Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040267378 A1
Publication typeApplication
Application numberUS 10/872,910
Publication dateDec 30, 2004
Filing dateJun 21, 2004
Priority dateJun 24, 2003
Also published asUS7320696
Publication number10872910, 872910, US 2004/0267378 A1, US 2004/267378 A1, US 20040267378 A1, US 20040267378A1, US 2004267378 A1, US 2004267378A1, US-A1-20040267378, US-A1-2004267378, US2004/0267378A1, US2004/267378A1, US20040267378 A1, US20040267378A1, US2004267378 A1, US2004267378A1
InventorsBashir Gazi, Paulo Sakai, Fabio Lopasso
Original AssigneeGazi Bashir Mussa, Paulo Sakai, Lopasso Fabio Pinatel
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Semi-stationary balloon in the gastric antrum provided with connecting an anchoring rod for inducing weight reduction in human beings
US 20040267378 A1
Abstract
A semi-stationary balloon in the gastric antrum provided with an anchoring rod for inducing weight reduction in human beings is disclosed, a device for inducing a lesser appetite and early prandial satiety, said balloon being made of inflatable per-os medical grade silicone having a volume of up to 240 ml, with an average space of 120 ml to be filled with non-elastic fluid provided with radio-opaque contrast and dye, preferably methylene blue, so that the maximum diameter of 8 cm is reached after it is filled up with a volume of up to 240 ml and the average diameter of 6 cm with a volume of 120 ml, to be endoscopically placed inside the stomach (E); said intra-gastric balloon (1) being positioned in a semi-stationary way in the gastric antrum (GAC) and provided with an anchoring or duodenal rod (2) having a distal counter-weight (5) installed in the duodenum (D); particularly, the inner face of the pear-shaped medium portion of lesser diameter is coated with a malleable ribbon (f) that provides said balloon (1) with resistance and flexibility.
Images(2)
Previous page
Next page
Claims(7)
1. A semi-stationary balloon in the gastric antrum provided with an anchoring rod for inducing weight reduction in human beings, a device for inducing reduction of appetite and early prandial satiety, said balloon being placed endoscopically in the stomach (e) and made of inflatable per-os medical grade silicone with a volume of up to 240 ml and an average 120 ml volume to be filled with a non-elastic fluid provided with radio-opaque contrast and dye, preferably methylene blue, characterized in that the intragastric balloon (j) is made in a pear-shape or spherical format, so that it can be positioned in a semi-stationary way in the gastric antrum (AG); wherein, in said balloon, the inner face of the medium portion of lesser diameter of the pear-shaped form is coated with a malleable ribbon (F); said balloon (1) being provided with a flexible anchoring rod (2) having a distal counter-weight (5) designed to be installed in a portion of the duodenum (D).
2) A flexible anchoring rod made of medical grade silicone, wherein, in accordance with claim 1, said rod is characterized in that it is appended and welded to the pyloric pole (4) of the balloon (1).
3) The anchoring rod in accordance with the preceding claims and in a preferential constructive form, characterized in that the rod (2) is made in a solid form with a length between 35 and 45 cm, preferably 35 cm, and a 5 mm diameter.
4) The anchoring rod in accordance with the preceding claims, characterized in that the counter-weight (5) is comprised of a pipe (6) having a closed distal end (6 a) being internally provided with metallic conduits (76).
5) The anchoring rod in accordance with claims 3 and 4, characterized in that the counter-weight (5) has a full weight of 7 g.
6) The anchoring rod in accordance with the preceding claims, characterized in that the counter-weight (5) is located in the second portion of the duodenum.
7) The semi-stationary balloon in the gastric antrum provided with an anchoring rod for inducing weight reduction in human beings in accordance with claim 1, characterized by being provided, in a preferential construction, with a semi-stationary balloon of spherical form that preferably having a diameter between 5.5 cm and 6 cm.
Description
    TECHNICAL FIELD
  • [0001]
    The present invention is directed to a semi-stationary balloon in the gastric antrum provided with an anchoring rod for inducing weight reduction in human beings, particularly applied as an element that occupies the gastric cavity partially, making it possible to propose an intragastric device that induces weight reduction as the gastric antrum expands and that, by being stationary in the antrum, allows for the antrum pyloric sub-occlusion, only during the response to the increase in the motor activity of the antrum and duodenum that takes place in the fundic repletion by food during trivial meals.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The body weight and the distribution of fat are regulated by a number of neurological, metabolic and hormonal mechanisms that keep a balance between the intake of nutrients and the consumption of energy.
  • [0003]
    When these control mechanisms of control are incorrectly regulated, thus leading to an excessive intake in relation to the consumption of energy, a surplus storage of energy takes place as fat, the result of which is an increase in the body weight. The obesity is, therefore, defined as an excess of the accumulation of fat in the body. When this accumulation rises to a great extent, it is then called morbid obesity.
  • [0004]
    The most objective and mostly used way doctors apply to quantify the obesity is the calculation of the Index of Body Mass or simply IMC, which index is obtained by dividing the weight in kilograms by the height in meters to the square (IMC═P/A2). The regular weight considered for the IMC varies in the range from 19 to 25 Kg m2. People with IMC's from 25 to 30 are considered as over-weighted while those between 30 and 40 already are classified as obese. Finally, people with IMC's above 40 are those having morbid obesity, that is, equivalent to approximately 45 kg above the optimum weight. The stratification of the individuals based on the IMC by grouping them in different classes of weight maintains a direct relationship with the mortality rate, varying from “very low” in people within the regular range to “very high” in those having an IMC above 40 kg/m2.
  • [0005]
    There are a number of therapeutical alternatives that, when combined, attain significant losses of weight, such as the diets concerned with low and very low calories, psycotherapy, behavior therapy, physical exercises, and some drugs that increment the therapeutical armory stock against obesity.
  • [0006]
    However, in the case of morbid obesity, most of the time such measures are ephemeral and inefficient. It is so in view of the fact that most of the severely obese patients are not able to promote a definitive change in their nourishing habits and when practicing physical activity, in connection with the changes in the mechanisms that control the distribution of fat and waste of energy, thus leading to a tendency of the individual to recover the weight he had lost, also surpassing the initial weight and becoming still more obese.
  • [0007]
    Therefore, the patients with a morbid obesity must be seen as bearers of a severe illness that threatens life, reduces the quality of life and self-esteem, and they require efficient approaches to promote a weight reduction definitively; therefore, to individuals with a severe obesity, some treatments, such as surgery and others related thereto are then considered to be scientifically proven methods that promote a fierce long-lasting weight reduction, thus reducing the mortality rate and solving, or at least minimizing, a number of illnesses related to the obesity.
  • [0008]
    One of the best known treatments for inducing the reduction of the body weight is comprised of the installation of an intra-gastric balloon, what has taken place for the first time in 1979, by Henning. In 1982, an intra-gastric device made of latex was reported by Nieben and Harboe. The use of a version manufactured in plastic produced by Garren-Edwards with a volume of 200 ml, gained ground in the USA after the approval by the USA FDA in 1985.
  • [0009]
    However, controlled and retrospective pursuings have shown that the weigh reducing effect was ephemeral, reaching an apex three to six months after the implantation and accompanied by complications including gastric ulcers in 2.5% of the patients, gastric complaints that required the early removal of the balloon in 5% of the patients. The physicians have had problems with the implantation of the balloon and mechanical difficulties in the removal in 28.7% of the cases as reported by Frank, et al. in 1987.
  • [0010]
    Well-known studies have shown that the weigh reducing effect of these balloons was comparable to that of ghost balloons and diets connected with the induction of a change in the nourishing behavior by Benjamin, et al. and Meshkinpour, et al. in 1988. Next, balloons with higher volumes have been designed in the assumption that the intragastric volume more restricted to the input of food could be an efficient weight reduction inducing means.
  • [0011]
    A 550 ml pear-shaped version designed by Taylor propitiated the loss of 11.6% of the body weight and a decline of 11.4% of the IMC in 60 patients. In 2000, with 590 ml balloons, Bonassi, et al., showed that a 25 kg reduction can be attained in patients with an IMC higher that 40 in a period of up to four months if associated to a moderately restrictive diet, said reduction only being able to be partially maintained up to 12 months without the addition of other supportive measures. In patients with IMC's between 30 and 40, the weight reduction until the fourth month is lower (12 kg), however, it persists in the long-term period. Evans and Scott, in 2001, reported a 18.7% reduction of the surplus weight 4 to 7 months after the implantation, said reduction being 15 loss kg in 68 patients having IMC's above 40, and recommended the removal thereof between 3 and 6 months in order to prevent complications that they have deemed to be severe, such as intestinal occlusion at the ileum and sigmoid level that had required surgeries for changing the situation (3 chaos in 68). Such authors also reported the spontaneous elimination of the device through the rectum in 14 patients after up to 6 months of implantation.
  • [0012]
    It is clear, therefore, that these devices only function partially for a limited time. They are essentially indicated as means that induce the body weight reduction that precedes a “definitive” surgical treatment in patients having IMC's higher than 40. Apparently, the reduction is lower in those having IMC's between 30 and 40, though a long-term effect may be expected. It is evident that the physiological rules for the application thereof seem to be insufficient, too.
  • [0013]
    Studies in animals and human beings have shown that the post-prandial satiety is influenced by a multiplicity of factors. The gastric tonus, the intragastric contents and the counter-response to the stimulation of receptors located in the lower intestine would be the main factors among same. In animals, the gastric expansion is a well-known signal for the satiety. By using barostatic techniques in human beings, it is possible to prove the relationship between the tonus of the proximal stomach and the occurrence of gastrointestinal sensations that include the appetite.
  • [0014]
    In 1997, Jones, et al. demonstrated that the expansion of the gastric antrum is intimately associated with the post-prandial completeness in opposition to the expansion of the proximal stomach.
  • [0015]
    In 2002, Rao, et al. demonstrated that the expansion below the level of perception of the gastric bottom with balloons in human beings evokes a motor activity in the gastric antrum and duodenum, that is, there is a motor adaptation that compensates for the expansion of the gastric bottom and that would make the gastric depletion easier. As a result, the incorporation of energy through this route is inevitable under the conditions that mimic the fundic expansion which is the proposal of the large volume intra-gastric balloons.
  • [0016]
    From the above, it is clearly seen that the current knowledge of the gastroduodenal physiology allows for the proposal of a intra-gastric device that induces weight reduction by means of the expansion of the gastric antrum and that, by being stationary in the antrum, provides the antrum pyloric sub-occlusion only during the response to the increase in the motor activity of the antrum and the duodenum that occurs in the fundic repletion by food during trivial meals.
  • [0017]
    The present applicant has already filed a patent application for an intragastric balloon on Aug. 13, 2002 under no PI 0203301-1, which discloses “improvements introduced for implants in cavitary bodies”, basically comprising the implant of the type comprised of an ellipse-shaped silicone bag that is manufactured through the process that overlaps medical grade silicone layers duly approved by the FDA, thus forming a container for storing liquid or air; said implant being internally provided with a retention valve, while in the external face of said valve a solid medical grade silicone handle was provided, which handle remains rolled up inside the balloon and, after being drawn, it unwinds the wire where the light of the endoscope should pass through; said valve being provided with a solid silicone rod having a return memory that prevents the fluid to pass through as soon as the filling needle is pulled out; said filling needle being projected from the end of fluid passage rod, and said rod being provided with a three-way valve in the end opposite thereto.
  • BRIEF DESCRIPTION OF THE INVENTION
  • [0018]
    The intragastric balloon device semi-stationary in the antrum, called BSEAG herein-below, that induces the loss of the appetite and early prandial satiety, is comprised of a inflatable per-os silicone balloon which is biologically inert and compatible for medical use, with a volume of up to 240 ml to be filled with a non-elastic fluid provided with radio-opaque contrast and dye, preferably methylene blue that turns same into a pear-shaped or spherical balloon after it is filled up, which balloon is to be endoscopically placed in the distal stomach; said balloon is preferably provided with an inner valve having a solid silicone rod provided with a return memory that prevents the fluid from passing through as soon as the filling needle is pulled out.
  • [0019]
    Appended to the pyloric pole of said balloon, opposite to the cited valve, is a 35 to 45 cm silicone rod, called duodenal rod herein-below, preferably having 35 cm of length and a 5 mm diameter. Said rod is particularly located in the second portion of the duodenum and is provided in the distal end thereof with a metallic counterweight peristaltic-propellant whose calculated weight is of 7 g for the dimension cited above.
  • [0020]
    The function of thus described balloon BSEAG is the perennial expansion of the gastric antrum, whilst the function of the duodenal rod is the semi-stationary anchoring of the balloon in the distal stomach.
  • [0021]
    The presence of contrast in the filling fluid makes the radiological visualization of the location of the balloon in the gastrointestinal tract easier. The methylene blue dye, which is biologically harmless, is easily absorbed by the mucosa of the gastrointestinal tract and excreted by the kidneys in the urine. Therefore, the function of the methylene blue is to detect at once any eventual leak of the filling fluid from the balloon due to the appearance of a bluish coloration of the urine.
  • [0022]
    The implant will be placed by means of high digestive endoscopy under sedation. The duodenal rod will be guided as far as the second portion of the duodenum, in such a way that the balloon is provided with a self-contending valve in the port of the inflation catheter. This is provided with a system for the external release of the balloon after it is inflated.
  • FUNCTIONING OF THE OBJECT OF THE INVENTION
  • [0023]
    The pear-shaped or spherical balloon BSEAG, after the implantation, placed by means of endoscopy, expands the distal stomach permanently, thus inducing the early satiety in the prandial period and loss of appetite in the inter-prandial period below the perception level. The expansion of the bottom when food is received during the immediate prandial and post-prandial period induces an increase in the motor activity of the distal stomach and duodenum. This activity draws the balloon towards distal positions of the stomach as a function of the increase in the gastric peristalsis and the drag that the duodenal peristalsis will exert on the rod and counter-weight.
  • [0024]
    Next, the gastric exit route is partially occluded and prevents the full gastric emptiness. The antrum pyloric removal takes place next with the gastric retro-peristalsis and the antrum relaxation allowing the balloon to move towards the proximal direction. Small portions of the alimentary cake that are present in the antrum are then released in the duodenum in a relative gastric atony regimen and high sensation of completeness and satiety.
  • [0025]
    The advantages of the balloon BSEAG are consistent with the gastroduodenal mechanisms for inducing the early satiety and loss of appetite in opposition to the mere restrictive character of large volume balloons.
  • [0026]
    The perception of inter-prandial epigastric discomfort is considerably lower as a function of the lower volume of the balloon BSEAG.
  • [0027]
    The potential weight reducing efficiency of the BSEAG is higher because it has the unique characteristic of setting in motion a number of physiological issues of the gastroduodenal segment involved in the early satiety and the reduction of the appetite.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0028]
    To complement the present description in order to get a better understanding of the characteristics of the present invention and according to a preferred practical embodiment thereof, a set of drawings is attached to the description, wherein, in an exemplified non-limiting way, the following is represented:
  • [0029]
    [0029]FIG. 1 illustrates schematically the stomach and the duodenum provided with the pear-shaped semi-stationary intra-gastric balloon in the antrum and the duodenal rod with the counter-weight;
  • [0030]
    [0030]FIG. 1A is a detailed cut view of the pear-shaped balloon,
  • [0031]
    [0031]FIG. 2 illustrates details of the distal end of the duodenal rod; and
  • [0032]
    [0032]FIG. 3 illustrates an expanded cut view of the distal end of the rod and counter-weight.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0033]
    With reference to the illustrated drawings, the present invention is related to a semi-stationary balloon in the gastric antrum provided with an anchoring rod for inducing weight reduction in human beings, an intragastric balloon device (1), called BSEAG herein-below, provided with an anchoring rod, called duodenal rod (2) herein-below, a means for inducing the reduction of appetite and early prandial satiety and particularly placed by means of endoscopy in a semi-stationary way in the gastric outlet, that is, in the gastric antrum (GAC) and in the duodenum (D).
  • [0034]
    The balloon BSEAG (1) comprises an inflatable per-os silicone balloon which is biologically inert and compatible for medical use with a volume of up to 240 ml, an average 120 ml volume to be filled with a non-elastic fluid provided with radio-opaque contrast and dye, preferably methylene blue that turns same into a pear-shaped or spherical balloon as soon as it is filled up, with a maximum volume of up to 240 ml and an average 120 ml volume, to be placed endoscopically in the stomach (E), particularly in the antrum (GAC); in said balloon, the inner face of the medium portion of lesser diameter of the pear-shaped form is coated with a malleable ribbon (f) that provides the balloon BSEAG with resistance and flexibility; said balloon being preferably provided with an inner valve (3) provided with a solid silicone rod having a return memory that prevents the fluid from passing through as soon as the filling needle is pulled out; said balloon can also adopt the spherical form preferably with a diameter measuring between 5.5 cm and 6 cm, said pear-shaped component having a length of up to 7 cm and a 3 cm lower pole maximum diameter, the optimum diameter being 2 cm and an upper diameter of 4 cm that can vary up to 6.
  • [0035]
    Attached to the pyloric pole (4) of the balloon BSEAG (1), opposite said valve (3) and welded thereto, is the flexible duodenal rod (2) integrally made of medical grade measuring between 45 cm and 35 cm, preferably with 35 cm of length and a 5 mm diameter.
  • [0036]
    In the distal end of said duodenal rod (2), a peristaltic propellant counter-weight (5) is disposed, which counter-weight comprises a silicone pipe (6) having a sealed distal end (6 a), internally provided with portions of metallic conduits (7), the calculated full weight of which is 7 g for the dimension of the rod cited above. Said counter-weight (5) is particularly located in the second portion (a) of the duodenum.
  • [0037]
    The balloon BSEAG (1), after the implantation, expands the distal stomach permanently, thus inducing the early satiety in the prandial period and loss of appetite in the inter-prandial period below the perception level. The expansion of the bottom when the food is received during the immediate prandial and after-prandial period induces an increase in the motor activity of the distal stomach and the duodenum. This activity forces the balloon towards distal positions of the stomach as a function of the increase in the gastric peristalsis and the drag that the duodenal peristaltsis will exert on the connecting rod and counter-weight.
  • [0038]
    Next, the gastric outlet route is occluded and prevents the full gastric emptiness. The antrum pyloric clearing occurs next with the gastric retro-peristaltsis and the antral relaxation thus allowing the balloon to be moved towards the proximal direction. Small portions of the alimentary cake that are present in the antrum are then set free in the duodenum in a relative gastric atony regimen and high sensation of fullness and satiety.
  • [0039]
    It is important to understand that the description does not restrict its application to the details and steps described herein-above. The invention is susceptible to other embodiments and can be practiced or to realized in a variety of ways. It should be understood that the terminology used herein is for purposes of describing but not limiting the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5084061 *Aug 16, 1989Jan 28, 1992Gau Fred CIntragastric balloon with improved valve locating means
US5234454 *Aug 5, 1991Aug 10, 1993Akron City HospitalPercutaneous intragastric balloon catheter and method for controlling body weight therewith
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7160325 *Jun 1, 2001Jan 9, 2007Ams Research CorporationImplantable medical balloon and valve
US7674222Dec 14, 2006Mar 9, 2010Cardiokinetix, Inc.Cardiac device and methods of use thereof
US7717843Apr 26, 2005May 18, 2010Barosense, Inc.Restrictive and/or obstructive implant for inducing weight loss
US7762943 *Mar 3, 2004Jul 27, 2010Cardiokinetix, Inc.Inflatable ventricular partitioning device
US7862500Jun 10, 2005Jan 4, 2011Cardiokinetix, Inc.Multiple partitioning devices for heart treatment
US7892292Jun 30, 2006Feb 22, 2011Synecor, LlcPositioning tools and methods for implanting medical devices
US7897086Sep 24, 2007Mar 1, 2011Cardiokinetix, Inc.Method of making a laminar ventricular partitioning device
US7909219Mar 21, 2008Mar 22, 2011Barosense, Inc.Endoscopic stapling devices and methods
US7909222Mar 21, 2008Mar 22, 2011Barosense, Inc.Endoscopic stapling devices and methods
US7909223Mar 21, 2008Mar 22, 2011Barosense, Inc.Endoscopic stapling devices and methods
US7913892Mar 21, 2008Mar 29, 2011Barosense, Inc.Endoscopic stapling devices and methods
US7922062Mar 21, 2008Apr 12, 2011Barosense, Inc.Endoscopic stapling devices and methods
US7931693Nov 30, 2004Apr 26, 2011Endosphere, Inc.Method and apparatus for reducing obesity
US7934631Nov 10, 2008May 3, 2011Barosense, Inc.Multi-fire stapling systems and methods for delivering arrays of staples
US7976455 *Jul 28, 2008Jul 12, 2011Cardiokinetix, Inc.Inflatable ventricular partitioning device
US7976554May 28, 2009Jul 12, 2011Vibrynt, Inc.Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8001974Jun 23, 2008Aug 23, 2011Vibrynt, Inc.Devices and methods for treatment of obesity
US8020741Mar 18, 2008Sep 20, 2011Barosense, Inc.Endoscopic stapling devices and methods
US8029455Mar 5, 2009Oct 4, 2011Barosense, Inc.Satiation pouches and methods of use
US8070768Apr 19, 2006Dec 6, 2011Vibrynt, Inc.Devices and methods for treatment of obesity
US8100850Apr 9, 2009Jan 24, 2012E2 LlcPyloric valve devices and methods
US8109895Aug 31, 2007Feb 7, 2012Barosense, Inc.Intestinal sleeves and associated deployment systems and methods
US8123773 *Sep 10, 2008Feb 28, 2012Utah Medical Products Inc.Postpartum hemorrhage balloon tamponade catheter
US8142385Apr 9, 2009Mar 27, 2012E2 LlcPyloric valve devices and methods
US8147561Dec 15, 2005Apr 3, 2012Endosphere, Inc.Methods and devices to curb appetite and/or reduce food intake
US8152821Feb 21, 2008Apr 10, 2012C.R. Bard, Inc.Endoscopic tissue apposition device with multiple suction ports
US8172857Mar 9, 2005May 8, 2012Davol, Inc.Endoscopic tissue apposition device and method of use
US8182442Apr 9, 2009May 22, 2012Electrocore LlcPyloric valve devices and methods
US8187297Jul 24, 2007May 29, 2012Vibsynt, Inc.Devices and methods for treatment of obesity
US8192455Jul 30, 2004Jun 5, 2012Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical CollegeCompressive device for percutaneous treatment of obesity
US8206456May 23, 2006Jun 26, 2012Barosense, Inc.Restrictive and/or obstructive implant system for inducing weight loss
US8226593Apr 8, 2009Jul 24, 2012E2 LlcPyloric valve
US8241202Apr 22, 2010Aug 14, 2012Barosense, Inc.Restrictive and/or obstructive implant for inducing weight loss
US8246671Aug 25, 2008Aug 21, 2012Cardiokinetix, Inc.Retrievable cardiac devices
US8337566Dec 4, 2009Dec 25, 2012Barosense, Inc.Method and apparatus for modifying the exit orifice of a satiation pouch
US8342183Mar 10, 2007Jan 1, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8353925Jun 23, 2008Jan 15, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8356605Jun 18, 2008Jan 22, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8360069Oct 13, 2008Jan 29, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8377114Apr 10, 2009Feb 19, 2013Cardiokinetix, Inc.Sealing and filling ventricular partitioning devices to improve cardiac function
US8382775Apr 4, 2012Feb 26, 2013Vibrynt, Inc.Methods, instruments and devices for extragastric reduction of stomach volume
US8388632Feb 20, 2008Mar 5, 2013C.R. Bard, Inc.Tissue capturing and suturing device and method
US8388672Apr 10, 2009Mar 5, 2013Cardiokinetix, Inc.System for improving cardiac function by sealing a partitioning membrane within a ventricle
US8398537Jul 24, 2009Mar 19, 2013Cardiokinetix, Inc.Peripheral seal for a ventricular partitioning device
US8398668Mar 10, 2007Mar 19, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8403952Dec 27, 2005Mar 26, 2013Spatz-Fgia, Inc.Floating gastrointestinal anchor
US8414559May 7, 2009Apr 9, 2013Rainbow Medical Ltd.Gastroretentive duodenal pill
US8430894Mar 28, 2007Apr 30, 2013Spatz-Fgia, Inc.Floating gastrointestinal anchor
US8430895May 16, 2011Apr 30, 2013Spatz-Fgia, Inc.Floating gastrointestinal anchor
US8460321Mar 4, 2011Jun 11, 2013Vibrynt, Inc.Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8469977May 21, 2010Jun 25, 2013Barosense, Inc.Endoscopic plication device and method
US8500790Jun 4, 2012Aug 6, 2013Cardiokinetix, Inc.Retrievable cardiac devices
US8500795Aug 25, 2008Aug 6, 2013Cardiokinetix, Inc.Retrievable devices for improving cardiac function
US8517972Jun 22, 2012Aug 27, 2013E2 LlcPyloric valve
US8529430May 29, 2008Sep 10, 2013Cardiokinetix, Inc.Therapeutic methods and devices following myocardial infarction
US8551120Sep 13, 2012Oct 8, 2013C.R. Bard, Inc.Tissue capturing and suturing device and method
US8556925Oct 11, 2007Oct 15, 2013Vibrynt, Inc.Devices and methods for treatment of obesity
US8568488Oct 1, 2009Oct 29, 2013Boston Scientific Scimed, Inc.Satiation devices and methods
US8579849Feb 1, 2012Nov 12, 2013E2 LlcPyloric valve devices and methods
US8585733May 28, 2009Nov 19, 2013Vibrynt, IncDevices, tools and methods for performing minimally invasive abdominal surgical procedures
US8585771May 25, 2007Nov 19, 2013Endosphere, Inc.Methods and devices to curb appetite and/or to reduce food intake
US8597224Mar 28, 2011Dec 3, 2013IBIS Medical, Inc.Intragastric implant devices
US8603186Mar 14, 2012Dec 10, 2013Endosphere, Inc.Methods and devices to curb appetite and/or reduce food intake
US8623095Apr 13, 2011Jan 7, 2014Endosphere, Inc.Method and apparatus for reducing obesity
US8657885Jan 9, 2009Feb 25, 2014Baronova, Inc.Pyloric valve obstructing devices and methods
US8663338Jan 9, 2009Mar 4, 2014Baronova, Inc.Pyloric valve obstructing devices and methods
US8672827Jan 21, 2010Mar 18, 2014Cardiokinetix, Inc.Cardiac device and methods of use thereof
US8747421Apr 18, 2011Jun 10, 2014Boston Scientific Scimed, Inc.Multi-fire stapling systems and methods for delivering arrays of staples
US8758385Dec 22, 2009Jun 24, 2014John HancockHigh specific gravity intragastric device
US8784354Feb 22, 2011Jul 22, 2014Boston Scientific Scimed, Inc.Positioning tools and methods for implanting medical devices
US8784500Oct 8, 2004Jul 22, 2014Boston Scientific Scimed, Inc.Devices and methods for retaining a gastro-esophageal implant
US8790242Oct 26, 2010Jul 29, 2014Cardiokinetix, Inc.Ventricular volume reduction
US8795301Jan 12, 2009Aug 5, 2014Baronova, Inc.Device for intermittently obstructing a gastric opening and method of use
US8821429 *Sep 29, 2009Sep 2, 2014IBIS Medical, Inc.Intragastric implant devices
US8821521Feb 5, 2007Sep 2, 2014Baronova, Inc.Gastro-intestinal device and method for treating addiction
US8821584Jan 12, 2009Sep 2, 2014Baronova, Inc.Device for intermittently obstructing a gastric opening and method of use
US8827892Aug 22, 2013Sep 9, 2014Cardiokinetix, Inc.Therapeutic methods and devices following myocardial infarction
US8845753Sep 30, 2013Sep 30, 2014Boston Scientific Scimed, Inc.Satiation devices and methods
US8864008Mar 21, 2011Oct 21, 2014Boston Scientific Scimed, Inc.Endoscopic stapling devices and methods
US8888797Sep 5, 2008Nov 18, 2014Baronova, Inc.Device for intermittently obstructing a gastric opening and method of use
US8945167Sep 1, 2011Feb 3, 2015Boston Scientific Scimed, Inc.Gastric space occupier systems and methods of use
US8992457Jul 14, 2011Mar 31, 2015Boston Scientific Scimed, Inc.Gastrointestinal implants
US9017394Jul 30, 2013Apr 28, 2015Cardiokinetix, Inc.Retrievable cardiac devices
US9039597Jun 13, 2014May 26, 2015Cardiokinetix, Inc.Ventricular volume reduction
US9055942Oct 3, 2006Jun 16, 2015Boston Scienctific Scimed, Inc.Endoscopic plication devices and methods
US9060835Jul 16, 2008Jun 23, 2015Endosphere, Inc.Conformationally-stabilized intraluminal device for medical applications
US9072579 *Oct 21, 2010Jul 7, 2015Apollo Endosurgery, Inc.Bariatric device and method for weight loss
US9072861Feb 15, 2013Jul 7, 2015Endosphere, Inc.Methods and devices for delivering or delaying lipids within a duodenum
US9078660Sep 29, 2010Jul 14, 2015Cardiokinetix, Inc.Devices and methods for delivering an endocardial device
US9107727Jan 22, 2014Aug 18, 2015Boston Scientific Scimed, Inc.Satiation devices and methods
US9138340Aug 25, 2014Sep 22, 2015Boston Scientific Scimed, Inc.Gastro-esophageal implants
US9149270Apr 25, 2012Oct 6, 2015Davol, Inc. (a C.R. Bard Company)Endoscopic tissue apposition device and method of use
US9155528Jan 29, 2013Oct 13, 2015Vibrynt, Inc.Methods, instruments and devices for extragastic reduction of stomach volume
US9173734Sep 26, 2012Nov 3, 2015IBIS Medical, Inc.Intragastric implant devices
US9180035Jun 3, 2010Nov 10, 2015Boston Scientific Scimed, Inc.Devices and methods for retaining a gastro-esophageal implant
US9180036Jun 16, 2014Nov 10, 2015Boston Scientific Scimed, Inc.Methods for implanting medical devices
US9248038May 15, 2014Feb 2, 2016Boston Scientific Scimed, Inc.Methods for retaining a gastro-esophageal implant
US9254214Jan 4, 2013Feb 9, 2016Boston Scientific Scimed, Inc.Satiation devices and methods
US9314361Sep 14, 2007Apr 19, 2016Boston Scientific Scimed, Inc.System and method for anchoring stomach implant
US9314362Sep 28, 2012Apr 19, 2016Vibrynt, Inc.Methods, instruments and devices for extragastric reduction of stomach volume
US9332992Mar 14, 2013May 10, 2016Cardiokinetix, Inc.Method for making a laminar ventricular partitioning device
US9332993Mar 14, 2013May 10, 2016Cardiokinetix, Inc.Devices and methods for delivering an endocardial device
US9345604Sep 27, 2005May 24, 2016Almuhannad AlfrhanPercutaneous intragastric balloon device and method
US9352126Feb 15, 2013May 31, 2016Endosphere, Inc.Methods and devices to curb appetite and/or reduce food intake
US9358144Feb 4, 2015Jun 7, 2016Boston Scientific Scimed, Inc.Gastrointestinal implants
US9364327Mar 20, 2015Jun 14, 2016Cardiokinetix, Inc.Ventricular volume reduction
US9445791Jun 8, 2012Sep 20, 2016Boston Scientific Scimed, Inc.Systems and methods related to gastro-esophageal implants
US9456825Feb 11, 2013Oct 4, 2016Boston Scientific Scimed, Inc.Endoscopic implant system and method
US9498366Aug 9, 2004Nov 22, 2016Baronova, Inc.Devices and methods for pyloric anchoring
US9504591Sep 24, 2014Nov 29, 2016Baronova, Inc.Device for intermittently obstructing a gastric opening and method of use
US20020173698 *Jun 1, 2001Nov 21, 2002Morningstar Randy L.Implantable medical balloon and method of making
US20050192614 *Nov 30, 2004Sep 1, 2005Binmoeller Kenneth F.Method and apparatus for reducing obesity
US20050261712 *Apr 26, 2005Nov 24, 2005Balbierz Daniel JRestrictive and/or obstructive implant for inducing weight loss
US20060142731 *May 18, 2005Jun 29, 2006Jeffrey BrooksFloating gastro-intestinal anchor
US20060178691 *Dec 15, 2005Aug 10, 2006Binmoeller Kenneth FMethods and devices to curb appetite and/or reduce food intake
US20070293885 *May 25, 2007Dec 20, 2007Binmoeller Kenneth FMethods and devices to curb appetite and/or to reduce food intake
US20080086082 *Oct 8, 2007Apr 10, 2008Brooks Jeffrey SRadiopaque marking to detect balloon deflation
US20080262529 *May 12, 2005Oct 23, 2008C.R. Bard, Inc.Gastric Balloon Devices and Methods of Use
US20090082644 *Mar 13, 2008Mar 26, 2009Jiayi LiDevices, Systems, Kits and Methods for Treatment of Obesity
US20090259237 *Apr 9, 2009Oct 15, 2009Stryker Development LlcPyloric valve devices and methods
US20090259238 *Apr 9, 2009Oct 15, 2009Stryker Development LlcPyloric valve devices and methods
US20090259239 *Apr 9, 2009Oct 15, 2009Stryker Development LlcPyloric valve devices and methods
US20090259240 *Apr 8, 2009Oct 15, 2009Stryker Development LlcPyloric valve
US20100016871 *Dec 27, 2005Jan 21, 2010Spatz-Fgia, Inc.Floating gastrointestinal anchor
US20100049224 *Sep 29, 2009Feb 25, 2010Jaime VargasIntragastric Implant Devices
US20100121371 *Apr 30, 2008May 13, 2010Spatz Fgia, Inc.Non-endoscopic insertion and removal of a device
US20100204719 *Apr 22, 2010Aug 12, 2010Balbierz Daniel JRestrictive and/or obstructive implant for inducing weight loss
US20110092998 *Oct 13, 2010Apr 21, 2011Spatz Fgia, Inc.Balloon hydraulic and gaseous expansion system
US20110196411 *Oct 12, 2009Aug 11, 2011Milux Holding SaApparatus for treating obesity
US20110218563 *May 16, 2011Sep 8, 2011Spatz-Fgia, Inc.Floating gastrointestinal anchor
US20120232577 *Oct 21, 2010Sep 13, 2012Allergan, Inc.Bariatric device and method for weight loss
EP1968685A2 *Dec 15, 2006Sep 17, 2008Endosphere, Inc.Methods and devices to curb appetite and/or reduce food intake
EP1968685A4 *Dec 15, 2006Jul 2, 2014Endosphere IncMethods and devices to curb appetite and/or reduce food intake
EP2004269A2 *Mar 28, 2007Dec 24, 2008Spatz-Fgia Inc.Floating gastrointestinal anchor
EP2004269A4 *Mar 28, 2007Sep 4, 2013Spatz Fgia IncFloating gastrointestinal anchor
EP2356956A1Mar 28, 2007Aug 17, 2011Spatz-Fgia Inc.Floating gastrointestinal anchor
WO2008121409A1 *Mar 31, 2008Oct 9, 2008Jaime VargasIntragastric implant devices
Classifications
U.S. Classification623/23.67, 606/192
International ClassificationA61F5/00
Cooperative ClassificationA61F5/0036, A61F5/003, A61F5/0079
European ClassificationA61F5/00B6D, A61F5/00B6N2, A61F5/00B6F
Legal Events
DateCodeEventDescription
Jun 22, 2011FPAYFee payment
Year of fee payment: 4
Apr 23, 2015FPAYFee payment
Year of fee payment: 8