Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040256098 A1
Publication typeApplication
Application numberUS 10/894,302
Publication dateDec 23, 2004
Filing dateJul 19, 2004
Priority dateSep 6, 1999
Also published asCA2390585A1, CA2390585C, DE60031693D1, DE60031693T2, EP1210503A1, EP1210503B1, EP1500784A2, US6789622, WO2001018355A1
Publication number10894302, 894302, US 2004/0256098 A1, US 2004/256098 A1, US 20040256098 A1, US 20040256098A1, US 2004256098 A1, US 2004256098A1, US-A1-20040256098, US-A1-2004256098, US2004/0256098A1, US2004/256098A1, US20040256098 A1, US20040256098A1, US2004256098 A1, US2004256098A1
InventorsChristopher Ducasse, Peter Oosterling
Original AssigneeE2Tech Limited
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for and a method of anchoring an expandable conduit
US 20040256098 A1
Abstract
The present invention provides apparatus and a method of anchoring an expandable conduit. A formation is provided on an outer surface of the conduit, the formation comprising a number of bands of a friction and/or sealing material. When the expandable conduit is radially expanded, the friction and/or sealing material engages a second conduit in which the expandable conduit is located. The engagement of the friction and/or sealing material provides an anchor for the expandable conduit.
Images(5)
Previous page
Next page
Claims(20)
1. A method of expanding a tubular in a wellbore, comprising:
expanding a portion of the tubular, the tubular having at least one resilient member disposed around its outer surface in the expanded area; and
causing the resilient member to contact the wellbore in a sealing and frictional relationship while leaving an annular area defined between the outer tubular wall and the wellbore.
2. The method of claim 1, further comprising setting an anchor that temporarily retains the tubular prior to causing the resilient member to contact the wellbore.
2. The method of claim 1, further comprising setting a slip that temporarily retains the tubular prior to causing the resilient member to contact the wellbore.
3. The method of claim 1, further comprising:
setting an anchor that temporarily retains the tubular prior to causing the resilient member to contact the wellbore; and
releasing the anchor after causing the resilient member to contact the wellbore.
4. The method of claim 1, wherein the at least one resilient member includes a plurality of resilient members.
5. The method of claim 1, where the at least one resilient member includes a plurality of resilient members spaced from one another.
6. The expandable liner hanger of claim 1, wherein the resilient member includes profiles on an outer surface thereof.
7. The expandable liner hanger of claim 1, wherein the resilient member includes ribs on an outer surface thereof.
8. The expandable liner hanger of claim 1, wherein the resilient member is a rubber material.
9. An expandable liner hanger for use in a wellbore, comprising:
a tubular body, the body expandable at an upper end thereof;
an resilient ring disposed around the upper end; and
the hanger constructed and arranged to retain and seal the expanded body in the wellbore while leaving an annular area between an outer wall of the expanded body and the wellbore.
10. The expandable liner hanger of claim 9, wherein the resilient ring includes profiles on an outer surface thereof.
11. The expandable liner hanger of claim 9, wherein the resilient ring includes ribs on an outer surface thereof.
12. The expandable liner hanger of claim 9, further comprising at least one additional resilient ring disposed around the upper end.
13. The expandable liner hanger of claim 9, further comprising at least one additional resilient ring disposed around the upper end, the resilient rings spaced from one another.
14. The expandable liner hanger of claim 9, further comprising a temporary anchor separate from the resilient ring.
15. The expandable liner hanger of claim 9, further comprising a temporary anchor separate from the resilient ring, wherein the temporary anchor includes a slip.
16. The expandable liner hanger of claim 9, wherein the resilient ring is a rubber material.
17. A method of expanding a first tubular in a second tubular located in a wellbore, comprising:
locating a portion of the first tubular within the second tubular, the portion of the first tubular having a resilient member on a section of an outside surface thereof; and
expanding the first tubular at least along the section to a predetermined diameter, the predetermined diameter selected to compress the resilient member in a sealing and frictional relationship between the first and second tubular that remain concentrically spaced from one another.
18. The method of claim 17, wherein the resilient member includes profiles on an outer surface thereof.
19. The method of claim 17, further comprising at least one additional resilient member, the resilient members spaced from one another.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of co-pending U.S. patent application Ser. No. 10/069,990, filed Jul. 8, 2002, which claims priority to Great Britain patent application number 9920936.3, filed Sep. 6, 1999. Each of the aforementioned related patent applications is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • [0002]
    The present invention relates to apparatus for and a method of anchoring an expandable conduit, particularly, but not exclusively, to a second conduit in which the expandable conduit is located.
  • SUMMARY OF THE INVENTION
  • [0003]
    A borehole is conventionally drilled during the recovery of hydrocarbons from a well, the borehole typically being lined with a casing that is cemented into place. Casings are installed to prevent the formation around the borehole from collapsing. In addition, casings prevent unwanted fluids from the surrounding formation from flowing into the borehole, and similarly, prevent fluids from within the borehole escaping into the surrounding formation.
  • [0004]
    It is known to use a pliable casing that can be radially expanded so that an outer surface of the casing contacts the formation around the borehole. The pliable casing undergoes plastic deformation when expanded, typically by passing an expander device, such as a ceramic or steel cone or the like, through the casing. The expander device is propelled along the casing in a similar manner to a pipeline pig and may be pushed (using fluid pressure for example) or pulled (using drill pipe, rods, coiled tubing, a wireline or the like).
  • [0005]
    Lengths of expandable casing are coupled together (typically by threaded couplings) to produce a casing string. The casing string is inserted into the borehole in an unexpanded state and is subsequently expanded using the expander device. However, the unexpanded casing string requires to be anchored either at an upper end or a lower end thereof before and/or during the expansion process.
  • [0006]
    According to a first aspect of the present invention, there is provided apparatus for anchoring an expandable conduit, the apparatus comprising at least one formation provided on an outer surface of the expandable conduit, the formation being capable of engaging a second conduit in which the expandable conduit is located, the formation providing an anchor and/or seal for the expandable conduit when the expandable conduit is at least partially expanded.
  • [0007]
    According to a second aspect of the present invention, there is provided a method of anchoring an expandable conduit, the method comprising the steps of providing an expandable conduit having at least one formation on an outer surface thereof, the formation being capable of engaging a second conduit in which the expandable conduit is located to provide an anchor and/or seal for the expandable conduit, anchoring the expandable conduit to the second conduit, and expanding at least a portion of the expandable conduit to force the formation into contact with the second conduit.
  • [0008]
    The invention also provides expandable conduit such as casing or the like, the conduit having a formation on its outer surface adapted to engage a second member when the expandable conduit is expanded.
  • [0009]
    The formation typically comprises resilient material, typically first and second bands of a first resilient material such as rubber, the first and second bands being axially spaced apart, with a third band of a second resilient material such as a second rubber being located between the first and second bands. The first material is preferably harder than the second material. The first and/or second materials may be profiled on an outer surface thereof to enhance anchoring and/or sealing.
  • [0010]
    In one specific embodiment of the invention, the first and second bands comprise 2 inch (approximately 51 millimetres) wide bands, spaced apart by 10 inches (approximately 250 millimetres). The third band typically comprises a 10 inch (approximately 250 millimetres) wide band. The first rubber is typically a 60 durometer rubber. The second rubber is typically a 40 durometer rubber. The bands of rubber can be of any suitable hardness and width. Alternatively, the first rubber can be a 90 durometer rubber, and the second rubber can be a 60 durometer rubber.
  • [0011]
    In an alternative embodiment, the formation comprises a band of rubber or other suitable resilient material. The band preferably defines a zigzag pattern on the outer surface of the conduit. The rubber can be of any suitable hardness, but is typically in the order of 40 to 90 durometers, although values of hardness beyond this range may also be used.
  • [0012]
    The material properties and configuration of each formation can be chosen to suit the particular application.
  • [0013]
    The expandable conduit typically comprises an expandable casing or liner. However, the expandable conduit may be any suitable expandable pipe or the like.
  • [0014]
    The formation is optionally detachable and preferably applied to the outer surface of the conduit before the conduit is expanded. The formation optionally comprises two or more axially spaced formations.
  • [0015]
    The second conduit typically comprises a borehole, casing, liner or the like. The expandable casing may engage any type of conduit. The method of the invention typically includes the additional step of providing an expander device to radially expand the expandable conduit.
  • [0016]
    The expander device typically comprises a cone. The expander device may be manufactured from steel. Alternatively, the expander device may be manufactured from a ceramics material, or a combination of steel and a ceramics material. The expander device is optionally flexible.
  • [0017]
    The expandable conduit is typically temporarily anchored to the second conduit using a mechanical or other anchoring device (e.g. a slip).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    Embodiments of the present invention shall now be described, by way of example only, with reference to the accompanying drawing in which:
  • [0019]
    [0019]FIG. 1 is a schematic cross-section of an exemplary embodiment of apparatus for anchoring an expandable conduit to a borehole;
  • [0020]
    [0020]FIG. 2a is a front elevation showing a first configuration of a formation applied to an outer surface of the apparatus of FIG. 1;
  • [0021]
    [0021]FIG. 2b is an end elevation of the formation of FIG. 2a;
  • [0022]
    [0022]FIG. 2c is an enlarged view of a portion of the formation of FIGS. 2a and 2 b showing a profiled outer surface;
  • [0023]
    [0023]FIG. 3 is a schematic cross-section of an alternative embodiment of apparatus for anchoring an expandable conduit to a borehole having a different formation on an outer surface;
  • [0024]
    [0024]FIG. 4a is an front elevation of the formation of FIG. 3; and
  • [0025]
    [0025]FIG. 4b is an end elevation of the formation of FIG. 4a.
  • DETAILED DESCRIPTION
  • [0026]
    Referring to the drawing, FIG. 1 shows an exemplary embodiment of apparatus for anchoring an expandable conduit 12. The expandable conduit 12 is shown located within a casing or liner 14. Conventionally, casing or liner 14 is used to line or case a borehole that is drilled into a formation 16 to facilitate the recovery of hydrocarbons. It should be noted however, that the expandable conduit 12 may be a liner or casing used to case or line the borehole.
  • [0027]
    The expandable conduit 12 may be any type of suitable conduit that is capable of sustaining plastic deformation whereby it can be radially expanded by at least 10%, although it may be radially expanded by a value more or less than this.
  • [0028]
    The upper portion of FIG. 1 shows the expandable conduit 12 in unexpanded form, with an expander device 18 located therein used to impart a radial expansion force. The lower portion of FIG. 1 shows a portion of the expandable conduit 12 radially expanded by the expander device 18.
  • [0029]
    The expander device 18 typically comprises a cone. The expander device 18 may be manufactured from steel, or alternatively may be manufactured from a ceramics material, or a combination of steel and a ceramics material. The expander device 18 is optionally flexible, although this is advantageous where the expander device 18 is required to expand an expandable conduit that includes a curvature or the like. Any conventional type of expander device 18 may be used.
  • [0030]
    As shown in FIG. 1, the expandable conduit 12 is provided with at least one formation, generally designated 20, (only one formation 20 shown in FIG. 1) on an outer surface 12 s thereof. The formation 20 typically comprises first and second bands 22, 24 that are axially spaced apart along a longitudinal axis 26 of the expandable conduit 12. The first and second bands 22, 24 are typically axially spaced by some distance, for example 10 inches (approximately 250 mm). The first and second bands 22, 24 are preferably annular bands that extend circumferentially around the outer surface 12 s of the expandable conduit 12, although this configuration is not essential. The first and second bands 22, 24 typically comprise 2 inch wide (approximately 51 mm) bands of a first type of rubber. The formation 20 need not extend around the full circumference of the surface 12 s.
  • [0031]
    Located between the first and second bands 22, 24 is a third band 28 of a second type of rubber. The third band 28 preferably extends between the first and second bands 22, 24 and is thus typically 10 inches (approximately 250 mm) wide. The first and second bands 22, 24 are typically of a first depth. The third band 28 is typically of a second depth. The first depth is typically larger than the second depth, although they may be the same. Thus, the first and second bands 22, 24 protrude further from the surface 12 s than the third band 28, as shown schematically in FIG. 1.
  • [0032]
    The first type of rubber (i.e. first and second bands 22, 24) is preferably of a harder consistency than the second type of rubber (i.e., third band 28). The first type of rubber is typically 60 durometer rubber, whereas the second type of rubber is typically 40 durometer rubber. Durometer is a conventional hardness scale for rubber.
  • [0033]
    The particular properties of the rubber may be of any suitable type and the hardnessess quoted are exemplary only. It should also be noted that the relative dimensions and spacings of the first, second and third bands 22, 24, 28 are exemplary only and may be of any suitable dimensions and spacing.
  • [0034]
    Referring to FIGS. 2a to 2 c, there is shown an alternative formation 50 that is substantially the same as formation 20. In the embodiment shown in FIGS. 2a to 2 c, the formation 50 comprises first and second bands 52, 54 of a first resilient material, with a third band 56 of a second resilient material located therebetween.
  • [0035]
    The first and second bands 52, 54 are around 1 inch (approximately 25.4 mm) wide, and are spaced-apart by around 3 inches (approximately 76 mm); the third band 56 is thus 3 inches wide.
  • [0036]
    The first resilient material of the first and second bands 52, 54 is typically harder than the second resilient material of the third band 56. In the embodiment shown in FIGS. 2a to 2 c, the first resilient material comprises a rubber with a 90 durometer hardness, and the second resilient material comprises a rubber with a 60 durometer hardness.
  • [0037]
    Unlike formation 20, the depths of the bands 52, 54, 56 are substantially the same. As can be seen from FIG. 2c in particular, an outer face 56 s of the third band 56 can be profiled. The outer face 56 s is ribbed to enhance the grip of the third band 56 on an inner face of a second conduit (e.g. a preinstalled portion of liner, casing or the like, or a wellbore formation) in which the expandable conduit 12 is located. It will be appreciated that an outer surface on the first and second bands 52, 54 may also be profiled (e.g. ribbed).
  • [0038]
    The two outer bands 52, 54 being of a harder rubber provide a relatively high temperature seal and a back-up seal to the relatively softer rubber of the third band 56. The third band 56 typically provides a lower temperature seal.
  • [0039]
    In use, the formation 20, 50 is applied to the outer surface 12 s of the (unexpanded) expandable conduit 12. The formation 20, 50 may be applied at axially spaced-apart locations long the length of the expandable conduit 12, the spacings and number of formations 20, 50 being chosen to suit the particular application.
  • [0040]
    The expandable conduit 12 is then run into a borehole, casing or liner 14, or some other conduit onto which the expandable conduit 12 is to be attached. As can be seen in FIG. 1 (upper portion) when the expandable conduit 12 is run into the casing or liner 14, an annulus 30 is created between the outer surface 12 s of the expandable conduit 12 and an inner surface 14 i of the casing or liner 14. The expander device 18 is typically located in an expanded portion 12 e of the expandable conduit 12 before the conduit 12 is run into the casing or liner 14. It should be noted that the conduit 12 is of the non-interference type wherein the annulus 30 remains (although reduced in size) even when the expandable conduit 12 is radially expanded i.e., there is a gap between the expandable conduit 12 and the casing or liner 14. Expandable conduit 12 need not be of the non-interference type.
  • [0041]
    As the outer surface 12 s of the expandable conduit 12 is not in direct contact with the inner surface 14 i of the casing or liner 14, a mechanical or other type of anchoring device 32 (e.g. a slip) is used to provide a temporary anchor whilst at least a portion of the expandable conduit 12 is radially expanded. The mechanical or other type of anchoring device 32 may be of any conventional type and is typically attached at or near, the expanded portion 12 e of the expandable conduit 12. When the mechanical or other type of anchoring device 32 is set, the expander device 18 is pushed or pulled through the expandable conduit 12 in the direction of arrow 34. The expander device 18 may be propelled through the expandable conduit 12 using fluid pressure, or may be pigged along the expandable conduit 12 using a conventional pig or tractor (not shown). The expander device 18 may alternatively be propelled using a weight (from a string for example), or may by pulled through the expandable conduit 12 (e.g. using drill pipe, rods, coiled tubing, a wireline or the like).
  • [0042]
    As the expander device 18 is propelled along the expandable conduit 12 (using any conventional means), it radially expands the conduit 12, as illustrated in the lower portion of FIG. 1. As the conduit 12 is expanded, the formation 20, 50 is also expanded whereby the formation 20, 50 (i.e. first, second and third bands 22, 24, 28, 52, 54, 56 of rubber) engage with a portion of the inner surface 14 i of casing or liner 14. It is advantageous to have an outer surface of the first and second rubbers (i.e. bands 22, 24, 52, 54), and optionally the third rubber (i.e. band 28, 56), profiled (e.g. ribbed or the like) to enhance the anchoring and/or sealing.
  • [0043]
    As the first, second and third bands 22, 24, 28, 52, 54, 56 of rubber engage the inner surface 14 i of the casing or liner 14, they provide an anchor point due to the friction caused between the first and/or second rubbers and the inner surface 14 i. This anchor point anchors the expandable conduit 12 to the casing or liner 14.
  • [0044]
    Additionally, the first and/or second rubbers may also act as a seal that results in an annular pressure seal that seals the annulus 30. Where two or more formations 20, 50 are provided at axially spaced-apart locations, the portions of the annulus 30 between the formations 20, 50 will be isolated from one another.
  • [0045]
    After the formation 20, 50 has been expanded whereby the first and second rubbers provide at least an anchor point for the expandable casing 12 (and optionally a seal for annulus 30), the mechanical or other type of anchoring device 32 can be released, and optionally removed from the casing or liner 14.
  • [0046]
    Referring to FIG. 3, there is shown an alternative expandable conduit 100, that is a second embodiment of apparatus of the present invention. Expandable conduit 100 is substantially the same as expandable conduit 12, but has a further alternative formation 150 on an outer surface 100 s thereof.
  • [0047]
    The expandable conduit 100 may be any type of suitable conduit that is capable of sustaining plastic deformation whereby it can be radially expanded by at least 10%, although it may be radially expanded by a value more or less than this.
  • [0048]
    As can be seen from FIG. 3, the expandable conduit 100 is provided with a pre-expanded portion 100 e in which an expander device (e.g. expander device 18) may be located whilst the conduit 100 is run into a borehole or the like. It should be noted that the expander device need not be located in the conduit 100 whilst it is being run into the borehole, and can be located in the conduit 100 once it is in place.
  • [0049]
    As shown in FIG. 3, the expandable conduit 100 is provided with at least one formation, generally designated 150. A number of formations 150 are shown applied to the outer surface 100 s of the conduit 100, each formation being axially spaced from one another by around 12 inches (approximately 305 mm).
  • [0050]
    The formation 150 is best shown in FIGS. 4a and 4 b. The alternative formation 150 is in the form of a zigzag. In this embodiment, the or each formation 150 comprises a single (preferably annular) band of rubber that is, for example, of 90 durometers hardness and is about 2.5 inches (approximately 28 mm) wide by around 0.12 inches (approximately 3 mm) deep.
  • [0051]
    To provide a zigzag pattern and hence increase the strength of the grip and/or seal that the formation 150 provides in use, a number of slots 152 a, 152 b (e.g. 20) are milled into the band of rubber. The slots 152 a, 152 b are typically in the order of 0.2 inches (approximately 5 mm) wide by around 2 inches (approximately 50 mm) long.
  • [0052]
    The slots 152 a are milled at around 20 circumferentially spaced-apart locations, with around 18 between each along one edge 150 a of the band. The process is then repeated by milling another 20 slots 152 b on the other side 150 b of the band, the slots on the other side being circumferentially offset by 9 from the slots 152 a on the other side.
  • [0053]
    In use, the formation 150 is applied to the outer surface 100 s of the (unexpanded) expandable conduit 100. The formation 150 may be applied at axially spaced-apart locations along the length of the expandable conduit 100, as shown in FIG. 3, the spacings and number of formations 100 being chosen to suit the particular application.
  • [0054]
    The expandable conduit 100 is then run into a borehole, casing or liner 14, or some other conduit onto which the expandable conduit 100 is to be attached, and is used in substantially the same way as conduit 12 described above.
  • [0055]
    Using the method and apparatus described herein for anchoring an expandable conduit to a second conduit, it is possible to case a wellbore using an expandable conduit provided with the formation, without the use of cement. This has significant advantages, particularly in terms of cost due to the reduction of materials required and rig down-time.
  • [0056]
    Thus, there is provided a method and apparatus of anchoring an expandable conduit to a second conduit. Certain embodiments of the apparatus and method optionally provide a seal between the expandable conduit and the second conduit. Certain embodiments of the apparatus include a formation of different layers or bands of resilient materials that are specially arranged and composed to provide a good anchor and/or seal between the expandable conduit and the second conduit.
  • [0057]
    Modifications and improvements may be made to the foregoing without departing from the scope of the present invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1880218 *Oct 1, 1930Oct 4, 1932Simmons Richard PMethod of lining oil wells and means therefor
US2017451 *Nov 21, 1933Oct 15, 1935Baash Ross Tool CompanyPacking casing bowl
US3353599 *Aug 4, 1964Nov 21, 1967Gulf Oil CorpMethod and apparatus for stabilizing formations
US3529667 *Jan 10, 1969Sep 22, 1970Lynes IncInflatable,permanently set,drillable element
US3776307 *Aug 24, 1972Dec 4, 1973Gearhart Owen IndustriesApparatus for setting a large bore packer in a well
US5494106 *Mar 23, 1995Feb 27, 1996DrillflexMethod for sealing between a lining and borehole, casing or pipeline
US6021850 *Oct 3, 1997Feb 8, 2000Baker Hughes IncorporatedDownhole pipe expansion apparatus and method
US6085838 *May 27, 1997Jul 11, 2000Schlumberger Technology CorporationMethod and apparatus for cementing a well
US6098717 *Oct 8, 1997Aug 8, 2000Formlock, Inc.Method and apparatus for hanging tubulars in wells
US6135208 *May 28, 1998Oct 24, 2000Halliburton Energy Services, Inc.Expandable wellbore junction
US6425444 *Dec 22, 1999Jul 30, 2002Weatherford/Lamb, Inc.Method and apparatus for downhole sealing
US6431282 *Apr 5, 2000Aug 13, 2002Shell Oil CompanyMethod for annular sealing
US6457532 *Dec 22, 1999Oct 1, 2002Weatherford/Lamb, Inc.Procedures and equipment for profiling and jointing of pipes
US6497289 *Dec 3, 1999Dec 24, 2002Robert Lance CookMethod of creating a casing in a borehole
US6513600 *Dec 21, 2000Feb 4, 2003Richard RossApparatus and method for packing or anchoring an inner tubular within a casing
US6527049 *Dec 22, 1999Mar 4, 2003Weatherford/Lamb, Inc.Apparatus and method for isolating a section of tubing
US6598678 *Nov 13, 2000Jul 29, 2003Weatherford/Lamb, Inc.Apparatus and methods for separating and joining tubulars in a wellbore
US6629567 *Dec 7, 2001Oct 7, 2003Weatherford/Lamb, Inc.Method and apparatus for expanding and separating tubulars in a wellbore
US6691789 *Apr 25, 2002Feb 17, 2004Weatherford/Lamb, Inc.Expandable hanger and packer
US6712154 *Oct 18, 2001Mar 30, 2004Enventure Global TechnologyIsolation of subterranean zones
US6745845 *Dec 10, 2001Jun 8, 2004Shell Oil CompanyIsolation of subterranean zones
US6789622 *Sep 6, 2000Sep 14, 2004Ez Tech LimitedApparatus for and a method of anchoring an expandable conduit
US6854522 *Sep 23, 2002Feb 15, 2005Halliburton Energy Services, Inc.Annular isolators for expandable tubulars in wellbores
US20030042028 *Sep 5, 2001Mar 6, 2003Weatherford/Lamb, Inc.High pressure high temperature packer system
US20030102127 *Aug 8, 2002Jun 5, 2003Braddick Britt O.Downhole tubular patch, tubular expander and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7028780 *Jun 10, 2003Apr 18, 2006Weatherford/Lamb, Inc.Expandable hanger with compliant slip system
US7093656 *May 1, 2003Aug 22, 2006Weatherford/Lamb, Inc.Solid expandable hanger with compliant slip system
US7341110 *Apr 29, 2005Mar 11, 2008Baker Hughes IncorporatedSlotted slip element for expandable packer
US8069916Dec 21, 2007Dec 6, 2011Weatherford/Lamb, Inc.System and methods for tubular expansion
US20040216891 *Jun 10, 2003Nov 4, 2004Maguire Patrick G.Expandable hanger with compliant slip system
US20040216894 *May 1, 2003Nov 4, 2004Maguire Patrick G.Solid expandable hanger with compliant slip system
US20050189120 *Apr 29, 2005Sep 1, 2005Baker Hughes IncorporatedSlotted slip element for expandable packer
CN104879101A *May 11, 2015Sep 2, 2015中国石油天然气股份有限公司Overall well segment expandable screen pipe
Classifications
U.S. Classification166/207, 166/384, 166/380
International ClassificationE21B43/16, E21B43/10
Cooperative ClassificationE21B43/103, E21B43/108, E21B43/106
European ClassificationE21B43/10F3, E21B43/10F, E21B43/10F2