Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2004138 A
Publication typeGrant
Publication dateJun 11, 1935
Filing dateNov 30, 1932
Priority dateNov 30, 1932
Publication numberUS 2004138 A, US 2004138A, US-A-2004138, US2004138 A, US2004138A
InventorsEdward B Story, Charles E Gross
Original AssigneeByers A M Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of making wrought iron pipe
US 2004138 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

June 11, 1935.

E. B. STORY ETAL iVIBTI-IOD OF MAKING WROUGrHI IRON PIPE Filed Nov. 30, 1932 ll 'llllllllllll'l WELD WELD) Patented June I, 1935 PATENT orrlcr.

METHOD OF MAKING WRO'UGHT IRON PIPE Edward B. Story, Dormont, and Charles E. Gross, Pittsburgh, Pa., assignors to A. M. Byers Company, Pittsburgh, Pa., a corporation of Pennsylvania Application November 30, 1932, Serial No. 645,088

4 Claims.

This invention relates to-wrought iron products and methods of making the same. It relates particularly to the fabrication of wrought iron pipe or tubing and of products of which said pipe or tubing forms a component part.

A characteristic of wrought iron is that it contains particles of slag which upon fabrication of the wrought iron into its products assume certain characteristic shapes. For example, upon rolling of wrought iron the slag particles are elongated generally in the direction of rolling into what are known as fibers. The shape and orientation of the slag fibers affect materially the physical properties of the product. For example, wrought iron of good quality, such, for example, as that made in accordance with the Aston process, rolled in the standard manner may have a tensile strength in the direction of rolling, that is to say, in the direction of the length of the slag fibers, of in the neighborhood of 50,000 pounds per square inch, whereas the tensile strength of the same wrought iron at right angles to'the slag fibers may be as little as 35,000 pounds per square inch. Furthermore, the ductility of the same wrought iron in the direction of rolling may be such that astandard 8" specimen will elongate about 18%, whereas the elongation of a similar standard specimen but in the direction at right angles to the slag fibers may be as little as 3%.

It follows that the properties of rolled wrought iron products may be such that the products may have ample strength or satisfactory properties under certain conditions but insufficient strengthor unsatisfactory properties under other conditions For example, a standard rolled wrought iron structural member may be used to sustain a tensile load in the longitudinal direction of the slag fibers which it could not sustain in a direction at right angles to the slag fibers. Such a structural member may be flanged to carry a heavy load if the flange is formed substantially at right angles to the slag fibers but not if the flange is formed'parallel to the slag fibers.

Wrought iron pipe or tubing made in accordance with standard practice and with the slag fibers extending longitudinally thereof is suitable for most ordinary purposes. For certain purposes, however, such, for example, as constructions in which the pipe or tubing is to be expandedor otherwise radially deformed, the greatest stress placed on the metal due to the expanding or radial deformation may be in a direction circumfer-entially of the pipe or tubing, and for such, and other, purposes we form the pipe or tubing with the slag fibers extending at an angle to the length thereof and preferably extending generally circumferentially thereof. Such pipe or tubing is ideally suited for use in the fabrication of composite metal structures in which the wrought iron pipe or tubing is expanded into a perforated metal member, such, for example, as fluid conducting apparatus in which the wrought iron pipe or tubing is joined by radial deformation with a header, boiler v drum, plate, etc.

Other details, objects and advantages of the invention will become apparent as the following description of a present preferred embodiment thereof proceeds.

In the acompanying drawing we have shown a present preferred embodiment of the invention, in which Figure 1 is a diagrammatic partial plan View of a rolled wrought iron shape;

Figure 2 is a plan view of a skelp formed from the shape of Figure 1; v

Figure 3 is a partial plan view showing the manner in which skelps such as that of Figure 2 may be joined prior to formation of the pipe; Figure 4 is a perspective View of a portion of a wrought iron pipe having its end expanded; and

Figure 5 is a fragmentary view, partly in crosssection, of a composite metal-structure employing wrought iron pipes such as that shown in Figure 4.

Referring more particularly to the drawing, Figure 1 shows more or less diagrammatically at 2 a rolled wrought iron shape such as a sheet or plate which has been rolled in the direction of the arrow. At 3 is shown purely diagrammatically and for the purpose of illustration the general direction of orientation of the slag fibers.

Such fibers during the rolling become orientatedsubstantially in the direction of rolling. The tensile strength and ductility of the rolled shape.

are considerablygreater in the direction of the length of the slag fibers than in a direction substantially at right angles to the slag fibers.

The rolled shape 2 as it comes from-the rolling mill has irregular ends 4. These ends are sheared off, the right-hand end being shown as sheared off along the line 5. Skelps such as shown at 6 in Figure- 2 are then successively sheared off from the shape 2 by successive shearings along the lines I, 8, 9, etc., until the desired number of skelps has been formed or until the shape has been used up. The direction of the slag fibers in the skelps 6 is indicated by the arrow in Figure 2. Contrary to standard practice, the slag fibers extend transversely of the skelp instead of longitudinally.

The width of the shape 2, and consequently the length of each skelp 6, is necessarily limited by the size of the rolling mill, and it may be desirable to form sections of pipe of greater length than the width of the shape 2. To this end two or more of the skelps 6 are joined together end to end, as by welding I 0, as shown in Figure 3. This step enables the formation of a composite skelp of any desired length and having the fibers extending transversely thereof, as shown by the arrows in Figure. 3.

- The skelp, whether a single skelp as shown in Figure 2 or a composite skelp as shown in Figure 3, .is then .formed into pipe in well known 'manner, such, for example, as by the lap-weld or butt-weld process. The pipe will have the slag fibers extending at an angle to the length thereof and preferably substantially circumferentially. This adapts the pipe for certain particular uses, especially deformation in the radial direction such as expanding. Radial deformation imparts greater stress to the metal circumferentially of the pipe than longitudinally thereof, and, as the slag fibers extend more or less circumferentially, the pipe is stronger in the circumferential direction than if formed in accord- I ance with standard practice with the slag fibers 'tion of the arrows, that is to say, generally circumferentially. The extremity I! of the pipe is shown as being expanded in a radial direction which somewhat elongates the slag fibers longitudinally of the fibers. When the slag fibers extend generally in the direction of the length of the pipe, expanding of the pipe does not have any appreciable tendency to elongate the fibers longitudinally thereof, but tends, rather, to split the pipe along planes generally parallel to the.

fibers and generally parallel to the axis of the pipe. When the fibers are oriented generally circumferentially of the pipe they are adapted for lengthwise stretching upon expanding of the pipe and readily withstand the expanding operation.

In Figure is shown a fragment of a composite metal structure comprising a perforated metal member such as a header I3 into which are expanded or otherwise radially deformed wrought iron pipes or tubes I4. The wrought iron pipes or tubes may be similar to that shown in Figure 4,- that is to say, with their slag fibers extending generally circumferentially so as the better to withstand theexpanding or radial deformation to which they are subjected upon formation of acts any tendency toward fracture due to 'pressure within the pipe.

The word pipe is used in the claims as a word of definition and not of limitation and is intended to comprehend tubular and other elongated hollow products generally.

While we have shown and described a present preferred embodiment of the invention, it is to be distinctly understood that the same is not limited thereto, but may be otherwise variously embodied and practiced within the scope of the following claims.

We claim:

1. A method of making wrought iron pipe, comprising rolling a fiat wrough iron shape, severing said shape to form a plurality of skelps having the slag fibers extending at an angle to their lengths, joining at least two of said skelps end to end, and forming a pipe out of said joined skelps.

2. A method of making wrought iron pipe, comprising rolling a fiat wrought iron shape so as to produce therein elongated slag fibers, shearing said shape transversely of said fibers to form a plurality of skelps, welding together end to end at least two of said skelps, and utilizing said joined skelps in the formation of wrought iron pipe.

3. A method of making wrought iron pipe, comprising providing wrought iron skelp sections having the slag fibers extending generally crosswise thereof, welding together said skelp sections generally parallel to the slag fibers to form a composite skelp of commercial pipe length, and forming out of said composite skelp wrought iron pipe of commercial length having the slag fibers extending generally circumferentially thereof.

4. A method of making wrought iron pipe,

comprising rolling a wide wrought iron skelp having the slag fibers extending generally longitudinally thereof, shearing said skelp into strips extending transversely of the skelp and having the slag fibers extending transversely of the

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2990203 *Aug 3, 1959Jun 27, 1961Werner Co Inc R DExtruded connecting tees for scaffolding
US3020631 *Oct 2, 1958Feb 13, 1962Republic Ind CorpMethod of making hose clamps
US3258372 *Jan 21, 1963Jun 28, 1966Int Nickel CoMartensitic low alloy plate steel
US3322996 *Oct 18, 1966May 30, 1967Varian AssociatesElectron discharge devices and molybdenum slow wave structures, the molybdenum slow wave structures having grain alignment transverse to the electron path
US5601377 *Jun 24, 1994Feb 11, 1997Fuji Kiko Co., Ltd.Yoke of universal joint and method of producing same
US7456176Apr 7, 2005Nov 25, 2008Targegen, Inc.Benzotriazine inhibitors of kinases
US7528143Oct 26, 2006May 5, 2009Targegen, Inc.Bi-aryl meta-pyrimidine inhibitors of kinases
US7825246Apr 26, 2007Nov 2, 2010Targegen, Inc.Bi-aryl meta-pyrimidine inhibitors of kinases
US8133900Oct 14, 2008Mar 13, 2012Targegen, Inc.Use of bi-aryl meta-pyrimidine inhibitors of kinases
US8138199Oct 17, 2008Mar 20, 2012Targegen, Inc.Use of bi-aryl meta-pyrimidine inhibitors of kinases
US8372971Sep 23, 2011Feb 12, 2013Targegen, Inc.Heterocyclic compounds and methods of use
US8481536Dec 28, 2010Jul 9, 2013Targegen, Inc.Benzotriazine inhibitors of kinases
US8604042Aug 24, 2010Dec 10, 2013Targegen, Inc.Bi-aryl meta-pyrimidine inhibitors of kinases
US20050245524 *Apr 7, 2005Nov 3, 2005Targegen, Inc.Benzotriazine inhibitors of kinases
Classifications
U.S. Classification228/151, 428/586, 403/DIG.200, 29/417, 29/890.53
International ClassificationB21C37/28
Cooperative ClassificationB21C37/283, Y10S403/02
European ClassificationB21C37/28B