type protein. Therefore, the aminopeptidase satisfying such an object should be compatible in its substrate specificity depending upon the target protein for industrial applications. Although the enzyme has such a characteristic, it is advantageous to have higher intrinsic activities itself. [0008]
  • Presently, more than several tens of aminopeptidases have been extracted from microbes and the like and disclosed. In common, most enzymes need metal ions such as calcium, zinc or the like in order to be activated. These aminopeptidases have various properties in view of molecular weight, essential metal ions, optimal condition of the reaction, substrate specificity and so on according to microbes, although they have common activities in view of the digestion in amino acid residues at the amino terminus of the protein (See FEMS Microbiol. Rev., 1996, 18, 319-344). Such an aminopeptidase is classified to an exopeptidase and has a property to isolate a amino acid from the amino terminus of substrate protein in orders. [0009]
  • Precisely, these aminopeptidases have been reported and separated, especially from [0010] Bacillus sp., for example Bacillus subtilis (See Arch. Biochem. Biophys., 1979, 197, 63-77; Arch. Biochem. Biophys., 202, 540-545, 1980; J. Biochem., 1994, 107, 603-607; Japanese Patent JP 03285684, Diacel-Chem company), Bacillus stearothermophilus (See Meth. Enzymol., 1970, 19, 544-552; Biochem. Biophys. Acta, 1976, 438, 212-220; European Patent EP 101653, Unitika company), Bacillus thuringensis (Biokhimiya, 1984, 49, 1899-1907), Bacillus licheniformis (Arch. Biochem. Biophys., 1978, 186, 383-391; Mikrobiol. Zh., 1989, 51, 49-52) and so on.
  • In the references mentioned above, the aminopeptidases are purified and analyzed for their enzymatic properties by using leucine-p-nitroanilide, and several dipeptides or the like as a substrate. However, oligopeptides starting from the sequence of Met-X-Pro at the amino termini or proteins starting from Met-X-Pro at the amino termini are not used as a substrate in order to measure enzymatic activities. Therefore, it is not verified yet that these aminopeptidases might be applied to the methionine removal in recombinant proteins containing Met-X-Pro sequence at their amino termini. [0011]
  • Furthermore, the aminopeptidases derived from [0012] Bacillus licheniformis have been illustrated as follows. Rodriguez et al. have purified the aminopeptidase derived from Bacillus licheniformis ATCC 12759 and examined its enzymatic property. Also, the inventors of the present invention have disclosed the method for preparing a natural type human growth hormone using the aminopeptidase derived from Bacillus licheniformis, the characterization of the purified aminopeptidase in its enzymatic properties and its amino acid sequence at the amino terminus (Korean Patent Laid-open No. 1998-071239). In this invention, for producing a natural type protein in a large scale through recombinant DNA technologies, the inventors of the present invention have reported that the aminopeptidase could remove only methionine residue in synthetic substrates, oligopeptides, proteins and the like and recognize the specific amino acid sequence of Met-X-Pro (hereinafter, X denotes any amino acid regardless of its kind) and thus be suitable for the production of the natural type human growth hormone (Korean Patent Laid-open No. 1998-071239). These conventional methods have elucidated that the aminopeptidase can be produced from Bacillus licheniformis and exploited to produce a natural type recombinant protein. Besides, they have provided only the information about the partial amino acid sequence of the amino terminus and the total gene of aminopeptidase has not determined yet.
  • Hence, the inventors of the present invention have tried to obtain novel aminopeptidase for producing a natural type recombinant protein. Concretely, we have cloned a gene of aminopeptidase derived from [0013] Bacillus licheniformis, determined its nucleotide sequence and amino acid sequence and expressed the cloned aminopeptidase gene in recombinant bacterial strains. Then, the recombinant protein was identified to have aminopeptidase activities, to be useful for use easily other enzymatic reaction as well as the preparation of natural type proteins. Consequently, the present invention has been completed successfully.
  • DISCLOSURE OF INVENTION
  • The object of the present invention is to provide novel aminopeptidase derived from [0014] Bacillus licheniformis, a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof, which can be used to manufacture a recombinant protein as well as applied to other enzymatic reactions usefully.
  • In order to accomplish the object described above, the present invention provides an aminopeptidase derived from [0015] Bacillus licheniformis.
  • Precisely, the aminopeptidase contains one of amino acid sequence selected from the group comprising the amino acid sequence with the full length of SEQ. ID NO: 1 or a amino acid sequence selected from sequence which comprises the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1. [0016]
  • Preferably, the aminopeptidase contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1 at the amino terminus, carboxy terminus or both termini. [0017]
  • More preferably, the aminopeptidase contains the aminopeptidase according to [0018] claim 3, which contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted partially at the amino terminus of the amino sequence with the full length of SEQ. ID NO: 1, in between 30th alanine and 31st alanine, between 39th lysine and 40th asparagine, between 40th asparagine and 41st valine, between 41st valine and 42nd glutamine or between 42nd glutamine and 43rd lysine.
  • Besides, the aminopeptidase contains an amino acid sequence deleted partially at the carboxy terminus, in between 443th serine and 444th tyrosine of SEQ. ID NO: 1. [0019]
  • In addition, the present invention provides a gene encoding the aminopeptidase derived from [0020] Bacillus licheniformis.
  • Precisely, the gene encoding the aminopeptidase contains one of nucleotide sequence selected from the group comprising the nucleotide sequence with the full length of SEQ. ID NO: 2 or a nucleotide sequences selected from sequence group which comprises the nucleotide sequences deleted onto one or more of the nucleotide sequence with the full length of SEQ. ID NO: 2. [0021]
  • In addition, the present invention provides an expression vector pLAP132 which contains the gene encoding the aminopeptidase with the nucleotide sequence in the full length of SEQ. ID NO: 2. [0022]
  • Besides, the present invention provides an [0023] Escherichia coli transformant XLOLR/LAP132 which is transfected with the expression vector pLAP132 (accession number: KCTC 1000 BP).
  • Furthermore, the present invention provides a process for preparing a natural type protein which comprises steps as follows: (1) purification step of the recombinant proteins containing Met-X-Pro sequence at the amino terminus; (2) addition step of said aminopeptidase into said purification mixture; and (3) digestion step of Met-X-Pro sequence at the amino terminus of the recombinant protein by using the aminopeptidase. [0024]
  • At this moment, X of the Met-X-Pro can be any kind of amino acid.[0025]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which; [0026]
  • FIG. 1 depicts the determination of amino acid sequences in peptide fragments of the aminopeptidase obtained after treating trypsin. [0027]
  • FIG. 2 depicts the analysis of the aminopeptidase derived from [0028] Bacillus licheniformis and expressed from Escherichia coli transformant by performing SDS-polyacrylamide gel electrophoresis.
  • FIG. 3 depicts the analysis of the aminopeptidase derived from [0029] Bacillus licheniformis and expressed from Bacillus subtilis transformant by performing SDS-polyacrylamide gel electrophoresis.
  • FIG. 4 depicts the examination of enzymatic activities in the aminopeptidase derived from [0030] Bacillus licheniformis and expressed from Bacillus subtilis transformant schematically.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, the present invention will be illustrated more clearly as follows. [0031]
  • The aminopeptidase of the present invention is identified to have enzymatic activities in a polypeptide state before signal peptide is not deleted (the sequence composed of 1st amino acid through 30th amino acid in SEQ. ID NO: 1) and after signal peptide is deleted. Although some amino acids at the amino terminus and at the carboxy terminus are cut in addition to the deletion of signal peptide, the enzymatic activities are maintained. Therefore, the aminopeptidase containing the amino acid sequence of SEQ. ID NO: 1 as well as the aminopeptidases deleted partially at the amino terminus or at the carboxy terminus from the amino acid sequence of SEQ. ID NO: 1 can be within the scope of the present invention. [0032]
  • Preferably, the aminopeptidase of the present invention contains the amino acid sequence deleted partially at the amino terminus, in between 30th alanine and 31st alanine, between 39th lysine and 40th asparagine, between 40th asparagine and 41st valine, between 41st valine and 42nd glutamine or between 42nd glutamine and 43rd lysine of SEQ. ID NO: 1. More preferably, the aminopeptidase contains the amino acid sequence deleted partially at the amino terminus, in between 30th alanine and 31st alanine, between 42nd glutamine and 43rd lysine. [0033]
  • Preferably, the aminopeptidase of the present invention contains the amino acid sequence deleted partially at the carboxy terminus, in between 443rd serine and 444th tyrosine of SEQ. ID NO: 1. [0034]
  • More preferably, the aminopeptidase contains the amino acid sequence deleted partially at the amino terminus in between 42nd glutamine and 43rd lysine of SEQ. ID NO: 1 and at the carboxy terminus, in between 443rd serine and 444th tyrosine of SEQ. ID NO: 1. [0035]
  • In the meantime, the genes of the present invention encoding the aminopeptidase derived from [0036] Bacillus licheniformis can include the gene encoding amino acid sequence of SEQ. ID NO: 1, the gene encoding all of the deleted form of aminopeptidase mentioned above and the gene of SEQ. ID NO: 2.
  • In order to investigate functions and enzymatic activities of the aminopeptidase, the following procedure is accomplished by using the protein containing the amino acid sequence of SEQ. ID NO: 1, its genes and its polypeptide in a deleted form respectively. [0037]
  • In order to elucidate polypeptides having enzymatic activities of the aminopeptidase derived from [0038] Bacillus licheniformis, a gene encoding the aminopeptidase is cloned from the chromosomal DNA of Bacillus licheniformis. Concretely, for cloning genes, polypeptides having the enzymatic activities of the aminopeptidase derived from Bacillus licheniformis are purified, digested with trypsin so as to collect a number of peptide fragments and then determined the amino acid sequences. The information of the amino acid sequences is exploited to synthesize oligonucleotides for use of primers and then DNA fragments corresponding to a part of the aminopeptidase gene are amplified. Afterward, by utilizing these DNA fragments for probes, the aminopeptidase gene can be found from the chromosomal library derived from Bacillus licheniformis.
  • The genes of aminopeptidase observed above are examined to determine the nucleotide sequences with the DNA sequence analyzer as shown in SEQ. ID NO: 2, and the deduced DNA sequence from the genetic information of SEQ. ID NO: 1 is identified to have exactly the same amino acid sequence of the aminopeptidase purified from natural host cells. As a result, the aminopeptidase polypeptide obtained according to the present invention is screened by using data base for genetic informations and this gene is identified a novel DNA sequence that have never reported and have a enzymatic activities of the aminopeptidase when it is expressed in recombinant microbes. [0039]
  • Then, the matured aminopeptidase is also detected to be digested partially. In order to investigate the composition of the aminopeptidase at the carboxy terminus, the aminopeptidase purified from the recombinant bacterial transformant and the aminopeptidase purified from natural host cells, [0040] Bacillus licheniformis, are examined to determine molecular weights with mass spectrometry. Consequently, in both 2 cases 6 amino acid residues are verified to be cut from the carboxy terminus.
  • The aminopeptidase according to the present invention is confirmed to become mature that the aminopeptidase were expressed in the cell and then, the signal peptide was deleted at the amino terminus during the extracellular secretion. Besides, the matured aminopeptidase is also digested partially. [0041]
  • Hence, the aminopeptidase polypeptide according to the present invention maintains enzymatic activities with presence of the signal peptide and even partially being cut at the amino terminus or at the carboxy terminus with absence of the signal peptide. [0042]
  • EXAMPLES
  • Practical and presently preferred embodiments of the present invention are illustrative as shown in the following Examples. [0043]
  • However, it will be appreciated that those skilled in the art, on consideration of this disclosure, may make modifications and improvements within the spirit and scope of the present invention. [0044]
  • Example 1 Cloning of Aminopeptidase Gene Derived from Bacillus licheniformis
  • (1-1) Partial Determination of Amino Acid Sequence in Aminopeptidase Purified from [0045] Bacillus licheniformis
  • The present inventors have performed the procedure as follows in order to purify aminopeptidase protein from [0046] Bacillus licheniformis.
  • Sterilized media containing tryptone 10 g, yeast extract 5 g, NaCl 10 g per 1 L were prepared in flasks and [0047] Bacillus licheniformis KCTC 3058 strain was inoculated so as to be cultivated for seed-culture at 40° C., 120 rpm for about 16 hours. The seed culture broth obtained above was inoculated again to new media and cultivated at 40° C., 200-400 rpm agitation, more than 30 of dissolved oxygen. Then, the concentrations of glucose were measured with an hour interval and the cultivation was completed when the activity of aminopeptidase reached more than 35 U/ml. In order to cultivate cells, culture broth containing peptone 2 kg, yeast extract 6 kg, potassium phosphate 4 kg, NaCl 1 kg, SAG, MgSO4.7H2O 15 g, FeSO4.7H2O 1.53 g, ZnSO4.7H2O 1.53 g, MnSO4 1.53 g, and glucose 10 kg per distilled water 200 L in 400 L fermentor was prepared in a sterilized state. After the cultivation was completed, continuous centrifuge was utilized to remove cell debris and recovered the supernatants. The supernatant obtained above was concentrated with a concentrator and then ZnSO4 was added to reach about 0.3 mM. Through 3 steps of column chromatography, aminopeptidase was purified from the concentrated solution. As a chromatography, SP-Sepharose FF, Sephacryl S-200, and DEAE-Sepharose FF were utilized in turns. The aminopeptidase purified by using the above procedure was identified to have more than 95% of purity when analyzed with the reverse phase high pressure chromatography.
  • The resulted aminopeptidase was precipitated by using 10% trichloroacetic acid (TCA), washed with acetone and dried. The dried protein precipitate was dissolved with 8 M urea and 0.4 M ammonium bicarbonate and treated with dithiothreitol (DTT) and iodoacetamide in turns so that disulfide bonds in the aminopeptidase were cleaved. The treated sample was dissolved again in distilled water, added about 0.05 mg of trypsin per 2 mg of aminopeptidase and treated at 37° C. for about 8 hours. The sample treated with trypsin was injected into the reverse phase high pressure chromatography (RP-HPLC) and collected to fractions of major peptide peaks. In the reverse phase chromatography, Vydac C18 reverse S phase column was adopted and a linear concentration gradient using solvent A (highly purified water containing 0.05% trifluoroacetic acid (TFA)) and solvent B (highly purified water containing 0.05% TFA and 80% acetonitrile) was applied. At this moment, the analysis was performed in 0.5 ml/min of flow velocity and chromatogram was obtained by UV absorbance at 214 nm. Through this procedure, more than 10 peaks were obtained. The resulted peptide sample was analyzed with a mass spectrometry respectively and peptides composed of more than 15 amino acids were selected. The selected sample was determined the amino acid sequence with the amino acid sequence analyzer. FIG. 1 depicted the amino acid sequence of the selected peptide by using 1 character denoting an amino acid. Each peptide was numbered in orders arbitrarily in accordance with elution time through reverse phase chromatography and the arrow part depicted in FIG. 1 was used to give information for synthesizing the primers of oligonucleotides. The sample denoted as T4 among these peptide samples were deduced to contain 2 different peptides coincidently since 2 amino acids appeared at the same time in each cycle by performing the sequence analysis of amino acids. Besides, among these peptide samples, the same sequence of amino acids is contained in between T6 and T9, T11 and T13 and T16 and T17. Precisely, T4 described in SEQ. ID NO: 4 and 5, T6 in SEQ. ID NO: 6, T7 in SEQ. ID NO: 7, T9 in SEQ. ID NO: 8, T11 in SEQ. ID NO: 9, T13 in SEQ. ID NO: 10, T16 in SEQ. ID NO: 11, T17 in SEQ. ID NO: 12 respectively, which is disclosed in Sequence List independently. [0048]
  • (1-2) Cloning of Aminopeptidase Gene and Determination of Nucleotide Sequence [0049]
  • By using the peptide information elucidated in Example 1(1-1), oligonucleotide primers for PCR of aminopeptidase genes were synthesized. Precisely, 5′-upstream primer (LAP-5) described in SEQ. ID NO: 13 and 3′-downstream primer (LAP-3) described in of SEQ. ID NO: 14 were utilized, which were manufactured by using the amino acid sequences described in SEQ. ID NO: 15 and SEQ. ID NO: 16 among amino acid sequences determined in Example 1 (1-1). PCR was performed 32 times repeatedly with the DNA thermal cycler; denaturation at 94° C. for 30 seconds, annealing at 40° C. for 45 seconds, and extension at 72° C. for 1 minute and chromosomal DNA of [0050] Bacillus licheniformis was used as a template. As a result, DNA fragment with about 390 bp size was obtained.
  • In the meantime, genomic DNA of [0051] Bacillus licheniformis was made by exploiting Murray and Thompson's method and digested partially with the restriction enzyme Sau3A and separated it through 0.8% agarose gel then isolated the DNA fragments corresponding to 2˜3 kb. The DNA fragment was ligated into X ZAP expression vector (Stratagene, LaJolla, USA) digested with BamHI and added to packaging extract. Then, the packaging mixture was transferred to E. coli XL-1 Blue MRF′. This library filter prepared above was screened by using 32P-labelled PCR fragment and detected for clones containing aminopeptidase gene. As a result, the selected clone was verified to include DNA insert with about 2.6 kb size and named it “LAP 132” clone.
  • The nucleotide sequence of LAP 132 was analyzed and the result was described in SEQ. ID NO: 2. In detail, it was composed of ATG initiation codon starting at 192 nucleotide and TAA termination codon at 1,539 and contained 1,347 bp ORF (open reading frame) as shown in SEQ. ID NO: 2 and in SEQ. ID NO: 3. The nucleotide was identified to encode 449 amino acids. The amino acid sequence encoded from the nucleotide sequence information elucidated above, were identical completely with the result determined by the amino acid sequence analysis of peptide fragments derived from aminopeptidase purified above. The domain of amino terminus of the aminopeptidase according to the present invention contained hydrophobic amino acid residues contiguous to cationic amino acid residues, which was similar to the signal sequence needed for the secretion. Thus, the aminopeptidase was deduced to be digested in between 30th alanine and 31st alanine when secreted. But, in Korean Patent Laid-open No. 1998-071239, the aminopeptidase was disclosed that amino terminus mainly starts from amino acid sequences described in SEQ. ID NO: 17 and heterogeneous type forms of aminopeptidases of which their cleaved sites are somewhat different with the present invention. This difference was deduced to be provoked by digesting with the other extracellular protease after the aminopeptidase was secreted from original strains. The aminopeptidase according to the present invention was compared in the amino acid sequence with other aminopeptidase recorded in Genebank by using BLAST searching. As a result, it was shown to have 62% homology with the aminopeptidase derived from [0052] Bacillus subtilis, and 58% homology with aminopeptidase derived from Bacillus halodurans. The aminopeptidase according to the present invention identified as a new aminopeptidase not reported previously.
  • The inventors of the present invention have transformed the aminopeptidase gene, “LAP 132” derived from [0053] Bacillus licheniformis, into E. coli XLOLR strain and have named with “E. coli XLOLR/LAP 132”. They have deposited with International Deposit Organization, the Korean Collection for Type Cultures (KCTC) of the Korean Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea on Apr. 26, 2001, and identified as accession number, KCTC 1000 BP.
  • Example 2 Gene Expression of Aminopeptidase in Escherichia coli Transformant
  • The aminopeptidase gene cloned according to the present invention was subcloned into the expression vector pBK-CMV (Stratagene, USA) and named the expression vector “pLAP32” so as to be used as a source of aminopeptidase gene. Then, the PCR fragment with about 1.2 kb size containing a region encoding aminopeptidase was subcloned into the vector pET11a (Stratagene, USA) and named the expression vector pETLAP45. The expression vector was transformed into [0054] E. coli BL21(DE3) and exploited it to express a fused protein attaching His-tag peptide. The expression of aminopeptidase in the expression system described above was verified by performing SDS-PAGE. As illustrated in FIG. 2, the molecular weight of aminopeptidase was examined to reach about 45 kDa onto SDS-PAGE and identical to that deduced from its gene. In FIG. 2, lane M depicted a standard marker of molecular weights; lane 1, E. coli transformed into the expression vector pET11a (not inducing the expression); lane 2, E. coli transformed into the expression vector pET11a (inducing the activation of T7 promoter); lane 3, E. coli transformed into the expression vector pETLAP45 (not included the expression); and lane 4, E. coli transformed into the expression vector pETLAP45 (inducing the activation of T7 promoter). The arrow depicted in FIG. 2 denoted the aminopeptidase.
  • The inventors of the present invention have tried to detect enzymatic activities of aminopeptidase secreted from [0055] E. coli transformant after expression the gene. Above all, when the E. coli transformant was sonicated and analyzed, the enzymatic activities of the aminopeptidase from the E. coli transformant were found in soluble fractions. As a result, the aminopeptidase according to the present invention was identified to have the same size with that deduced from the gene and to show the enzymatic activities.
  • Example 3 Gene Expression of Aminopeptidase in Bacillus Subtilis Transformant, Sequence Analysis of the Purified Aminopeptidase at the Amino Terminus and Determination of its Molecular Weight
  • (3-1) Gene Expression of Aminopeptidase in [0056] Bacillus licheniformis Transformant
  • In the present invention, DNA fragment digested with HindIII-SacI, containing a region encoding aminopeptidase as well as promoter, 3′-untranslated region, having about 2.6 kb size and was subcloned into the [0057] Bacillus vector pRB373 and the resulted expression vector was named pRB373-LAP. The expression vector was transformed into Bacillus subtilis, and cultivated and then the cultured broth was analyzed by using SDS-PAGE. The aminopeptidase was observed to be secreted from the cultured solution and to have about 45 kDa of molecular weight, which was compatible with that from Bacillus licheniformis (See FIG. 3). In FIG. 3, lane M depicted a standard marker of molecular weight; lane 1, Bacillus subtilis transformed into the expression vector pRB373; lane 2, Bacillus subtilis transformed into the expression vector pRB373-LAP; and lane 3, aminopeptidase purified from Bacillus licheniformis. The arrow depicted in FIG. 3 denoted the aminopeptidase.
  • (3-2) Sequence Analysis of the Aminopeptidase Polypeptide at the Amino Terminus Expressed from [0058] Bacillus subtilis Transformant
  • In order to purify the aminopeptidase, recombinant [0059] Bacillus subtilis transformant containing the gene according to the present invention was cultivated and the cultured broth was separated by performing SP-Sepharose chromatography. The amino acid sequence at the amino terminus of the purified aminopeptidase was determined by the amino acid analyzer. As a result, it was verified that the sequence of aminopeptidase at the amino terminus was heterogeneous as found in the aminopeptidase derived from natural host cells and initiated with SEQ. ID NO: 17 mostly among those with SEQ. ID NO: 18. And the aminopeptidase initiated with Asn, Val and Glu also existed.
  • (3-3) Determination of molecular Weight in Aminopeptidase Polypeptide Expressed from Recombinant [0060] Bacillus subtilis Transformant
  • The recombinant [0061] Bacillus subtilis transformant containing the aminopeptidase gene was cultivated and the cultured broth was exploited to purify the aminopeptidase by using SP-Sepharose chromatography. The molecular weight of the aminopeptidase was examined with mass spectrometry and as a result, substances corresponding to 42,965 Da of molecular weight, 43,241 Da and 43,468 Da appeared. This result was compared with that obtained from the sequence analysis of amino acids in Example 3(3-2) and additional 6 amino acids was deduced to be removed at the carboxy terminus. That is to say, the polypeptide described in SEQ. ID NO: 1, the amino terminus started from SEQ. ID NO: 17 and the carboxy terminus ended to SEQ. ID NO: 19 had a theoretical molecular weight corresponding to about 43,241 Da. Then, another polypeptide added in 2 amino acids from the above had a molecular weight corresponding to 43,468 Da and the other polypeptide deleted in 2 amino acids had a molecular weight corresponding to 42,965 Da, which was identical to the results obtained from mass spectrometry exactly.
  • In the meantime, the aminopeptidase purified from a natural host cell, [0062] Bacillus licheniformis was examined by using mass spectrometry through the same procedure of Example 1 (1-1) and the same result with that of recombinant transformant was obtained.
  • Example 4 Activity Measurement of Aminopeptidase and its Deleted Forms Expressed in Recombinant E. coli Transformant and Bacillus subtilis Transformant
  • The inventors of the present invention measured the aminopeptidase activity using cell lysate solution sonicated in case of recombinant [0063] E. coli transformant and using cultured solution obtained in Example 3 (3-1) in case of recombinant Bacillus subtilis transformant.
  • Concretely, Pflleiderer's method was utilized in order to estimate enzymatic activities of the aminopeptidase produced in Example 2 and Example 3 (Pflleiderer, [0064] Meth. Enzymol., 1970, 19, 514-521). 50 μl of cultured solution was added into the mixture of 1 M Tris (pH 8.5) (950 μl), and 0.1 M leucine-p-nitroanilide (20 μl) in DMSO, reacted for 3 minutes at 60° C., added 100 μl of 70% acetic acid, ended the reaction and detected the absorbance at 405 nm.
  • Consequently, as shown in FIG. 4, there was a precise difference in between [0065] Bacillus subtilis strain transformed with the aminopeptidase gene and Bacillus subtilis strain containing the expression vector. In addition, the aminopeptidase purified from recombinant Bacillus subtilis was composed conincidently of deleted forms at the amino terminus or at the carboxy terminus as demonstrated in Example 3 (3-2) and (3-3) and the samples were also identified to have enzymatic activities. In FIG. 4, depicted pRB373-LAP, Bacillus subtilis transformed with the expression vector containing the aminopeptidase gene; Δ depicted LG, Bacillus subtilis cultivated in LB culture broth; and ♦ depicted pRB373, Bacillus subtilis transformed with the expression vector not containing an aminopeptidase gene.
  • INDUSTRIAL APPLICABILITY
  • As demonstrated clearly and confirmed above, according to the present invention the gene encoding the aminopeptidase derived from [0066] Bacillus licheniformis is cloned and expressed by using recombinant bacterial transformant and is identified to be novel gene not reported previously. The aminopeptidase purified and elucidated according to the present invention can be exploited usefully to manufacture natural type recombinant proteins as well as applied to other enzymatic reactions widely.
  • Those skilled in the art will appreciate that the conceptions and specific embodiments disclosed in the foregoing description may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. Those skilled in the art will also appreciate that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims. [0067]
  • 1 19 1 449 PRT Bacillus licheniformis SIGNAL (1)..(30) DOMAIN (133)..(211) PA (Protease associated) domain 1 Met Lys Arg Lys Met Met Met Ile Gly Leu Ala Leu Ser Val Ile Ala 1 5 10 15 Gly Gly Val Phe Ala Ala Gly Thr Gly Asn Ala Val Gln Ala Ala Pro 20 25 30 Gln Glu Thr Ala Ile Ala Lys Asn Val Glu Lys Phe Ser Lys Lys Phe 35 40 45 Asn Glu Asn Arg Ala Tyr Gln Thr Ile Tyr His Leu Ser Glu Thr Val 50 55 60 Gly Pro Arg Val Thr Gly Thr Ala Glu Glu Lys Lys Ser Ala Ala Phe 65 70 75 80 Ile Ala Ser Gln Met Lys Lys Ser Asn Leu Lys Val Thr Thr Gln Thr 85 90 95 Phe Ser Ile Pro Asp Arg Leu Glu Gly Thr Leu Thr Val Gln Gly Asn 100 105 110 Asn Val Pro Ser Arg Pro Ala Ala Gly Ser Ala Pro Thr Ala Ala Glu 115 120 125 Gly Leu Ala Ala Pro Leu Tyr Asp Ala Gly Leu Gly Leu Pro Gly Asp 130 135 140 Phe Thr Glu Glu Ala Arg Gly Lys Ile Ala Val Ile Leu Arg Gly Glu 145 150 155 160 Leu Thr Phe Tyr Glu Lys Ala Lys Asn Ala Ala Asp Ala Gly Ala Ser 165 170 175 Gly Val Ile Ile Tyr Asn Asn Val Asp Gly Leu Val Pro Leu Thr Pro 180 185 190 Asn Leu Ser Gly Asn Lys Val Asp Val Pro Val Val Gly Val Lys Lys 195 200 205 Glu Asp Gly Glu Lys Leu Leu Ser Glu Gln Glu Ala Ile Leu Lys Leu 210 215 220 Lys Ala His Lys Asn Gln Thr Ser Gln Asn Val Ile Gly Val Arg Lys 225 230 235 240 Ala Lys Gly Val Lys Asn Pro Asp Ile Val Tyr Val Thr Ser His Tyr 245 250 255 Asp Ser Val Pro Tyr Ala Pro Gly Ala Asn Asp Asn Ala Ser Gly Thr 260 265 270 Ser Val Val Leu Glu Leu Ala Arg Ile Met Lys Thr Val Pro Ala Asp 275 280 285 Lys Glu Ile Arg Phe Ile Thr Phe Gly Ala Glu Glu Ile Gly Leu Leu 290 295 300 Gly Ser Arg His Tyr Val Ser Thr Leu Ser Glu Gln Glu Val Lys Arg 305 310 315 320 Ser Val Ala Asn Phe Asn Leu Asp Met Val Ala Thr Ser Trp Glu Asn 325 330 335 Ala Ser Gln Leu Tyr Ile Asn Thr Pro Asp Gly Ser Ala Asn Leu Val 340 345 350 Trp Gln Leu Ser Lys Ala Ala Ser Leu Ser Leu Gly Lys Asp Val Leu 355 360 365 Phe Leu His Gln Gly Gly Ser Ser Asp His Val Pro Phe His Glu Ala 370 375 380 Gly Ile Asp Ser Ala Asn Phe Ile Trp Arg Glu Pro Gly Thr Gly Ala 385 390 395 400 Leu Glu Pro Trp Tyr His Thr Pro Tyr Asp Thr Ile Glu His Ile Ser 405 410 415 Lys Asp Arg Leu Lys Thr Ala Gly Gln Ile Ala Gly Thr Ala Val Tyr 420 425 430 Asn Leu Thr Lys Lys Glu Asn Arg Thr Pro Ser Tyr Ser Ser Val Ala 435 440 445 Gln 2 2052 DNA Bacillus licheniformis RBS (179)..(184) RBS candidate 1 2 gatcctgata attcggacgt attctaaaca gaaaaaaggc tcacgtcaag catcctatta 60 aacaaaaaaa cttttttatc aaacttcaaa ttactggtct atcgaatcat ttatcagatg 120 catgcaggat tcacccgctc agctgcgaat atctcttctc aggaaaacaa gaccatcaag 180 gaggtttatg t atg aag aga aaa atg atg atg atc gga ttg gcg 224 Met Lys Arg Lys Met Met Met Ile Gly Leu Ala 1 5 10 cta tcc gta ata gca ggc ggc gtg ttc gcc gct gga acg ggg aat gct 272 Leu Ser Val Ile Ala Gly Gly Val Phe Ala Ala Gly Thr Gly Asn Ala 15 20 25 gtt caa gcg gcg cct cag gaa aca gcc atc gca aaa aat gtc gaa aaa 320 Val Gln Ala Ala Pro Gln Glu Thr Ala Ile Ala Lys Asn Val Glu Lys 30 35 40 ttc agc aaa aaa ttc aat gaa aac cgc gcc tat caa acg att tac cat 368 Phe Ser Lys Lys Phe Asn Glu Asn Arg Ala Tyr Gln Thr Ile Tyr His 45 50 55 tta agc gaa acg gtc gga ccg cgt gtg aca ggc acg gcg gaa gaa aaa 416 Leu Ser Glu Thr Val Gly Pro Arg Val Thr Gly Thr Ala Glu Glu Lys 60 65 70 75 aag agc gcc gct ttc atc gcc tca cag atg aaa aaa tca aat ctg aaa 464 Lys Ser Ala Ala Phe Ile Ala Ser Gln Met Lys Lys Ser Asn Leu Lys 80 85 90 gtg acc aca caa acc ttc agc ata cct gac cgg ctg gaa gga acg ctt 512 Val Thr Thr Gln Thr Phe Ser Ile Pro Asp Arg Leu Glu Gly Thr Leu 95 100 105 acc gtt cag gga aat aac gtg cct tcg cgg cct gcc gcc ggt tcc gcc 560 Thr Val Gln Gly Asn Asn Val Pro Ser Arg Pro Ala Ala Gly Ser Ala 110 115 120 ccg aca gca gca gaa ggc ctg gcc gct cct ctc tat gat gcc ggc ctc 608 Pro Thr Ala Ala Glu Gly Leu Ala Ala Pro Leu Tyr Asp Ala Gly Leu 125 130 135 ggc ctg cct ggc gac ttc acc gag gaa gcg aga ggc aaa atc gcc gtc 656 Gly Leu Pro Gly Asp Phe Thr Glu Glu Ala Arg Gly Lys Ile Ala Val 140 145 150 155 att tta aga ggc gag ctg aca ttc tat gaa aaa gcg aaa aac gct gct 704 Ile Leu Arg Gly Glu Leu Thr Phe Tyr Glu Lys Ala Lys Asn Ala Ala 160 165 170 gac gca ggc gca agc gga gtg atc att tat aat aac gtc gac ggt ctc 752 Asp Ala Gly Ala Ser Gly Val Ile Ile Tyr Asn Asn Val Asp Gly Leu 175 180 185 gtc cct ctg act ccg aat ctc agc ggt aat aaa gtc gat gtt ccg gta 800 Val Pro Leu Thr Pro Asn Leu Ser Gly Asn Lys Val Asp Val Pro Val 190 195 200 gtc ggc gtc aaa aag gaa gac gga gaa aag ctg ctt tct gaa caa gaa 848 Val Gly Val Lys Lys Glu Asp Gly Glu Lys Leu Leu Ser Glu Gln Glu 205 210 215 gcg atc ttg aag ctg aag gct cat aaa aat caa aca tcg caa aac gta 896 Ala Ile Leu Lys Leu Lys Ala His Lys Asn Gln Thr Ser Gln Asn Val 220 225 230 235 atc ggc gtc cgc aaa gca aaa ggt gtc aaa aat ccg gac atc gtg tat 944 Ile Gly Val Arg Lys Ala Lys Gly Val Lys Asn Pro Asp Ile Val Tyr 240 245 250 gtg act tcg cat tat gac agc gtc cct tac gct ccc gga gcc aat gac 992 Val Thr Ser His Tyr Asp Ser Val Pro Tyr Ala Pro Gly Ala Asn Asp 255 260 265 aat gcc tcc ggc act tca gtc gtt ctt gaa ctg gcc cgg atc atg aag 1040 Asn Ala Ser Gly Thr Ser Val Val Leu Glu Leu Ala Arg Ile Met Lys 270 275 280 acg gtt ccg gcc gac aaa gaa att cgc ttt att aca ttc ggc gcc gaa 1088 Thr Val Pro Ala Asp Lys Glu Ile Arg Phe Ile Thr Phe Gly Ala Glu 285 290 295 gaa atc ggt ctc ctc gga tcg cgc cat tat gtc agc acc ttg tca gag 1136 Glu Ile Gly Leu Leu Gly Ser Arg His Tyr Val Ser Thr Leu Ser Glu 300 305 310 315 cag gaa gtc aaa cgg agc gtt gcc aac ttt aac tta gat atg gtg gcg 1184 Gln Glu Val Lys Arg Ser Val Ala Asn Phe Asn Leu Asp Met Val Ala 320 325 330 aca agc tgg gaa aat gct tca cag ctg tac atc aat aca cct gac ggt 1232 Thr Ser Trp Glu Asn Ala Ser Gln Leu Tyr Ile Asn Thr Pro Asp Gly 335 340 345 tca gca aac ctc gtc tgg cag cta agt aaa gcc gct tct tta agc ctt 1280 Ser Ala Asn Leu Val Trp Gln Leu Ser Lys Ala Ala Ser Leu Ser Leu 350 355 360 ggg aaa gac gta tta ttt tta cat caa ggc gga tca tcc gac cat gtc 1328 Gly Lys Asp Val Leu Phe Leu His Gln Gly Gly Ser Ser Asp His Val 365 370 375 cca ttc cat gaa gcc ggc atc gac tca gcc aac ttc att tgg aga gag 1376 Pro Phe His Glu Ala Gly Ile Asp Ser Ala Asn Phe Ile Trp Arg Glu 380 385 390 395 ccg gga aca ggt gca ttg gag cct tgg tac cac acc cct tac gac acg 1424 Pro Gly Thr Gly Ala Leu Glu Pro Trp Tyr His Thr Pro Tyr Asp Thr 400 405 410 att gaa cac atc agc aaa gac agg ctg aaa aca gcc gga caa atc gcg 1472 Ile Glu His Ile Ser Lys Asp Arg Leu Lys Thr Ala Gly Gln Ile Ala 415 420 425 gga aca gcc gtg tat aac ctg acc aag aaa gaa aac aga aca ccg tct 1520 Gly Thr Ala Val Tyr Asn Leu Thr Lys Lys Glu Asn Arg Thr Pro Ser 430 435 440 tac agc tca gtc gcc caa ta atattaaaaa ggagcagatc gattcaatct 1570 Tyr Ser Ser Val Ala Gln 445 gctccttttt tataccgctt cttttcaatc cttcatcagc ttaataaacc tgaagctcat 1630 caaaacgctg ccgatggcaa ccacaatcat gaccaccccc agatcctgaa aatgacccgc 1690 ggttatttct tctccaaaca acagacccag aatgacggac gaaaagatcg agccaagata 1750 gcggcatgtt tggaagagcc ccgaagtggt tccgacgatg tccggcgggc ttgccgtaaa 1810 catggcggcc tggagggcga cattgccgag tccatagctg acccccagca aagagaggat 1870 gatgcctttc cacaacatcg gtgcatcgac aaaaaacaat gtgagcagga tagcgccggc 1930 tgccattaag caagaaccaa ttaaaacagg ctgcgtttca cctgaacggt caatccatgt 1990 cccgacgaaa ggcgaaatca atacgctcgt cccggacatg aacagcatca aaagacccgt 2050 cg 2052 3 449 PRT Bacillus licheniformis 3 Met Lys Arg Lys Met Met Met Ile Gly Leu Ala Leu Ser Val Ile Ala 1 5 10 15 Gly Gly Val Phe Ala Ala Gly Thr Gly Asn Ala Val Gln Ala Ala Pro 20 25 30 Gln Glu Thr Ala Ile Ala Lys Asn Val Glu Lys Phe Ser Lys Lys Phe 35 40 45 Asn Glu Asn Arg Ala Tyr Gln Thr Ile Tyr His Leu Ser Glu Thr Val 50 55 60 Gly Pro Arg Val Thr Gly Thr Ala Glu Glu Lys Lys Ser Ala Ala Phe 65 70 75 80 Ile Ala Ser Gln Met Lys Lys Ser Asn Leu Lys Val Thr Thr Gln Thr 85 90 95 Phe Ser Ile Pro Asp Arg Leu Glu Gly Thr Leu Thr Val Gln Gly Asn 100 105 110 Asn Val Pro Ser Arg Pro Ala Ala Gly Ser Ala Pro Thr Ala Ala Glu 115 120 125 Gly Leu Ala Ala Pro Leu Tyr Asp Ala Gly Leu Gly Leu Pro Gly Asp 130 135 140 Phe Thr Glu Glu Ala Arg Gly Lys Ile Ala Val Ile Leu Arg Gly Glu 145 150 155 160 Leu Thr Phe Tyr Glu Lys Ala Lys Asn Ala Ala Asp Ala Gly Ala Ser 165 170 175 Gly Val Ile Ile Tyr Asn Asn Val Asp Gly Leu Val Pro Leu Thr Pro 180 185 190 Asn Leu Ser Gly Asn Lys Val Asp Val Pro Val Val Gly Val Lys Lys 195 200 205 Glu Asp Gly Glu Lys Leu Leu Ser Glu Gln Glu Ala Ile Leu Lys Leu 210 215 220 Lys Ala His Lys Asn Gln Thr Ser Gln Asn Val Ile Gly Val Arg Lys 225 230 235 240 Ala Lys Gly Val Lys Asn Pro Asp Ile Val Tyr Val Thr Ser His Tyr 245 250 255 Asp Ser Val Pro Tyr Ala Pro Gly Ala Asn Asp Asn Ala Ser Gly Thr 260 265 270 Ser Val Val Leu Glu Leu Ala Arg Ile Met Lys Thr Val Pro Ala Asp 275 280 285 Lys Glu Ile Arg Phe Ile Thr Phe Gly Ala Glu Glu Ile Gly Leu Leu 290 295 300 Gly Ser Arg His Tyr Val Ser Thr Leu Ser Glu Gln Glu Val Lys Arg 305 310 315 320 Ser Val Ala Asn Phe Asn Leu Asp Met Val Ala Thr Ser Trp Glu Asn 325 330 335 Ala Ser Gln Leu Tyr Ile Asn Thr Pro Asp Gly Ser Ala Asn Leu Val 340 345 350 Trp Gln Leu Ser Lys Ala Ala Ser Leu Ser Leu Gly Lys Asp Val Leu 355 360 365 Phe Leu His Gln Gly Gly Ser Ser Asp His Val Pro Phe His Glu Ala 370 375 380 Gly Ile Asp Ser Ala Asn Phe Ile Trp Arg Glu Pro Gly Thr Gly Ala 385 390 395 400 Leu Glu Pro Trp Tyr His Thr Pro Tyr Asp Thr Ile Glu His Ile Ser 405 410 415 Lys Asp Arg Leu Lys Thr Ala Gly Gln Ile Ala Gly Thr Ala Val Tyr 420 425 430 Asn Leu Thr Lys Lys Glu Asn Arg Thr Pro Ser Tyr Ser Ser Val Ala 435 440 445 Gln 4 11 PRT Bacillus licheniformis 4 Ile Met Lys Thr Val Pro Ala Asp Lys Glu Ile 1 5 10 5 11 PRT Bacillus licheniformis 5 His Tyr Val Ser Thr Leu Ser Glu Gln Glu Val 1 5 10 6 15 PRT Bacillus licheniformis 6 Ala Tyr Gln Thr Ile Tyr His Leu Ser Glu Thr Val Gly Pro Arg 1 5 10 15 7 22 PRT Bacillus licheniformis 7 Thr Ala Gly Gln Ile Ala Gly Thr Ala Val Tyr Asn Leu Thr Lys Lys 1 5 10 15 Glu Asn Arg Thr Pro Ser 20 8 27 PRT Bacillus licheniformis 8 Ala Tyr Gln Thr Ile Tyr His Leu Ser Glu Thr Val Gly Pro Arg Val 1 5 10 15 Thr Gly Thr Ala Glu Glu Lys Lys Ser Ala Ala 20 25 9 19 PRT Bacillus licheniformis 9 Lys Ala Lys Gly Val Lys Asn Pro Asp Ile Val Tyr Val Thr Ser His 1 5 10 15 Tyr Asp Ser 10 20 PRT Bacillus licheniformis 10 Gly Val Lys Asn Pro Asp Ile Val Tyr Val Thr Ser His Tyr Asp Ser 1 5 10 15 Val Pro Tyr Ala 20 11 20 PRT Bacillus licheniformis 11 Phe Ile Thr Phe Gly Ala Glu Glu Ile Gly Leu Leu Gly Ser Arg His 1 5 10 15 Tyr Val Ser Thr 20 12 20 PRT Bacillus licheniformis 12 Ala Ala Ser Leu Ser Leu Gly Lys Asp Val Leu Phe Leu His Gln Gly 1 5 10 15 Gly Ser Ser Asp 20 13 18 DNA Artificial Sequence LAP-5 upstream primer 13 aayccngaya thgtntay 18 14 18 DNA Artificial Sequence LAP-3 downstream primer 14 raanagnacr tcyttncc 18 15 6 PRT Bacillus licheniformis 15 Asn Pro Asp Ile Val Tyr 1 5 16 7 PRT Bacillus licheniformis 16 Gly Lys Asp Val Leu Phe Leu 1 5 17 5 PRT Bacillus licheniformis 17 Lys Phe Ser Lys Lys 1 5 18 8 PRT Bacillus licheniformis 18 Asn Val Glu Lys Phe Ser Lys Lys 1 5 19 5 PRT Bacillus licheniformis 19 Asn Arg Thr Pro Ser 1 5

Claims (11)

What is claimed is:
1. An aminopeptidase derived from Bacillus licheniformis.
2. The aminopeptidase according to claim 1, which contains one of amino acid sequence selected from the group comprising the amino acid sequence with the full length of SEQ. ID NO: 1 or a amino acid sequence selected from sequence which comprises the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1.
3. The aminopeptidase according to claim 2, which contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted onto one or more of the amino acid sequence with the full length of SEQ. ID NO: 1 at the amino terminus, carboxy terminus or both termini.
4. The aminopeptidase according to claim 3, which contains one of amino acid sequence selected from the group comprising the amino acid sequences deleted partially at the amino terminus of the amino sequence with the full length of SEQ. ID NO: 1, in between 30th alanine and 31st alanine, between 39th lysine and 40th asparagine, between 40th asparagine and 41st valine, between 41st valine and 42nd glutamine or between 42nd glutamine and 43rd lysine.
5. The aminopeptidase according to claim 3, which contains an amino acid sequence deleted partially at the carboxy terminus in between 443rd serine and 444th tyrosine of SEQ. ID NO: 1.
6. A gene encoding said aminopeptidase derived from Bacillus licheniformis.
7. The gene encoding said aminopeptidase according to claim 6, which contains one of nucleotide sequence selected from the group comprising the nucleotide sequence with the full length of SEQ. ID NO: 2 or a nucleotide sequences selected from sequence group which comprises the nucleotide sequences deleted onto one or more of the nucleotide sequence with the full length of SEQ. ID NO: 2.
8. An expression vector pLAP132 which contains said gene encoding the aminopeptidase comprising the nucleotide sequence with the full length of SEQ. ID NO: 2.
9. An Escherichia coli transformant XLOLR/LAP132 which is transformed with the expression vector pLAP132 (accession number: KCTC 1000 BP).
10. A process for preparing a natural type protein which comprises steps as follows: (1) purification step of the recombinant protein containing methionine-X-proline sequence at the amino terminus; (2) addition step of said aminopeptidase of claim 1 through claim 5 into said purification mixture; and (3) digestion step of said methionine-X-proline sequence at the amino terminus of the recombinant protein by using said aminopeptidase.
11. The process for preparing a natural type protein according to claim 10, in which X of said methionine-X-proline sequence can be any kind of amino acid.
US10/481,531 2001-07-06 2002-07-06 Aminopeptidase derived from bacillus licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof Expired - Fee Related US7098018B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20010040268 2001-07-06
KR2001-0040268 2001-07-06
KR10-2002-0030798A KR100477062B1 (en) 2001-07-06 2002-05-31 Novel aminopeptidase derived from Bacilus licheniformis, gene coding the aminopeptidase, expression vector containing the gene, transformant transfected with the expression vector and manufacturing method thereof
KR2002-0030798 2002-05-31
PCT/KR2002/001280 WO2003004635A1 (en) 2001-07-06 2002-07-06 Novel aminopeptidase derived from bacillus licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof

Publications (2)

Publication Number Publication Date
US20040253703A1 true US20040253703A1 (en) 2004-12-16
US7098018B2 US7098018B2 (en) 2006-08-29

Family

ID=26639209

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/481,531 Expired - Fee Related US7098018B2 (en) 2001-07-06 2002-07-06 Aminopeptidase derived from bacillus licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof

Country Status (10)

Country Link
US (1) US7098018B2 (en)
EP (1) EP1404829B1 (en)
JP (1) JP4580644B2 (en)
AT (1) ATE380863T1 (en)
BR (1) BR0210870A (en)
CA (1) CA2451528C (en)
DK (1) DK1404829T3 (en)
ES (1) ES2295370T3 (en)
PL (1) PL205888B1 (en)
WO (1) WO2003004635A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057533A1 (en) 2007-10-29 2009-05-07 Jcr Pharmaceuticals Co., Ltd. Method for producing aminopeptidase
WO2010111622A2 (en) * 2009-03-27 2010-09-30 Codexis, Inc. Amidases and methods of their use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755465A (en) * 1983-04-25 1988-07-05 Genentech, Inc. Secretion of correctly processed human growth hormone in E. coli and Pseudomonas
US5112812A (en) * 1985-12-18 1992-05-12 Samuelsson Ernst Gunnar Peptide preparation, a process for producing it and use of the peptide preparation
US5126249A (en) * 1989-05-09 1992-06-30 Eli Lilly And Company Enzymatic removal of a protein amino-terminal sequence
US6428997B1 (en) * 1997-02-28 2002-08-06 Lg Chemical Ltd. Aminopeptidase derived from Bacillus licheniformis and process for preparation of natural type proteins
US20020146721A1 (en) * 2000-10-06 2002-10-10 Novozymes Biotech, Inc. Methods for monitoring multiple gene expression

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108919A (en) 1988-06-24 1992-04-28 Genentech, Inc. Dna sequences encoding yeast ubiquitin hydrolase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755465A (en) * 1983-04-25 1988-07-05 Genentech, Inc. Secretion of correctly processed human growth hormone in E. coli and Pseudomonas
US5112812A (en) * 1985-12-18 1992-05-12 Samuelsson Ernst Gunnar Peptide preparation, a process for producing it and use of the peptide preparation
US5126249A (en) * 1989-05-09 1992-06-30 Eli Lilly And Company Enzymatic removal of a protein amino-terminal sequence
US6428997B1 (en) * 1997-02-28 2002-08-06 Lg Chemical Ltd. Aminopeptidase derived from Bacillus licheniformis and process for preparation of natural type proteins
US20020146721A1 (en) * 2000-10-06 2002-10-10 Novozymes Biotech, Inc. Methods for monitoring multiple gene expression

Also Published As

Publication number Publication date
DK1404829T3 (en) 2008-03-25
CA2451528C (en) 2011-08-16
BR0210870A (en) 2004-06-22
ATE380863T1 (en) 2007-12-15
JP4580644B2 (en) 2010-11-17
JP2004533263A (en) 2004-11-04
US7098018B2 (en) 2006-08-29
EP1404829A4 (en) 2005-06-08
WO2003004635A1 (en) 2003-01-16
PL367768A1 (en) 2005-03-07
CA2451528A1 (en) 2003-01-16
EP1404829A1 (en) 2004-04-07
PL205888B1 (en) 2010-06-30
EP1404829B1 (en) 2007-12-12
ES2295370T3 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
EP0524906A1 (en) DNA coding for prolylendopeptidase
EP0647710B1 (en) Novel protease
JP3095183B2 (en) Novel enzyme and DNA encoding it
US20040253703A1 (en) Novel aminopeptidase derived from bacilius licheniformis, gene encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof
AU629430B2 (en) Bacterial collagenase gene
US6303359B1 (en) DNA molecule encoding new aminopeptidase, and method of producing the aminopeptidase
CN116829719A (en) Protein deamidating enzyme
KR100477062B1 (en) Novel aminopeptidase derived from Bacilus licheniformis, gene coding the aminopeptidase, expression vector containing the gene, transformant transfected with the expression vector and manufacturing method thereof
WO1997033984A1 (en) Novel achromobacter lyticus protease variants
US6428997B1 (en) Aminopeptidase derived from Bacillus licheniformis and process for preparation of natural type proteins
US6194190B1 (en) Amino-terminal deblocking enzyme
JP4631436B2 (en) Metalloendopeptidase
EP1697509B1 (en) Processing of peptides and proteins
US20030108991A1 (en) Immobilization of keratinase for proteolysis and keratinolysis
JP2003079379A (en) Dna for achieving high expression of growth hormone and use thereof
JP3257119B2 (en) Protein disulfide isomerase active substance and method for producing the same
JP2003250558A (en) New amidase and gene encoding the same
JP2002199888A (en) Thermophilic prolylendopeptidase
JPH10117784A (en) New protease inhibitor and gene coding the same
JPH04293490A (en) Production of ps2 protein
JP2000060563A (en) Aldehyde dehydrogenase, its gene, recombinant dna and production of aldehyde dehydrogenase
MXPA01009979A (en) Production of pancreatic procarboxy-peptidase b, isoforms and muteins thereof, and their use
JP2000245480A (en) Thermophilic aminopeptidase
JP2003024060A (en) Method for obtaining useful protein from fusion protein
JP2001078791A (en) Thermophilic aminopeptidase

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG LIFE SCIENCES LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, YOUNG-PHIL;LEE, SEUNG-WON;JUNG, CHUL-HO;AND OTHERS;REEL/FRAME:015275/0218

Effective date: 20031201

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180829