Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040259713 A1
Publication typeApplication
Application numberUS 10/458,955
Publication dateDec 23, 2004
Filing dateJun 11, 2003
Priority dateJun 11, 2003
Also published asCN1802326A, EP1631530A2, US7524779, US7585799, US20050143248, US20060293161, US20090123754, WO2005000756A2, WO2005000756A3
Publication number10458955, 458955, US 2004/0259713 A1, US 2004/259713 A1, US 20040259713 A1, US 20040259713A1, US 2004259713 A1, US 2004259713A1, US-A1-20040259713, US-A1-2004259713, US2004/0259713A1, US2004/259713A1, US20040259713 A1, US20040259713A1, US2004259713 A1, US2004259713A1
InventorsMatthew Frey
Original Assignee3M Innovative Properties Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Microspheres comprising titania and bismuth oxide
US 20040259713 A1
Abstract
The present invention relates to microspheres (i.e., beads) that comprise titania and bismuth oxide. The glass microspheres further comprise zirconia. The invention also relates to retroreflective articles, and in particular pavement markings, comprising such microspheres.
Images(2)
Previous page
Next page
Claims(35)
What is claimed is:
1. Microspheres comprising a glass-ceramic structure where the microspheres comprise at least 5 wt-% bismuth oxide and at least 50 wt-% titania based on the total weight of the microspheres.
2. The microspheres of claim 1 wherein the microspheres are transparent.
3. The microspheres of claim 1 wherein the amount of bismuth oxide ranges up to 30 wt-%.
4. The microspheres of claim 1 wherein the amount of titania ranges up to about 92 wt-%.
5. The microspheres of claim 1 wherein the microspheres further comprise at least 10 wt-% alkaline earth metal oxides.
6. The microspheres of claim 5 wherein the at least 10 wt-% alkaline earth metal oxides comprise at least 5 wt-% CaO and at least 5 wt-% BaO.
7. The microspheres of claim 5 wherein the at least 10 wt-% alkaline earth metal oxides comprise at least 5 wt-% CaO, at least 5 wt-% BaO, and at least 5 wt-% SrO.
8. The microspheres of claim 5 wherein the amount of alkaline earth metal oxides ranges up to 35 wt-%.
9. The microspheres of claim 1 further comprising up to about 20 wt-% zinc oxide.
10. The microspheres of claim 1 wherein the microspheres are fused.
11. The microspheres of claim 1 wherein the microspheres have an index of refraction of greater than 2.2.
12. The microspheres of claim 1 wherein the microspheres comprise a glass-ceramic structure comprising nanoscale crystals.
13. The microspheres of claim 12 wherein the nanoscale crystals have dimensions less than about 100 nanometers.
14. The microspheres of claim 12 wherein the nanoscale crystals comprise at least 20 volume % of the microspheres.
15. The microspheres of claim 12 wherein the nanoscale crystals comprise at least 50 volume % of the microspheres.
16. The microspheres of claim 12 wherein said microspheres comprise crystals greater than about 100 nanometers in dimension and wherein said crystals comprise less than 20 volume % of the microspheres.
17. A retroreflective article comprising a binder and the microspheres of claim 1.
18. A retroreflective element comprising a ceramic core and the microspheres of claim 1 partially embedded in the core.
19. A pavement marking comprising a binder and the microspheres of claim 1.
20. A pavement marking comprising a binder and the reflective elements of claim 18.
21. A method of producing microspheres comprising:
a) providing a starting composition according to claim 1;
b) melting that starting compostion to form molten droplets;
c) cooling the molten droplet to form quenched fused microspheres; and
d) heating the quenched fused microspheres.
22. Microspheres comprising at least 50 wt-% titania, at least 5 wt-% bismuth oxide and at least 5 wt-% zirconia, based on the total weight of the microspheres.
23. The microspheres of claim 22 wherein the microspheres are transparent.
24. The microspheres of claim 22 wherein the microspheres are glass.
25. The microspheres of claim 22 wherein the microspheres are glass-ceramic.
26. The microspheres of claim 22 wherein the amount of bismuth oxide ranges up to 30 wt-%.
27. The microspheres of claim 22 wherein the amount of titania ranges up to about 84 wt-%.
28. The microspheres of claim 22 wherein the microspheres further comprise at least 10 wt-% alkaline earth metal oxides.
29. The microspheres of claim 28 wherein the at least 10 wt-% alkaline earth metal oxides comprise at least 5 wt-% CaO and at least 5 wt-% BaO.
30. The microspheres of claim 28 wherein the at least 10 wt-% alkaline earth metal oxides comprise at least 5 wt-% CaO, at least 5 wt-% BaO, and at least 5 wt-% SrO.
31. The microspheres of claim 22 wherein the amount of alkaline earth metal oxides ranges up to 35 wt-%.
32. The microspheres of claim 22 further comprising up to about 10 wt-% zinc oxide.
33. The microspheres of claim 22 wherein the microspheres are fused.
34. The microspheres of claim 22 wherein the microspheres have an index of refraction of greater than 2.2.
35. A method of producing microspheres comprising:
a) providing a starting composition according to claim 22;
b) melting that starting compostion to form molten droplets;
c) cooling the molten droplet to form quenched fused microspheres.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to microspheres (i.e., beads) that comprise titania and bismuth oxide. The glass microspheres further comprise zirconia. The invention also relates to retroreflective articles, and in particular pavement markings, comprising such microspheres.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Transparent glass and glass-ceramic microspheres (i.e., beads) are used as optical elements for retroreflective sheeting and pavement markings. Such microspheres can be produced, for example, by melting methods. Such melting methods may include melting a raw material composition in the form of particulate material. The melted particles can be quenched, in air or water for example, to give solid beads. Optionally, quenched particles can be crushed to form particles of a smaller desired size for the final beads. The crushed particles can be passed through a flame having a temperature sufficient to melt and spheroidize them. For many raw material compositions this is a temperature of about 1500 C. to about 2000 C. Alternatively, the melted raw material composition can be poured continuously into a jet of high velocity air. Molten droplets are formed as the jet impinges on the liquid stream. The velocity of the air and the viscosity of the melt are adjusted to control the size of the droplets. The molten droplets are rapidly quenched, in air or water for example, to give solid beads. Beads formed by such melting methods are normally composed of a vitreous material that is essentially completely amorphous (i.e., noncrystalline), and hence, the beads are often referred to as “vitreous,” “amorphous,” or simply “glass” beads or microspheres.
  • [0003]
    One exemplary patent that relates to microspheres is U.S. Pat. No. 6,335,083 (Kasai et al.), that relates to solid, fused microspheres. In one embodiment, the microspheres contain alumina, zirconia, and silica in a total content of at least about 70% by weight, based on the total weight of the solid, fused microspheres, wherein the total content of alumina, zirconia and titania is greater than the content of silica.
  • [0004]
    Other exemplary patents include U.S. Pat. Nos. 6,245,700 and 6,461,988 (Budd et al.) that relate to transparent, solid microspheres that contain titania plus alumina, zirconia, and/or silica in a total content of at least about 75% by weight, based on the total weight of the solid, microspheres, wherein the total content of alumina, zirconia and titania is greater than the content of silica.
  • [0005]
    Although, the microspheres of U.S. Pat. No. 6,335,083 (Kasai et al.) and U.S. Pat. Nos. 6,245,700 and 6,461,988 (Budd et al.) exhibit sufficient transparency and mechanical properties for use as retroreflective lens elements for retroreflective articles such as pavement markings, industry would find advantage in microsphere compositions having improved properties and methods of making such microspheres.
  • SUMMARY OF THE INVENTION
  • [0006]
    In one aspect, the present invention discloses microspheres, comprising a glass-ceramic structure where the microspheres comprise at least 5% bismuth oxide and at least 50% titania based on the total weight of the microspheres. The amount of titania preferably ranges up to about 92%. The microspheres comprise a glass-ceramic structure comprising nanoscale crystals. The nanoscale crystals have dimensions less than about 100 nanometers. The nanoscale crystals preferably comprise at least 20 volume % of the microspheres (e.g. at least 50 volume %). The microspheres may comprise crystals greater than about 100 nanometers in dimension provided such crystals comprise less than 20 volume % of the microspheres.
  • [0007]
    In another aspect, the present invention discloses microspheres, comprising at least 50% titania, at least 5% bismuth oxide and at least 5% zirconia, based on the total weight of the microspheres. The amount of titania may range up to about 84%. Such microspheres may be glass or glass-ceramic.
  • [0008]
    In each of these aspects, the microspheres are preferably transparent. Further, the amount of bismuth oxide may range up to 30%. The microspheres may comprise at least 10% alkaline earth metal oxides. The amount of alkaline earth metal oxides typically ranges up to 35%. The microspheres may comprises up to about 10% zinc oxide. The microspheres are preferably fused. The microspheres preferably have an index of refraction of greater than 2.2.
  • [0009]
    In other aspects the invention relates to retroreflective articles comprising a binder and the glass-ceramic and/or glass microspheres of the invention.
  • [0010]
    In another aspect, the invention relates to a retroreflective element comprising a core (e.g. ceramic) and the microspheres of the invention partially embedded in the core.
  • [0011]
    In another aspect, the invention relates to pavement markings comprising a binder and the microspheres and/or the reflective elements.
  • [0012]
    In yet another aspect, the invention relates to a method of producing microspheres comprising providing at least one of the previously described starting compositions, melting the composition to form molten droplets, cooling the molten droplet to form quenched fused microspheres, and heating the quenched fused microspheres.
  • DESCRIPTION OF THE DRAWINGS
  • [0013]
    [0013]FIG. 1 is an X-ray diffraction plot for exemplary glass beads of the invention.
  • [0014]
    [0014]FIG. 2 is an X-ray diffraction plot for exemplary glass-ceramic beads of the invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0015]
    The present invention provides microspheres (i.e., beads) of various compositions comprising titania (TiO2) and bismuth oxide (Bi2O3). The glass microspheres further comprise zirconia (ZrO2) in an amount of at least 5%. Further, the glass and glass-ceramic microspheres of the invention preferably further comprise at least 15% of at least one alkaline earth metal oxide.
  • [0016]
    The terms “beads” and “microspheres” are used interchangeably and refer to particles that are substantially, although perhaps not exactly, spherical. The term “solid” refers to beads that are not hollow, i.e., free of substantial cavities or voids. For use as lens elements, the beads are preferably spherical and preferably solid. Solid beads are typically more durable than hollow beads, particularly when exposed to freeze-thaw cycles.
  • [0017]
    The microspheres described herein are preferably transparent. The term “transparent” means that the beads when viewed under an optical microscope (e.g., at 100) have the property of transmitting rays of visible light so that bodies beneath the beads, such as bodies of the same nature as the beads, can be clearly seen through the beads when both are immersed in oil of approximately the same refractive index as the beads. Although the oil should have an index of refraction approximating that of the beads, it should not be so close that the beads seem to disappear (as they would in the case of a perfect index match). The outline, periphery, or edges of bodies beneath the beads are clearly discernible. The microspheres described herein are preferably prepared from a melt process. Microspheres prepared from a melt process are described herein as “fused.” For ease in manufacturing, it is preferred that the microsphere composition exhibits a relatively low liquidus temperature, such as less than about 1700 C., and preferably less than about 1600 C. Typically the liquidus temperature is less than about 1500 C.
  • [0018]
    Upon initial formation from a melt, beads are formed that are substantially amorphous yet can contain some crystallinity. The compositions preferably form clear, transparent glass microspheres when quenched. Upon further heat treatment, the beads can develop crystallinity in the form of a glass-ceramic structure, i.e., microstructure in which crystals have grown from within an initially amorphous structure, and thus become glass-ceramic beads. Upon heat treatment of quenched beads, the beads can develop crystallinity in the form of a nanoscale glass-ceramic structure, i.e., microstructure in which crystals less than about 100 nanometers in dimension have grown from within an initially amorphous structure, and thus become glass-ceramic beads. A nanoscale glass-ceramic microstructure is a microcrystalline glass-ceramic structure comprising nanoscale crystals. For the purposes of the present invention, microspheres exhibiting X-ray diffraction consistent with the presence of a crystalline phase are considered glass-ceramic microspheres. An approximate guideline in the field is that materials comprising less than about 1 volume % crystals may not exhibit detectable crystallinity in typical powder X-ray diffraction measurements. Such materials are often considered “X-ray amorphous” or glass materials, rather than ceramic or glass-ceramic materials. Microspheres comprising crystals that are detectable by X-ray diffraction measurements typically necessary to be present in an amount greater than or equal to 1 volume % for detectability, are considered glass-ceramic microspheres, for the purposes of the present invention. X-ray diffraction data can be collected using a Philips Automated Vertical Diffractometer with Type 150 100 00 Wide Range Goniometer, sealed copper target X-ray source, proportional detector, variable receiving slits, 0.2 entrance slit, and graphite diffracted beam monochromator (Philips Electronics Instruments Company, Mahwah, N.J.), with measurement settings of 45 kV source voltage, 35 mA source current, 0.04 step size, and 4 second dwell time. Likewise as used herein “glass microspheres” refers to microspheres having less than 1 volume % of crystals. Preferably, the glass-ceramic microspheres comprise greater than 10 volume % crystals. More preferably, the glass-ceramic microspheres comprise greater than 25 volume % crystals. Most preferably, the glass-ceramic microspheres comprise greater than 50 volume % crystals.
  • [0019]
    In preferred embodiments, the microspheres form a microcrystalline glass-ceramic structure via heat treatment yet remain transparent. For good transparency, it is preferable that the microspheres comprise little or no volume fraction of crystals greater than about 100 nanometers in dimension. Preferably, the microspheres comprise less than 20 volume % of crystals greater than about 100 nanometers in dimension, more preferably less than 10 volume %, and most preferably less than about 5 volume %. Preferably, the size of the crystals in the crystalline phase is less than about 20 nanometers (0.02 micron) in their largest linear dimension. Crystals of this size typically do not scatter visible light effectively and therefore, do not decrease the transparency significantly.
  • [0020]
    Beads of the present invention are particularly useful as lens elements in retroreflective articles. Transparent beads according to the present invention have an index of refraction of at least about 2.0, typically at least about 2.1, more typically at least 2.2, preferably at least about 2.3, and more preferably at least about 2.4. For retroreflective applications in water or a wet environment, the beads preferably have a high index of refraction. An advantage of the compositions of the present invention is the ability to provide microspheres having a relatively higher index of refraction and thus enhanced wet reflectivity.
  • [0021]
    Although such high index of refraction beads have been demonstrated in the past, such bead compositions usually contain relatively high concentrations of PbO, CdO or Bi2O3. The presence of such high concentrations of Bi2O3 leads to undesirable yellow coloration. Also, Bi2O3 sources are generally more expensive than sources of most other metal oxides, and therefore it is preferred not to manufacture microspheres with high concentrations of Bi203. PbO and CdO may be included to raise the index of refration. However, these component are typically avoided.
  • [0022]
    Beads of the invention can be made and used in various sizes. It is uncommon to deliberately form beads smaller than 10 μm in diameter, though a fraction of beads down to 2 μm or 3 μm in diameter is sometimes formed as a by-product of manufacturing larger beads. Accordingly, the beads are preferably at least 20 μm, (e.g. at least 30 μm, at least 40 μm, at least 50 μm.) Generally, the uses for high index of refraction beads call for them to be less than about 2 millimeters in diameter, and most often less than about 1 millimeter in diameter (e.g. less than 750 μm, less than 500 μm, less than 300 μm).
  • [0023]
    The components of the beads are described as oxides, i.e. the form in which the components are presumed to exist in the completely processed glass and glass-ceramic beads as well as retroreflective articles, and the form that correctly accounts for the chemical elements and the proportions thereof in the beads. The starting materials used to make the beads may include some chemical compound other than an oxide, such as a carbonate. Other starting materials become modified to the oxide form during melting of the ingredients. Thus, the compositions of the beads of the present invention are discussed in terms of a theoretical oxide basis.
  • [0024]
    The compositions described herein are reported on a theoretical oxide basis based on the amounts of starting materials used. These values do not necessarily account for fugitive materials (e.g., fugitive intermediates) that are volatilized during the melting and spheroidizing process. Typically, for example, boria (B203), alkali metal oxides, and zinc oxide, are somewhat fugitive. Thus, upon analysis of the finished bead, as much as 5% of the original amount of boria and/or alkali metal oxide added to make the final microspheres may be lost during processing. As is conventional, however, all components of the final microspheres are calculated based on the amounts of starting materials and the total weight of the glass forming composition, and are reported in weight percents of oxides based on a theoretical basis.
  • [0025]
    Microspheres according to the present invention include titania and bismuth oxide. Both the glass microspheres and glass-ceramic microspheres of the invention comprise at least 50%, and more preferably at least 55% titania. The amount of titania in the glass-ceramic microspheres of the invention ranges up to 92%. The amount oftitania in the glass microspheres of the invention is slightly less ranging up to 84%. The amount of titania for both the glass and glass-ceramic microspheres is preferably less than 80%.
  • [0026]
    Titania is a high index of refraction metal oxide with a melting point of 1840 C., and is typically used because of its optical and electrical properties, but not generally for hardness or strength. Similar to zirconia, titania is a strong nucleating agent known to cause crystallization of glass compositions. Despite its high individual melting point, as a component in a mixture of certain oxides, titania can lower the liquidus temperature, while significantly raising the index of refration of microspheres comprising such mixtures of oxides. Further, quaternary compositions containing titania are readily quenched to glasses and controllably crystallized to glass-ceramics. Hence, compositions of the present invention comprising titania, bismuth oxide, and optionally zirconia provide relatively low liquidus temperatures, very high index of refraction values, high crystallinity when heat-treated appropriately, useful mechanical properties, and high transparency.
  • [0027]
    Both the glass microspheres and glass-ceramic microspheres of the invention comprise at least 5% bismuth oxide. Further, the amount of bismuth oxide ranges up to 30%. In some embodiments, the amount of bismuth oxide ranges up to 25%. In other embodiments, the amount of bismuth oxide ranges up to 20% (e.g. 16,%, 17%, 18%, 19%). In some preferred embodiments, the amount of bismuth oxide ranges up to 15% (e.g. 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13% and 14%).
  • [0028]
    The glass microspheres of the invention comprise at least 5% zirconia; whereas the glass-ceramic microspheres optionally, yet preferably comprise zirconia. The amount of zirconia for both the glass microspheres and glass-ceramic microspheres of the invention ranges up to 30%. Generally, the zirconia contributes chemical and mechanical durability as well as contributes to the high index of refraction of the preferred beads. Surprisingly, additions of zirconia to compositions containing titania in excess of 50% and bismuth oxide in excess of 5% lead to excellent glass-forming properties. Also, compositions comprising zirconia and bismuth oxide, together with titania in excess of 50%, exhibit controlled crystallization to a glass-ceramic structure with greater than 50 volume % crystallinity and high transparency. Finally, compositions comprising zirconia and bismuth oxide, together with titania in excess of 50%, exhibit very high index of refraction values (e.g., greater than 2.3) after crystallization.
  • [0029]
    In addition, the beads preferably comprise at least one alkaline earth metal oxide, such as baria (BaO), strontia (SrO), magnesia (MgO), or calcia (CaO). In certain preferred embodiments, the total amount of alkaline earth metal oxide(s) istat least 5% (e.g. 6%, 7%, 8%, 9%, 10%). Further, the total amount of alkaline earth metal oxide(s) typically ranges up to 35%. Many preferred embodiments contain less than 20% by weight alkaline earth metal oxides such as less than 15%. In some embodiments baria and calcia are included at about equal amount. Further, in some embodiments the total amount of alkaline earth metal oxide(s) is about twice that of bismuth oxide and/or zirconia
  • [0030]
    In the compositions in which the total content of more than one component is discussed, the beads may include only one of the components listed, various combinations of the components listed, or all of the components listed. For example, if a bead composition is said to include a total content of baria, strontia, magnesia, and calcia in an amount of 35% by weight, it can include 35% by weight of any one of these components or a combination of two, three or four of these components totaling 35% by weight.
  • [0031]
    Alkaline earth modifiers are particularly useful for lowering the liquidus temperature and for aiding in glass formation during quenching. With the addition of alkaline earth metal oxides, the ability to quench to a clear glass is improved, even though the tendency to crystallize on annealing can be increased. Addition of magnesia and other alkaline earth metal oxides also can result in improved crush strength, possibly by controlling crystallization during the heat treatment step and influencing the resulting microstructure. Too much alkaline earth metal oxide can result in poorer mechanical strength or poor chemical resistance to acidic environments.
  • [0032]
    Alternatively, or in addition thereto, the beads of the invention preferably comprise up to 20% by weight zinc oxide (ZnO). Typically the amount of zinc oxide is less than about 15% (e.g. 10%). Glass and glass-ceramic beads of the present invention comprising a minor amount of zinc oxide tend to have the highest index of refraction values.
  • [0033]
    The microspheres may optionally include minor amounts (e.g. each typically less than 5%) of oxides of elements such as lithium (Li2O), sodium (Na2O), potassium (K2O), aluminum (Al2O3), silicon (SiO2), yttrium (Y2O3), tin (SnO2), boron (B2O3), halfnium (HfO2), germanium (GeO2), phosphorous (P2O5), antimony (Sb2O5), molybdenum (MoO3), tungsten (WO3) and combinations thereof. Typically, the total amount of such inorganic oxide is less than 10%, although more may be present provided the presence thereof does not detrimentally impact the desired properties of the beads (e.g. index of refraction).
  • [0034]
    Specific metal oxides may be included for the improvement of mechanical properties. For example, one or metal oxides selected from the following group, typically in amounts of up to 5% each, can improve mechanical properties; SiO2, Al2O3, HfO2, La2O3, and Y2O3. For some such metal oxides, Al2O3 and SiO2 for example, higher concentrations will tend to decrease the index of refraction undesirably.
  • [0035]
    The glass-ceramic microspheres of the invention comprise one or more crystalline phases, typically totaling at least 5 volume %. Crystallinity is typically developed though heat-treatment of amorphous beads, although some glass-ceramic beads according to the invention and formed by quenching molten droplets may contain crystals without secondary heat treatment. Such a crystalline phase or phases may include relatively pure single-component metal oxide phases of titania (e.g., anatase, rutile), zirconia (e.g., baddeleyite), and/or bismuth oxide (e.g., bismite). Also, such a crystalline phase or phases may include relatively pure multicomponent metal oxide phases (e.g., Bi4Ti3O12, ZrTiO4). Such a crystalline phase or phases may include crystalline solid solutions that are isostructural with relatively pure single-component or multicomponent metal oxide phases. Finally, such crystalline phase or phases may include at least one heretofore unreported crystalline phase, in terms of crystal structure and/or composition. The compositions exhibit controlled crystallization characteristics such that they remain transparent following heat treatments.
  • [0036]
    Colorants can also be included in the beads of the present invention. Such colorants include, for example, CeO2, Fe2O3, CoO, Cr2O3, NiO, CuO, MnO2, V2O5 and the like. Typically, the beads of the present invention include no more than about 5% by weight (e.g. 1%, 2%, 3%, 4%) colorant, based on the total weight of the beads (theoretical oxide basis). Also, rare earth elements, such as praseodymium, neodymium, europium, erbium, thulium, ytterbium may optionally be included for fluorescence. Preferably, the microspheres are substantially free of lead oxide (PbO) and cadmim oxide (CdO).
  • [0037]
    Microspheres according to the invention can be prepared by conventional processes as, for example, disclosed in U.S. Pat. No. 3,493,403 (Tung et al). In one useful process, the starting materials are measured out in particulate form, each starting material being preferably about 0.01 μm to about 50 μm in size, and intimately mixed together. The starting raw materials include compounds that form oxides upon melting or heat treatment. These can include oxides, (e.g. titania, bismite, optional zirconia, and optional alkaline earth metal oxide(s)), hydroxides, acid chlorides, chlorides, nitrates, carboxylates, sulfates, alkoxides, and the like, and the various combinations thereof. Moreover, multicomponent metal oxides such as calcium titanate (CaTiO3) and barium titanate (BaTiO3) can also be used.
  • [0038]
    The oxide mixture is melted in a gas-fired or electrical furnace until all the starting materials are in liquid form. The liquid batch can be poured into a jet of high-velocity air. Beads of the desired size are formed directly in the resulting stream. The velocity of the air is adjusted in this method to cause a proportion of the beads formed to have the desired dimensions. Typically, such compositions have a sufficiently low viscosity and high surface tension.
  • [0039]
    Melting of the starting materials is typically achieved by heating at a temperature within a range of about 1500 C. to about 1900 C., and often at a temperature of, for example, of about 1700 C. A direct heating method using a hydrogen-oxygen burner or acetylene-oxygen burner, or an oven heating method using an arc image oven, solar oven, graphite oven or zirconia oven, can be used to melt the starting materials.
  • [0040]
    Alternatively, the liquid is quenched in water, dried, and crushed to form particles of a size desired for the final beads. The crushed particles can be screened to assure that they are in the proper range of sizes. The crushed particles can then be passed through a flame having a temperature sufficient to remelt and spheroidize the particles.
  • [0041]
    In a preferred method, the starting materials are first formed into larger feed particles. The feed particles are fed directly into a burner, such as a hydrogen-oxygen burner or an acetylene-oxygen burner or a methane-air burner, and then quenched in water (e.g., in the form of a water curtain or water bath). Feed particles may be formed by melting and grinding, agglomerating, or sintering the starting materials. Agglomerated particles of up to about 2000 μm in size (the length of the largest dimension) can be used, although particles of up to about 500 μm in size are preferred. The agglomerated particles can be made by a variety of well known methods, such as by mixing with water, spray drying, pelletizing, and the like. The starting material, particularly if in the form of agglomerates, can be classified for better control of the particle size of the resultant beads. Whether agglomerated or not, the starting material may be fed into the burner with the burner flame in a horizontal orientation. Typically, the feed particles are fed into the flame at its base. This horizontal orientation is desired because it can produce very high yields (e.g., 100%) of spherical particles of the desired level of transparency.
  • [0042]
    The procedure for cooling the molten droplets can involve air cooling or rapid cooling. Rapid cooling is achieved by, for example, dropping the molten droplets of starting material into a cooling medium such as water or cooling oil. In addition, a method can be used in which the molten droplets are sprayed into a gas such as air or argon. The resultant quenched fused beads are typically sufficiently transparent for use as lens elements in retroreflective articles. For certain embodiments, they are also sufficiently hard, strong, and tough for direct use in retroreflective articles. Typically, however, a subsequent heat treating step is desired to improve their mechanical properties. Also, heat treatment and crystallization lead to increases in index of refraction.
  • [0043]
    In a preferred embodiment, a bead precursor can be formed and subsequently heated. As used herein, a “bead precursor” refers to the material formed into the shape of a bead by melting and cooling a bead starting composition. This bead precursor is also referred to herein as a quenched fused bead, and may be suitable for use without further processing if the mechanical properties and transparency are of desirable levels. The bead precursor is formed by melting a starting composition containing prescribed amounts of raw materials (e.g., titanium raw material, bismuth raw material, optional raw materials), forming molten droplets of a predetermined particle size, and cooling those molten droplets. The starting composition is prepared so that the resulting bead precursor contains the desired raw materials in predetermined proportions. The particle size of the molten droplets is normally within the range of about 10 microns (μm) to about 2,000 μm. The particle size of the bead precursors as well as the particle size of the final transparent fused beads can be controlled with the particle size of the molten droplets.
  • [0044]
    Thus, in certain preferred embodiments, a bead precursor (i.e., quenched fused bead) is subsequently heated. Preferably, this heating step is carried out at a temperature below the melting point of the bead precursor. Typically, this temperature is at least about 750 C. Preferably, it is about 850 C. to about 1000 C., provided it does not exceed the melting point of the bead precursor. If the heating temperature of the bead precursor is too low, the effect of increasing the index of refraction or the mechanical properties of the resulting beads will be insufficient. Conversely, if the heating temperature is too high, bead transparency can be diminished due to light scattering from large crystals. Although there are no particular limitations on the time of this heating step to increase index of refraction, develop crystallinity, and/or improve mechanical properties, heating for at least about 1 minute is normally sufficient, and heating should preferably be performed for about 5 minutes to about 100 minutes. In addition, preheating (e.g., for about 1 hour) at a temperature within the range of about 600 C. to about 800 C. before heat treatment may be advantageous because it can further increase the transparency and mechanical properties of the beads.
  • [0045]
    The latter method of preheating is also suitable for growing fine crystal phases in a uniformly dispersed state within a phase. A crystal phase containing oxides of zirconium, titanium, etc., can also form in compositions containing high levels of zirconia or titania upon forming the beads from the melt (i.e., without subsequent heating). Significantly, the crystal phases are more readily formed (either directly from the melt or upon subsequent heat treatment) by including high combined concentrations of titania and zirconia (e.g., combined concentration greater than 80%).
  • [0046]
    Microspheres made from a melt process are characterized as “fused.” Fully vitreous fused microspheres comprise a dense, solid, atomistically homogeneous glass network from which nanocrystals can nucleate and grow during subsequent heat treatment. As an alternative to melt processes, however, the microspheres of the invention may be prepared by a sol gel technique, such as described in U.S. Pat. No. 4,564,556 (Lange). Sol-gel beads typically comprise a mixture of amorphous material, such as sintered colloidal silica, and nanocrystalline components, such as zirconia, that crystallize during chemical precursor decomposition or sintering.
  • [0047]
    The crush strength values of the beads of the invention can be determined according to the test procedure described in U.S. Pat. No. 4,772,511 (Wood). Using this procedure, the beads demonstrate a crush strength of preferably at least about 350 MPa, more preferably at least about 700 MPa.
  • [0048]
    The durability of the beads of the invention can be demonstrated by exposing them to a compressed air driven stream of sand according to the test procedure described in U.S. Pat. No. 4,758,469 (Lange). Using this procedure, the beads are resistant to fracture, chipping, and abrasion, as evidenced by retention of about 30% to about 60% of their original reflected brightness.
  • [0049]
    Transparent (preferably, fused) beads according to the present invention are suitable for use for jewelry, abrasives, abrasion resistant coating coating as well as a wide variety of retroreflective articles. In some aspects, the beads are employed directly. Alternatively, or in combination with beads, reflective elements comprising a core (e.g. ceramic, polymeric) and beads of the present invention partially embedded in the core, such as described in U.S. Pat. Nos. 5,774,265 and 3,964,821, may be employed.
  • [0050]
    Reflective articles of the invention share the common feature of comprising the inventive beads and/or reflective element comprising such beads at least partially embedded in a binder material.
  • [0051]
    In some aspects, the beads and/or reflective elements are employed in liquid (e.g. pavement) marking applications wherein the beads and/or reflective elements are sequentially or concurrently dropped-on a liquified binder or compounded within a liquified binder. The liquidified binder may be a traffic paint such as described in U.S. Pat. No. 3,645,933; U.S. Pat. No. 6,132,132; and U.S. Pat. No. 6,376,574. Other binder materials include thermoplastics such as described in U.S. Pat. No. 3,036,928; U.S. Pat. No. 3,523,029; and U.S. Pat. No. 3,499,857; as well as two-part reactive binders including epoxies such as described in U.S. Pat. Nos. 3,046,851 and 4,721,743, and polyureas such as described in U.S. Pat. No. 6,166,106.
  • [0052]
    In other aspects, beads and/or reflective elements are employed in retroreflective sheeting including exposed lens, encapsulated lens, embedded lens, or enclosed lens sheeting. Representative pavement-marking sheet material (tapes) as described in U.S. Pat. No. 4,248,932 (Tung et al.), U.S. Pat. No. 4,988,555 (Hedblom); U.S. Pat. No. 5,227,221 (Hedblom); U.S. Pat. No. 5,777,791 (Hedblom); and U.S. Pat. No. 6,365,262 (Hedblom). In addition to pavement-marking sheet material, sheeting useful for retroreflective signs may incorporate microspheres of the present invention.
  • [0053]
    Pavement marking sheet material generally includes a backing, a layer of binder material, and a layer of beads partially embedded in the layer of binder material. The backing, which is typically of a thickness of less than about 3 mm, can be made from various materials, e.g., polymeric films, metal foils, and fiber-based sheets. Suitable polymeric materials include acrylonitrile-butadiene polymers, millable polyurethanes, and neoprene rubber. The backing can also include particulate fillers or skid resistant particles. The binder material can include various materials, e.g., vinyl polymers, polyurethanes, epoxides, and polyesters, optionally with colorants such as inorganic pigments, including specular pigments. The pavement marking sheeting can also include an adhesive, e.g., a pressure sensitive adhesive, a contact adhesive, or a hot melt adhesive, on the bottom of the backing sheet.
  • [0054]
    Pavement marking sheetings can be made by a variety of known processes. A representative example of such a process includes coating onto a backing sheet a mixture of resin, pigment, and solvent, dropping beads according to the present invention onto the wet surface of the backing, and curing the construction. A layer of adhesive can then be coated onto the bottom of the backing sheet.
  • [0055]
    Other applications for retroreflective sheeting or liquid marking materials incorporating beads of the invention include graphics and signing in marine settings, where wet reflectivity is desired. For example, applied graphics and signing on motorized watercraft, floating markers, or stationary shoreline structures may incorporate beads of the invention.
  • EXAMPLES
  • [0056]
    The following provides an explanation of the present invention with reference to its examples and comparative examples. Furthermore, it should be understood that the present invention is no way limited to these examples. All percentages are in weight percents, based on the total weight of the compositions, unless otherwise specified.
  • Example 1
  • [0057]
    [0057]16 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 130 g of titanium oxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “T315-500”), 18 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 23.4 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 32.1 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”) were combined in a porcelain jar mill with 350 g of water and 1600 g of 1 cm diameter zirconium oxide milling media. The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0058]
    65% TiO2
  • [0059]
    9% Bi2O3
  • [0060]
    9% BaO
  • [0061]
    9% CaO
  • [0062]
    8% ZrO2
  • [0063]
    The slurry was milled for 24 hours and then dried overnight at 100 C. to yield a mixed powder cake with the components homogeneously distributed. After grinding with a mortar and pestle, dried and sized particles (<250 microns diameter) were fed into the flame of a hydrogen/oxygen torch (commercially available from Bethlehem Apparatus Company, Hellertown Pa. under the trade designation “Bethlehem Bench Burner PM2D Model-B”), referred to as “Bethlehem burner” hereinafter. The Bethlehem burner delivered hydrogen and oxygen at the following rates, standard liters per minute (SLPM):
    Hydrogen Oxygen
    Inner ring 8.0 3.0
    Outer ring 23.0 9.8
    Total 31.0 12.8
  • [0064]
    The particles were melted by the flame and transported to a water quenching vessel. The quenched particles were dried and then passed through the flame of the Bethlehem burner a second time, where they were melted again and transported to the water quenching vessel. The beads were collected and examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I. The index of refraction can be measured by the Becke method, which is disclosed in F. Donald Bloss, “An Introduction to the Methods of Optical Crystallography,” Holt, Rinehart and Winston, New York, pp. 47-55 (1961), the disclosure of which is incorporated herein by reference.
  • Example 2
  • [0065]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 12 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 140 g of titanium oxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “T315-500”), 16 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 20.6 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 28.6 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0066]
    70% TiO2
  • [0067]
    8% Bi2O3
  • [0068]
    8% BaO
  • [0069]
    8% CaO
  • [0070]
    6% ZrO2
  • [0071]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I.
  • Example 3
  • [0072]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 24 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 126 g of titanium oxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “T315-500”), 18 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 20.6 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 28.6 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0073]
    63% TiO2
  • [0074]
    12% ZrO2
  • [0075]
    9% Bi2O3
  • [0076]
    8% BaO
  • [0077]
    8% CaO
  • [0078]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I.
  • Example 4
  • [0079]
    Following the procedure set forth in Example 1, a batch of beads was prepared using the following raw materials: 20 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 120 g of titanium oxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “T315-500”), 20 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 25.7 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 35.7 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0080]
    60% TiO2
  • [0081]
    10% ZrO2
  • [0082]
    10% Bi2O3
  • [0083]
    10% BaO
  • [0084]
    10% CaO
  • [0085]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). X-ray diffraction analysis confirmed that the beads were quenched in the amorphous state. FIG. 1 is a plot of the X-ray diffraction data. The measured index of refraction for the beads is given in Table I. A crush strength value was determined for the microspheres, following the test procedure described in U.S. Pat. No. 4,772,511 (Wood). The microspheres measured 540 MPa in crush strength.
  • Example 5
  • [0086]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 14 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 130 g of titanium oxide (commercially available from Kerr McGee (Oklahoma City, Okla.) under the trade designation “Kemira 110”), 24 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 20.6 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 28.6 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0087]
    65% TiO2
  • [0088]
    12% Bi2O3
  • [0089]
    8% BaO
  • [0090]
    8% CaO
  • [0091]
    7% ZrO2
  • [0092]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I.
  • Example 6
  • [0093]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 16 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 126 g of titanium oxide (commercially available from Kerr McGee (Oklahoma City, Okla.) under the trade designation “Kemira 110”), 16 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 20.6 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 19.7 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”), 5 g of aluminum oxide (commercially available from from ALCOA Industrial Chemicals, (Pittsburgh, Pa.) under the trade designation “16SG”), and 10 g of wollastonite ((CaSiO3) powder, commercially from R. T. Vanderbilt (Norwalk, Conn.) under the trade designation “Vansil W-30”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0094]
    63% TiO2
  • [0095]
    8% ZrO2
  • [0096]
    8% Bi2O3
  • [0097]
    8% BaO
  • [0098]
    8% CaO
  • [0099]
    2.5wt % Al2O3
  • [0100]
    2.5wt % SiO2
  • [0101]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I.
  • Example 7
  • [0102]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 20 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 120 g of titanium oxide (commercially available from Kerr McGee (Oklahoma City, Okla.) under the trade designation “Kemira 110”), 20 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 19.3 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), 26.8 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”), 10 g of zinc oxide (commercially available from EM Science (Cherry Hill, N.J.) under the trade designation “ZX0090-1”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0103]
    60% TiO2
  • [0104]
    10% ZrO2
  • [0105]
    10% Bi2O3
  • [0106]
    7.5% BaO
  • [0107]
    7.5% CaO
  • [0108]
    5% ZnO
  • [0109]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The measured index of refraction for the beads is given in Table I.
  • Example 8
  • [0110]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 19.4 g of zirconium oxide (commercially available from Z-TECH division of Carpenter Engineering Products, (Bow, N.H.) under the trade designation “CF-PLUS-HM”), 116.4 g of titanium oxide (commercially available from Kerr McGee (Oklahoma City, Okla.) under the trade designation “Kemira 110”), 19.4 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 25.0 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), 34.6 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”), and 30.4 g of ferric nitrate ((Fe(NO3)3-9H2O) commercially available from Fisher (Fair Lawn, N.J.) under the trade designation “I110-500”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0111]
    58.2% TiO2
  • [0112]
    9.7% ZrO2
  • [0113]
    9.7% Bi2O3
  • [0114]
    9.7% BaO
  • [0115]
    9.7% CaO
  • [0116]
    3% Fe2O3
  • [0117]
    The beads were black in appearance. They measured about 40 to 250 microns. The quenched black glass beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads were converted from a black appearance to a yellow appearance. The measured index of refraction of the beads is given in Table I.
  • Example 9
  • [0118]
    Beads were prepared according to Example 1. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 10
  • [0119]
    Beads were prepared according to Example 2. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 11
  • [0120]
    Beads were prepared according to Example 3. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 12
  • [0121]
    Beads were prepared according to Example 4. The quenched glass beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. X-ray diffraction analysis confirmed that the heat-treated beads were substantially crystalline. FIG. 2 is a plot of the X-ray diffraction data. The volume percentage crystallinity was estimated to be 60-70%. The measured index of refraction of the beads is given in Table I.
  • Example 13
  • [0122]
    Beads were prepared according to Example 5. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 14
  • [0123]
    Beads were prepared according to Example 6. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 15
  • [0124]
    Beads were prepared according to Example 7. The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 850 C., held at 850 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. The measured index of refraction of the beads is given in Table I.
  • Example 16
  • [0125]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 120 g of titanium oxide (commercially available from KRONOS, (Cranbury, N.J.) under the trade designation “KRONOS 1000”), 26.6 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 34.5 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), and 47.5 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0126]
    60% TiO2
  • [0127]
    13.3% Bi2O3
  • [0128]
    13.3% BaO
  • [0129]
    13.3% CaO
  • [0130]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 765 C., held at 765 C. for 30 min, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. X-ray diffraction confirmed the presence of at least one crystalline phase, with a total crystalline phase concentration of about 10 volume %. The measured index of refraction of the beads is given in Table I.
  • Example 17
  • [0131]
    Following the procedure set forth in example 1, a batch of beads was prepared using the following raw materials: 126 g of titanium oxide (commercially available from Aldrich Chemical Company (Milwaukee, Wis.) under the trade designation “24,857-6”), 28 g of bismuth trioxide (commercially available from Fisher Scientific (Fair Lawn, N.J.) under the trade designation “B-339”), 20.6 g of barium carbonate (commercially available from Chemical Products Corporation (Cartersville, Ga.) under the trade designation “Type S”), 28.6 g of calcium carbonate (commercially available from Akrochem Corporation (Akron, Ohio) under the trade designation “Hubercarb Q325”), and 19.9 g of strontium carbonate (commercially available from Aldrich Chemical Company (Milwaukee, Wis.) under the trade designation “28,983-3”). The ingredients were combined in appropriate proportions for the preparation of beads with the following base composition:
  • [0132]
    63% TiO2
  • [0133]
    14% Bi2O3
  • [0134]
    8% BaO
  • [0135]
    8% CaO
  • [0136]
    7% SrO
  • [0137]
    The beads were examined using an optical microscope. They measured about 40 to 250 microns in diameter and a majority of the beads were clear and substantially free of defects (e.g., optically visible inclusions, bubbles). The quenched beads were placed in an alumina crucible and heated at a rate of 10 C./minute to 750 C., held at 750 C. for 1 hr, and then allowed to cool slowly with the furnace through natural dissipation of heat into the environment. The beads were removed from the furnace after cooling back to room temperature. After heat treatment, the beads remained substantially clear when viewed using an optical microscope. X-ray diffraction confirmed the presence of at least one crystalline phase, with a total crystalline phase concentration of about 10 volume %. The measured index of refraction of the beads is given in Table I.
    TABLE I
    Example Index of Refraction
    1 2.28
    2 2.33
    3 2.31
    4 2.28
    5 2.32
    6 2.26
    7 2.32
    8 2.39
    9 2.39
    10 2.41
    11 2.34
    12 2.37
    13 2.43
    14 2.35
    15 2.43
    16 2.24
    17 2.30
  • [0138]
    The complete disclosures of all patents, patent documents, and publications are incorporated herein by reference as if individually incorporated. It will be appreciated by those skilled in the art that various modifications can be made to the above described embodiments of the invention without departing from the essential nature thereof. The invention is intended to encompass all such modifications within the scope of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2713286 *Oct 22, 1949Jul 19, 1955Minnesota Mining & MfgReflex light reflectors and glass bead elements thereof
US2726161 *Sep 21, 1953Dec 6, 1955Minnesota Mining & MfgHigh-index glass elements
US2790723 *Aug 12, 1953Apr 30, 1957Minuesota Mining & Mfg CompanyHigh-index glass elements
US2842446 *Dec 27, 1954Jul 8, 1958Minnesota Mining & MfgHigh-index glass elements
US2853393 *Oct 12, 1951Sep 23, 1958Minnesota Mining & MfgHigh-index glass elements
US2870030 *Jul 18, 1955Jan 20, 1959Minnesota Mining & MfgHigh-index glass elements
US3145114 *Oct 24, 1960Aug 18, 1964Prismo Safety CorpProcess for increasing the index of refraction of glass and an article made thereby
US3149016 *Apr 2, 1962Sep 15, 1964Minnesota Mining & MfgNucleated glass particle and process for making it
US3293051 *Aug 22, 1963Dec 20, 1966Cataphote CorpHigh titanate glass beads
US3419403 *Mar 18, 1963Dec 31, 1968Cataphote CorpHigh index of refraction glass compositions
US3493403 *Aug 12, 1968Feb 3, 1970Minnesota Mining & MfgHigh titania glass articles and process
US3499857 *Apr 17, 1967Mar 10, 1970Cataphote CorpThermoplastic resinous compositions,particularly using unsaturated triglycerides
US3523029 *Aug 21, 1967Aug 4, 1970Cataphote CorpHot melt highway marking composition
US3645933 *Nov 12, 1969Feb 29, 1972Sherwin Williams CoCoating composition including isocyanate-modified polyester and chlorinated rubber
US3684536 *Nov 4, 1970Aug 15, 1972Du PontBismuthate glass-ceramic precursor compositions
US3964821 *Dec 27, 1973Jun 22, 1976Ludwig EigenmannReflex reflecting system for road surface marking
US4082427 *Feb 23, 1977Apr 4, 1978Fukuoka Tokushu Garasu Kabushiki KaishaHigh refractive index glass compositions
US4141742 *Jun 1, 1978Feb 27, 1979Fukuoka Tokushugarasu Kabushiki KaishaHigh refractive index glass composition
US4192576 *Nov 20, 1978Mar 11, 1980Minnesota Mining And Manufacturing CompanyUltra-high-index glass microspheres and products made therefrom
US4248932 *Jun 14, 1979Feb 3, 1981Minnesota Mining And Manufacturing CompanyExtended-life pavement-marking sheet material
US4367919 *Mar 19, 1981Jan 11, 1983Minnesota Mining And Manufacturing CompanyDurable glass elements
US4526874 *Apr 27, 1983Jul 2, 1985Schott GlaswerkeOptical light weight glass with a refractive index of >1.70, an Abbe index of >22 and a density of <3.5 G/CM3
US4564556 *Sep 24, 1984Jan 14, 1986Minnesota Mining And Manufacturing CompanyTransparent non-vitreous ceramic particulate
US4721743 *Aug 22, 1986Jan 26, 1988The Dow Chemical CompanyNon-thermoset thermally stable capped epoxy resin compositions
US4734389 *Feb 7, 1986Mar 29, 1988Schott GlaswerkeHighly refractive optical glass with refractive indices >1.83 and Abbe numbers <25, and with very good chemical stability
US4988555 *Jan 2, 1990Jan 29, 1991Minnesota Mining And Manufacturing CompanyPatterned pavement marking
US5774265 *Feb 5, 1996Jun 30, 1998Minnesota Mining And Manufacturing CompanyDurable retroreflective elements
US5777791 *Nov 26, 1996Jul 7, 1998Minnesota Mining And Manufacturing CompanyWet retroreflective pavement marking articles
US6132132 *Mar 12, 1999Oct 17, 2000Rohm And Haas CompanyWater-based road marking paint
US6153127 *Dec 25, 1997Nov 28, 2000Nippon Sheet Glass Co., Ltd.Optical thin film, forming composition thereof, and ultraviolet ray absorbing and thermic ray reflecting glass using the same
US6166106 *Jun 12, 1998Dec 26, 20003M Innovative Properties CompanyLiquid pavement marking compositions
US6235667 *Jun 8, 1999May 22, 2001Calp Cristalleria Artistica La Piana S.P.A.Vitrifiable mixture for quality glasses
US6245700 *Jul 27, 1999Jun 12, 20013M Innovative Properties CompanyTransparent microspheres
US6335083 *Apr 17, 1998Jan 1, 20023M Innovative Properties CompanyTransparent beads and their production method
US6365262 *Oct 20, 1998Apr 2, 20023M Innovative Properties CompanyPavement marking articles having enhanced retroreflectivity under dry or wet conditions and method for making same
US6376574 *May 8, 2000Apr 23, 2002The Dow Chemical CompanyFast hardening aqueous coating composition and paint
US6451874 *Oct 27, 2000Sep 17, 20023M Innovative Properties CompanyLiquid pavement marking compositions
US6461988 *Mar 30, 2001Oct 8, 20023M Innovative Properties CompanyTransparent microspheres
US6479417 *Jan 18, 2001Nov 12, 20023M Innovative Properties CompanyGlass-ceramic microspheres that impart yellow color to retroreflected light
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7513941Nov 14, 2005Apr 7, 20093M Innovative Properties CompanyPavement marking, reflective elements, and methods of making micospheres
US7524779Jan 27, 2005Apr 28, 20093M Innovative Properties CompanyMicrospheres having a high index of refraction
US7579293Dec 17, 2008Aug 25, 20093M Innovative Properties CompanyPavement marking, reflective elements, and methods of making microspheres
US7585799Jan 20, 2009Sep 8, 20093M Innovative Properties CompanyMicrospheres having a high index of refraction
US7745360Dec 17, 2008Jun 29, 20103M Innovative Properties CompanyPavement marking, reflective elements, and methods of making microspheres
US8291727 *Dec 17, 2010Oct 23, 2012Intevep, S.A.Apparatus for manufacturing ceramic microspheres for cementing applications
US8591045Aug 21, 2009Nov 26, 20133M Innovative Properties CompanyPavement markings, reflective elements, and methods of making microspheres
US8701441 *Aug 21, 2006Apr 22, 20143M Innovative Properties CompanyMethod of making inorganic, metal oxide spheres using microstructured molds
US9108874Mar 28, 2014Aug 18, 20153M Innovative Properties CompanyMethod of making inorganic, metal oxide spheres using microstructured molds
US9527768Jul 1, 2015Dec 27, 20163M Innovative Properties CompanyMethod of making inorganic, metal oxide spheres using microstructured molds
US20050143248 *Jan 27, 2005Jun 30, 20053M Innovative Properties CompanyMicrospheres having a high index of refraction
US20060293161 *Apr 20, 2004Dec 28, 2006Frey Matthew HMicrospheres comprising titania and bismuth oxide
US20070110960 *Nov 14, 2005May 17, 20073M Innovative Properties CompanyPavement marking, reflective elements, and methods of making microspheres
US20080041103 *Aug 21, 2006Feb 21, 20083M Innovative Properties CompanyMethod of making inorganic, metal oxide spheres using microstructured molds
US20090064716 *Oct 29, 2008Mar 12, 2009Asahi Glass Company, LimitedProcess for producing glass
US20100144562 *Dec 4, 2008Jun 10, 2010Intevep, S.A.Ceramic microspheres for cementing applications
US20110138859 *Dec 17, 2010Jun 16, 2011Intevep, S.A.Ceramic microspheres for cementing applications
US20140339085 *Oct 30, 2012Nov 20, 2014I-TenMethod for producing dense thin films by electrophoresis
EP2014621A1 *Mar 22, 2007Jan 14, 2009Asahi Glass Company, LimitedProcess for producing glass
EP2014621A4 *Mar 22, 2007Sep 1, 2010Asahi Glass Co LtdProcess for producing glass
WO2005047604A1Nov 4, 2004May 26, 20053M Innovative Properties CompanyRetroreflective elements comprising a bonded resin core and pavement markings
Classifications
U.S. Classification501/33, 65/33.9, 501/34, 501/41, 65/21.3
International ClassificationC03C12/02, C03C3/12, G02B5/128, C03C3/062, C03C12/00, C03B19/10, C04B35/653, C04B35/462, C03C10/00
Cooperative ClassificationC03C3/122, G02B5/128, C04B2235/3284, C04B2235/3215, C03C10/00, C03B2201/40, C03C12/02, C04B2235/3298, C03B2201/60, C04B2235/9653, C04B2235/528, C04B2235/3217, C03B2201/30, C04B2235/3244, C03B19/1055, Y10T428/2982, C03B19/1045, C03C12/00, C03B2201/42, C04B35/653, C04B2235/3418, C04B2235/3272, C03C3/127, C04B2235/3213, C03B19/102, C04B35/462, C03C3/062
European ClassificationC04B35/462, C03C3/12R, C03C10/00, C03C3/062, C03C3/12N, C04B35/653, C03B19/10B4, G02B5/128, C03C12/02, C03C12/00, C03B19/10B8, C03B19/10B7
Legal Events
DateCodeEventDescription
Jun 11, 2003ASAssignment
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FREY, MATTHEW H.;REEL/FRAME:014174/0696
Effective date: 20030611