US20050003986A1 - Useful mutations of bacterial alkaline protease - Google Patents

Useful mutations of bacterial alkaline protease Download PDF

Info

Publication number
US20050003986A1
US20050003986A1 US10/896,177 US89617704A US2005003986A1 US 20050003986 A1 US20050003986 A1 US 20050003986A1 US 89617704 A US89617704 A US 89617704A US 2005003986 A1 US2005003986 A1 US 2005003986A1
Authority
US
United States
Prior art keywords
subtilisin
substitution
modified subtilisin
gene
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/896,177
Inventor
Sven Hastrup
Sven Branner
Fanny Norris
Steffen Petersen
Leif Norskov-Lauridsen
Villy Jensen
Dorrit Aaslyng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes AS
Original Assignee
Novozymes AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8089323&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050003986(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novozymes AS filed Critical Novozymes AS
Priority to US10/896,177 priority Critical patent/US20050003986A1/en
Publication of US20050003986A1 publication Critical patent/US20050003986A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus

Definitions

  • the present invention relates to mutations of the subtilisin gene which result in changes in the chemical characteristics of subtilisin enzyme. Mutations at specific nucleic acids of the subtilisin gene result in amino acid substitutions and consequently, altered enzyme function. Some of these mutant enzymes exhibit physical properties advantageous to industrial applications, particularly in the detergent industry, providing subtilisins which are more stable to oxidation, possess greater protease activity, and exhibit improved washability.
  • Enzymes cleaving the amide linkages in protein substrates are classified as proteases, or (interchangeably) peptidases (See Walsh, 1979, Enzymatic Reaction Mechanisms, W. H. Freeman and Company, San Francisco, Chapter 3).
  • Bacteria of the Bacillus species secrete two extracellular species of protease, a neutral, or metalloprotease, and an alkaline protease which is functionally a serine endopeptidase, referred to as subtilisin. Secretion of these proteases has been linked to the bacterial growth cycle, with greatest expression of protease during the stationary phase, when sporulation also occurs. Joliffe et al. (1980, J. Bacterial. 141:1199-1208) has suggested that Bacillus proteases function in cell wall turnover.
  • a serine protease is an enzyme which catalyzes the hydrolysis of peptide bonds, in which there is an essential serine residue at the active site (White, Handler, and Smith, 1973, “Principles of Biochemistry,” Fifth Edition, McGraw-Hill Book Company, NY, pp. 271-272).
  • the serine proteases have molecular weights in the 25,000 to 30,000 range. They are inhibited by diisopropylfluorophosphate, but in contrast to metalloproteases, are resistant to ethylenediamine-tetra acetic acid (EDTA) (although they are stabilized at high temperatures by calcium ion). They hydrolyze simple terminal esters and are similar in activity to eukaryotic chymotrypsin, also a serine protease.
  • EDTA ethylenediamine-tetra acetic acid
  • alkaline protease reflects the high pH optimum of the serine proteases, from pH 9.0 to 11.0 (for review, see Priest, 1977, Bacteriological Rev. 41:711-753).
  • subtilisin is a serine protease produced by Gram-positive bacteria or fungi.
  • subtilisins A wide variety of subtilisins have been identified, and the amino acid sequences of at least eight subtilisins have been determined. These include six subtilisins from Bacillus strains, namely, subtilisin 168, subtilisin BPN′, subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus, and mesentericopeptidase (Kurihara et al., 1972, J. Biol. Chem. 247:29-5631; Stahl and Ferrari, 1984, J. Bacteriol. 158:411-418; Vasantha et al., 1984, J. Bacteriol.
  • subtilisins are well-characterized physically and chemically.
  • primary structure amino acid sequence
  • subtilisin amino acid sequence
  • over 50 high resolution X-ray structures of subtilisin have been determined which delineate the binding of substrate, transition state, products, three different protease inhibitors, and define the structural consequences for natural variation (Kraut, 1971, Ann. Rev. Biochem. 46:331-358).
  • Random and site-directed mutations of the subtilisin gene have both arisen from knowledge of the physical and chemical properties of the enzyme and contributed information relating to subtilisin's catalytic activity, substrate specificity, tertiary structure, etc. (Wells et al., 1987, Proc. Natl. Acad. Sci. U.S.A.
  • subtilisins have found much utility in industry, particularly detergent formulations, as they are useful for removing proteinaceous stains. To be effective, however, these enzymes must not only possess activity under washing conditions, but must also be compatible with other detergent components during storage.
  • subtilisin may be used in combination with amylases, which are active against starches; cellulases which will digest cellulosic materials; lipases, which are active against fats; peptidases, which are active on peptides, and ureases, which are effective against urine stains.
  • amylases which are active against starches
  • cellulases which will digest cellulosic materials
  • lipases which are active against fats
  • peptidases which are active on peptides, and ureases, which are effective against urine stains.
  • subtilisin must be stable with respect to the oxidizing power, calcium binding properties, detergency and high pH of nonenzymatic detergent components. The ability of the enzyme to remain stable in their presence is often referred to
  • the present invention relates to mutations of the subtilisin gene, some of which result in changes in the chemical characteristics of subtilisin enzyme. Mutations are created at specific nucleic acids of the subtilisin gene, and, in various specific embodiments, the mutant enzymes possess altered chemical properties including, but not limited to, increased stability to oxidation, augmented proteolytic ability, and improved washability.
  • the present invention also relates, but is not limited to the amino acid and DNA sequences for protease mutants derived from Bacillus lentus variants, subtilisin 147 and subtilisin 309, as well as mutations of these genes and the corresponding mutant enzymes.
  • Site-directed mutation can efficiently produce mutant subtilisin enzymes which can be tailored to suit a multitude of industrial applications particularly in the areas of detergent and food technology.
  • the present invention relates, in part, but is not limited to, mutants of the subtilisin 309 gene which exhibit improved stability to oxidation, augmented protease activity, and/or improved washability.
  • FIG. 1 illustrates the insertion of a subset of fragments, ranging from 1.5 kb to 6.5 kb in length, generated by partial digestion of Bacillus lentus strain 309 DNA with Sau 3A restriction endonuclease, into Bam HI cut plasmid pSx50.
  • the two resulting plasmids, pSx86 and pSx88, containing the subtilisin 309 gene in opposite orientations, are also shown.
  • FIG. 2 illustrates the insertion of Bacillus lentus strain 147 DNA fragments into plasmid pSX56. Partial digestion of strain 147 DNA was performed using Sau 3A restriction endonuclease. Fragments ranging in size from 1.5 to 6.5 kb were then ligated into Bam HI cleaved plasmid pSX56. The product, pSX94, contains the subtilisin 147 gene.
  • FIG. 3 illustrates gapped duplex mutagenesis, using the method of Morinaga et al. (1984, Biotechnology 2:636-639). It features two plasmids, pSX93 and pSX119, both derived from puCl3.
  • pSX93 contains an XbaI-HindIII fragment of the subtilisin 309 gene
  • pSX119 contains the remainder of the subtilisin 309 gene in an EcoRI-XbaI fragment.
  • plasmid pSX93 is cleaved with XbaI and ClaI, and the gapped molecules are mixed with pSX93 cut with ScaI, denatured, and allowed to reanneal so as to generate plasmids with a region of single-stranded DNA extending within the subtilisin 309 coding sequence.
  • a synthetic oligonucleotide, homologous to the subtilisin 309 gene but containing a mutation, is allowed to anneal to the single stranded gap, which is then filled in using the Klenow fragment of DNA polymerase I and T4 DNA ligase.
  • double-stranded mutants of the subtilisin 309 gene are generated.
  • the same procedure is performed in (B), using plasmid pSX119 and EcoRI and XbaI enzymes, to create mutations in the corresponding region of the subtilisin 309 gene.
  • FIG. 4 illustrates plasmid pSX92, which is a derivative of plasmid pSX62, bearing the subtilisin 309 gene. Mutated fragments (i.e., XbaI - ClaI, XbaI-HindIII, or EcoRI-XbaI), excised from mutation plasmid pSX93 or pSX119 (see FIG. 3 ) using the appropriate restriction endonucleases, were inserted into plasmid pSX92 for expression in B. subtilis strain DN 497.
  • Mutated fragments i.e., XbaI - ClaI, XbaI-HindIII, or EcoRI-XbaI
  • FIG. 5 illustrates plasmid pSXl43, which contains truncated forms of both subtilisin 309 and subtilisin 147 genes. In vivo recombination between homologous regions of the two genes can result in active protease.
  • the invention relates to mutations of the subtilisin gene, some of which result in changes in the chemical characteristics of subtilisin enzyme. Mutations at specific nucleic acids may be generated, and thus, forms of subtilisin can be designed so as to meet the needs of industrial application.
  • the invention is based, in part, upon the discovery that nutations of specific nucleic acids in the subtilisin gene can result in enzymes with altered properties.
  • enzymes with improved stability to oxidation, augmented protease activity, or improved washing ability can be generated.
  • subtilisins for purposes of clarity in description, and not by way of limitation, the invention will be described in four parts: (a) the chemical structure of known subtilisins and subtilisin 147 and 309; (b) methods for producing mutations in the subtilisin gene; (c) expression of mutants of subtilisin and (d) screening of subtilisin mutants for desirable chemical properties.
  • subtilisins from various sources can reveal the functional significance of the primary amino acid sequence, and can direct the creation of new mutants with deliberately modified functions. Comparing the amino acid sequence of different forms of subtilisin, while contrasting their physical or chemical properties, may reveal specific target regions which are likely to produce useful mutant enzymes.
  • subtilisins The amino acid sequences of at least eight subtilisins are known. These include six subtilisins from Bacillus strains, namely, subtilisin 168, subtilisin BPN′, subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus and mesentericopeptidase (Kurihara et al., 1972, J. Biol. Chem. 247:5629-5631; Stahl and Ferrari, 1984, J. Bacteriol. 158:411-418; Vasantha et al., 1984, J. Bacteriol. 159:811-819; Jacobs et al., 1985, Nucl. Acids Res. 13:8913-8926; Nedkov et al., 1985, Biol.
  • subtilisin 147 and 309 the amino acid and DNA sequences for two further serine proteases are revealed.
  • proteases were derived from two Bacillus lentus variants, C303 and C360, which have been deposited with NCIB and designated the accession numbers NCIB 10147 and NCIB 10309, respectively.
  • the proteases produced by these strains are designated subtilisin 147 and subtilisin 309, respectively, and the genes encoding these proteins are referred to as the subtilisin 147 and 309 genes.
  • subtilisin material refers to a proteinaceous material which contains a subtilisin as its active ingredient.
  • subtilisin material any serine protease is a subtilisin which has at least 30%, preferably 50%, and more preferably 80% amino acid sequence homology with the sequences referenced above for subtilisin 147, subtilisin 309, subtilisin 168, subtilisin BPN', subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus, mesentericopeptidase, thermitase, proteinase K and thermomycolase.
  • subtilisin material refers to a proteinaceous material which contains a subtilisin as its active ingredient.
  • any serine protease is a subtilisin which has at least 30%, preferably 50%, and more preferably 80% amino acid sequence homology with the sequences referenced above for subtilisin 147, subtilisin 309, subtilisin 168, subtilisin BPN', subtilisin Carlsberg, subtil
  • Table I compares the deduced amino acid sequences of subtilisin 309, subtilisin 147, subtilisin BPN', subtilisin Carlsberg and subtilisin 168 (Spizizen, et al., 1958, Proc. Natl. Acad. Sci. U.S.A. 44:1012-1078).
  • Table II presents the nucleic acid sequence of the subtilisin 309 gene
  • Table III presents the nucleic acid sequence of the subtilisin 147 gene.
  • the sequences of subtilisin 309 or 147, or their functional equivalents, can be used in accordance with the invention.
  • subtilisin 309 or 147 depicted in Tables I, II or III can be altered by substitutions, additions or deletions that provide for functionally equivalent molecules.
  • other DNA sequences which encode substantially the same amino acid sequence as depicted in Table I may be used in the practice of the present invention. These include but are not limited to nucleotide sequences comprising all or portions of the subtilisin 309 or 147 sequences depicted in Table II or III which are altered by the substitution of different codons that encode the same or a functionally equivalent amino acid residues within the sequence, thus producing a silent change.
  • one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent.
  • Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs.
  • the non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
  • the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • the positively charged (basic) amino acids include arginine, lysine, and histidine.
  • the negatively charged (acidic) amino acids include aspartic and glutamic acid.
  • sequences determined for subtilisins 309 and 147 can be compared with sequences of known subtilisins (see Table I) or newly discovered subtilisins in order to deduce sites for desirable mutations. To do this, the closeness of relation of the subtilisins being compared must be determined.
  • subtilisins 309 and 147 were compared with one another and with the sequences of other subtilisins (see Table II). Residues that varied between subtilisin 309 or 147 and other subtilisins were identified.
  • subtilisin 309 contains a serine residue
  • subtilisin 147, subtilisin BPN′, Carlsberg and 168 contain an alanine residue. Therefore, if the serine 153 residue of subtilisin 309 were changed to an alanine residue, the physical properties of subtilisin 309 might be altered in a desired direction.
  • subtilisin 147 contains a serine residue at position 218, whereas the other subtilisins expressed an asparagine residue. Because subtilisin 147 has improved thermal stability relative to the other subtilisins, mutating the asparagine 218 of subtilisin 309 to a serine residue might improve the thermal stability of subtilisin 309.
  • subtilisin As another example, it was reasoned that, since Thr 71 is close to the active site, the introduction of a negatively charged amino acid, such as aspartic acid, might suppress oxidative attack by electrostatic repulsion.
  • the sites that are most likely to be relevant to the physical properties of subtilisin are those in which there is conservation of amino acid residues between most subtilisins, for example Asp-153 and Asn-218 discussed above, and also Trp-6, Arg-170, Pro-168, His-67, Met-175, Gly-219, Arg-275.
  • subtilisin substrate specificity The catalytic activities of various subtilisins can differ markedly against selected substrates.
  • Wells has shown that only three amino acid substitutions can cause B. amyloliquefaciens subtilisin substrate specificity to approach that of B. licheniformis subtilisin, enzymes that differ by factors of 10-50 in catalytic efficiency in their native state.
  • subtilisin 147 and 309 Comparison analysis between subtilisin 147 and 309 and other subtilisins has indicated that mutation of the following sites may alter the physical or chemical properties of subtilisin: 6, 9, 11-12, 19, 25, 36-38, 53-59, 67, 71, 89, 104, 111, 115, 120, 121-122, 124, 128, 131, 140, 153-166, 168, 169-170, 172, 175, 180, 182, 186, 187, 191, 194, 195, 199, 218, 219, 222, 226, 234-238, 241, 260-262, 265, 268, or 275.
  • Deletions occur at the following sites in subtilisins 147 and/or 309; insertion of appropriate amino acid residues into these sites might enhance the stability of the parent enzymes: 1, 36, 56, 159, 164-166. According to the method illustrated by these examples, which are not limiting, a number of potential mutation sites become apparent.
  • subtilisin genes Many methods for introducing mutations into genes are well known in the art. After a brief discussion of cloning subtilisin genes, methods for generating mutations in both random sites and specific sites within the subtilisin gene will be discussed.
  • subtilisin may be cloned from any Gram-positive bacteria or fungus by various methods well known in the art. First a genomic and/or cDNA library of DNA must be constructed using chromosomal DNA or messenger RNA from the organism that produces the subtilisin to be studied. Then, if the amino acid sequence of the subtilisin is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify subtilisin-encoding clones from a genomic library of bacterial DNA, or from a fungal cDNA library.
  • a labelled oligonucleotide probe containing sequences homologous to subtilisin from another strain of bacteria or fungus could be used as a probe to identify subtilisin-encoding clones, using hybridization and washing conditions of lower stringency.
  • subtilisin-producing clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming protease-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for subtilisin, such as skim milk. Those bacteria containing subtilisin-bearing plasmid will produce colonies surrounded by a halo of clear agar, due to digestion of the skim milk by excreted subtilisin.
  • an expression vector such as a plasmid
  • transforming protease-negative bacteria with the resulting genomic DNA library
  • subtilisin gene has been cloned into a suitable vector, such as a plasmid, several methods can be used to introduce random mutations into the gene.
  • One method would be to incorporate the cloned subtilisin gene, as part of a retrievable vector, into a mutator strain of Eschericia coli.
  • Another method would involve generating a single stranded form of the subtilisin gene, and then annealing the fragment of DNA containing the subtilisin gene with another DNA fragment such that a portion of the subtilisin gene remained single stranded.
  • This discrete, single stranded region could then be exposed to any of a number of mutagenizing agents, including, but not limited to, sodium bisulfite, hydroxylamine, nitrous acid, formic acid, or hydralazine.
  • mutagenizing agents including, but not limited to, sodium bisulfite, hydroxylamine, nitrous acid, formic acid, or hydralazine.
  • a specific example of this method for generating random mutations is described by Shortle and Nathans (1978, Proc. Natl. Acad. Sci. U.S.A., 75:2170-2174).
  • the plasmid bearing the subtilisin gene would be nicked by a restriction enzyme that cleaves within the gene. This nick would be widened into a gap using the exonuclease action of DNA polymerase I. The resulting single-stranded gap could then be mutagenized using any one of the above mentioned mutagenizing agents.
  • subtilisin gene from a Bacillus species including the natural promoter and other control sequences could be cloned into a plasmid vector containing replicons for both E. coli and B. subtilis , a selectable phenotypic marker and the M13 origin of replication for production of single-stranded plasmid DNA upon superinfection with helper phage IR1.
  • Single-stranded plasmid DNA containing the cloned subtilisin gene is isolated and annealed with a DNA fragment containing vector sequences but not the coding region of subtilisin, resulting in a gapped duplex molecule.
  • Mutations are introduced into the subtilisin gene either with sodium bisulfite, nitrous acid or formic acid or by replication in a mutator strain of E. coli as described above. Since sodium bisulfite reacts exclusively with cytosine in a single-stranded DNA, the mutations created with this mutagen are restricted only to the coding regions. Reaction time and bisulfite concentration are varied in different experiments such that from one to five mutations are created per subtilisin gene on average. Incubation of 10 micrograms of gapped duplex DNA in 4 M Na-bisulfite, pH 6.0, for 9 minutes at 37° C. in a reaction volume of 400 microliters, deaminates about 1% of cytosines in the single-stranded region. The coding region of mature subtilisin contains about 200 cytosines, depending on the DNA strand.
  • the reaction time is varied from about 4 minutes (to produce a mutation frequency of about one in 200) to about 20 minutes (about 5 in 200).
  • the gapped molecules are treated in vitro with DNA polymerase I (Klenow fragment) to make fully double-stranded molecules and to fix the mutations.
  • Competent E. coli are then transformed with the mutagenized DNA to produce an amplified library of mutant subtilisins.
  • Amplified mutant libraries can also be made by growing the plasmid DNA in a Mut D strain of E. coli which increases the range of mutations due to its error prone DNA polymerase.
  • the mutagens nitrous acid and formic acid may also be used to produce mutant libraries. Because these chemicals are not as specific for single-stranded DNA as sodium bisulfite, the mutagenesis reactions are performed according to the following procedure. The coding portion of the subtilisin gene is cloned in M13 phage by standard methods and single stranded phage DNA prepared. The single-stranded DNA is then reacted with 1 M nitrous acid pH 4.3 for 15-60 minutes at 23° C. or 2.4 M formic acid for 1-5 minutes at 23° C. These ranges of reaction times produce a mutation frequency of from 1 in 1000 to 5 in 1000.
  • a universal primer is annealed to the M13 DNA and duplex DNA is synthesized using the mutagenized single stranded DNA as a template so that the coding portion of the subtilisin gene becomes fully double-stranded.
  • the coding region can be cut out of the M13 vector with restriction enzymes and ligated into an unmutagenized expression vector so that mutations occur only in the restriction fragment (Myers et al., 1985, Science 229:242-257).
  • mutations can be generated by allowing two dissimilar forms of subtilisin to undergo recombination in vivo. According to this method, homologous regions within the two genes lead to a cross-over of corresponding regions resulting in the exchange of genetic information.
  • the generation of hybrid amylase molecules according to this technique is fully described in U.S. application Ser. No. 67,992, filed on Jun. 29, 1987, which is fully incorporated herein by reference.
  • An example of a plasmid which can generate hybrid forms of subtilisin is depicted in FIG. 5 . Both the subtilisin 309 and 147 genes, incorporated into plasmid pSX143, are truncated, and therefore cannot themselves lead to subtilisin expression.
  • subtilisin 309 if recombination occurs between the two genes so as to correct the defect produced by truncation, i.e., the N terminal region of the subtilisin 309 gene becomes linked to the C terminal region of the subtilisin 147 gene, then active, mutant subtilisin can be produced. If pSX143 is incorporated into a protease-negative strain of bacteria, and then bacteria that develop a protease positive phenotype are selected, then various mutants, subtilisin 309/147 chimeras, can be identified.
  • subtilisin gene Once the subtilisin gene has been cloned, and desirable sites for mutation identified, these mutations can be introduced using synthetic oligo nucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis.
  • a single stranded gap of DNA, bridging the subtilisin gene is created in a vector bearing the subtilisin gene.
  • the synthetic nucleotide, bearing the desired mutation is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in by DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase.
  • a fragment within the gene is removed using restriction endonuclease.
  • the vector/gene, now containing a gap is then denatured and hybridized to vector/gene which, instead of containing a gap, has been cleaved with another restriction endonuclease at a site outside the area involved in the gap.
  • a single-stranded region of the gene is then available for hybridization with mutated oligonucleotides, the remaining gap is filled in by the Klenow fragment of DNA polymerase I, the insertions are ligated with T4 DNA ligase, and, after one cycle of replication, a double-stranded plasmid bearing the desired mutation is produced.
  • the Morinaga method obviates the additional manipulation of construction new restriction sites, and therefore facilitates the generation of mutations at multiple sites.
  • a mutated subtilisin gene produced by methods described above, or any alternative methods known in the art can be expressed, in enzyme form, using an expression vector.
  • An expression vector generally falls under the definition of a cloning vector, since an expression vector usually includes the components of a typical cloning vector, namely, an element that permits autonomous replication of the vector in a microorganism independent of the genome of the microorganism, and one or more phenotypic markers for selection purposes.
  • An expression vector includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene.
  • nucleotides encoding a “signal sequence” may be inserted prior to the coding sequence of the gene.
  • a target gene to be treated according to the invention is operably linked to the control sequences in the proper reading frame.
  • Promoter sequences that can be incorporated into plasmid vectors, and which can support the transcription of the mutant subtilisin gene include but are not limited to the prokaryotic beta-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731) and the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Further references can also be found in “Useful proteins from recombinant bacteria” in Scientific American, 1980, 242:74-94.
  • B. subtilis is transformed by an expression vector carrying the mutated DNA. If expression is to take place in a secreting microorganism such as B. subtilis a signal sequence may follow the translation initiation signal and precede the DNA sequence of interest. The signal sequence acts to transport the expression product to the cell wall where it is cleaved from the product upon secretion.
  • control sequences as defined above is intended to include a signal sequence, when it is present.
  • transformed B. subtilis can be cultivated in the presence of a filter material (such as nitrocellulose) to which the secreted expression product (e.g. enzyme) binds.
  • a filter material such as nitrocellulose
  • the secreted expression product e.g. enzyme
  • filter bound expression product is subjected to conditions which distinguish expression product of interest from wild-type expression product.
  • the filter-bound expression product can be subjected to conditions which would inactivate a wild-type product.
  • Preserved enzyme activity following adverse treatment suggests that the mutation confers enhanced stability on the enzyme, and is therefore a useful mutation.
  • screening for stable variants is accomplished using a protease deficient B. subtilis strain transformed with the variant plasmid and plated out as follows: a nitrocellulose filter is placed on a nutrient base in a petri dish, and a cellulose acetate filter is placed on top of the nitrocellulose. Colonies are grown on the cellulose acetate, and protease from individual colonies is secreted through the cellulose acetate onto the nitrocellulose filter where it is stably bound. Protease from hundreds of colonies is bound to a single filter allowing subsequent screening of thousands of different variants by processing multiple filters.
  • the filters can be incubated in buffer solutions at temperatures which would inactivate substantially all wild-type activity. Variants of enhanced stability or activity retain activity after this step.
  • the suitably treated filter then is soaked in a solution containing Tosyl-L-Arg methyl ester (TAME), Benzoly-Arg-ethyl-ester (BAEE), Acetyl-Tyr-ethyl-ester (ATEE) (Sigma) or similar compounds. Because TAME, BAEE, and ATEE are substrates for the proteases they are cleaved in zones on the filter containing variant subtilisins which remain active after treatment. As cleavage occurs, protons are released in the reaction and cause phenol red to change in color from red to yellow in areas retaining protease activity.
  • the filters could be treated at high temperature, at high pH, with denaturants, oxidizing agents, or under other conditions which normally inactivate an enzyme such as a protease to find resistant variants.
  • Variants with altered substrate specificity could be screened by replacing TAME, BAEE, or ATEE with other substrates which are normally not cleaved by wild-type subtilisin.
  • the colony from which the variant is derived is isolated and the altered subtilisin is purified.
  • Experiments can be performed on the purified enzyme to determine conditions of stability towards oxidation, thermal inactivation, denaturation temperature, kinetic parameters as well as other physical measurements.
  • the altered gene can also be sequenced to determine the amino acid changes responsible for the enhanced stability. Using this procedure, variants with increased washing abilities have been isolated.
  • B. subtilis 309 and 147 are variants of Bacillus lentus , deposited with the NCIB and accorded the accession numbers NCIB 10147 and NCIB 10309, and described in U.S. Pat. No. 3,723,250, issued Mar. 27, 1973, and fully incorporated herein by reference herein.
  • B. subtilis DN 497 is described in U.S. application Ser. No. 039,298 filed Apr. 17, 1987, which is also fully incorporated herein by reference, and is an aro + transformant of RUB 200 with chromosomal DNA from SL 438, a sporulation and protease deficient strain obtained from Dr. Kim Hardy of Biogen. E.
  • pSX50 (described in U.S. application Ser. No. 039,298, supra) is a derivative of plasmid pDN 1050, comprising the promoter-operator P 1 O 1 the B. pumilus xyn B gene and the B. subtilis xyl R gene.
  • pSX65 (described in U.S. application Ser. No. 039,298, supra) is a derivative of plasmid pDN 1050, comprising the promoter-operator P 2 O 2 , the B. pumilus xyn B gene, and the B. subtilis xyl R gene.
  • pSX93 shown in FIG. 3A , is puCl3 (Vieira and Messing, 1982, Gene 19:259-268) comprising a 0.7 kb XbaI-Hind III fragment of the subtilisin 309 gene including the terminator inserted in a polylinker sequence.
  • pSX119 is pUC13 harboring an EcoRI-XbaI fragment of the subtilisin 309 gene inserted into the polylinker.
  • pSX62 (described in U.S. application Ser. No. 039,298, supra) is a derivative of pSX52 (ibid), which comprises a fusion gene between the calf prochymosin gene and the B. pumilus xyn B gene inserted into pSX50 (supra) .
  • pSX62 was generated by inserting the E. coli rrn B terminator into pSX52 behind the prochymosin gene.
  • pSX92 was produced by cloning the subtilisin 309 gene into plasmid pSX62 (supra) cut at Cla I and Hind III and filled prior to the insertion of the fragments DraI-NheI and NheI-Hind III from the cloned subtilisin 309 gene.
  • the procedure relates to a typical purification of a 10 liter scale fermentation of subtilisin 147, subtilisin 309 or mutants thereof.
  • the filtrates were concentrated to approximately 400 ml using an Amicon CH2A UF unit equipped with an Amicon S1Y10 UF cartridge.
  • the UF concentrate was centrifuged and filtered prior to adsorption on a Bacitracin affinity column at pH 7.
  • the protease was eluted from the Bacitracin column using 25% 2-propanol and 1 M sodium chloride in a buffer solution with 0.01 M dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7.
  • the fractions with protease activity from the Bacitracin purification step were combined and applied to a 750 ml Sephadex G25 column (5 cm dia.) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.2 M boric acid and 0.002 M calcium chloride adjusted to pH 6.5.
  • protease was eluted using a linear gradient of 0-0.1 M sodium chloride in 2 liters of the same buffer (0-0.2 M sodium chloride in case of subtilisin 147).
  • protease containing fractions from the CM Sepharose column were combined and concentrated in an Amicon ultrafiltration cell equipped with a GR81P membrane (from the Danish Sugar Factories Inc.).
  • the purified enzyme is diluted to an enzyme content of approximately 0.1 mg/ml in 0.01 M dimethylglutaric acid pH 7 and in the same buffer with 0.01 M peracetic acid (pH 7).
  • Both sets of dilutions were heated to 50° C. for 20 minutes. Proteolytic activity was measured in the dilutions before and after the heat treatment.
  • Casein Protease Unit CPU
  • CPU Casein Protease Unit
  • reaction mixtures were kept for 20 minutes in the water bath, whereupon they were filtered through Whatman® 42 paper filters.
  • OPA o-phthaldialdehyde
  • Disodium tetraborate decahydrate (7.62 g) and sodium dodecylsulfate (2.0 g) was dissolved in 150 ml of water.
  • OPA 160 mg
  • 4 ml of methanol was then added together with 400 microliters of beta-mercaptoethanol, whereafter the solution was made up to 200 ml with water.
  • the OPA test was also performed with a serine standard containing 10 mg of serine in 100 ml of Britton-Robinson buffer (pH 9.5). The buffer was used as a blank.
  • CPU /g of enzyme preparation CPU/ml: b wherein OD t , OD b , OD Ser and OD B are the optical density of the test solution, blank, serine standard, and buffer, respectively, C Ser is the concentration of serine in mg/ml in the standard, MW Ser is the molecular weight of serine, Q is the dilution factor (in this instance equal to 8) for the enzyme solution, and t i is the incubation time in minutes.
  • Test cloths (7 cm ⁇ 7 cm, approximately 1 g) were produced by passing desized cotton (100% cotton, DS 71) Cloth through the vessel in a Mathis Washing and Drying Unit type TH (Werner Mathis A G, Zurich, Switzerland) containing spinach juice (produced from fresh spinach) and then through the pressure roll of the machine in order to remove excess spinach juice.
  • desized cotton 100% cotton, DS 71
  • TH Mathis Washing and Drying Unit type TH (Werner Mathis A G, Zurich, Switzerland) containing spinach juice (produced from fresh spinach) and then through the pressure roll of the machine in order to remove excess spinach juice.
  • Tests were performed at enzyme concentrations of: 0, 0.05 CPU/1, and 0.1 CPU/l, and two independent sets of tests were performed for each of the mutants.
  • Delta R As a measure of the washing ability differential remission, Delta R, was used, Delta R being equal to the remission after wash with enzyme added minus the remission after wash with no enzyme added.
  • thermostability of the mutants produced was estimated, by performing the test at temperatures of 40° C. and 60° C., respectively.
  • Chromosomal DNA from the “309” strain was isolated by treating a cell suspension with Lysozyme for 30 minutes at 37° C., and then with SDS for 5 minutes at 60° C. Subsequently, the suspension was extracted with phenolchloroform (50:50), precipitated with ethanol, and the precipitate redissolved in TE. This solution was treated with RNase for 1 hour at 37° C.
  • chromosomal DNA was partially digested with restriction enzyme Sau 3A (New England Biolabs) and fragments from about 1.5 kb to about 6.5 kb were isolated on DEAE cellulose paper from a 1% agarose gel (the subtilisin gene in other species is approximately 1.2 kb in length).
  • the cells were then spread on LB agar plates with 10 mM phosphate pH 7, 6 micrograms/ml chloramphenicol, and 0.2% xylose to induce the xyn-promoter in the plasmid.
  • the plates also contained 1% skim milk so the protease producing transformants could be detected by the clear halo where the skim milk had been degraded.
  • Protease expressing clones were produced at a frequency of 10 ⁇ 4 . Two clones were found that harbored plasmids carrying the gene for subtilisin 309, pSX86 and pSX88. The gene was then sequenced using the method of Maxam and Gilbert. The deduced nucleotide sequence of subtilisin 309 is presented in Table II.
  • subtilisin 147 The same procedure as above was used for the cloning of the subtilisin 147 gene except that the DNA fragments were ligated into the plasmid pSXS6 (also described in U.S. application Ser. No. 039,298 supra), which as indicated in FIG. 2 instead of the xyn promoter harbors the xyl promoter.
  • pSXS6 also described in U.S. application Ser. No. 039,298 supra
  • One clone was found harboring a plasmid, pSX94, carrying the gene for subtilisin 147. The sequence for this gene is shown in Table III below.
  • a 27-mer mismatch primer, Nor-237 which also generates a novel SacI restriction site 5′ CACAGTATGGGCGCAGGGCTTGACATTGTCGCACCA GG 3′ NOR-237 5′ GTATGGCGCA GAGCTCG ACATTTGTCGC 3′ SacI b) Gly-195-Asp:
  • a 23-mer mismatch primer, NOR-323 which also generates a novel BglII site AT 5′ CACAGTATGGGCGCAGGGCTTGACATTGTC 3′ 3′ CATACCGCG TCTAGA ACTGTAAC 5′ BglII c) Met-222-Cys:
  • a 23-mer mismatch primer, NOR-325 which also generates a novel MspI site TC 5′ TATGCCAGCTTAAACGGTACATCGATG 3′ NOR-324 3′ TACGGTCGAATA GGCC ATGTAGC 5′ MspI g) Thr-71-Asp:
  • pSX93 Gapped duplex mutagenesis was performed using the plasmid pSX93 as template.
  • pSX93 is shown in FIGS. 3A and 3B, and is pUC13 (Vieira, J. and Messing, J., 1982, Gene 19: 259-268) harboring an 0.7 kb XbaI-HindIII fragment of the subtilisin 309 gene including the terminator inserted in the polylinker. The terminator and the HindIII site are not shown in Table II.
  • pSX119 is pUC13 harboring an EcoRI-XbaI fragment of the subtilisin 309 gene inserted into the polylinker.
  • the templates pSX93 and pSX119 thus cover the whole of the subtilisin 309 gene.
  • the mutations a), b), and e) were performed by cutting pSX93 with XbaI and ClaI as indicated in FIG. 3A ; c), d), f), and h) were performed by cutting pSX93 with XbaI and HindIII as indicated in FIG. 3B .
  • Mutation g was performed correspondingly in pSX119 by cutting with EcoRI and XbaI.
  • the double mutants i) and j) were produced by cutting the 0.7 kb Xba-HindIII fragment from a) partially with HgiAI (HgiAI also cuts in SacI, which was introduced by the mutation). This 180 bp XbaI-HgiAI fragment and the 0.5 kb HgiAI fragment from the c) and d) mutants, respectively, were ligated to the large HindIII-XbaI fragment from pSX93.
  • the double mutant k) was produced as above by combining mutants e) and f).
  • Plasmid pSX92 is shown in FIG. 4 and was produced by cloning the subtilisin 309 gene into plasmid pSX62 cut at ClaI, filled in with the Klenow fragment of DNA polymerase I, and cut with HindIII prior to the insertion of the fragments DraI-NheI and NheI-HindIII from the cloned subtilisin 309 gene.
  • mutants the mutated fragments (XbaI-ClaI, XbaI-HindIII, or EcoRI-XbaI) were excised from the appropriate mutation plasmid pSX93 or pSX119, respectively, and inserted into pSX92.
  • the mutated pSX92 was then used to transform B. subtilis strain DN497, which was then grown in the same medium and under the same conditions as used for the cloning of the parent gene.
  • mutants a) and d) were tested for their oxidation stability in 0.01 M peracetic acid after 20 minutes at 50° C. and pH 7.
  • the parent strain NCIB 10309 protease was used as reference.
  • mutant d (Met 222 to Ala) exhibits superior oxidation stability realtive to the parent enzyme and mutant a.
  • mutants c), d), i), and j) (all Met-222) could resist 3-5 times more hypochlorite than the other mutants.
  • mutant f When tested in a liquid detergent of the usual built type it was found that mutant f) exhibited superior stability compared to both the other mutants and the “parent” enzyme.
  • mutant a exhibits enhanced activity compared to the parent. It is also seen that the Met-222 mutants have lower activity than the parent, but due to their improved oxidation stability their application in detergent compositions containing oxidants is not precluded.
  • TABLE V Proteolytic Activity of Mutant Subtilisins Mutant Relative Activity None 100 a) 120 b) 100 c) 30 d) 20 e) 100 f) 100 i) 20 j) 30
  • thermostability of mutant f was tested against the wild type enzyme by using the washability test at 40° C. and 60° C., respectively. The results are shown in Table VII.
  • mutant f) at 60° C shows a much improved washability compared to the wild type enzyme, whereas at 40° C. the washability of mutant f) is only slightly better than the wild type enzyme.
  • Subtilisin genes were cloned from the 147 and 309 variants of the bacterium Bacillus lentus , and the cloned genes were sequenced. By comparing the deduced amino acid sequences of subtilisins 147 and 309 one with the other and with sequences of other subtilisins, sites which, upon mutation, might alter the physical properties of the parent enzyme were identified. Site-directed mutagenesis was used to generate mutations at several of these sites in the subtilisin 309 gene. The resulting mutant enzymes were then expressed in a Bacillus strain, and tested against various physical and chemical parameters. Several of the mutants were shown to have improved stability to oxidation, increased proteolytic ability, or improved washability when compared with subtilisin 309. These mutants exhibit properties desirable in enzymes comprised in detergent compositions.

Abstract

The present invention relates to mutations of a subtilisin gene which result in changes in the chemical characteristics of subtilisin enzymes. Mutations at specific nucleic acids of the subtilisin gene result in amino acid substitutions and consequently, altered enzyme function. Some of these mutant enzymes exhibit physical properties advantageous to industrial applications, particularly in the detergent industry, providing subtilisin which is more stable to oxidation, possesses greater protease activity, and exhibits improved washability.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 10/306,089 filed Nov. 27, 2002, which is a continuation of application Ser. No. 08/486,846 filed Jun. 7, 1995, now U.S. Pat. No. 6,506,589, which is a division of application Ser. No. 07/294,241 filed Jan. 6, 1989, now abandoned, and claims priority of Danish application no. 64/88 filed Jan. 7, 1988, the contents of which are fully incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to mutations of the subtilisin gene which result in changes in the chemical characteristics of subtilisin enzyme. Mutations at specific nucleic acids of the subtilisin gene result in amino acid substitutions and consequently, altered enzyme function. Some of these mutant enzymes exhibit physical properties advantageous to industrial applications, particularly in the detergent industry, providing subtilisins which are more stable to oxidation, possess greater protease activity, and exhibit improved washability.
  • 2. Description of Related Art
  • Bacillus Proteases
  • Enzymes cleaving the amide linkages in protein substrates are classified as proteases, or (interchangeably) peptidases (See Walsh, 1979, Enzymatic Reaction Mechanisms, W. H. Freeman and Company, San Francisco, Chapter 3). Bacteria of the Bacillus species secrete two extracellular species of protease, a neutral, or metalloprotease, and an alkaline protease which is functionally a serine endopeptidase, referred to as subtilisin. Secretion of these proteases has been linked to the bacterial growth cycle, with greatest expression of protease during the stationary phase, when sporulation also occurs. Joliffe et al. (1980, J. Bacterial. 141:1199-1208) has suggested that Bacillus proteases function in cell wall turnover.
  • Subtilisins
  • A serine protease is an enzyme which catalyzes the hydrolysis of peptide bonds, in which there is an essential serine residue at the active site (White, Handler, and Smith, 1973, “Principles of Biochemistry,” Fifth Edition, McGraw-Hill Book Company, NY, pp. 271-272).
  • The serine proteases have molecular weights in the 25,000 to 30,000 range. They are inhibited by diisopropylfluorophosphate, but in contrast to metalloproteases, are resistant to ethylenediamine-tetra acetic acid (EDTA) (although they are stabilized at high temperatures by calcium ion). They hydrolyze simple terminal esters and are similar in activity to eukaryotic chymotrypsin, also a serine protease. The alternative term, alkaline protease, reflects the high pH optimum of the serine proteases, from pH 9.0 to 11.0 (for review, see Priest, 1977, Bacteriological Rev. 41:711-753).
  • A subtilisin is a serine protease produced by Gram-positive bacteria or fungi. A wide variety of subtilisins have been identified, and the amino acid sequences of at least eight subtilisins have been determined. These include six subtilisins from Bacillus strains, namely, subtilisin 168, subtilisin BPN′, subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus, and mesentericopeptidase (Kurihara et al., 1972, J. Biol. Chem. 247:29-5631; Stahl and Ferrari, 1984, J. Bacteriol. 158:411-418; Vasantha et al., 1984, J. Bacteriol. 159:811-819, Jacobs et al., 1985, Nucl. Acids Res. 13:8913-8926; Nedkov et al., 1985, Biol. Chem. Hoppe-Seyler 366:421-430; Svendsen et al., 1986, FEBS Lett 196:228-232), and two fungal subtilisins, subtilisin thermitase from Thermoactinymyces vulgaris (Meloun et al., 1985, FEBS Lett. 183:195-200) and proteinase K from Tritirachium album (Jany and Mayer, 1985, Biol. Chem. Hoppe-Seyler 366:584-492).
  • Subtilisins are well-characterized physically and chemically. In addition to knowledge of the primary structure (amino acid sequence) of these enzymes, over 50 high resolution X-ray structures of subtilisin have been determined which delineate the binding of substrate, transition state, products, three different protease inhibitors, and define the structural consequences for natural variation (Kraut, 1971, Ann. Rev. Biochem. 46:331-358). Random and site-directed mutations of the subtilisin gene have both arisen from knowledge of the physical and chemical properties of the enzyme and contributed information relating to subtilisin's catalytic activity, substrate specificity, tertiary structure, etc. (Wells et al., 1987, Proc. Natl. Acad. Sci. U.S.A. 84:1219-1223; Wells et al., 1986, Phil. Trans. R. Soc. Lond. A. 317:415-423; Hwang and Warshel, 1987, Biochem. 26:2669-2673; Rao et al., 1987, Nature 328:551-554).
  • Industrial Applications of Subtilisins
  • Subtilisins have found much utility in industry, particularly detergent formulations, as they are useful for removing proteinaceous stains. To be effective, however, these enzymes must not only possess activity under washing conditions, but must also be compatible with other detergent components during storage. For example, subtilisin may be used in combination with amylases, which are active against starches; cellulases which will digest cellulosic materials; lipases, which are active against fats; peptidases, which are active on peptides, and ureases, which are effective against urine stains. Not only must the formulation protect other enzymes from digestion by subtilisin, but subtilisin must be stable with respect to the oxidizing power, calcium binding properties, detergency and high pH of nonenzymatic detergent components. The ability of the enzyme to remain stable in their presence is often referred to as its washing ability or washability.
  • SUMMARY OF THE INVENTION
  • The present invention relates to mutations of the subtilisin gene, some of which result in changes in the chemical characteristics of subtilisin enzyme. Mutations are created at specific nucleic acids of the subtilisin gene, and, in various specific embodiments, the mutant enzymes possess altered chemical properties including, but not limited to, increased stability to oxidation, augmented proteolytic ability, and improved washability.
  • The present invention also relates, but is not limited to the amino acid and DNA sequences for protease mutants derived from Bacillus lentus variants, subtilisin 147 and subtilisin 309, as well as mutations of these genes and the corresponding mutant enzymes.
  • Site-directed mutation can efficiently produce mutant subtilisin enzymes which can be tailored to suit a multitude of industrial applications particularly in the areas of detergent and food technology. The present invention relates, in part, but is not limited to, mutants of the subtilisin 309 gene which exhibit improved stability to oxidation, augmented protease activity, and/or improved washability.
  • Abbreviations
  • A=Ala=Alanine
  • V=Val=Valine
  • L=Leu=Leucine
  • I=Ile=Isoleucine
  • P=Pro=Proline
  • F=Phe=Phenylalanine
  • W=Trp=Tryptophan
  • M=Met=Methionine
  • G=Gly=Glycine
  • S=Ser=Serine
  • T=Thr=Threonine
  • C=Cys=Cysteine
  • Y=Tyr=Tyrosine
  • N=Asn=Asparagine
  • Q=Gln=Glutamine
  • D=Asp=Aspartic Acid
  • E=Glu=Glutamic Acid
  • K=Lys=Lysine
  • R=Arg=Arginine
  • H=His=Histidine
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the insertion of a subset of fragments, ranging from 1.5 kb to 6.5 kb in length, generated by partial digestion of Bacillus lentus strain 309 DNA with Sau 3A restriction endonuclease, into Bam HI cut plasmid pSx50. The two resulting plasmids, pSx86 and pSx88, containing the subtilisin 309 gene in opposite orientations, are also shown.
  • FIG. 2 illustrates the insertion of Bacillus lentus strain 147 DNA fragments into plasmid pSX56. Partial digestion of strain 147 DNA was performed using Sau 3A restriction endonuclease. Fragments ranging in size from 1.5 to 6.5 kb were then ligated into Bam HI cleaved plasmid pSX56. The product, pSX94, contains the subtilisin 147 gene.
  • FIG. 3 illustrates gapped duplex mutagenesis, using the method of Morinaga et al. (1984, Biotechnology 2:636-639). It features two plasmids, pSX93 and pSX119, both derived from puCl3. pSX93 contains an XbaI-HindIII fragment of the subtilisin 309 gene, and pSX119 contains the remainder of the subtilisin 309 gene in an EcoRI-XbaI fragment. In (A), plasmid pSX93 is cleaved with XbaI and ClaI, and the gapped molecules are mixed with pSX93 cut with ScaI, denatured, and allowed to reanneal so as to generate plasmids with a region of single-stranded DNA extending within the subtilisin 309 coding sequence. A synthetic oligonucleotide, homologous to the subtilisin 309 gene but containing a mutation, is allowed to anneal to the single stranded gap, which is then filled in using the Klenow fragment of DNA polymerase I and T4 DNA ligase. Upon replication of the plasmid, double-stranded mutants of the subtilisin 309 gene are generated. The same procedure is performed in (B), using plasmid pSX119 and EcoRI and XbaI enzymes, to create mutations in the corresponding region of the subtilisin 309 gene.
  • FIG. 4 illustrates plasmid pSX92, which is a derivative of plasmid pSX62, bearing the subtilisin 309 gene. Mutated fragments (i.e., XbaI - ClaI, XbaI-HindIII, or EcoRI-XbaI), excised from mutation plasmid pSX93 or pSX119 (see FIG. 3) using the appropriate restriction endonucleases, were inserted into plasmid pSX92 for expression in B. subtilis strain DN 497.
  • FIG. 5 illustrates plasmid pSXl43, which contains truncated forms of both subtilisin 309 and subtilisin 147 genes. In vivo recombination between homologous regions of the two genes can result in active protease.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention relates to mutations of the subtilisin gene, some of which result in changes in the chemical characteristics of subtilisin enzyme. Mutations at specific nucleic acids may be generated, and thus, forms of subtilisin can be designed so as to meet the needs of industrial application.
  • The invention is based, in part, upon the discovery that nutations of specific nucleic acids in the subtilisin gene can result in enzymes with altered properties. In various embodiments, enzymes with improved stability to oxidation, augmented protease activity, or improved washing ability can be generated.
  • For purposes of clarity in description, and not by way of limitation, the invention will be described in four parts: (a) the chemical structure of known subtilisins and subtilisin 147 and 309; (b) methods for producing mutations in the subtilisin gene; (c) expression of mutants of subtilisin and (d) screening of subtilisin mutants for desirable chemical properties.
  • Chemical Structures of Known Subtilisins and Subtilisin 147 and 309
  • Sequence analysis of subtilisins from various sources can reveal the functional significance of the primary amino acid sequence, and can direct the creation of new mutants with deliberately modified functions. Comparing the amino acid sequence of different forms of subtilisin, while contrasting their physical or chemical properties, may reveal specific target regions which are likely to produce useful mutant enzymes.
  • The amino acid sequences of at least eight subtilisins are known. These include six subtilisins from Bacillus strains, namely, subtilisin 168, subtilisin BPN′, subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus and mesentericopeptidase (Kurihara et al., 1972, J. Biol. Chem. 247:5629-5631; Stahl and Ferrari, 1984, J. Bacteriol. 158:411-418; Vasantha et al., 1984, J. Bacteriol. 159:811-819; Jacobs et al., 1985, Nucl. Acids Res. 13:8913-8926; Nedkov et al., 1985, Biol. Chem. Hoppe-Seyler 366:421-430; Svendsen et al., 1986, FEBS Lett. 196:228-232), and two fungal subtilisins, subtilisin thermitase from Thermoactinymyces vulgaris (Meloun et al., 1985, FEBS Lett. 183:195-200), and proteinase K from Tritirichium album limber (Janny and Mayer, 1985, Biol. Chem. Hoppe-Seyler 366:485-492).
  • In connection with this invention the amino acid and DNA sequences for two further serine proteases are revealed. These proteases were derived from two Bacillus lentus variants, C303 and C360, which have been deposited with NCIB and designated the accession numbers NCIB 10147 and NCIB 10309, respectively. For convenience the proteases produced by these strains are designated subtilisin 147 and subtilisin 309, respectively, and the genes encoding these proteins are referred to as the subtilisin 147 and 309 genes.
  • As used in this invention, the term “subtilisin material” refers to a proteinaceous material which contains a subtilisin as its active ingredient. As used herein, and under the definition of subtilisin material, any serine protease is a subtilisin which has at least 30%, preferably 50%, and more preferably 80% amino acid sequence homology with the sequences referenced above for subtilisin 147, subtilisin 309, subtilisin 168, subtilisin BPN', subtilisin Carlsberg, subtilisin DY, subtilisin amylosacchariticus, mesentericopeptidase, thermitase, proteinase K and thermomycolase. These serine proteases are also described herein as “homologous serine proteases”.
  • Table I compares the deduced amino acid sequences of subtilisin 309, subtilisin 147, subtilisin BPN', subtilisin Carlsberg and subtilisin 168 (Spizizen, et al., 1958, Proc. Natl. Acad. Sci. U.S.A. 44:1012-1078). Table II presents the nucleic acid sequence of the subtilisin 309 gene, and Table III presents the nucleic acid sequence of the subtilisin 147 gene. The sequences of subtilisin 309 or 147, or their functional equivalents, can be used in accordance with the invention. For example, the sequences of subtilisin 309 or 147 depicted in Tables I, II or III can be altered by substitutions, additions or deletions that provide for functionally equivalent molecules. For example, due to the degeneracy of nucleotide coding sequences, other DNA sequences which encode substantially the same amino acid sequence as depicted in Table I may be used in the practice of the present invention. These include but are not limited to nucleotide sequences comprising all or portions of the subtilisin 309 or 147 sequences depicted in Table II or III which are altered by the substitution of different codons that encode the same or a functionally equivalent amino acid residues within the sequence, thus producing a silent change. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine, and histidine. The negatively charged (acidic) amino acids include aspartic and glutamic acid.
  • Closeness of relation can be measured by comparison of amino acid sequences. There are many methods of aligning protein sequences, but the differences are only manifest when the degree of relatedness is quite small. The methods described in Atlas of Protein Sequence and Structure, Margaret O. Dayhoff editor, vol. 5, supplement 2, 1976, National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C., p. 3 ff., entitled SEARCH and ALIGN, define relatedness. As is well known in the art, related proteins can differ in number of amino acids as well as identity of each amino acid along the chain. That is, there can be deletions or insertions when two structures are aligned for maximum identity. For example, subtilisin Carlsberg has only 274 amino acids while subtilisin BPN' has 275 amino acids. Aligning the two sequences shows that Carlsberg has no residue corresponding to Asn 56 of subtilisin BPN′. Thus the amino acid sequence of Carlsberg would appear very different from subtilisin BPN′ unless a gap is recorded at location 56. Therefore, one can predict with a high degree of confidence that substituting Ser for Asn at location 218 of subtilisin Carlsberg will increase thermal stability provided that the residues in Carlsberg are numbered by homology to subtilisin BPN′.
  • According to the invention, the sequences determined for subtilisins 309 and 147 can be compared with sequences of known subtilisins (see Table I) or newly discovered subtilisins in order to deduce sites for desirable mutations. To do this, the closeness of relation of the subtilisins being compared must be determined.
  • Experiments to determine the relationship between the primary structure of subtilisin and its physical properties have revealed the significance of the methionine-222 residue as well as the amino acids functional in the native site, namely, aspartic acid-32, histidine-64, and serine-221. Asparagine-155 and Serine-221 are within the oxyanion binding site. Mutations at these positions are likely to diminish proteolytic activity. According to the present invention, the amino acid sequences of subtilisins 309 and 147 were compared with one another and with the sequences of other subtilisins (see Table II). Residues that varied between subtilisin 309 or 147 and other subtilisins were identified. For example, at residue 153, subtilisin 309 contains a serine residue, whereas subtilisin 147, subtilisin BPN′, Carlsberg and 168 contain an alanine residue. Therefore, if the serine 153 residue of subtilisin 309 were changed to an alanine residue, the physical properties of subtilisin 309 might be altered in a desired direction. Likewise, subtilisin 147 contains a serine residue at position 218, whereas the other subtilisins expressed an asparagine residue. Because subtilisin 147 has improved thermal stability relative to the other subtilisins, mutating the asparagine 218 of subtilisin 309 to a serine residue might improve the thermal stability of subtilisin 309. As another example, it was reasoned that, since Thr 71 is close to the active site, the introduction of a negatively charged amino acid, such as aspartic acid, might suppress oxidative attack by electrostatic repulsion. The sites that are most likely to be relevant to the physical properties of subtilisin are those in which there is conservation of amino acid residues between most subtilisins, for example Asp-153 and Asn-218 discussed above, and also Trp-6, Arg-170, Pro-168, His-67, Met-175, Gly-219, Arg-275. By mutating the nucleic acid sequence such that an amino acid which differs from other subtilisins is substituted with an amino acid that conforms, a more stable form of subtilisin may result.
  • Wells et al. (1987, Proc. Natl. Acad. Sci. U.S.A. 84:1219-1223) have used comparison of amino acid sequences and site-directed mutation to engineer subtilisin substrate specificity. The catalytic activities of various subtilisins can differ markedly against selected substrates. Wells has shown that only three amino acid substitutions can cause B. amyloliquefaciens subtilisin substrate specificity to approach that of B. licheniformis subtilisin, enzymes that differ by factors of 10-50 in catalytic efficiency in their native state. Comparison analysis between subtilisin 147 and 309 and other subtilisins has indicated that mutation of the following sites may alter the physical or chemical properties of subtilisin: 6, 9, 11-12, 19, 25, 36-38, 53-59, 67, 71, 89, 104, 111, 115, 120, 121-122, 124, 128, 131, 140, 153-166, 168, 169-170, 172, 175, 180, 182, 186, 187, 191, 194, 195, 199, 218, 219, 222, 226, 234-238, 241, 260-262, 265, 268, or 275. Deletions occur at the following sites in subtilisins 147 and/or 309; insertion of appropriate amino acid residues into these sites might enhance the stability of the parent enzymes: 1, 36, 56, 159, 164-166. According to the method illustrated by these examples, which are not limiting, a number of potential mutation sites become apparent.
    TABLE I
    COMPARISON OF AMINO ACID SEQUENCE FOR VARIOUS PROTEASES
                      10                  20                  30
    a) A-Q-S-V-P-W-G-I-S-R-V-Q-A-P-A-A-H-N-R-G-L-T-G-S-G-V-K-V-A-V-
    b) *-Q-T-V-P-W-G-I-S-F-I-N-T-Q-Q-A-H-N-R-G-I-F-G-N-G-A-R-V-A-V-
    c) A-Q-S-V-P-Y-G-V-S-Q-I-K-A-P-A-L-H-S-Q-G-Y-T-G-S-N-V-K-V-A-V-
    d) A-Q-T-V-P-Y-G-I-P-L-I-K-A-D-K-V-Q-A-Q-G-F-K-G-A-N-V-K-V-A-V-
    e) A-Q-S-V-P-Y-G-I-S-Q-I-K-A-P-A-L-H-S-Q-G-Y-T-G-S-N-V-K-V-A-V-
                      40                  50                  60
    a) L-D-T-G-I-*-S-T-H-P-D-L-N-I-R-G-G-A-S-F-V-P-G-E-P-*-S-T-Q-D-
    b) L-D-T-G-I-*-A-T-H-P-D-L-R-I-A-G-G-A-S-F-I-S-S-E-P-*-S-Y-H-D-
    c) I-D-S-G-I-D-S-S-H-P-D-L-K-V-A-G-G-A-S-M-V-P-S-E-T-N-P-F-Q-D-
    d) L-D-T-G-I-Q-A-S-H-P-D-L-N-V-V-G-G-A-S-F-V-A-G-E-A-*-Y-N-T-D-
    e) L-D-S-G-I-D-S-S-H-P-D-L-N-V-R-G-G-A-S-F-V-A-S-E-T-N-P-Y-Q-D-
                      70                  80                  90
    a) G-N-G-H-G-T-H-V-A-G-T-I-A-A-L-N-N-S-I-G-V-L-G-V-A-P-S-A-E-L-
    b) N-N-G-H-G-T-H-V-A-G-T-I-A-A-L-N-N-S-I-G-V-L-G-V-A-P-S-A-D-L-
    c) N-N-S-H-G-T-H-V-A-G-T-V-A-A-L-N-N-S-I-G-V-L-G-V-A-P-S-A-S-L-
    d) G-N-G-H-G-T-H-V-A-G-T-V-A-A-L-D-N-T-T-G-V-L-G-V-A-P-S-V-S-L-
    e) G-S-S-H-G-T-H-V-A-G-T-I-A-A-L-N-N-S-I-G-V-L-G-V-S-P-S-A-S-L-
                      100                 110                 120
    a) Y-A-V-K-V-L-G-A-S-G-S-G-S-V-S-S-I-A-Q-G-L-E-W-A-G-N-N-G-M-H-
    b) Y-A-V-K-V-L-D-R-N-G-S-G-S-L-A-S-V-A-Q-G-I-E-W-A-I-N-N-N-M-H-
    c) Y-A-V-K-V-L-G-A-D-G-S-G-Q-Y-S-W-I-I-N-G-I-E-W-A-I-A-N-N-M-D-
    d) Y-A-V-K-V-L-N-S-S-G-S-G-T-Y-S-G-I-V-S-G-I-E-W-A-T-T-N-G-M-D-
    e) Y-A-V-K-V-L-D-S-T-G-S-G-Q-Y-S-W-I-I-N-G-I-E-W-A-I-S-N-N-M-D
                      130                 140                 150
    a) V-A-N-L-S-L-G-S-P-S-P-S-A-T-L-E-Q-A-V-N-S-A-T-S-R-G-V-L-V-V-
    b) I-I-N-M-S-L-G-S-T-S-G-S-S-T-L-E-L-A-V-N-R-A-N-N-A-G-I-L-L-V-
    c) V-I-N-M-S-L-G-G-P-S-P-S-A-A-L-K-A-A-V-D-K-A-V-A-S-G-V-V-V-V-
    d) V-I-N-M-S-L-G-G-P-S-G-S-T-A-M-K-Q-A-V-D-N-A-Y-A-R-G-V-V-V-V-
    e) V-I-N-M-S-L-G-G-P-T-G-S-A-A-L-K-T-V-V-D-K-A-V-S-S-G-I-L-V-A-
                      160                 170                 180
    a) A-A-S-G-N-S-G-A-*-G-S-I-S-*-*-*-Y-P-A-R-Y-A-N-A-M-A-V-G-A-T-
    b) G-A-A-G-N-T-G-R-*-Q-G-V-N-*-*-*-Y-P-A-R-Y-S-G-V-M-A-V-A-A-V-
    c) A-A-A-G-N-E-G-T-S-G-S-S-S-T-V-G-Y-P-G-K-Y-P-S-V-I-A-V-G-A-V-
    d) A-A-A-G-N-S-G-S-S-G-N-T-N-T-I-G-Y-P-A-K-Y-D-S-V-I-A-V-G-A-V-
    e) A-A-A-G-N-E-G-S-S-G-S-S-S-T-V-G-Y-P-A-K-Y-P-S-T-I-A-V-G-A-V-
                      190                 200                 210
    a) D-Q-N-N-N-R-A-S-F-S-Q-Y-G-A-G-L-D-I-V-A-P-G-V-N-V-Q-S-T-Y-P-
    b) D-Q-N-G-Q-P-P-S-F-S-T-Y-G-P-E-I-E-I-S-A-P-G-V-N-V-N-S-T-Y-T-
    c) D-S-S-N-Q-R-A-S-F-S-S-V-G-P-E-L-D-V-M-A-P-G-V-S-I-Q-S-T-L-P-
    d) D-S-N-S-N-R-A-S-F-S-S-V-G-A-E-L-E-V-M-A-P-G-A-G-V-Y-S-T-Y-P-
    e) N-S-S-N-Q-R-A-S-F-S-S-A-G-S-E-L-D-V-M-A-P-G-V-S-I-Q-S-T-L-P-
                      220                  230                240
    a) G-S-T-Y-A-S-L-N-G-T-S-M-A-T-P-H-V-A-G-A-A-A-L-V-K-Q-K-N-P-S-
    b) G-N-R-Y-V-S-L-S-G-T-S-M-A-T-P-H-V-A-G-V-A-A-L-V-K-S-R-Y-P-S-
    c) G-N-K-Y-G-A-Y-N-G-T-S-M-A-S-P-H-V-A-G-A-A-A-L-I-L-S-K-H-P-N-
    d) T-S-T-Y-A-T-L-N-G-T-S-M-A-S-P-H-V-A-G-A-A-A-L-I-L-S-K-H-P-N-
    e) G-G-T-Y-G-A-Y-N-G-T-S-M-A-T-P-H-V-A-G-A-A-A-L-I-L-S-K-H-P-T-
                      250                 260                 270
    a) W-S-N-V-Q-I-R-N-H-L-K-N-T-A-T-S-L-G-S-T-N-L-Y-G-S-G-L-V-N-A-
    b) Y-T-N-N-Q-I-R-Q-R-I-N-Q-T-A-T-Y-L-G-S-P-S-L-Y-G-N-G-L-V-H-A-
    c) W-T-N-T-Q-V-R-S-S-L-E-N-T-T-T-K-L-G-D-S-F-Y-Y-G-K-G-L-I-N-V-
    d) L-S-A-S-Q-V-R-N-R-L-S-S-T-A-T-Y-L-G-S-S-F-Y-Y-G-K-G-L-I-N-V-
    e) W-T-N-A-Q-V-R-D-R-L-E-S-T-A-T-Y-L-G-N-S-F-Y-Y-G-K-G-L-I-N-V-
    a) E-A-A-T-R
    b) G-R-A-T-Q
    c) Q-A-A-A-Q
    d) E-A-A-A-Q
    e) Q-A-A-A-Q

    a = subtilisin 309

    b = subtilisin 147

    c = subtilisin BPN′

    d = subtilisin Carlsberg

    e = subtilisin 168

    * = assigned deletion

    Methods for Producing Mutations in Subtilisin Genes
  • Many methods for introducing mutations into genes are well known in the art. After a brief discussion of cloning subtilisin genes, methods for generating mutations in both random sites and specific sites within the subtilisin gene will be discussed.
  • Cloning a Subtilisin Gene
  • The gene encoding subtilisin may be cloned from any Gram-positive bacteria or fungus by various methods well known in the art. First a genomic and/or cDNA library of DNA must be constructed using chromosomal DNA or messenger RNA from the organism that produces the subtilisin to be studied. Then, if the amino acid sequence of the subtilisin is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify subtilisin-encoding clones from a genomic library of bacterial DNA, or from a fungal cDNA library. Alternatively, a labelled oligonucleotide probe containing sequences homologous to subtilisin from another strain of bacteria or fungus could be used as a probe to identify subtilisin-encoding clones, using hybridization and washing conditions of lower stringency.
  • Yet another method for identifying subtilisin-producing clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming protease-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for subtilisin, such as skim milk. Those bacteria containing subtilisin-bearing plasmid will produce colonies surrounded by a halo of clear agar, due to digestion of the skim milk by excreted subtilisin.
  • Generation of Random Mutations in the Subtilisin Gene
  • Once the subtilisin gene has been cloned into a suitable vector, such as a plasmid, several methods can be used to introduce random mutations into the gene.
  • One method would be to incorporate the cloned subtilisin gene, as part of a retrievable vector, into a mutator strain of Eschericia coli.
  • Another method would involve generating a single stranded form of the subtilisin gene, and then annealing the fragment of DNA containing the subtilisin gene with another DNA fragment such that a portion of the subtilisin gene remained single stranded. This discrete, single stranded region could then be exposed to any of a number of mutagenizing agents, including, but not limited to, sodium bisulfite, hydroxylamine, nitrous acid, formic acid, or hydralazine. A specific example of this method for generating random mutations is described by Shortle and Nathans (1978, Proc. Natl. Acad. Sci. U.S.A., 75:2170-2174). According to the Shortle and Nathans method, the plasmid bearing the subtilisin gene would be nicked by a restriction enzyme that cleaves within the gene. This nick would be widened into a gap using the exonuclease action of DNA polymerase I. The resulting single-stranded gap could then be mutagenized using any one of the above mentioned mutagenizing agents.
  • Alternatively, the subtilisin gene from a Bacillus species including the natural promoter and other control sequences could be cloned into a plasmid vector containing replicons for both E. coli and B. subtilis, a selectable phenotypic marker and the M13 origin of replication for production of single-stranded plasmid DNA upon superinfection with helper phage IR1. Single-stranded plasmid DNA containing the cloned subtilisin gene is isolated and annealed with a DNA fragment containing vector sequences but not the coding region of subtilisin, resulting in a gapped duplex molecule. Mutations are introduced into the subtilisin gene either with sodium bisulfite, nitrous acid or formic acid or by replication in a mutator strain of E. coli as described above. Since sodium bisulfite reacts exclusively with cytosine in a single-stranded DNA, the mutations created with this mutagen are restricted only to the coding regions. Reaction time and bisulfite concentration are varied in different experiments such that from one to five mutations are created per subtilisin gene on average. Incubation of 10 micrograms of gapped duplex DNA in 4 M Na-bisulfite, pH 6.0, for 9 minutes at 37° C. in a reaction volume of 400 microliters, deaminates about 1% of cytosines in the single-stranded region. The coding region of mature subtilisin contains about 200 cytosines, depending on the DNA strand. Advantageously, the reaction time is varied from about 4 minutes (to produce a mutation frequency of about one in 200) to about 20 minutes (about 5 in 200).
  • After mutagenesis the gapped molecules are treated in vitro with DNA polymerase I (Klenow fragment) to make fully double-stranded molecules and to fix the mutations. Competent E. coli are then transformed with the mutagenized DNA to produce an amplified library of mutant subtilisins. Amplified mutant libraries can also be made by growing the plasmid DNA in a Mut D strain of E. coli which increases the range of mutations due to its error prone DNA polymerase.
  • The mutagens nitrous acid and formic acid may also be used to produce mutant libraries. Because these chemicals are not as specific for single-stranded DNA as sodium bisulfite, the mutagenesis reactions are performed according to the following procedure. The coding portion of the subtilisin gene is cloned in M13 phage by standard methods and single stranded phage DNA prepared. The single-stranded DNA is then reacted with 1 M nitrous acid pH 4.3 for 15-60 minutes at 23° C. or 2.4 M formic acid for 1-5 minutes at 23° C. These ranges of reaction times produce a mutation frequency of from 1 in 1000 to 5 in 1000. After mutagenesis, a universal primer is annealed to the M13 DNA and duplex DNA is synthesized using the mutagenized single stranded DNA as a template so that the coding portion of the subtilisin gene becomes fully double-stranded. At this point the coding region can be cut out of the M13 vector with restriction enzymes and ligated into an unmutagenized expression vector so that mutations occur only in the restriction fragment (Myers et al., 1985, Science 229:242-257).
  • By yet another method, mutations can be generated by allowing two dissimilar forms of subtilisin to undergo recombination in vivo. According to this method, homologous regions within the two genes lead to a cross-over of corresponding regions resulting in the exchange of genetic information. The generation of hybrid amylase molecules according to this technique is fully described in U.S. application Ser. No. 67,992, filed on Jun. 29, 1987, which is fully incorporated herein by reference. An example of a plasmid which can generate hybrid forms of subtilisin is depicted in FIG. 5. Both the subtilisin 309 and 147 genes, incorporated into plasmid pSX143, are truncated, and therefore cannot themselves lead to subtilisin expression. However, if recombination occurs between the two genes so as to correct the defect produced by truncation, i.e., the N terminal region of the subtilisin 309 gene becomes linked to the C terminal region of the subtilisin 147 gene, then active, mutant subtilisin can be produced. If pSX143 is incorporated into a protease-negative strain of bacteria, and then bacteria that develop a protease positive phenotype are selected, then various mutants, subtilisin 309/147 chimeras, can be identified.
  • Generation of Site Directed Mutations in the Subtilisin Gene
  • Once the subtilisin gene has been cloned, and desirable sites for mutation identified, these mutations can be introduced using synthetic oligo nucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a preferred method, a single stranded gap of DNA, bridging the subtilisin gene, is created in a vector bearing the subtilisin gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in by DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984, Biotechnology 2:636-639). According to Morinaga et al., a fragment within the gene is removed using restriction endonuclease. The vector/gene, now containing a gap, is then denatured and hybridized to vector/gene which, instead of containing a gap, has been cleaved with another restriction endonuclease at a site outside the area involved in the gap. A single-stranded region of the gene is then available for hybridization with mutated oligonucleotides, the remaining gap is filled in by the Klenow fragment of DNA polymerase I, the insertions are ligated with T4 DNA ligase, and, after one cycle of replication, a double-stranded plasmid bearing the desired mutation is produced. The Morinaga method obviates the additional manipulation of construction new restriction sites, and therefore facilitates the generation of mutations at multiple sites. U.S. Pat. No. 4,760,025, by Estelle et al., issued Jul. 26, 1988, is able to introduce oligonucleotides bearing multiple mutations by performing minor alterations of the cassette, however, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.
  • Expression of Subtilisin Mutants
  • According to the invention, a mutated subtilisin gene produced by methods described above, or any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector. An expression vector generally falls under the definition of a cloning vector, since an expression vector usually includes the components of a typical cloning vector, namely, an element that permits autonomous replication of the vector in a microorganism independent of the genome of the microorganism, and one or more phenotypic markers for selection purposes. An expression vector includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene. To permit the secretion of the expressed protein, nucleotides encoding a “signal sequence” may be inserted prior to the coding sequence of the gene. For expression under the direction of control sequences, a target gene to be treated according to the invention is operably linked to the control sequences in the proper reading frame. Promoter sequences that can be incorporated into plasmid vectors, and which can support the transcription of the mutant subtilisin gene, include but are not limited to the prokaryotic beta-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731) and the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Further references can also be found in “Useful proteins from recombinant bacteria” in Scientific American, 1980, 242:74-94.
  • According to one embodiment B. subtilis is transformed by an expression vector carrying the mutated DNA. If expression is to take place in a secreting microorganism such as B. subtilis a signal sequence may follow the translation initiation signal and precede the DNA sequence of interest. The signal sequence acts to transport the expression product to the cell wall where it is cleaved from the product upon secretion. The term “control sequences” as defined above is intended to include a signal sequence, when it is present.
  • Screening of Mutant Subtilisins
  • For screening mutants, transformed B. subtilis can be cultivated in the presence of a filter material (such as nitrocellulose) to which the secreted expression product (e.g. enzyme) binds. In order to screen for an expression product having a desired characteristic, filter bound expression product is subjected to conditions which distinguish expression product of interest from wild-type expression product. For example, the filter-bound expression product can be subjected to conditions which would inactivate a wild-type product. Preserved enzyme activity following adverse treatment suggests that the mutation confers enhanced stability on the enzyme, and is therefore a useful mutation.
  • In one embodiment of the invention, screening for stable variants is accomplished using a protease deficient B. subtilis strain transformed with the variant plasmid and plated out as follows: a nitrocellulose filter is placed on a nutrient base in a petri dish, and a cellulose acetate filter is placed on top of the nitrocellulose. Colonies are grown on the cellulose acetate, and protease from individual colonies is secreted through the cellulose acetate onto the nitrocellulose filter where it is stably bound. Protease from hundreds of colonies is bound to a single filter allowing subsequent screening of thousands of different variants by processing multiple filters.
  • To identify colonies producing subtilisin of enhanced thermal stability, the filters can be incubated in buffer solutions at temperatures which would inactivate substantially all wild-type activity. Variants of enhanced stability or activity retain activity after this step. The suitably treated filter then is soaked in a solution containing Tosyl-L-Arg methyl ester (TAME), Benzoly-Arg-ethyl-ester (BAEE), Acetyl-Tyr-ethyl-ester (ATEE) (Sigma) or similar compounds. Because TAME, BAEE, and ATEE are substrates for the proteases they are cleaved in zones on the filter containing variant subtilisins which remain active after treatment. As cleavage occurs, protons are released in the reaction and cause phenol red to change in color from red to yellow in areas retaining protease activity.
  • This procedure can be used to screen for different classes of variants with only slight modifications. For example, the filters could be treated at high temperature, at high pH, with denaturants, oxidizing agents, or under other conditions which normally inactivate an enzyme such as a protease to find resistant variants. Variants with altered substrate specificity could be screened by replacing TAME, BAEE, or ATEE with other substrates which are normally not cleaved by wild-type subtilisin.
  • Once a variant of enhanced stability is identified by screening, the colony from which the variant is derived is isolated and the altered subtilisin is purified. Experiments can be performed on the purified enzyme to determine conditions of stability towards oxidation, thermal inactivation, denaturation temperature, kinetic parameters as well as other physical measurements. The altered gene can also be sequenced to determine the amino acid changes responsible for the enhanced stability. Using this procedure, variants with increased washing abilities have been isolated.
  • EXAMPLES
  • Site-Specific Mutation of the Subtilisin Gene Generates Mutants With Useful Chemical Characteristics
  • Materials And Methods
  • Bacterial Strains
  • B. subtilis 309 and 147 are variants of Bacillus lentus, deposited with the NCIB and accorded the accession numbers NCIB 10147 and NCIB 10309, and described in U.S. Pat. No. 3,723,250, issued Mar. 27, 1973, and fully incorporated herein by reference herein. B. subtilis DN 497 is described in U.S. application Ser. No. 039,298 filed Apr. 17, 1987, which is also fully incorporated herein by reference, and is an aro+ transformant of RUB 200 with chromosomal DNA from SL 438, a sporulation and protease deficient strain obtained from Dr. Kim Hardy of Biogen. E. coli MC 1000 rm+ (Casa-daban, M. J. and Cohen, S. N. (1980), J. Mol. Biol. 138:179-207, was made rm+ by conventional methods and is also described in U.S. application Ser. No. 039,298, supra.
  • Plasmids
  • pSX50 (described in U.S. application Ser. No. 039,298, supra) is a derivative of plasmid pDN 1050, comprising the promoter-operator P1O1the B. pumilus xyn B gene and the B. subtilis xyl R gene.
  • pSX65 (described in U.S. application Ser. No. 039,298, supra) is a derivative of plasmid pDN 1050, comprising the promoter-operator P2O2, the B. pumilus xyn B gene, and the B. subtilis xyl R gene.
  • pSX93, shown in FIG. 3A, is puCl3 (Vieira and Messing, 1982, Gene 19:259-268) comprising a 0.7 kb XbaI-Hind III fragment of the subtilisin 309 gene including the terminator inserted in a polylinker sequence.
  • pSX119 is pUC13 harboring an EcoRI-XbaI fragment of the subtilisin 309 gene inserted into the polylinker.
  • pSX62 (described in U.S. application Ser. No. 039,298, supra) is a derivative of pSX52 (ibid), which comprises a fusion gene between the calf prochymosin gene and the B. pumilus xyn B gene inserted into pSX50 (supra) . pSX62 was generated by inserting the E. coli rrn B terminator into pSX52 behind the prochymosin gene.
  • pSX92 was produced by cloning the subtilisin 309 gene into plasmid pSX62 (supra) cut at Cla I and Hind III and filled prior to the insertion of the fragments DraI-NheI and NheI-Hind III from the cloned subtilisin 309 gene.
  • Purification of Subtilisins
  • The procedure relates to a typical purification of a 10 liter scale fermentation of subtilisin 147, subtilisin 309 or mutants thereof.
  • Approximately 8 liters of fermentation broth were centrifuged at 5000 rpm for 35 minutes in 1 liter beakers. The supernatants were adjusted to pH 6.5 using 10% acetic acid and filtered on Seitz Supra S100 filter plates.
  • The filtrates were concentrated to approximately 400 ml using an Amicon CH2A UF unit equipped with an Amicon S1Y10 UF cartridge. The UF concentrate was centrifuged and filtered prior to adsorption on a Bacitracin affinity column at pH 7. The protease was eluted from the Bacitracin column using 25% 2-propanol and 1 M sodium chloride in a buffer solution with 0.01 M dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7.
  • The fractions with protease activity from the Bacitracin purification step were combined and applied to a 750 ml Sephadex G25 column (5 cm dia.) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.2 M boric acid and 0.002 M calcium chloride adjusted to pH 6.5.
  • Fractions with proteolytic activity from the Sephadex G25 column were combined and applied to a 150 ml CM Sepharose CL 6B cation exchange column (5 cm dia.) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.2 M boric acid and 0.002 M calcium chloride adjusted to pH 6.5.
  • The protease was eluted using a linear gradient of 0-0.1 M sodium chloride in 2 liters of the same buffer (0-0.2 M sodium chloride in case of subtilisin 147).
  • In a final purification step protease containing fractions from the CM Sepharose column were combined and concentrated in an Amicon ultrafiltration cell equipped with a GR81P membrane (from the Danish Sugar Factories Inc.).
  • Subtillisin 309 and Mutants
      • Met 222 to Ala
      • Gly 195 to Glu
      • Asn 218 to Ser
      • Arg 170 to Tyr
      • Gly 195 to Glu, Arg 170 to Tyr
      • Gly 195 to Glu, Met 222 to Ala
        were purified by this procedure.
  • Oligonucledotide Synthesis
  • All mismatch primers were synthesized on an Applied Biosystems 380 A DNA synthesizer and purified by polyacrylamide gel electrophoresis (PAGE).
  • Determination of Oxidation Stability
  • The purified enzyme is diluted to an enzyme content of approximately 0.1 mg/ml in 0.01 M dimethylglutaric acid pH 7 and in the same buffer with 0.01 M peracetic acid (pH 7).
  • Both sets of dilutions were heated to 50° C. for 20 minutes. Proteolytic activity was measured in the dilutions before and after the heat treatment.
  • Assay For Proteolytic Activity
  • OPA-Casein Method
  • Proteolytic activity was determined using casein as the substrate. One Casein Protease Unit (CPU) is defined as the amount of enzyme liberating 1 millimole of primary amino groups (determined by comparison with a serine standard) per minute under standard conditions, i.e. incubation for 30 minutes at 25° C. and pH 9.5.
  • A 2% (w/v) solution of casein (Hammarstein, supplied by Merck A. G., West Germany) was prepared with the Universal Buffer described by Britton and Robinson (Journ. Chem. Soc. 1931, p. 1451), adjusted to pH 9.5.
  • Two ml of substrate solution was preincubated in a water bath for 10 minutes at 25° C. One ml of enzyme solution containing about 0.2-0.3 CPU/ml of Britton-Robinson buffer (pH 9.5), was added. After 30 minutes of incubation at 25° C. the reaction was terminated by the addition of a stopping agent (5 ml of a solution containing trichloroacetic acid (17.9 g), sodium acetate (29.9 g), and acetic acid (19.8 g), filled up to 500 ml with deionized water). A blank was prepared in the same manner as the test solution, except that the stopping agent was added prior to the enzyme solution.
  • The reaction mixtures were kept for 20 minutes in the water bath, whereupon they were filtered through Whatman® 42 paper filters.
  • Primary amino groups were determined by their color development with o-phthaldialdehyde (OPA).
  • Disodium tetraborate decahydrate (7.62 g) and sodium dodecylsulfate (2.0 g) was dissolved in 150 ml of water. OPA (160 mg) dissolved in 4 ml of methanol was then added together with 400 microliters of beta-mercaptoethanol, whereafter the solution was made up to 200 ml with water.
  • To the OPA reagent (3 ml) was added 40 μl of the above-mentioned filtrates with mixing. The optical density (OD) at 340 nm was measured after about 5 minutes.
  • The OPA test was also performed with a serine standard containing 10 mg of serine in 100 ml of Britton-Robinson buffer (pH 9.5). The buffer was used as a blank.
  • The protease activity was calculated from the optical density measurements by means of the following formula:
    CPU/g of enzyme solution=[OD t −OD bC Ser ×Q]/[(OD Ser −OD BMW Ser ×t i]
    CPU/g of enzyme preparation=CPU/ml: b
    wherein ODt, ODb, ODSer and ODB are the optical density of the test solution, blank, serine standard, and buffer, respectively, CSer is the concentration of serine in mg/ml in the standard, MWSer is the molecular weight of serine, Q is the dilution factor (in this instance equal to 8) for the enzyme solution, and ti is the incubation time in minutes.
  • In the following Table V, results from the above assay are shown relative to the parent enzyme.
  • Assay for Washability
  • Test cloths (7 cm×7 cm, approximately 1 g) were produced by passing desized cotton (100% cotton, DS 71) Cloth through the vessel in a Mathis Washing and Drying Unit type TH (Werner Mathis A G, Zurich, Switzerland) containing spinach juice (produced from fresh spinach) and then through the pressure roll of the machine in order to remove excess spinach juice.
  • Finally the cloth was dried in a strong air stream at room temperature, stored at room temperature for 3 weeks, and subsequently kept at −18° C. prior to use.
  • The tests were performed in a Terg-O-tometer test washing machine (described in Jay C. Harris −Detergency Evaluation and Testing”, Interscience Publishers Ltd., 1954, p.60-61) isothermally for 10 minutes at 100 rpm. As detergent the following standard powder detergent was used:
    Nansa S 80 0.40 g/l
    AE, Berol 0 65 0.15 g/l
    Soap 0.15 g/l
    STPP 1.75 g/l
    Sodium silicate 0.40 g/l
    CMC 0.05 g/l
    EDTA 0.01 g/l
    Na2SO4 2.10 g/l
    Perborate 1.00 g/l
    TAED 0.10 g/l

    TAED=N,N,N′,N″-tetraacetyl-ethylene diamine; pH was adjusted with 4 N NAOH to 9.5. The water used was ca. 9° GH (German Hardness).
  • Tests were performed at enzyme concentrations of: 0, 0.05 CPU/1, and 0.1 CPU/l, and two independent sets of tests were performed for each of the mutants.
  • Eight cloths were used for each testing using one beaker (800 ml) of detergent. Of the cloths, four were clean and four were stained with spinach juice. Subsequent to the washing the cloths were flushed in running water for 25 minutes in a bucket.
  • The cloths were then air dryed overnight (protected against day light) and the remission, R, determined on a E1REPHO 2000 spectrophotometer from Datacolor S.A., Dietkikon, Switzerland at 460 nm.
  • As a measure of the washing ability differential remission, Delta R, was used, Delta R being equal to the remission after wash with enzyme added minus the remission after wash with no enzyme added.
  • Assay for Thermostability
  • The same procedure as above for washability was used for estimating the thermostability of the mutants produced, by performing the test at temperatures of 40° C. and 60° C., respectively.
  • Results
  • Cloning of the Subtilisin 309 and 147 Genes
  • Chromosomal DNA from the “309” strain was isolated by treating a cell suspension with Lysozyme for 30 minutes at 37° C., and then with SDS for 5 minutes at 60° C. Subsequently, the suspension was extracted with phenolchloroform (50:50), precipitated with ethanol, and the precipitate redissolved in TE. This solution was treated with RNase for 1 hour at 37° C.
  • Approximately 30 micrograms of the chromosomal DNA was partially digested with restriction enzyme Sau 3A (New England Biolabs) and fragments from about 1.5 kb to about 6.5 kb were isolated on DEAE cellulose paper from a 1% agarose gel (the subtilisin gene in other species is approximately 1.2 kb in length).
  • As outlined in FIG. 1 the fragments were annealed and ligated to BamHI cut plasmid pSX50 (described in U.S. patent application Ser. No. 039,298 filed Apr. 17, 1987, is which is hereby included for reference). The plasmids were then transformed into competent B. subtilis DN 497.
  • The cells were then spread on LB agar plates with 10 mM phosphate pH 7, 6 micrograms/ml chloramphenicol, and 0.2% xylose to induce the xyn-promoter in the plasmid. The plates also contained 1% skim milk so the protease producing transformants could be detected by the clear halo where the skim milk had been degraded.
  • Protease expressing clones were produced at a frequency of 10−4. Two clones were found that harbored plasmids carrying the gene for subtilisin 309, pSX86 and pSX88. The gene was then sequenced using the method of Maxam and Gilbert. The deduced nucleotide sequence of subtilisin 309 is presented in Table II.
    TABLE II
    THE SUBTILISIN
    309 GENE
    Signal
    ATGAAGAAACCG TTGGGGAAAATT GTCGCAAGCACC GCACTACTCATT TCTGTTGCTTTT
    1
                          PRO
    AGTTCATCGATC GCATCGGCTGCT GAAGAAGCAAAA GAAAAATATTTA ATTGGCTTTAAT
                           82
    GAGCAGGAAGCT GTCAGTGAGTTT GTAGAACAAGTA GAGGCAAATGAC GAGGTCGCCATT
    CTCTCTGAGGAA GAGGAAGTCGAA ATTGAATTGCTT CATGAATTTGAA ACGATTCCTGTT
    TTATCCGTTGAG TTAAGCCCAGAA GATGTGGACGCG CTTGAACTCGAT CCAGCGATTTCT
                                       Mature
    TATATTGAAGAG GATGCAGAAGTA ACGACAATGGCG CAATCAGTGCCA TGGGGAATTAGC
                                       334
    CGTGTGCAAGCC CCAGCTGCCCAT AACCGTGGATTG ACAGGTTCTGGT GTAAAAGTTGCT
    GTCCTCGATACA GGTATTTCCACT CATCCAGACTTA AATATTCGTGGT GGCGCTAGCTTT
    GTACCAGGGGAA CCATCCACTCAA GATGGGAATGGG CATGGCACGCAT GTGGCCGGGACG
    ATTGCTGCTTTA AACAATTCGATT GGCGTTCTTGGC GTAGCGCCGAGC GCGGAACTATAC
    GCTGTTAAAGTA TTAGGGGCGAGC GGTTCAGGTTCG GTCAGCTCGATT GCCCAAGGATTG
    GAATGGGCAGGG AACAATGGCATG CACGTTGCTAAT TTGAGTTTAGGA AGCCCTTCGCCA
                                              XbaI
    AGTGCCACACTT GAGCAAGCTGTT AATAGCGCGACT TCTAGAGGCGTT CTTGTTGTAGCG
    GCATCTGGGAAT TCAGGTGCAGGC TCAATCAGCTAT CCGGCCCGTTAT GCGAACGCAATG
    GCAGTCGGAGCT ACTGACCAAAAC AACAACCGCGCC AGCTTTTCACAG TATGGCGCAGGG
    CTTGACATTGTC GCACCAGGTGTA AACGTGCAGAGC ACATACCCAGGT TCAACGTATGCC
                     ClaI
    AGCTTAAACGGT ACATCGATGGCT ACTCCTCATGTT GCAGGTGCAGCA GCCCTTGTTAAA
    CAAAAGAACCCA TCTTGGTCCAAT GTACAAATCCGC AATCATCTAAAG AATACGGCAACG
    AGCTTAGGAAGC ACGAACTTGTAT GGAAGCGGACTT GTCAATGCAGAA GCGGCAACACGC
    Stop
    TAA
    1141
  • The same procedure as above was used for the cloning of the subtilisin 147 gene except that the DNA fragments were ligated into the plasmid pSXS6 (also described in U.S. application Ser. No. 039,298 supra), which as indicated in FIG. 2 instead of the xyn promoter harbors the xyl promoter. One clone was found harboring a plasmid, pSX94, carrying the gene for subtilisin 147. The sequence for this gene is shown in Table III below.
    TABLE III
    THE SUBTILISIN
    147 GENE
    Signal
    ATGAGACAAAGT CTAAAAGTTATG GTTTTGTCAACA GTGGCATTGCTT TTCATGGCAAAC
    1
                 Pro
    CCAGCAGCAGCA GGCGGGGAGAAA AAGGAATATTTG ATTGTCGTCGAA CCTGAAGAAGTT
                 73
    TCTGCTCAGAGT GTCGAAGAAAGT TATGATGTGGAC GTCATCCATGAA TTTGAAGAGATT
    CCAGTCATTCAT GCAGAACTAACT AAAAAAGAATTG AAAAAATTAAAG AAAGATCCGAAC
                                              Mature
    GTAAAAGCCATC GAAGAGAATGCA GAAGTAACCATC AGTCAAACGGTT CCTTGGGGAATT
                                              280
    TCATTCATTAAT ACGCAGCAAGCG CACAACCGCGGT ATTTTTGGTAAC GGTGCTCGAGTC
    GCTGTCCTTGAT ACAGGAATTGCT TCACACCCAGAC TTACGAATTGCA GGGGGAGCGAGC
    TTTATTTCAAGC GAGCCTTCCTAT CATGACAATAAC GGACACGGAACT CACGTGGCTGGT
    ACAATCGCTGCG TTAAACAATTCA ATCGGTGTGCTT GGTGTACGACCA TCGGCTGACTTG
    TACGCTCTCAAA GTTCTTGATCGG AATGGAAGTGGT TCGCTTGCTTCT GTAGCTCAAGGA
    ATCGAATGGGCA ATTAACAACAAC ATGCACATTATT AATATGAGCCTT GGAAGCACGAGT
    GGTTCTAGCACG TTAGAGTTAGCT GTCAACCGAGCA AACAATGCTGGT ATTCTCTTAGTA
    GGGGCAGCAGGT AATACGGGTAGA CAAGGAGTTAAC TATCCTGCTAGA TACTCTGGTGTT
    ATGGCGGTTGCA GCAGTTGATCAA AATGGTCAACGC GCAAGCTTCTCT ACGTATGGCCCA
    GAAATTGAAATT TCTGCACCTGGT GTCAACGTAAAC AGCACGTACACA GGCAATCGTTAC
    GTATCGCTTTCT GGAACATCTATG GCAACACCACAC GTTGCTGGAGTT GCTGCACTTGTG
    AAGAGCAGATAT CCTAGCTATACG AACAACCAAATT CGCCAGCGTATT AATCAAACAGCA
    ACGTATCTAGGT TCTCCTAGCCTT TATGGCAATGGA TTAGTACATGCT GGACGTGCAACA
      Stop
    CAATAA
      1084
  • Generation of Site-Specific Mutations of the Subtilisin 309 Gene
  • Site specific mutations were performed by the method of Morinaga et al. (Biotechnology, supra). The following oligonucleotides were used for introducing the mutations:
  • a) Gly-195-Glu:
  • A 27-mer mismatch primer, Nor-237, which also generates a novel SacI restriction site
    5′ CACAGTATGGGCGCAGGGCTTGACATTGTCGCACCA
    GG 3′
    NOR-237 5′ GTATGGCGCAGAGCTCGACATTTGTCGC 3′
                  SacI

    b) Gly-195-Asp:
  • A 23-mer mismatch primer, NOR-323, which also generates a novel BglII site
                   AT
    5′ CACAGTATGGGCGCAGGGCTTGACATTGTC 3′
    3′ CATACCGCGTCTAGAACTGTAAC 5′
                BglII

    c) Met-222-Cys:
  • A 24-mer mismatch primer, NOR-236
                ClaI
    5′ AGCTTAA{overscore (ACGGTACA)}TCGATGGCTACTCCTCATGTT 3′
    NOR-236 5′ ACGGTACATCGTGCGCTACTCCTC 3′

    d) Met-222-Ala:
  • A 22-mer mismatch primer, NOR-235
                 ClaI
    5′ AGCTTAAACGGTACATCGATGGCTACTCCTCATGTT 3′
    NOR-235 5′ CGGTACATCGGCGGCTACTCCT 3′

    Both of these primers destroy the unique ClaI site.
    e) Ser-153-Ala:
  • An 18-mer mismatch primer, NOR-324, which also generates a novel PvuII site
                   G
    5′ CTTGTAGCGGCATCTGGGAATTCAGGT 3′
    NOR-324 3′ CATCGCCGTCGACCCTTA 5′
              PvuII

    f) Asn-218-Ser:
  • A 23-mer mismatch primer, NOR-325, which also generates a novel MspI site
                   TC
    5′ TATGCCAGCTTAAACGGTACATCGATG 3′
    NOR-324 3′ TACGGTCGAATAGGCCATGTAGC 5′
                   MspI

    g) Thr-71-Asp:
  • A 23-mer mismatch primer, NOR-483,
                  GAC
    5′ TGTGGCCCGGGACGATTGCTGCTT 3′
    NOR-483 3′ ACACCGGCCCCCTGTAACGACGAA 5′

    h) Met-222-Cys and Gly-219-Cys:
  • A 32-mer mismatch, NOR-484,
                 T        TGT
    5′ CAGCTTAAACGGTACATCGATGGCTACTCCTC 3′
                 219      222
    NOR-484 3′ GTCGAATTTGACATGTAGCACACGATGAGGAG 5′

    i+j) Gly-195-Glu and Met-222-Ala or Met-222-Cys:
  • For these double mutants combinations of NOR-237 and NOR-235 or NOR-236 were performed by joining the single mutant DNA-fragments.
  • k) Ser-153-Ala and Asn-218-Ser:
  • A combination of NOR-324 and NOR-325 was performed in analogy with the above.
  • Gapped duplex mutagenesis was performed using the plasmid pSX93 as template. pSX93 is shown in FIGS. 3A and 3B, and is pUC13 (Vieira, J. and Messing, J., 1982, Gene 19: 259-268) harboring an 0.7 kb XbaI-HindIII fragment of the subtilisin 309 gene including the terminator inserted in the polylinker. The terminator and the HindIII site are not shown in Table II.
  • For the introduction of mutations in the N-terminal part of the enzyme the plasmid pSX119 was used. pSX119 is pUC13 harboring an EcoRI-XbaI fragment of the subtilisin 309 gene inserted into the polylinker. The templates pSX93 and pSX119 thus cover the whole of the subtilisin 309 gene.
  • The mutations a), b), and e) were performed by cutting pSX93 with XbaI and ClaI as indicated in FIG. 3A; c), d), f), and h) were performed by cutting pSX93 with XbaI and HindIII as indicated in FIG. 3B.
  • Mutation g) was performed correspondingly in pSX119 by cutting with EcoRI and XbaI.
  • The double mutants i) and j) were produced by cutting the 0.7 kb Xba-HindIII fragment from a) partially with HgiAI (HgiAI also cuts in SacI, which was introduced by the mutation). This 180 bp XbaI-HgiAI fragment and the 0.5 kb HgiAI fragment from the c) and d) mutants, respectively, were ligated to the large HindIII-XbaI fragment from pSX93.
  • The double mutant k) was produced as above by combining mutants e) and f).
  • Subsequent to annealing, filling and ligation the mixture was used to transform E. coli MC 1000 rm+. Mutants among the transformants were screened for by colony hybridization as described in Vlasuk et al., 1983, J. Biol. Chem., 258:7141-7148 and in Vlasuk, G. P. and Inouye, S., p. 292-303 in ‘Experimental Manipulation of Gene Expression’ Inouye, M. (ed.) Academic Press, New York. The mutations were confirmed by DNA sequencing.
  • Expression of Mutant Subtilisins
  • Subsequent to a sequence confirmation of the correct mutation the mutated DNA fragments were inserted into plasmid pSX92, which was used for producing the mutants.
  • Plasmid pSX92 is shown in FIG. 4 and was produced by cloning the subtilisin 309 gene into plasmid pSX62 cut at ClaI, filled in with the Klenow fragment of DNA polymerase I, and cut with HindIII prior to the insertion of the fragments DraI-NheI and NheI-HindIII from the cloned subtilisin 309 gene.
  • To express the mutants the mutated fragments (XbaI-ClaI, XbaI-HindIII, or EcoRI-XbaI) were excised from the appropriate mutation plasmid pSX93 or pSX119, respectively, and inserted into pSX92.
  • The mutated pSX92 was then used to transform B. subtilis strain DN497, which was then grown in the same medium and under the same conditions as used for the cloning of the parent gene.
  • After appropriate growth the mutated enzymes were recovered and purified.
  • Oxidation Stability of Mutant Subtilisins
  • The mutants a) and d) were tested for their oxidation stability in 0.01 M peracetic acid after 20 minutes at 50° C. and pH 7. The parent strain NCIB 10309 protease was used as reference.
  • The results are indicated in Table IV below, which presents the residual proteolytic activity in the heat treated samples relative to samples untreated by oxidant or heat.
    TABLE IV
    Oxidation Stability Towards Peracetic Acid
    Residual Activity after
    20 min. at 50° C.
    Enzyme without oxidant with oxidant
    Subtilisin
    309 89% 48%
    mutant a 83% 45%
    mutant d 92% 93%
  • It is concluded that mutant d (Met 222 to Ala) exhibits superior oxidation stability realtive to the parent enzyme and mutant a.
  • All the mutants except g) and h) have also been tested qualitatively in 100-500 ppm hypochlorite at room temperature and 35° C., pH 6.5 and 9.0, for from 15 minutes to 2 hours.
  • These tests showed that mutants c), d), i), and j) (all Met-222) could resist 3-5 times more hypochlorite than the other mutants.
  • When tested in a liquid detergent of the usual built type it was found that mutant f) exhibited superior stability compared to both the other mutants and the “parent” enzyme.
  • Proteolytic Activity Of Mutant Subtilisins
  • The proteolytic activity of various mutants was tested against casein as protein substrate, according to methods detailed supra. The results are presented in Table V.
  • From the table it is seen that mutant a) exhibits enhanced activity compared to the parent. It is also seen that the Met-222 mutants have lower activity than the parent, but due to their improved oxidation stability their application in detergent compositions containing oxidants is not precluded.
    TABLE V
    Proteolytic Activity of Mutant Subtilisins
    Mutant Relative Activity
    None 100
    a) 120
    b) 100
    c) 30
    d) 20
    e) 100
    f) 100
    i) 20
    j) 30
  • Washability of Mutant Subtilisins
  • The washability of various mutants was tested against spinach juice according to methods detailed supra. The results are presented in Table VI.
  • From the table it is seen that all of the tested mutants exhibited an improved washing ability compared to the parent enzyme, and that mutants c), d), i), and j) are markedly superior.
    TABLE VI
    Washability of Mutant
    Delta R
    Mutant Concentration (CPU/l)
    0.05 0.1
    none 14.4 20.4
    a) 18.8 21.5
    b) 16.9 19.7
    c) 21.8 23.8
    d 22.2 23.4
    e) 15.4 21.8
    f) 16.6 19.3
    i) 21.6 22.1
    j) 20.6 22.6

    95% confidence interval: +/−0.9
  • Thermostability Of Mutant Subtilisins
  • The thermostability of mutant f) was tested against the wild type enzyme by using the washability test at 40° C. and 60° C., respectively. The results are shown in Table VII.
  • From the table it is seen that mutant f) at 60° C shows a much improved washability compared to the wild type enzyme, whereas at 40° C. the washability of mutant f) is only slightly better than the wild type enzyme.
    TABLE VII
    Washability at Different Temperatures
    Delta R
    Mutant Concentration (CPU/l)
    0.05 0.1
    none (40° C.) 14.4 20.4
    f) (40° C.) 16.6 19.3
    none (60° C.) 15.1 24.9
    f) (60° C.) 30.4 31.3

    95% confidence interval +/−0.9 (40° C.) and +/−0.7 (60° C.)

    Discussion
  • Subtilisin genes were cloned from the 147 and 309 variants of the bacterium Bacillus lentus, and the cloned genes were sequenced. By comparing the deduced amino acid sequences of subtilisins 147 and 309 one with the other and with sequences of other subtilisins, sites which, upon mutation, might alter the physical properties of the parent enzyme were identified. Site-directed mutagenesis was used to generate mutations at several of these sites in the subtilisin 309 gene. The resulting mutant enzymes were then expressed in a Bacillus strain, and tested against various physical and chemical parameters. Several of the mutants were shown to have improved stability to oxidation, increased proteolytic ability, or improved washability when compared with subtilisin 309. These mutants exhibit properties desirable in enzymes comprised in detergent compositions.

Claims (43)

1. A modified subtilisin 309, comprising a substitution at one or more of the following positions:
53, 67, 124, 128, 131, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 218, 219, and 222
wherein each position corresponds to the position of the amino acid sequence of the mature subtilisin BPN′ as depicted in Table I(c):
2. The modified subtilisin of claim 1, which has augmented protease activity or improved washing ability.
3. The modified subtilisin of claim 1, comprising a substitution at position 53.
4. The modified subtilisin of claim 1, comprising a substitution at position 67.
5. The modified subtilisin of claim 1, wherein the substitution is with aspartic acid or glutamic acid.
6. The modified subtilisin of claim 1, comprising a substitution at position 124.
7. The modified subtilisin of claim 1, comprising a substitution at position 128.
8. The modified subtilisin of claim 1, comprising a substitution at position 131.
9. The modified subtilisin of claim 1, comprising a substitution at position 154.
10. The modified subtilisin of claim 1, comprising a substitution at position 155.
11. The modified subtilisin of claim 1, comprising a substitution at position 156.
12. The modified subtilisin of claim 1, comprising a substitution at position 157.
13. The modified subtilisin of claim 1, comprising a substitution at position 158.
14. The modified subtilisin of claim 1, comprising a substitution at position 159.
15. The modified subtilisin of claim 1, comprising a substitution at position 160.
16. The modified subtilisin of claim 1, comprising a substitution at position 161.
17. The modified subtilisin of claim 1, comprising a substitution at position 162.
18. The modified subtilisin of claim 1, comprising a substitution at position 163.
19. The modified subtilisin of claim 1, comprising a substitution at position 164.
20. The modified subtilisin of claim 1, comprising a substitution at position 165.
21. The modified subtilisin of claim 1, comprising a substitution at position 166.
22. The modified subtilisin of claim 1, comprising a substitution at position 168.
23. The modified subtilisin of claim 22, wherein the substitution is with alanine.
24. The modified subtilisin of claim 1, comprising a substitution at position 169.
25. The modified subtilisin of claim 1, comprising a substitution at position 170.
26. The modified subtilisin of claim 25, wherein the substitution is with tyrosine.
27. The modified subtilisin of claim 1, comprising a substitution at position 172.
28. The modified subtilisin of claim 1, comprising a substitution at position 218.
29. The modified subtilisin of claim 28, wherein the substitution is with serine.
30. The modified subtilisin of claim 1, comprising a substitution at position 219.
31. The modified subtilisin of claim 30, wherein the substitution is with methionine.
32. The modified subtilisin of claim 1, comprising a substitution at position 222.
33. The modified subtilisin of claim 32, wherein the substitution is with cysteine or alanine.
34. A detergent composition comprising a modified subtilisin of claim 1 and a surfactant.
35. A modified subtilisin 309, comprising an insertion at one or more of the following positions:
36, 56, 159, 164, 165 and 166
wherein each position corresponds to the position of the amino acid sequence of the mature subtilisin BPN′ as depicted in Table I(c).
36. The modified subtilisin of claim 35, which has augmented protease activity or improved washing ability.
37. The modified subtilisin of claim 35, comprising an insertion at position 6.
38. The modified subtilisin of claim 35, comprising an insertion at position 56.
39. The modified subtilisin of claim 35, comprising an insertion at position 159.
40. The modified subtilisin of claim 35, comprising an insertion at position 164.
41. The modified subtilisin of claim 35, comprising an insertion at position 165.
42. The modified subtilisin of claim 35, comprising an insertion at position 166.
43. A detergent composition comprising a modified subtilisin of claim 35 and a surfactant.
US10/896,177 1988-01-07 2004-07-21 Useful mutations of bacterial alkaline protease Abandoned US20050003986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/896,177 US20050003986A1 (en) 1988-01-07 2004-07-21 Useful mutations of bacterial alkaline protease

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DK006488A DK6488D0 (en) 1988-01-07 1988-01-07 ENZYMES
DK64/88 1988-01-07
US29424189A 1989-01-06 1989-01-06
US08/486,846 US6506589B1 (en) 1988-01-07 1995-06-07 Useful mutations of bacterial alkaline protease
US10/306,089 US6808913B2 (en) 1988-01-07 2002-11-27 Useful mutations of bacterial alkaline protease
US10/896,177 US20050003986A1 (en) 1988-01-07 2004-07-21 Useful mutations of bacterial alkaline protease

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/306,089 Continuation US6808913B2 (en) 1988-01-07 2002-11-27 Useful mutations of bacterial alkaline protease

Publications (1)

Publication Number Publication Date
US20050003986A1 true US20050003986A1 (en) 2005-01-06

Family

ID=8089323

Family Applications (6)

Application Number Title Priority Date Filing Date
US08/486,415 Expired - Lifetime US5741694A (en) 1988-01-07 1995-06-07 Useful mutations of bacterial alkaline protease
US08/486,846 Expired - Lifetime US6506589B1 (en) 1988-01-07 1995-06-07 Useful mutations of bacterial alkaline protease
US10/306,089 Expired - Fee Related US6808913B2 (en) 1988-01-07 2002-11-27 Useful mutations of bacterial alkaline protease
US10/310,730 Expired - Fee Related US6835821B2 (en) 1988-01-07 2002-12-05 Useful mutations of bacterial alkaline protease
US10/313,853 Expired - Fee Related US6908991B2 (en) 1988-01-07 2002-12-06 Useful mutations of bacterial alkaline protease
US10/896,177 Abandoned US20050003986A1 (en) 1988-01-07 2004-07-21 Useful mutations of bacterial alkaline protease

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US08/486,415 Expired - Lifetime US5741694A (en) 1988-01-07 1995-06-07 Useful mutations of bacterial alkaline protease
US08/486,846 Expired - Lifetime US6506589B1 (en) 1988-01-07 1995-06-07 Useful mutations of bacterial alkaline protease
US10/306,089 Expired - Fee Related US6808913B2 (en) 1988-01-07 2002-11-27 Useful mutations of bacterial alkaline protease
US10/310,730 Expired - Fee Related US6835821B2 (en) 1988-01-07 2002-12-05 Useful mutations of bacterial alkaline protease
US10/313,853 Expired - Fee Related US6908991B2 (en) 1988-01-07 2002-12-06 Useful mutations of bacterial alkaline protease

Country Status (7)

Country Link
US (6) US5741694A (en)
EP (4) EP0675196A3 (en)
JP (3) JPH0675504B2 (en)
AT (1) ATE136329T1 (en)
DE (1) DE68926163T2 (en)
DK (3) DK6488D0 (en)
WO (1) WO1989006279A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248273A1 (en) * 2000-10-13 2004-12-09 Novozymes A/S Subtilase variants
US20070270574A1 (en) * 2000-04-03 2007-11-22 Novozymes A/S Subtilisin variants
WO2013138288A1 (en) 2012-03-16 2013-09-19 Monosol, Llc. Water soluble compositions incorporating enzymes, and method of making same
WO2013158364A1 (en) 2012-04-16 2013-10-24 Monosol, Llc Powdered pouch and method of making same
US11104497B2 (en) 2014-10-03 2021-08-31 Monosol, Llc Degradable materials and packaging made from same

Families Citing this family (678)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185258A (en) 1984-05-29 1993-02-09 Genencor International, Inc. Subtilisin mutants
DK6488D0 (en) * 1988-01-07 1988-01-07 Novo Industri As ENZYMES
US6287841B1 (en) 1988-02-11 2001-09-11 Genencor International, Inc. High alkaline serine protease
US5324653A (en) * 1988-02-11 1994-06-28 Gist-Brocades N.V. Recombinant genetic means for the production of serine protease muteins
PT89702B (en) * 1988-02-11 1994-04-29 Gist Brocades Nv PROCESS FOR PREPARING NEW PROTEOLITIC ENZYMES AND DETERGENTS THAT CONTAINS THEM
US5116741A (en) * 1988-04-12 1992-05-26 Genex Corporation Biosynthetic uses of thermostable proteases
BR9006827A (en) * 1989-06-26 1991-08-06 Unilever Nv ENZYMATIC DETERGENT COMPOSITES
US5665587A (en) * 1989-06-26 1997-09-09 Novo Nordisk A/S Modified subtilisins and detergent compositions containing same
DK316989D0 (en) * 1989-06-26 1989-06-26 Novo Nordisk As ENZYMES
BR9006832A (en) * 1989-06-26 1991-08-06 Unilever Nv ENZYMATIC DETERGENT COMPOSITION
US5658871A (en) * 1989-07-07 1997-08-19 Lever Brothers Company, Division Of Conopco, Inc. Microbial lipase muteins and detergent compositions comprising same
DK0493398T3 (en) * 1989-08-25 2000-05-22 Henkel Research Corp Alkaline, proteolytic enzyme and process for its preparation
DE4023458A1 (en) * 1989-08-31 1991-03-07 Kali Chemie Ag NEW HIGH ALKALINE PROTEASES
US5352603A (en) * 1989-08-31 1994-10-04 Kali-Chemie Ag Highly alkaline proteases
US6271012B1 (en) * 1989-10-11 2001-08-07 Genencor International, Inc. Protease muteins and their use in detergents
US5541062A (en) * 1990-02-23 1996-07-30 Arch Development Corporation Methods and compositions for preparing protein processing enzymes
DK97190D0 (en) * 1990-04-19 1990-04-19 Novo Nordisk As OXIDATION STABLE DETERGENT ENZYMER
US5733473A (en) * 1990-11-14 1998-03-31 The Procter & Gamble Company Liquid detergent composition containing lipase and protease
DK271490D0 (en) * 1990-11-14 1990-11-14 Novo Nordisk As detergent composition
US5766898A (en) * 1990-12-05 1998-06-16 Novo Nordisk A/S Proteins with changed epitopes and methods for the production thereof
US6967080B1 (en) * 1990-12-05 2005-11-22 Novozymes A/S Proteins with changed epitopes and methods for the production thereof
EP0561907B1 (en) * 1990-12-05 1998-09-02 Novo Nordisk A/S Proteins with changed epitopes and methods for the production thereof
US5482849A (en) * 1990-12-21 1996-01-09 Novo Nordisk A/S Subtilisin mutants
ATE159757T1 (en) * 1990-12-21 1997-11-15 Novo Nordisk As ENZYME MUTANTS WITH SMALL MOLECULAR CHARGE VARIATION OVER A PH RANGE
GB9027836D0 (en) * 1990-12-21 1991-02-13 Unilever Plc Enzymes and enzymatic detergent compositions
US5340735A (en) * 1991-05-29 1994-08-23 Cognis, Inc. Bacillus lentus alkaline protease variants with increased stability
US5646028A (en) * 1991-06-18 1997-07-08 The Clorox Company Alkaline serine protease streptomyces griseus var. alkaliphus having enhanced stability against urea or guanidine
EP0525610A3 (en) * 1991-07-27 1993-03-24 Solvay Enzymes Gmbh & Co. Kg Process for increasing the stability of enzymes and stabilized enzymes
US5275945A (en) * 1991-10-08 1994-01-04 Vista Chemical Company Alkaline proteases stable in heavy-duty detergent liquids
SK43094A3 (en) * 1991-10-16 1994-09-07 Unilever Nv Aqueous enzymatic detergent compositions
US5371198A (en) * 1991-12-16 1994-12-06 Novo Nordisk A/S Method for protection of proteolysis-susceptible protein during protein production in a fluid medium
US5623059A (en) * 1992-03-09 1997-04-22 Novo Nordisk A/S Method for protection of proteolysis-susceptible protein during protein production in a fluid medium
DE69333463D1 (en) * 1992-05-18 2004-05-06 Genencor Int Bacteria producing alkaline proteases, and process for producing these alkaline proteases
KR950702633A (en) * 1992-07-17 1995-07-29 한스 발터 라벤 HIGH ALKALINE SERINE PROTEASES
JPH0763377B2 (en) * 1992-09-03 1995-07-12 大阪府 Heat-resistant alkaline protease gene, recombinant plasmid pABT17, Bacillus subtilis plasmid vector pABTts14 and transformant of the Bacillus subtilis plasmid vector pABTts14
DE4231726A1 (en) * 1992-09-23 1994-03-24 Cognis Bio Umwelt Mutated subtilisin-like serine proteases
GB9220669D0 (en) * 1992-09-30 1992-11-11 Unilever Plc Detergent composition
US6440717B1 (en) 1993-09-15 2002-08-27 The Procter & Gamble Company BPN′ variants having decreased adsorption and increased hydrolysis
US6436690B1 (en) 1993-09-15 2002-08-20 The Procter & Gamble Company BPN′ variants having decreased adsorption and increased hydrolysis wherein one or more loop regions are substituted
ES2287931T3 (en) * 1993-10-14 2007-12-16 THE PROCTER & GAMBLE COMPANY CLEANING COMPOSITIONS CONTAINING PROTEASE.
MA23346A1 (en) 1993-10-14 1995-04-01 Genencor Int VARIANTS OF THE SUB-USE
US5677272A (en) * 1993-10-14 1997-10-14 The Procter & Gamble Company Bleaching compositions comprising protease enzymes
US6406855B1 (en) 1994-02-17 2002-06-18 Maxygen, Inc. Methods and compositions for polypeptide engineering
US5837458A (en) * 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US6335160B1 (en) 1995-02-17 2002-01-01 Maxygen, Inc. Methods and compositions for polypeptide engineering
US6599730B1 (en) 1994-05-02 2003-07-29 Procter & Gamble Company Subtilisin 309 variants having decreased adsorption and increased hydrolysis
AU703378B2 (en) * 1994-06-23 1999-03-25 Unilever Plc Dishwashing compositions
US6066611A (en) * 1994-10-13 2000-05-23 The Procter & Gamble Company Bleaching compositions comprising protease enzymes
US6455295B1 (en) 1995-03-08 2002-09-24 The Procter & Gamble Company Subtilisin Carlsberg variants having decreased adsorption and increased hydrolysis
IL117350A0 (en) 1995-03-09 1996-07-23 Procter & Gamble Proteinase k variants having decreased adsorption and increased hydrolysis
US6475765B1 (en) 1995-03-09 2002-11-05 Procter & Gamble Company Subtilisin DY variants having decreased adsorption and increased hydrolysis
BR9608149B1 (en) * 1995-05-05 2012-01-24 processes for effecting mutation in DNA encoding a subtilase enzyme or its pre- or pre-enzyme and for the manufacture of a mutant subtilase enzyme.
US6682924B1 (en) * 1995-05-05 2004-01-27 Novozymes A/S Protease variants and compositions
US5837517A (en) 1995-05-05 1998-11-17 Novo Nordisk A/S Protease variants and compositions
US20120165241A1 (en) * 1995-05-05 2012-06-28 Unilever Plc Subtilase Variants
US6936289B2 (en) 1995-06-07 2005-08-30 Danisco A/S Method of improving the properties of a flour dough, a flour dough improving composition and improved food products
AU4773197A (en) 1996-11-04 1998-05-29 Novo Nordisk A/S Subtilase variants and compositions
KR100561826B1 (en) 1996-11-04 2006-03-16 노보자임스 에이/에스 Subtilase variants and compositions
US6077662A (en) * 1996-11-27 2000-06-20 Emory University Virus-like particles, methods and immunogenic compositions
ATE220502T1 (en) * 1997-04-09 2002-08-15 Danisco IMPROVED METHOD FOR PRODUCING FLOUR PASTA AND PRODUCTS MADE FROM SUCH PASTA USING GLYCERINE OXIDASE
US6140475A (en) 1997-04-11 2000-10-31 Altus Biologics Inc. Controlled dissolution crosslinked protein crystals
KR20010023468A (en) 1997-08-29 2001-03-26 한센 핀 베네드, 안네 제헤르, 웨이콥 마리안느 Protease variants and compositions
ATE385254T1 (en) 1997-08-29 2008-02-15 Novozymes As PROTEASE VARIANTS AND COMPOSITIONS
EP0913458B1 (en) * 1997-10-22 2004-06-16 The Procter & Gamble Company Liquid hard-surface cleaning compositions
AR016969A1 (en) * 1997-10-23 2001-08-01 Procter & Gamble PROTEASE VARIANTE, ADN, EXPRESSION VECTOR, GUEST MICROORGANISM, CLEANING COMPOSITION, ANIMAL FOOD AND COMPOSITION TO TREAT A TEXTILE
ES2367505T3 (en) 1997-10-23 2011-11-04 Danisco Us Inc. PROTEASE VARIANTS WITH MULTIPLE SUBSTITUTIONS WITH ALTERED NET LOAD FOR USE IN DETERGENTS.
US6780629B2 (en) 1997-11-21 2004-08-24 Novozymes A/S Subtilase enzymes
US6773907B2 (en) 1997-11-21 2004-08-10 Peter Kamp Hansen Subtilase enzymes
EP1032655B1 (en) 1997-11-21 2005-06-29 Novozymes A/S Protease variants and compositions
US6835550B1 (en) 1998-04-15 2004-12-28 Genencor International, Inc. Mutant proteins having lower allergenic response in humans and methods for constructing, identifying and producing such proteins
US6936249B1 (en) 1998-04-15 2005-08-30 Genencor International, Inc. Proteins producing an altered immunogenic response and methods of making and using the same
US6642011B2 (en) 1998-04-15 2003-11-04 Genencor International, Inc. Human protease and use of such protease for pharmaceutical applications and for reducing the allergenicity of non-human proteins
WO2000005396A1 (en) * 1998-07-21 2000-02-03 Danisco A/S Foodstuff
US6461849B1 (en) * 1998-10-13 2002-10-08 Novozymes, A/S Modified polypeptide
US6831053B1 (en) 1998-10-23 2004-12-14 The Procter & Gamble Company Bleaching compositions comprising multiply-substituted protease variants
US6376450B1 (en) 1998-10-23 2002-04-23 Chanchal Kumar Ghosh Cleaning compositions containing multiply-substituted protease variants
JP4723087B2 (en) 1998-11-27 2011-07-13 ノボザイムス アクティーゼルスカブ Lipolytic enzyme mutant
CA2352534A1 (en) 1998-12-08 2000-06-15 Children's Hospital And Regional Medical Center Polymorphic loci that differentiate escherichia coli 0157:h7 from other strains
ATE504651T1 (en) 1998-12-18 2011-04-15 Novozymes As SUBTILASE ENZYMES OF THE I-S1 AND I-S2 SUBGROUPS WITH AN ADDITIONAL AMINO ACID RESIDUE IN AN ACTIVE LOOP REGION
JP4745503B2 (en) 1999-03-31 2011-08-10 ノボザイムス アクティーゼルスカブ Polypeptides having alkaline α-amylase activity and nucleic acids encoding them
AU3419200A (en) 1999-03-31 2000-10-23 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
KR20000065867A (en) 1999-04-09 2000-11-15 손경식 Alkaline Protease Vapk Useful as Washing Detergent, vapk Gene, Recombinant Expression Vector, and Transformed Microorganism
EP1183340B1 (en) 1999-05-20 2008-09-03 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 126 and 127
DE60040284D1 (en) 1999-05-20 2008-10-30 Novozymes As SUBTILASE ENZYMES OF I-S1 AND I-S2 SUB-GROUPS WITH AT LEAST ONE ADDITIONAL AMINO ACID BETWEEN POSITIONS 129 AND 130
WO2000071689A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 127 and 128
ATE408676T1 (en) 1999-05-20 2008-10-15 Novozymes As SUBTILASE ENZYMES OF THE I-S1 AND I-S2 SUBGROUPS WITH AT LEAST ONE ADDITIONAL AMINO ACID BETWEEN POSITIONS 132 AND 133
DE60040287D1 (en) 1999-05-20 2008-10-30 Novozymes As SUBTILASE ENZYMS OF I-S1 AND I-S2 SUB-GROUPS WITH AT LEAST ONE ADDITIONAL AMINO ACID BETWEEN POSITIONS 128 AND 129
WO2000071691A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 125 and 126
EP1210415A2 (en) * 1999-07-22 2002-06-05 The Procter & Gamble Company Subtilisin protease variants having amino acid substitutions in defined epitope regions
EP1214426A2 (en) 1999-08-31 2002-06-19 Novozymes A/S Novel proteases and variants thereof
US6727085B2 (en) 1999-12-15 2004-04-27 Fanoe Tina Sejersgaard Subtilase variants having an improved wash performance on egg stains
US6777218B1 (en) 2000-03-14 2004-08-17 Novozymes A/S Subtilase enzymes having an improved wash performance on egg stains
US20020192792A1 (en) * 2000-04-28 2002-12-19 Palle Schneider Laccase mutants
CA2419896C (en) 2000-08-21 2014-12-09 Novozymes A/S Subtilase enzymes
US6541234B1 (en) * 2000-09-11 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
US6541235B1 (en) * 2000-09-29 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
EP1975229A3 (en) 2000-10-13 2009-03-18 Novozymes A/S Alpha-amylase variant with altered properties
CN100497617C (en) 2000-10-13 2009-06-10 诺维信公司 Subtilase variants
US6673580B2 (en) 2000-10-27 2004-01-06 Genentech, Inc. Identification and modification of immunodominant epitopes in polypeptides
EP1201753B1 (en) * 2000-10-31 2008-04-23 Boehringer Mannheim Gmbh Methods for the analysis of non-proteinaceous components using a protease from a bacillus strain
AU758744B2 (en) * 2000-10-31 2003-03-27 F. Hoffmann-La Roche Ag Methods for the analysis of non-proteinaceous components using a protease from a bacillus strain
EP1201752A1 (en) * 2000-10-31 2002-05-02 Roche Diagnostics GmbH Methods for the analysis of non-proteinaceous components using a protease from a Bacillus strain
US7303907B2 (en) 2001-01-08 2007-12-04 Health Protection Agency Degradation and detection of TSE infectivity
RU2311458C2 (en) 2001-03-23 2007-11-27 Джененкор Интернэшнл, Инк. Proteins causing alternated immunogenic response and methods for their preparing and using
DE10121463A1 (en) * 2001-05-02 2003-02-27 Henkel Kgaa New alkaline protease variants and washing and cleaning agents containing these new alkaline protease variants
EP3000881A3 (en) 2001-05-15 2016-07-20 Novozymes A/S Alpha-amylase variant with altered properties
BR0209154A (en) 2001-05-18 2004-07-20 Danisco Process of preparing a dough with an enzyme
DK2298868T3 (en) 2001-06-26 2015-04-20 Novozymes As Polypeptides with cellobiohydrolase I activity and the same coding polynucleotides
DK200101090A (en) * 2001-07-12 2001-08-16 Novozymes As Subtilase variants
JP2005535284A (en) 2001-12-31 2005-11-24 ジェネンコー・インターナショナル・インク Protease that produces a change in immune response, and method for producing and using the same
AU2003210552A1 (en) * 2002-01-16 2003-09-02 Genencor International, Inc. Multiply-substituted protease variants
EP1530631B1 (en) * 2002-01-16 2013-08-07 Genencor International, Inc. Multiply-substituted protease variants
CN1703511A (en) 2002-02-26 2005-11-30 金克克国际有限公司 Subtilisin carlsberg proteins with reduced immunogenicity
JP2005520546A (en) 2002-03-27 2005-07-14 ノボザイムス アクティーゼルスカブ Granule with filament coating
DK1495128T3 (en) 2002-03-29 2014-08-11 Genencor Int Enhanced protein expression in Bacillus
DK1520012T3 (en) 2002-07-01 2009-04-27 Novozymes As Monopropylene glycol added to fermentation medium
JP4694966B2 (en) 2002-07-30 2011-06-08 ジェネンコー・インターナショナル・インク Formulations that reduce aerosol production
EP1549745B1 (en) 2002-10-01 2011-01-05 Novozymes A/S Family gh 61 polypeptides
SG188669A1 (en) * 2002-10-02 2013-04-30 Catalyst Biosciences Inc Method of generating and screening for proteases with altered specificity
US7888093B2 (en) * 2002-11-06 2011-02-15 Novozymes A/S Subtilase variants
TWI319007B (en) 2002-11-06 2010-01-01 Novozymes As Subtilase variants
BRPI0317124B1 (en) 2002-12-11 2016-05-17 Novozymes As detergent composition and processes for washing a fabric and a hard surface
WO2004056981A2 (en) 2002-12-20 2004-07-08 Novozymes A/S Polypeptides having cellobiohydrolase ii activity and polynucleotides encoding same
US7955814B2 (en) 2003-01-17 2011-06-07 Danisco A/S Method
US20050196766A1 (en) * 2003-12-24 2005-09-08 Soe Jorn B. Proteins
DE602004030000D1 (en) 2003-01-17 2010-12-23 Danisco PROCESS FOR IN-SITU-PRODUCTION OF AN EMULSIFIER IN A FOODSTUFF
EP1590455B1 (en) 2003-01-27 2010-03-17 Novozymes A/S Stabilization of granules
US7294499B2 (en) * 2003-01-30 2007-11-13 Novozymes A/S Subtilases
EP1923455A3 (en) 2003-02-18 2009-01-21 Novozymes A/S Detergent compositions
US7413888B2 (en) 2003-05-02 2008-08-19 Novozymes, Inc. Variants of beta-glucosidases
CA2526341C (en) 2003-05-07 2013-02-19 Novozymes A/S Variant subtilisin enzymes (subtilases)
EP1675941B1 (en) 2003-06-25 2013-05-22 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
EP1660637A4 (en) 2003-08-25 2009-10-21 Novozymes Inc Variants of glycoside hydrolases
JP4880469B2 (en) 2003-10-23 2012-02-22 ノボザイムス アクティーゼルスカブ Protease with improved stability in detergents
CN1902310B (en) 2003-10-28 2011-09-21 诺维信股份有限公司 Polypeptides having beta-glucosidase activity and polynucleotides encoding same
CN1875098A (en) 2003-10-30 2006-12-06 诺和酶股份有限公司 Carbohydrate-binding modules of a new family
GB0716126D0 (en) 2007-08-17 2007-09-26 Danisco Process
WO2008090395A1 (en) 2007-01-25 2008-07-31 Danisco A/S Production of a lipid acyltransferase from transformed bacillus licheniformis cells
US7718408B2 (en) * 2003-12-24 2010-05-18 Danisco A/S Method
US7906307B2 (en) 2003-12-24 2011-03-15 Danisco A/S Variant lipid acyltransferases and methods of making
JP5059412B2 (en) 2004-01-06 2012-10-24 ノボザイムス アクティーゼルスカブ Alicyclobacillus sp. Polypeptide
CN104726431B (en) 2004-01-30 2018-06-01 诺维信股份有限公司 Polypeptide and its coded polynucleotide with cellulolytic enhancing activity
CN1942584B (en) 2004-02-13 2011-07-27 诺维信公司 Protease variants
GB0405637D0 (en) * 2004-03-12 2004-04-21 Danisco Protein
EP1735433B1 (en) * 2004-04-02 2010-12-08 Novozymes A/S Subtilase variants having altered immunogenicity
EP1735339A2 (en) * 2004-04-09 2006-12-27 Genencor International, Inc. Pcka modifications and enhanced protein expression in bacillus
US7148404B2 (en) 2004-05-04 2006-12-12 Novozymes A/S Antimicrobial polypeptides
AU2005245516A1 (en) * 2004-05-20 2005-12-01 Warnex Research Inc. Polynucleotides for the detection of escherichia coli 0157:h7 and escherichia coli 0157:nm verotoxin producers
US20090060933A1 (en) * 2004-06-14 2009-03-05 Estell David A Proteases producing an altered immunogenic response and methods of making and using the same
BRPI0512776A (en) 2004-07-05 2008-04-08 Novozymes As originating termamyl alpha-amylase variant, DNA construct, recombinant expression vector, cell, composition, detergent additive, detergent composition, manual or automatic laundry composition, use of an alpha-amylase variant or composition, and method of producing a variant
EP2275522A3 (en) * 2004-07-16 2011-09-21 Danisco A/S Enzymatic oil-degumming method
CN101040052A (en) 2004-09-10 2007-09-19 诺维信北美公司 Methods for preventing, removing, reducing, or disrupting biofilm
ATE533843T1 (en) 2004-09-21 2011-12-15 Novozymes As SUBTILATE
DK1794296T3 (en) 2004-09-21 2012-07-30 Novozymes As subtilases
WO2006032279A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
US7666630B2 (en) 2004-09-30 2010-02-23 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
DK1877551T4 (en) 2005-04-27 2014-03-31 Novozymes Inc Polypeptides having endoglucanase activity and polynucleotides encoding the same
EP2385111B1 (en) 2005-07-08 2016-09-07 Novozymes A/S Subtilase variants
EP1967584B1 (en) 2005-08-16 2011-03-23 Novozymes A/S Polypeptides of strain bacillus SP. P203
ATE530642T1 (en) 2005-08-16 2011-11-15 Novozymes As SUBTILATE
NZ589570A (en) 2005-09-30 2012-06-29 Novozymes Inc Methods for enhancing the degradation or conversion of cellulosic material
WO2007036235A1 (en) 2005-09-30 2007-04-05 Novozymes A/S Immobilization of enzymes
WO2007107573A1 (en) 2006-03-22 2007-09-27 Novozymes A/S Use of polypeptides having antimicrobial activity
WO2007113241A1 (en) 2006-03-31 2007-10-11 Novozymes A/S A stabilized liquid enzyme composition
CA2649267C (en) 2006-04-14 2014-08-12 Genencor International, Inc. One-step treatment of textiles
US20090215663A1 (en) 2006-04-20 2009-08-27 Novozymes A/S Savinase variants having an improved wash performance on egg stains
CN101473032B (en) 2006-06-21 2013-08-21 诺维信北美公司 Desizing and scouring process
DK2046819T3 (en) 2006-07-21 2015-06-22 Novozymes Inc Methods for enhancing the secretion of polypeptides with biological activity
AU2007284126B2 (en) 2006-08-11 2013-12-19 Novozymes Biologicals, Inc. Bacteria cultures and compositions comprising bacteria cultures
US20080057528A1 (en) * 2006-08-30 2008-03-06 Kimberly-Clark Worldwide, Inc. Detection of hydrogen peroxide released by enzyme-catalyzed oxidation of an analyte
US20080221008A1 (en) 2006-10-06 2008-09-11 Novozymes A/S Detergent compositions and the use of enzyme combinations therein
US20080090745A1 (en) * 2006-10-13 2008-04-17 Fox Bryan P Expression of Streptomyces subtilism inhibitor (SSI) proteins in Bacillus and Streptomyces sp.
US8034766B2 (en) 2006-10-27 2011-10-11 E I Du Pont De Nemours And Company Compositions and methods for prion decontamination
RU2459867C2 (en) 2006-12-21 2012-08-27 ДАНИСКО ЮЭс, ИНК., ДЖЕНЕНКОР ДИВИЖН COMPOSITIONS BASED ON α-AMYLASE POLYPEPTIDE FROM BACILLUS, TYPE 195, AND USE THEREOF
CN101617035A (en) 2007-02-20 2009-12-30 诺维信公司 The enzyme foam that is used to do washing is handled
BRPI0808513A2 (en) 2007-03-09 2014-08-19 Danisco Us Inc Genencor Div ALPHA-AMILASE VARIANTS OF ALKALIFYL BACILLUS SPECIES, COMPOSITIONS UNDERSTANDING ALPHA-AMYLASE VARIANTS AND METHODS OF USE
AU2008226792B2 (en) 2007-03-12 2013-06-06 Danisco Us Inc. Modified proteases
AU2008231038B2 (en) 2007-03-23 2013-07-11 Novozymes Biologicals, Inc. Preventing and reducing biofilm formation and planktonic proliferation
DE102007016139A1 (en) 2007-03-30 2008-10-02 Jenabios Gmbh Method for regioselective oxygenation of N-heterocycles
US20100190682A1 (en) 2007-04-30 2010-07-29 Sang-Kyu Lee Use of protein hydrolysates to stabilize metalloprotease detergent formulations
WO2008141281A1 (en) 2007-05-10 2008-11-20 Danisco Us Inc., Genencor Division A modified secretion system to increase expression of polypeptides in bacteria
SG148934A1 (en) 2007-06-11 2009-01-29 Novozymes As A process for combined biopolishing and bleach clean-up
DE102007047433A1 (en) * 2007-10-04 2009-04-09 Lanxess Deutschland Gmbh Liquid washing and liquid cleaning agents
KR20100088675A (en) 2007-11-05 2010-08-10 다니스코 유에스 인크. Variants of bacillis sp. ts-23 alpha-amylase with altered properties
AR069168A1 (en) 2007-11-05 2010-01-06 Danisco Us Inc Genencor Div ALFA VARIANTS -AMILASES WITH ALTERED PROPERTIES
CN101903519B (en) 2007-12-21 2013-07-31 丹尼斯科美国公司 Enhanced protein production in bacillus
US20110034367A1 (en) 2008-02-01 2011-02-10 Novozymes A/S Liquid Enzyme Composition
CA2713582C (en) 2008-02-04 2017-02-21 Danisco Us Inc. Ts23 alpha-amylase variants with altered properties
US20090217463A1 (en) * 2008-02-29 2009-09-03 Philip Frank Souter Detergent composition comprising lipase
WO2009111258A2 (en) * 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
RU2510662C2 (en) 2008-03-26 2014-04-10 Новозимс А/С Stabilised liquid enzyme compositions
US9528114B2 (en) 2008-03-28 2016-12-27 Danisco Us Inc. Method for amplifying locus in bacterial cell
CA2722889A1 (en) 2008-04-30 2009-11-05 Danisco Us Inc. New chimeric alpha-amylase variants
US8691743B2 (en) 2008-05-14 2014-04-08 Novozymes A/S Liquid detergent compositions
EP2698434A1 (en) 2008-06-06 2014-02-19 Danisco US Inc. Uses of an alpha-amylase from Bacillus subtilis
MX2010013123A (en) 2008-06-06 2011-01-14 Danisco Inc Variant alpha-amylases from bacillus subtilis and methods of use, thereof.
JP5492879B2 (en) 2008-06-06 2014-05-14 ダニスコ・ユーエス・インク Geobacillus stearothermophilus alpha amylase (AmyS) variant with improved properties
DK2291526T3 (en) 2008-06-06 2014-10-06 Danisco Us Inc SACCHARIFICATION OF ENZYME COMPOSITION WITH BACILLUS SUBTILIS ALPHA AMYLASE
JP5661621B2 (en) 2008-07-07 2015-01-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Enzyme composition comprising enzyme-containing polymer particles
EP2149786A1 (en) 2008-08-01 2010-02-03 Unilever PLC Improvements relating to detergent analysis
WO2010028941A1 (en) 2008-09-12 2010-03-18 Unilever Plc Dispenser and pretreater for viscous liquids
BRPI0920891B1 (en) 2008-09-25 2023-01-10 Danisco Us Inc ALPHA-AMYLASE MIXTURE AND METHOD FOR PRODUCING A FERMENTABLE SUGAR
EP2358878B1 (en) 2008-11-20 2014-10-15 Novozymes Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
US7771983B2 (en) 2008-12-04 2010-08-10 Novozymos, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2376527A1 (en) 2008-12-12 2011-10-19 Novozymes Inc. Polypeptides having lipase activity and polynucleotides encoding same
EP2202290A1 (en) 2008-12-23 2010-06-30 Unilever PLC A flowable laundry composition and packaging therefor
EP2213723A1 (en) 2009-01-30 2010-08-04 Novozymes A/S Isomaltose for fungus fermentation
EP2401371A1 (en) 2009-02-27 2012-01-04 Novozymes A/S Mutant cells having reduced expression of metallopeptidase, suitable for recombinant polypeptide production
CN102341495A (en) 2009-03-10 2012-02-01 丹尼斯科美国公司 ALPHA-AMYLASES ASSOCIATED with BACILLUS MEGATERIUM DSM90, and method for using same
MX2011010041A (en) 2009-04-01 2011-11-18 Danisco Us Inc Compositions and methods comprising alpha-amylase variants with altered properties.
WO2010117511A1 (en) 2009-04-08 2010-10-14 Danisco Us Inc. Halomonas strain wdg195-related alpha-amylases, and methods of use, thereof
AR076941A1 (en) 2009-06-11 2011-07-20 Danisco Us Inc BACILLUS CEPA FOR A GREATER PROTEIN PRODUCTION
EP2478096B1 (en) 2009-09-17 2017-05-24 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
MX2012003387A (en) 2009-09-25 2012-04-10 Novozymes As Use of protease variants.
AU2010299799B2 (en) 2009-09-25 2015-10-29 Novozymes A/S Subtilase variants
MX2012003473A (en) 2009-09-29 2012-05-22 Novozymes Inc Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same.
DK2483296T3 (en) 2009-09-30 2015-11-02 Novozymes Inc Polypeptides having cellulolytic enhancing activity and polynucleotides encoding them
BR112012007390A2 (en) 2009-09-30 2015-09-15 Novozymes As isolated polypeptide having cellulolytic enhancing activity, isolated polynucleotide, methods for making the polypeptide, for producing a precursor cell mutant, for inhibiting expression of a polypeptide, for producing a protein, for degrading or converting a cellulosic material, for producing a product fermentation, and to ferment a cellulosic material, transgenic plant, plant part or plant cell transformed with a polynucleotide, double stranded inhibitor molecule, and detergent composition
CA2778471A1 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
US20120220513A1 (en) 2009-12-29 2012-08-30 Novozymes A/S Polypeptides Having Detergency Enhancing Effect
US9045514B2 (en) 2010-01-22 2015-06-02 Dupont Nutrition Biosciences Aps Methods for producing amino-substituted glycolipid compounds
CN102884197A (en) 2010-01-29 2013-01-16 诺维信公司 Biogas production process with enzymatic pre-treatment
WO2011100667A1 (en) 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
WO2011102933A1 (en) 2010-02-18 2011-08-25 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
CN102858968B (en) 2010-02-25 2015-07-01 诺维信公司 Variants of a lysozyme and polynucleotides encoding same
KR101904484B1 (en) 2010-04-26 2018-11-30 노보자임스 에이/에스 Enzyme granules
BR112012028033B1 (en) 2010-06-22 2021-04-27 Novozymes A/S METHOD TO UNLEASH SKIN FROM RAW LEATHER OR SKIN, PROCESSES FOR DEPILATION OF RAW LEATHER OR SKIN, AND TO PREPARE A WET BLUE
CN103154263A (en) 2010-08-19 2013-06-12 诺维信公司 Induced sporulation screening method
US20130111677A1 (en) 2010-08-30 2013-05-09 Novozymes A/S Concentrated Soak Wash
KR20130102537A (en) 2010-08-30 2013-09-17 노보자임스 에이/에스 A two-soak wash
US20130266554A1 (en) 2010-09-16 2013-10-10 Novozymes A/S Lysozymes
GB201015672D0 (en) 2010-09-20 2010-10-27 Unilever Plc Improvements relating to fabric treatment compositions comprising targeted benefit agents
EP2622070B1 (en) 2010-09-30 2016-08-03 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
MX2013003236A (en) 2010-09-30 2013-05-30 Novozymes Inc Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same.
DK2640833T3 (en) 2010-11-18 2016-11-28 Novozymes Inc Chimeric polypeptides having cellulolytic enhancing ACTIVITY AND POLYNUCLEOTIDES ENCODING THEM
CN103339260A (en) 2011-01-04 2013-10-02 诺维信公司 Process for producing biogas from pectin and lignocellulose containing material
WO2012101149A1 (en) 2011-01-26 2012-08-02 Novozymes A/S Storage-stable enzyme granules
WO2012104176A1 (en) 2011-01-31 2012-08-09 Novozymes A/S Use of browned glucose as a feed substrate
ES2686944T3 (en) 2011-02-15 2018-10-22 Novozymes North America, Inc. Odor mitigation in cleaning machines and cleaning processes
WO2012110563A1 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
WO2012110562A2 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
US20140038876A1 (en) 2011-02-16 2014-02-06 Novozymes A/S Detergent Compositions Comprising Mettaloproteases
GB201102865D0 (en) 2011-02-18 2011-04-06 Danisco Feed additive composition
GB201102857D0 (en) 2011-02-18 2011-04-06 Danisco Feed additive composition
BR112013016830A2 (en) 2011-02-23 2017-03-01 Novozymes Inc isolated polypeptide, isolated polynucleotide, method of producing the polypeptide, producing a parent cell mutant, inhibiting expression of a polypeptide, producing a protein, degrading or converting a cellulosic material, producing a fermentation product and ferment a cellulosic material, transgenic plant, plant part or plant cell transformed with a polynucleotide, double-stranded rna molecule, composition, and full broth formulation or cell culture composition
WO2012135659A2 (en) 2011-03-31 2012-10-04 Novozymes A/S Methods for enhancing the degradation or conversion of cellulosic material
MX2013011617A (en) 2011-04-08 2013-11-21 Danisco Us Inc Compositions.
DE102011007313A1 (en) 2011-04-13 2012-10-18 Henkel Ag & Co. Kgaa expression methods
DK2702162T3 (en) 2011-04-29 2020-05-18 Novozymes Inc PROCEDURES FOR IMPROVING THE DEGRADATION OR CONVERSION OF CELLULOSE SUBSTANCES
EP2537918A1 (en) 2011-06-20 2012-12-26 The Procter & Gamble Company Consumer products with lipase comprising coated particles
WO2012175401A2 (en) 2011-06-20 2012-12-27 Novozymes A/S Particulate composition
MX349517B (en) 2011-06-24 2017-08-02 Novozymes As Polypeptides having protease activity and polynucleotides encoding same.
US20140106427A1 (en) 2011-06-28 2014-04-17 Novozymes A/S Biogas From Enzyme-Treated Bagasse
KR20140056237A (en) 2011-06-30 2014-05-09 노보자임스 에이/에스 Alpha-amylase variants
CN112662734A (en) 2011-06-30 2021-04-16 诺维信公司 Method for screening alpha-amylase
JP6306504B2 (en) 2011-07-01 2018-04-04 ノボザイムス アクティーゼルスカブ Liquid detergent composition
MX346246B (en) 2011-07-01 2017-03-13 Novozymes As Stabilized subtilisin composition.
US10711262B2 (en) 2011-07-12 2020-07-14 Novozymes A/S Storage-stable enzyme granules
CN109022518A (en) 2011-07-22 2018-12-18 诺维信北美公司 For pre-treating cellulosic material and the method for improving its hydrolysis
EP2744898A1 (en) 2011-08-15 2014-06-25 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
JP2014530598A (en) 2011-09-22 2014-11-20 ノボザイムスアクティーゼルスカブ Polypeptide having protease activity and polynucleotide encoding the same
TR201909896T4 (en) 2011-09-23 2019-07-22 Novozymes As Changing color in textiles.
EP3246404B1 (en) 2011-10-28 2019-02-27 Danisco US Inc. Variant maltohexaose-forming alpha-amylase variants
US10351834B2 (en) 2011-11-21 2019-07-16 Novozymes, Inc. GH61 polypeptide variants and polynucleotides encoding same
US9701952B2 (en) 2011-11-25 2017-07-11 Novozymes A/S Polypeptides having lysozyme activity and polynucleotides encoding same
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013083801A2 (en) 2011-12-09 2013-06-13 Novozymes A/S Biogas from substrates comprising animal manure and enzymes
EP3272862A1 (en) 2011-12-16 2018-01-24 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
CN104105403B (en) 2011-12-19 2017-11-14 诺维信生物农业公司 Biological insecticides method and composition
EP2607468A1 (en) 2011-12-20 2013-06-26 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
JP2015504660A (en) 2011-12-20 2015-02-16 ノボザイムス アクティーゼルスカブ Subtilase variant and polynucleotide encoding the same
BR112014014410A2 (en) 2011-12-22 2019-09-24 Danisco Us Inc compositions and methods comprising a lipolytic enzyme variant
IN2014DN03298A (en) 2011-12-22 2015-06-26 Danisco Us Inc
DK3382003T3 (en) 2011-12-29 2021-09-06 Novozymes As DETERGENT COMPOSITIONS WITH LIPASE VARIANTS
ES2644007T3 (en) 2012-01-26 2017-11-27 Novozymes A/S Use of polypeptides with protease activity in animal feed and in detergents
US10093911B2 (en) 2012-02-17 2018-10-09 Novozymes A/S Subtilisin variants and polynucleotides encoding same
ES2582608T3 (en) 2012-02-17 2016-09-14 Henkel Ag & Co. Kgaa Detergent compositions comprising subthylase variants
EP2823026A1 (en) 2012-03-07 2015-01-14 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
US20150291922A1 (en) 2012-03-29 2015-10-15 Novozymes A/S Use of Enzymes For Preparing Water Soluble Films
CA2868308A1 (en) 2012-04-27 2013-10-31 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
CN104271723B (en) 2012-05-07 2021-04-06 诺维信公司 Polypeptides having xanthan degrading activity and nucleotides encoding same
CA2870830A1 (en) 2012-05-11 2013-11-14 Danisco Us Inc. Use of alpha-amylase from aspergillus clavatus for saccharification
CN104302753A (en) 2012-05-16 2015-01-21 诺维信公司 Compositions comprising lipase and methods of use thereof
EP4026902A1 (en) 2012-06-08 2022-07-13 Danisco US Inc. Variant alpha amylases with enhanced activity on starch polymers
EP2861749A1 (en) 2012-06-19 2015-04-22 Novozymes Bioag A/S Enzymatic reduction of hydroperoxides
BR112014031882A2 (en) 2012-06-20 2017-08-01 Novozymes As use of an isolated polypeptide, polypeptide, composition, isolated polynucleotide, nucleic acid construct or expression vector, recombinant expression host cell, methods for producing a polypeptide, for enhancing the nutritional value of an animal feed, and for the treatment of protein, use of at least one polypeptide, animal feed additive, animal feed, and detergent composition
KR101380740B1 (en) 2012-06-29 2014-04-11 쉐어 휴먼 제네텍 세러피스, 인코포레이티드 Purification of iduronate-2-sulfatase
US9150841B2 (en) 2012-06-29 2015-10-06 Shire Human Genetic Therapies, Inc. Cells for producing recombinant iduronate-2-sulfatase
FI3553172T3 (en) 2012-08-16 2023-03-21 Novozymes As Method for treating textile with endoglucanase
CN104583412A (en) 2012-08-16 2015-04-29 丹尼斯科美国公司 Process for producing glucose from starch employing the aspergillus clavatus alpha-amylase and a pullulanase
CN104619838A (en) 2012-08-22 2015-05-13 诺维信公司 Metalloprotease from exiguobacterium
EP2888360B1 (en) 2012-08-22 2017-10-25 Novozymes A/S Metalloproteases from alicyclobacillus sp.
BR112015003726A2 (en) 2012-08-22 2019-09-24 Novozymes As detergent composition, use of a composition and a polypeptide, and method for removing a stain from a surface.
AR093330A1 (en) 2012-11-01 2015-06-03 Novozymes As METHOD FOR DNA REMOVAL
US20180112203A1 (en) 2012-11-20 2018-04-26 Danisco Us Inc. Amylase with maltogenic properties
BR112015012982A2 (en) 2012-12-07 2017-09-12 Novozymes As detergent composition, washing method for textile, washed textile, and use of a deoxyribonuclease
JP6499081B2 (en) 2012-12-11 2019-04-10 ダニスコ・ユーエス・インク Trichoderma reesei host cell expressing glucoamylase from Aspergillus fumigatus and method of use thereof
EP2931911A1 (en) 2012-12-14 2015-10-21 Danisco US Inc. Method of using alpha-amylase from aspergillus fumigatus and isoamylase for saccharification
WO2014090940A1 (en) 2012-12-14 2014-06-19 Novozymes A/S Removal of skin-derived body soils
CN104903461A (en) 2012-12-20 2015-09-09 丹尼斯科美国公司 Method of using [alpha]-amylase from aspergillus terreus and pullulanase for saccharification
CN104869841A (en) 2012-12-21 2015-08-26 诺维信公司 Polypeptides having protease activiy and polynucleotides encoding same
DK3354728T3 (en) 2012-12-21 2020-07-27 Danisco Us Inc ALPHA-amylase variants
WO2014099525A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Paenibacillus curdlanolyticus amylase, and methods of use, thereof
WO2014106593A1 (en) 2013-01-03 2014-07-10 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014164834A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
US20160024440A1 (en) 2013-03-14 2016-01-28 Novozymes A/S Enzyme and Inhibitor Containing Water-Soluble Films
CN111394202B (en) 2013-04-23 2022-04-26 诺维信公司 Liquid automatic dishwashing detergent composition with stabilized subtilisin
US20160075976A1 (en) 2013-05-03 2016-03-17 Novozymes A/S Microencapsulation of Detergent Enzymes
US10351833B2 (en) 2013-05-14 2019-07-16 Novozymes A/S Detergent compositions
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
WO2014191170A1 (en) 2013-05-30 2014-12-04 Novozymes A/S Particulate enzyme composition
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
PE20160799A1 (en) 2013-06-12 2016-09-03 Earth Alive Clean Tech Inc DUST SUPPRESSOR
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
EP3011020A1 (en) 2013-06-17 2016-04-27 Danisco US Inc. Alpha-amylase from bacillaceae family member
FI3013956T3 (en) 2013-06-27 2023-05-23 Novozymes As Subtilase variants and polynucleotides encoding same
US20160145596A1 (en) 2013-06-27 2016-05-26 Novozymes A/S Subtilase Variants and Polynucleotides Encoding Same
WO2015000969A2 (en) 2013-07-03 2015-01-08 Basf Se Use of a gel-like polymer composition which can be obtained by polymerizing an acid group-containing monomer in the presence of a polyether compound in formulations for automatic dishwashing
WO2015001017A2 (en) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides having anti-redeposition effect and polynucleotides encoding same
WO2015004102A1 (en) 2013-07-09 2015-01-15 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3696264B1 (en) 2013-07-19 2023-06-28 Danisco US Inc. Compositions and methods comprising a lipolytic enzyme variant
RU2670946C9 (en) 2013-07-29 2018-11-26 Новозимс А/С Protease variants and polynucleotides encoding them
CN105358684A (en) 2013-07-29 2016-02-24 诺维信公司 Protease variants and polynucleotides encoding same
EP3339436B1 (en) 2013-07-29 2021-03-31 Henkel AG & Co. KGaA Detergent composition comprising protease variants
WO2015049370A1 (en) 2013-10-03 2015-04-09 Novozymes A/S Detergent composition and use of detergent composition
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
US20160186102A1 (en) 2013-10-03 2016-06-30 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
UA119331C2 (en) 2013-11-08 2019-06-10 Новозімес Біоаґ А/С Compositions and methods for treating pests
WO2015077278A1 (en) 2013-11-20 2015-05-28 Novozymes Bioag A/S Compositions and methods comprising chromobacterium for controlling plant nematode pests and plant insect pests
MX2016006489A (en) 2013-11-20 2016-08-03 Danisco Us Inc Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof.
WO2015094809A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Chimeric fungal alpha-amylases comprising carbohydrate binding module and the use thereof
WO2015091989A1 (en) 2013-12-20 2015-06-25 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US10463701B2 (en) 2013-12-31 2019-11-05 DuPont Nutrition BioScience ApS Blends of Bacillus strains and enzymes
US10287591B2 (en) 2013-12-31 2019-05-14 Danisco Us Inc Enhanced protein expression
CN105849121B (en) 2014-01-22 2020-12-29 诺维信公司 Polypeptides having lipase activity and polynucleotides encoding same
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
WO2015134737A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
CN106103721B (en) 2014-03-12 2020-01-03 诺维信公司 Polypeptides having lipase activity and polynucleotides encoding same
JP6591998B2 (en) * 2014-03-28 2019-10-16 ノボザイムス アクティーゼルスカブ Resolubilization of protein crystals at low pH
EP3126479A1 (en) 2014-04-01 2017-02-08 Novozymes A/S Polypeptides having alpha amylase activity
DK3129457T3 (en) 2014-04-11 2018-09-17 Novozymes As detergent
EP3131921B1 (en) 2014-04-15 2020-06-10 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
US10023852B2 (en) 2014-05-27 2018-07-17 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2015181118A1 (en) 2014-05-27 2015-12-03 Novozymes A/S Methods for producing lipases
CN106414729A (en) 2014-06-12 2017-02-15 诺维信公司 Alpha-amylase variants and polynucleotides encoding same
WO2016001319A1 (en) 2014-07-03 2016-01-07 Novozymes A/S Improved stabilization of non-protease enzyme
US10550381B2 (en) 2014-07-04 2020-02-04 Novozymes A/S Variant proteases and amylases having enhanced storage stability
EP3164486B1 (en) 2014-07-04 2020-05-13 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3172329A1 (en) 2014-10-24 2017-05-31 Danisco US Inc. Method for producing alcohol by use of a tripeptidyl peptidase
WO2016079110A2 (en) 2014-11-19 2016-05-26 Novozymes A/S Use of enzyme for cleaning
US10287562B2 (en) 2014-11-20 2019-05-14 Novoszymes A/S Alicyclobacillus variants and polynucleotides encoding same
US10457921B2 (en) 2014-12-05 2019-10-29 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2016096714A1 (en) 2014-12-15 2016-06-23 Henkel Ag & Co. Kgaa Detergent composition comprising subtilase variants
JP7012533B2 (en) 2014-12-16 2022-02-14 ダニスコ・ユーエス・インク Enhanced protein expression
WO2016096996A1 (en) 2014-12-16 2016-06-23 Novozymes A/S Polypeptides having n-acetyl glucosamine oxidase activity
JP2017538433A (en) 2014-12-19 2017-12-28 ダニスコ・ユーエス・インク Increased protein expression
WO2016097352A1 (en) 2014-12-19 2016-06-23 Novozymes A/S Protease variants and polynucleotides encoding same
ES2813727T3 (en) 2014-12-19 2021-03-24 Novozymes As Protease variants and polynucleotides that encode them
US10798963B2 (en) 2015-03-30 2020-10-13 Societe Des Produits Nestle S.A. Milk-based protein hydrolysates and compositions made thereof
MX2017012515A (en) 2015-04-06 2018-01-30 Dupont Nutrition Biosci Aps Proteases for high protein fermented milk products.
US20180105772A1 (en) 2015-04-10 2018-04-19 Novozymes A/S Detergent composition
WO2016162556A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Laundry method, use of dnase and detergent composition
EP3298121B1 (en) 2015-05-19 2019-03-20 Novozymes A/S Odor reduction
EP3303536B1 (en) 2015-06-02 2019-04-17 Unilever PLC Laundry detergent composition
ES2665989T3 (en) 2015-06-04 2018-04-30 The Procter & Gamble Company Liquid detergent composition for dishwashing by hand
ES2712459T3 (en) 2015-06-04 2019-05-13 Procter & Gamble Liquid detergent composition for dishwashing by hand
ES2666186T3 (en) 2015-06-05 2018-05-03 The Procter & Gamble Company Compacted liquid detergent composition for laundry
EP3101102B2 (en) 2015-06-05 2023-12-13 The Procter & Gamble Company Compacted liquid laundry detergent composition
EP3101107B1 (en) 2015-06-05 2019-04-24 The Procter and Gamble Company Compacted liquid laundry detergent composition
WO2016198262A1 (en) 2015-06-11 2016-12-15 Unilever Plc Laundry detergent composition
EP3310908B1 (en) 2015-06-16 2020-08-05 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3310688A1 (en) 2015-06-17 2018-04-25 Novozymes A/S Container
BR112017027402B1 (en) 2015-06-26 2022-05-10 Unilever Ip Holdings B.V. Detergent composition for washing clothes and method of domestic treatment of a fabric
US20180171271A1 (en) 2015-06-30 2018-06-21 Novozymes A/S Laundry detergent composition, method for washing and use of composition
EP3317407B1 (en) 2015-07-01 2021-05-19 Novozymes A/S Methods of reducing odor
CN114292829A (en) 2015-07-06 2022-04-08 诺维信公司 Lipase variants and polynucleotides encoding same
EP3350323B1 (en) 2015-09-17 2021-04-14 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
ES2794837T3 (en) 2015-09-17 2020-11-19 Henkel Ag & Co Kgaa Detergent Compositions Comprising Polypeptides Having Xanthan Degrading Activity
WO2017055205A1 (en) 2015-10-01 2017-04-06 Unilever Plc Powder laundry detergent composition
WO2017060505A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
WO2017066510A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Cleaning of water filtration membranes
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
CA2996749C (en) 2015-10-28 2023-10-10 Novozymes A/S Detergent composition comprising amylase and protease variants
RU2754276C2 (en) 2015-11-09 2021-08-31 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС Feed additive composition
WO2017089366A1 (en) 2015-11-24 2017-06-01 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US10870838B2 (en) 2015-12-01 2020-12-22 Novozymes A/S Methods for producing lipases
EP3387124B1 (en) 2015-12-09 2021-05-19 Danisco US Inc. Alpha-amylase combinatorial variants
CA3005292A1 (en) 2015-12-09 2017-06-15 Basf Se Method of purifying a protein from fermentation solids under desorbing conditions
US20190002819A1 (en) 2015-12-28 2019-01-03 Novozymes Bioag A/S Heat priming of bacterial spores
MX2018007485A (en) 2015-12-30 2018-08-01 Novozymes As Enzyme variants and polynucleotides encoding the same.
CN108884451A (en) 2016-01-29 2018-11-23 诺维信公司 Beta glucan enzyme variants and the polynucleotides for encoding them
EP3205392A1 (en) 2016-02-12 2017-08-16 Basf Se Microcapsules and process for preparation of microcapsules
EP3205393A1 (en) 2016-02-12 2017-08-16 Basf Se Process for preparation of microcapsules
BR112018016674B1 (en) 2016-02-17 2022-06-07 Unilever Ip Holdings B.V. Detergent composition for washing clothes and domestic method of treating a fabric
BR112018016129B1 (en) 2016-02-17 2022-06-07 Unilever Ip Holdings B.V. Detergent composition for washing clothes and domestic method of treating a fabric
WO2017162378A1 (en) 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition
CN109072133B (en) 2016-03-23 2021-06-15 诺维信公司 Use of polypeptides having dnase activity for treating textiles
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
BR112018070468B1 (en) 2016-04-08 2022-07-12 Unilever Ip Holdings B.V AQUEOUS LIQUID DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD
CN114480035A (en) 2016-04-08 2022-05-13 诺维信公司 Detergent composition and use thereof
WO2017182295A1 (en) 2016-04-18 2017-10-26 Basf Se Liquid cleaning compositions
BR112018072282A2 (en) 2016-04-29 2019-02-12 Novozymes A/S detergent compositions and uses thereof
CN109415421B (en) 2016-05-03 2023-02-28 诺维信公司 Alpha-amylase variants and polynucleotides encoding same
MX2018013556A (en) 2016-05-09 2019-03-14 Novozymes As Variant polypeptides with improved performance and use of the same.
US20190218479A1 (en) 2016-05-31 2019-07-18 Novozymes A/S Stabilized Liquid Peroxide Compositions
WO2017220422A1 (en) 2016-06-23 2017-12-28 Novozymes A/S Use of enzymes, composition and method for removing soil
EP3478827A1 (en) 2016-06-30 2019-05-08 Novozymes A/S Lipase variants and compositions comprising surfactant and lipase variant
WO2018002261A1 (en) 2016-07-01 2018-01-04 Novozymes A/S Detergent compositions
JP2019522988A (en) 2016-07-05 2019-08-22 ノボザイムス アクティーゼルスカブ Pectate lyase mutant and polynucleotide encoding the same
WO2018007573A1 (en) 2016-07-08 2018-01-11 Novozymes A/S Detergent compositions with galactanase
CA3027272C (en) 2016-07-13 2022-06-21 The Procter & Gamble Company Bacillus cibi dnase variants and uses thereof
MX2019000621A (en) 2016-07-14 2019-08-01 Basf Se Fermentation medium comprising chelating agent.
EP4357453A2 (en) 2016-07-18 2024-04-24 Novozymes A/S Lipase variants, polynucleotides encoding same and the use thereof
EP3497199A1 (en) 2016-08-08 2019-06-19 Basf Se Liquid laundry formulation
PL3284805T3 (en) 2016-08-17 2020-07-13 The Procter & Gamble Company Cleaning composition comprising enzymes
CN109844110B (en) 2016-08-24 2023-06-06 诺维信公司 Xanthan gum lyase variants and polynucleotides encoding same
EP3504331A1 (en) 2016-08-24 2019-07-03 Henkel AG & Co. KGaA Detergent compositions comprising xanthan lyase variants i
WO2018037062A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
CN109563451A (en) 2016-08-24 2019-04-02 汉高股份有限及两合公司 Detergent composition comprising GH9 endo-glucanase enzyme variants I
CN109790491B (en) 2016-09-27 2021-02-23 荷兰联合利华有限公司 Household washing method
US20200140786A1 (en) 2016-09-29 2020-05-07 Novozymes A/S Use of enzyme for washing, method for washing and warewashing composition
EP3519547A1 (en) 2016-09-29 2019-08-07 Novozymes A/S Spore containing granule
EP3532592A1 (en) 2016-10-25 2019-09-04 Novozymes A/S Detergent compositions
CN110072986B (en) 2016-11-01 2023-04-04 诺维信公司 Multi-core particles
WO2018099762A1 (en) 2016-12-01 2018-06-07 Basf Se Stabilization of enzymes in compositions
US20190292493A1 (en) 2016-12-12 2019-09-26 Novozymes A/S Use of polypeptides
CN110023469A (en) 2016-12-15 2019-07-16 荷兰联合利华有限公司 Laundry detergent composition
JP7231228B2 (en) 2017-02-24 2023-03-01 ダニスコ・ユーエス・インク Compositions and methods for increased protein production in Bacillus licheniformis
US11053483B2 (en) 2017-03-31 2021-07-06 Novozymes A/S Polypeptides having DNase activity
EP3601550A1 (en) 2017-03-31 2020-02-05 Novozymes A/S Polypeptides having dnase activity
JP2020515269A (en) 2017-03-31 2020-05-28 ダニスコ・ユーエス・インク α-amylase combination mutant
CN110651039A (en) 2017-03-31 2020-01-03 诺维信公司 Polypeptides having rnase activity
US20200109388A1 (en) 2017-04-03 2020-04-09 Novozymes A/S Recovery Process
US20200109352A1 (en) 2017-04-04 2020-04-09 Novozymes A/S Polypeptide compositions and uses thereof
EP3607039A1 (en) 2017-04-04 2020-02-12 Novozymes A/S Polypeptides
CN110651029B (en) 2017-04-04 2022-02-15 诺维信公司 Glycosyl hydrolase
EP3385362A1 (en) 2017-04-05 2018-10-10 Henkel AG & Co. KGaA Detergent compositions comprising fungal mannanases
ES2728758T3 (en) 2017-04-05 2019-10-28 Henkel Ag & Co Kgaa Detergent compositions comprising bacterial mannanas
WO2018184817A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
EP3967756A1 (en) 2017-04-06 2022-03-16 Novozymes A/S Detergent compositions and uses thereof
WO2018184818A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
US20200032170A1 (en) 2017-04-06 2020-01-30 Novozymes A/S Cleaning compositions and uses thereof
EP3607043A1 (en) 2017-04-06 2020-02-12 Novozymes A/S Cleaning compositions and uses thereof
CN110709499A (en) 2017-04-06 2020-01-17 诺维信公司 Cleaning composition and use thereof
WO2018185285A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
WO2018184816A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
EP3619304A1 (en) 2017-05-05 2020-03-11 Novozymes A/S Compositions comprising lipase and sulfite
EP3401385A1 (en) 2017-05-08 2018-11-14 Henkel AG & Co. KGaA Detergent composition comprising polypeptide comprising carbohydrate-binding domain
WO2018206300A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018206535A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Carbohydrate-binding domain and polynucleotides encoding the same
CA3058095A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018224544A1 (en) 2017-06-08 2018-12-13 Novozymes A/S Compositions comprising polypeptides having cellulase activity and amylase activity, and uses thereof in cleaning and detergent compositions
WO2019002356A1 (en) 2017-06-30 2019-01-03 Novozymes A/S Enzyme slurry composition
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
CN110869480B (en) 2017-07-07 2021-08-13 联合利华知识产权控股有限公司 Whitening composition
CN111032856A (en) 2017-08-07 2020-04-17 诺维信公司 Use of FCA control based on pH
AR112778A1 (en) 2017-08-07 2019-12-11 Novozymes As FERMENTER EQUIPPED WITH EJECTOR
MX2020001606A (en) 2017-08-18 2020-08-03 Danisco Us Inc Alpha-amylase variants.
EP3655537A1 (en) 2017-08-23 2020-05-27 Danisco US Inc. Methods and compositions for efficient genetic modifications of bacillus licheniformis strains
WO2019038057A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
US11525128B2 (en) 2017-08-24 2022-12-13 Novozymes A/S GH9 endoglucanase variants and polynucleotides encoding same
EP3673060A1 (en) 2017-08-24 2020-07-01 Henkel AG & Co. KGaA Detergent composition comprising xanthan lyase variants ii
US11624059B2 (en) 2017-08-24 2023-04-11 Henkel Ag & Co. Kgaa Detergent compositions comprising GH9 endoglucanase variants II
EP3682010A1 (en) 2017-09-13 2020-07-22 Danisco US Inc. Modified 5'-untranslated region (utr) sequences for increased protein production in bacillus
US20200277553A1 (en) 2017-09-20 2020-09-03 Novozymes A/S Use of Enzymes for Improving Water Absorption And/Or Whiteness
WO2019057902A1 (en) 2017-09-22 2019-03-28 Novozymes A/S Novel polypeptides
CA3073362A1 (en) 2017-09-27 2019-04-04 Novozymes A/S Lipase variants and microcapsule compositions comprising such lipase variants
WO2019067390A1 (en) 2017-09-27 2019-04-04 The Procter & Gamble Company Detergent compositions comprising lipases
EP3692147A1 (en) 2017-10-02 2020-08-12 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019068715A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019076800A1 (en) 2017-10-16 2019-04-25 Novozymes A/S Cleaning compositions and uses thereof
US20200318037A1 (en) 2017-10-16 2020-10-08 Novozymes A/S Low dusting granules
WO2019076833A1 (en) 2017-10-16 2019-04-25 Novozymes A/S Low dusting granules
US11866748B2 (en) 2017-10-24 2024-01-09 Novozymes A/S Compositions comprising polypeptides having mannanase activity
CN111386340A (en) 2017-10-27 2020-07-07 宝洁公司 Detergent compositions comprising polypeptide variants
US20230416706A1 (en) 2017-10-27 2023-12-28 Novozymes A/S Dnase Variants
DE102017125559A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANSING COMPOSITIONS CONTAINING DISPERSINE II
BR112020008711A2 (en) 2017-11-01 2020-11-10 Novozymes A/S polypeptides and compositions comprising such polypeptides
WO2019086530A1 (en) 2017-11-01 2019-05-09 Novozymes A/S Polypeptides and compositions comprising such polypeptides
US11505767B2 (en) 2017-11-01 2022-11-22 Novozymes A/S Methods for cleansing medical devices
DE102017125558A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANING COMPOSITIONS CONTAINING DISPERSINE I
DE102017125560A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANSING COMPOSITIONS CONTAINING DISPERSINE III
EP3703661A1 (en) 2017-11-02 2020-09-09 Danisco US Inc. Freezing point depressed solid matrix compositions for melt granulation of enzymes
CN111315879A (en) 2017-11-09 2020-06-19 巴斯夫欧洲公司 Enzyme particle coating comprising organic white pigment
CN111465680A (en) 2017-11-29 2020-07-28 巴斯夫欧洲公司 Compositions, their preparation and use
BR112020010648A2 (en) 2017-11-30 2021-02-02 Unilever N.V. detergent composition, laundry detergent composition, method to improve enzymatic cleaning in water and use of a protease enzyme
EP3720954A1 (en) 2017-12-04 2020-10-14 Novozymes A/S Lipase variants and polynucleotides encoding same
FI3735478T3 (en) 2018-01-03 2023-10-26 Danisco Us Inc Mutant and genetically modified bacillus cells and methods thereof for increased protein production
CN111868239A (en) 2018-02-08 2020-10-30 诺维信公司 Lipase, lipase variants and compositions thereof
WO2019154954A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipase variants and compositions thereof
EP3755793A1 (en) 2018-02-23 2020-12-30 Henkel AG & Co. KGaA Detergent composition comprising xanthan lyase and endoglucanase variants
EP3765185B1 (en) 2018-03-13 2023-07-19 Novozymes A/S Microencapsulation using amino sugar oligomers
EP3775190A1 (en) 2018-03-29 2021-02-17 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2019201793A1 (en) 2018-04-17 2019-10-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric.
US11661592B2 (en) 2018-04-19 2023-05-30 Novozymes A/S Stabilized endoglucanase variants
WO2019201785A1 (en) 2018-04-19 2019-10-24 Novozymes A/S Stabilized cellulase variants
EP3784779A1 (en) 2018-04-26 2021-03-03 Basf Se Lipase enzymes
US20210115422A1 (en) 2018-05-03 2021-04-22 Basf Se Amylase enzymes
EP3775127B1 (en) 2018-05-17 2022-07-20 Unilever IP Holdings B.V. Cleaning composition
WO2019238761A1 (en) 2018-06-15 2019-12-19 Basf Se Water soluble multilayer films containing wash active chemicals and enzymes
WO2020002604A1 (en) 2018-06-28 2020-01-02 Novozymes A/S Detergent compositions and uses thereof
EP3814489A1 (en) 2018-06-29 2021-05-05 Novozymes A/S Subtilase variants and compositions comprising same
US20210071116A1 (en) 2018-06-29 2021-03-11 Novozymes A/S Detergent Compositions and Uses Thereof
EP3818139A1 (en) 2018-07-02 2021-05-12 Novozymes A/S Cleaning compositions and uses thereof
EP3818138A1 (en) 2018-07-03 2021-05-12 Novozymes A/S Cleaning compositions and uses thereof
WO2020008024A1 (en) 2018-07-06 2020-01-09 Novozymes A/S Cleaning compositions and uses thereof
EP3818140A1 (en) 2018-07-06 2021-05-12 Novozymes A/S Cleaning compositions and uses thereof
CN112805361A (en) 2018-07-31 2021-05-14 丹尼斯科美国公司 Variant alpha-amylases with amino acid substitutions that reduce PKA of generalized acids
WO2020030623A1 (en) 2018-08-10 2020-02-13 Basf Se Packaging unit comprising a detergent composition containing an enzyme and at least one chelating agent
CN112703246A (en) 2018-09-17 2021-04-23 联合利华知识产权控股有限公司 Detergent composition
US20210340466A1 (en) 2018-10-01 2021-11-04 Novozymes A/S Detergent compositions and uses thereof
WO2020070209A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition
CN112969775A (en) 2018-10-02 2021-06-15 诺维信公司 Cleaning composition
WO2020070014A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity
CN113056476A (en) 2018-10-03 2021-06-29 诺维信公司 Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same
WO2020070249A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Cleaning compositions
WO2020069913A1 (en) 2018-10-05 2020-04-09 Basf Se Compounds stabilizing hydrolases in liquids
EP3677676A1 (en) 2019-01-03 2020-07-08 Basf Se Compounds stabilizing amylases in liquids
EP3861115A1 (en) 2018-10-05 2021-08-11 Basf Se Compounds stabilizing hydrolases in liquids
CN112805377A (en) 2018-10-05 2021-05-14 巴斯夫欧洲公司 Compounds for stabilizing amylases in liquids
EP3864124A1 (en) 2018-10-11 2021-08-18 Novozymes A/S Cleaning compositions and uses thereof
BR112021006967A2 (en) 2018-10-12 2021-07-13 Danisco Us Inc. alpha-amylases with mutations that improve stability in the presence of chelators
EP3647398A1 (en) 2018-10-31 2020-05-06 Henkel AG & Co. KGaA Cleaning compositions containing dispersins v
EP3647397A1 (en) 2018-10-31 2020-05-06 Henkel AG & Co. KGaA Cleaning compositions containing dispersins iv
WO2020099491A1 (en) 2018-11-14 2020-05-22 Novozymes A/S Oral care composition comprising a polypeptide having dnase activity
WO2020104231A1 (en) 2018-11-19 2020-05-28 Basf Se Powders and granules containing a chelating agent and an enzyme
EP3884023A1 (en) 2018-11-20 2021-09-29 Unilever Global Ip Limited Detergent composition
WO2020104157A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
EP3884026A1 (en) 2018-11-20 2021-09-29 Unilever Global Ip Limited Detergent composition
WO2020104158A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
JP2022513085A (en) 2018-11-20 2022-02-07 デュポン ニュートリション バイオサイエンシス エーピーエス Modified Robust High Tm-Phytase Ramification Group Polypeptide and Fragments thereof
CN113056549B (en) 2018-11-20 2023-03-10 联合利华知识产权控股有限公司 Detergent composition
CN113302270A (en) 2018-12-03 2021-08-24 诺维信公司 Low pH powder detergent compositions
EP3891277A1 (en) 2018-12-03 2021-10-13 Novozymes A/S Powder detergent compositions
EP3898919A1 (en) 2018-12-21 2021-10-27 Novozymes A/S Detergent pouch comprising metalloproteases
WO2020127796A2 (en) 2018-12-21 2020-06-25 Novozymes A/S Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same
US20220186177A1 (en) 2019-02-20 2022-06-16 Basf Se Industrial fermentation process for bacillus using defined medium and magnesium feed
EP3927809A1 (en) 2019-02-20 2021-12-29 Basf Se Industrial fermentation process for bacillus using defined medium and trace element feed
EP3702452A1 (en) 2019-03-01 2020-09-02 Novozymes A/S Detergent compositions comprising two proteases
US20220235341A1 (en) 2019-03-21 2022-07-28 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US20220170001A1 (en) 2019-03-25 2022-06-02 Basf Se Amylase Enzymes
EP3947665A2 (en) 2019-03-25 2022-02-09 Basf Se Amylase enzymes
WO2020200198A1 (en) * 2019-04-02 2020-10-08 Novozymes A/S Liquid dishwashing detergent compositions
WO2020201403A1 (en) 2019-04-03 2020-10-08 Novozymes A/S Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions
EP3953462A1 (en) 2019-04-10 2022-02-16 Novozymes A/S Polypeptide variants
BR112021020439A2 (en) 2019-04-12 2022-05-24 Novozymes As Stabilized variants of glycoside hydrolase
WO2020229480A1 (en) 2019-05-14 2020-11-19 Basf Se Compounds stabilizing hydrolases in liquids
BR112021022167A2 (en) 2019-05-16 2022-01-18 Unilever Ip Holdings B V Laundry auxiliary composition, method of delivering enzymes to fabrics, method of enhancing the softening benefit of a fabric conditioner, and use of an auxiliary laundry composition
WO2020249546A1 (en) 2019-06-13 2020-12-17 Basf Se Method of recovering a protein from fermentation broth using a divalent cation
US20220306791A1 (en) 2019-06-14 2022-09-29 Basf Se Aqueous polymer dispersions suitable as opacifiers in liquid formulations
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
WO2020260038A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
US20220372400A1 (en) 2019-06-28 2022-11-24 Conopco, Inc., D/B/A Unilever Detergent composition
WO2020260040A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
BR112021025261A2 (en) 2019-06-28 2022-04-26 Unilever Ip Holdings B V Detergent composition and household method for treating a fabric
BR112021023398A2 (en) 2019-06-28 2022-01-04 Unilever Ip Holdings B V Detergent composition, home method of treating a textile and use of an ether sulfate alcohol
JP2022538360A (en) 2019-07-01 2022-09-01 ビーエーエスエフ ソシエタス・ヨーロピア Peptide acetals to stabilize enzymes
EP3994273A1 (en) 2019-07-02 2022-05-11 Basf Se Method for preparing a fermentation medium
WO2021001400A1 (en) 2019-07-02 2021-01-07 Novozymes A/S Lipase variants and compositions thereof
PL3959326T3 (en) 2019-07-05 2023-10-09 Basf Se Industrial fermentation process for microbial cells using a fed-batch pre-culture
CA3146541A1 (en) 2019-07-09 2021-01-14 Dupont Nutrition Biosciences Aps Fat coated particulate enzyme compositions
US20220403298A1 (en) 2019-07-12 2022-12-22 Novozymes A/S Enzymatic emulsions for detergents
CN114615894A (en) 2019-08-16 2022-06-10 杜邦营养生物科学有限公司 Composition for digestive tract health comprising a combination of lactobacillus strains
JP2022545465A (en) 2019-08-22 2022-10-27 ビーエーエスエフ ソシエタス・ヨーロピア amylase variant
CN114787329A (en) 2019-08-27 2022-07-22 诺维信公司 Detergent composition
EP4022020A1 (en) 2019-08-27 2022-07-06 Novozymes A/S Composition comprising a lipase
WO2021043764A1 (en) 2019-09-02 2021-03-11 Unilever Global Ip Limited Detergent composition
WO2021046073A1 (en) 2019-09-05 2021-03-11 Dupont Nutrition Biosciences Aps Feed composition
EP4031644A1 (en) 2019-09-19 2022-07-27 Novozymes A/S Detergent composition
CN114423851A (en) 2019-09-19 2022-04-29 联合利华知识产权控股有限公司 Detergent composition
US20220340843A1 (en) 2019-10-03 2022-10-27 Novozymes A/S Polypeptides comprising at least two carbohydrate binding domains
AR120142A1 (en) 2019-10-07 2022-02-02 Unilever Nv DETERGENT COMPOSITION
WO2021074430A1 (en) 2019-10-18 2021-04-22 Basf Se Storage-stable hydrolase containing liquids
CN114828642A (en) 2019-10-21 2022-07-29 杜邦营养生物科学有限公司 Composition for digestive tract health
US20220403359A1 (en) 2019-10-24 2022-12-22 Danisco Us Inc Variant maltopentaose/maltohexaose-forming alpha-amylases
US20230009832A1 (en) 2019-11-20 2023-01-12 Dupont Nutrition Biosciences Aps Thermostable phytase variants
CN113891931A (en) 2019-11-29 2022-01-04 巴斯夫欧洲公司 Compositions and polymers useful in such compositions
WO2021115912A1 (en) 2019-12-09 2021-06-17 Basf Se Formulations comprising a hydrophobically modified polyethyleneimine and one or more enzymes
CN115103602A (en) 2019-12-19 2022-09-23 杜邦营养生物科学有限公司 Daily ration preparation
WO2021122121A1 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning compositions comprising dispersins ix
US20220411773A1 (en) 2019-12-20 2022-12-29 Novozymes A/S Polypeptides having proteolytic activity and use thereof
WO2021122118A1 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning compositions comprising dispersins vi
EP4077617A1 (en) 2019-12-20 2022-10-26 Novozymes A/S Stabilized liquid boron-free enzyme compositions
KR20220121235A (en) 2019-12-20 2022-08-31 헨켈 아게 운트 코. 카게아아 Cleaning Composition Comprising Dispersin and Carbohydrase
US20230340442A1 (en) 2020-01-15 2023-10-26 Danisco Us Inc. Compositions and methods for enhanced protein production in bacillus licheniformis
US20230407208A1 (en) 2020-01-29 2023-12-21 Conopco, Inc., D/B/A Unilever Laundry detergent product
WO2021152120A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021152123A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021158927A1 (en) 2020-02-07 2021-08-12 Dupont Nutrition Biosciences Aps Feed compositions for animal health
WO2021160818A1 (en) 2020-02-14 2021-08-19 Basf Se Mannanase variants
US20230240334A1 (en) 2020-02-28 2023-08-03 Dupont Nutrition Biosciences Aps Feed compositions
EP3892708A1 (en) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Cleaning compositions comprising dispersin variants
US20230143128A1 (en) 2020-04-08 2023-05-11 Novozymes A/S Carbohydrate binding module variants
WO2021214059A1 (en) 2020-04-21 2021-10-28 Novozymes A/S Cleaning compositions comprising polypeptides having fructan degrading activity
EP3907271A1 (en) 2020-05-07 2021-11-10 Novozymes A/S Cleaning composition, use and method of cleaning
EP4158011A1 (en) 2020-05-26 2023-04-05 Novozymes A/S Subtilase variants and compositions comprising same
CN115698246A (en) 2020-06-08 2023-02-03 联合利华知识产权控股有限公司 Method for increasing protease activity
JP2023530443A (en) 2020-06-18 2023-07-18 ビーエーエスエフ ソシエタス・ヨーロピア Composition and use thereof
WO2021259099A1 (en) 2020-06-24 2021-12-30 Novozymes A/S Use of cellulases for removing dust mite from textile
EP3936593A1 (en) 2020-07-08 2022-01-12 Henkel AG & Co. KGaA Cleaning compositions and uses thereof
KR20230038177A (en) 2020-07-09 2023-03-17 바스프 에스이 composition and its application
WO2022008732A1 (en) 2020-07-10 2022-01-13 Basf Se Enhancing the activity of antimicrobial preservatives
WO2022023250A1 (en) 2020-07-27 2022-02-03 Unilever Ip Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
CN116322625A (en) 2020-08-24 2023-06-23 诺维信公司 Oral care compositions comprising levanase
US20230313165A1 (en) 2020-08-25 2023-10-05 Novozymes A/S Variants of a family 44 xyloglucanase
CN116096845A (en) 2020-08-28 2023-05-09 联合利华知识产权控股有限公司 Detergent composition
CN116157496A (en) 2020-08-28 2023-05-23 联合利华知识产权控股有限公司 Surfactant and detergent composition
CA3186910A1 (en) 2020-08-28 2022-03-03 Rolf Thomas Lenhard Protease variants with improved solubility
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
US20230303951A1 (en) 2020-08-28 2023-09-28 Conopco, Inc., D/B/A Unilever Detergent composition
EP4204526B1 (en) 2020-08-28 2024-04-24 Unilever IP Holdings B.V. Surfactant and detergent composition
EP4213641A1 (en) 2020-09-15 2023-07-26 Novozymes A/S Animal feed comprising insects or insect meal
BR112023005106A2 (en) 2020-09-22 2023-04-18 Basf Se LIQUID COMPOSITION, LIQUID DETERGENT FORMULATION, AND USES OF AT LEAST ONE DIOL (EXCEPT 1,2-PROANODIOL) AND DETERGENT FORMULATIONS
WO2022074037A2 (en) 2020-10-07 2022-04-14 Novozymes A/S Alpha-amylase variants
CN117241678A (en) 2020-10-16 2023-12-15 杜邦营养生物科学有限公司 Feed composition for animal health
WO2022083949A1 (en) 2020-10-20 2022-04-28 Basf Se Compositions and their use
EP4232539A2 (en) 2020-10-20 2023-08-30 Novozymes A/S Use of polypeptides having dnase activity
EP4237525A1 (en) 2020-10-28 2023-09-06 Novozymes A/S Use of lipoxygenase
EP4237552A2 (en) 2020-10-29 2023-09-06 Novozymes A/S Lipase variants and compositions comprising such lipase variants
US20230407209A1 (en) 2020-11-13 2023-12-21 Novozymes A/S Detergent Composition Comprising a Lipase
WO2022106400A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of immunochemically different proteases
EP4256020A1 (en) 2020-12-07 2023-10-11 Unilever IP Holdings B.V. Detergent compositions
AU2021394636A1 (en) 2020-12-07 2023-06-08 Unilever Global Ip Limited Detergent compositions
EP4015629A1 (en) 2020-12-18 2022-06-22 Basf Se Polymer mixtures for increasing stability and performance of hydrolase-containing detergents
EP4032966A1 (en) 2021-01-22 2022-07-27 Novozymes A/S Liquid enzyme composition with sulfite scavenger
US20240124805A1 (en) 2021-01-28 2024-04-18 Novozymes A/S Lipase with low malodor generation
WO2022169933A2 (en) 2021-02-03 2022-08-11 Dupont Nutrition Biosciences Aps Compositions for gut health
EP4039806A1 (en) 2021-02-04 2022-08-10 Henkel AG & Co. KGaA Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability
WO2022171872A1 (en) 2021-02-12 2022-08-18 Novozymes A/S Stabilized biological detergents
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
WO2022189521A1 (en) 2021-03-12 2022-09-15 Novozymes A/S Polypeptide variants
WO2022194673A1 (en) 2021-03-15 2022-09-22 Novozymes A/S Dnase variants
EP4060036A1 (en) 2021-03-15 2022-09-21 Novozymes A/S Polypeptide variants
EP4314222A1 (en) 2021-03-26 2024-02-07 Novozymes A/S Detergent composition with reduced polymer content
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
WO2023023644A1 (en) 2021-08-20 2023-02-23 Danisco Us Inc. Polynucleotides encoding novel nucleases, compositions thereof and methods thereof for eliminating dna from protein preparations
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
AU2022349014A1 (en) 2021-09-27 2024-04-04 International N&H Denmark Aps Feed additive compositions and methods for using the same
WO2023061827A1 (en) 2021-10-13 2023-04-20 Basf Se Compositions comprising polymers, polymers, and their use
WO2023066741A1 (en) 2021-10-20 2023-04-27 Basf Se Phosphate-free composition and methods for their manufacture and use
WO2023088776A1 (en) 2021-11-22 2023-05-25 Basf Se Compositions comprising polymers, polymers, and their use
WO2023088777A1 (en) 2021-11-22 2023-05-25 Basf Se Compositions comprising polymers, polymers, and their use
WO2023088761A1 (en) 2021-11-22 2023-05-25 Basf Se Compositions comprising polymers, polymers, and their use
WO2023114988A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Variant maltopentaose/maltohexaose-forming alpha-amylases
WO2023110599A2 (en) 2021-12-17 2023-06-22 Basf Se Compositions and their applications
WO2023116569A1 (en) 2021-12-21 2023-06-29 Novozymes A/S Composition comprising a lipase and a booster
EP4206309A1 (en) 2021-12-30 2023-07-05 Novozymes A/S Protein particles with improved whiteness
WO2023148086A1 (en) 2022-02-04 2023-08-10 Basf Se Compositions comprising polymers, polymers, and their use
EP4234664A1 (en) 2022-02-24 2023-08-30 Evonik Operations GmbH Composition comprising glucolipids and enzymes
WO2023165507A1 (en) 2022-03-02 2023-09-07 Novozymes A/S Use of xyloglucanase for improvement of sustainability of detergents
WO2023165950A1 (en) 2022-03-04 2023-09-07 Novozymes A/S Dnase variants and compositions
WO2023194204A1 (en) 2022-04-08 2023-10-12 Novozymes A/S Hexosaminidase variants and compositions
WO2023227332A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Laundry liquid composition comprising a surfactant, an alkoxylated zwitterionic polyamine polymer and a protease
WO2023227331A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition comprising a specific methyl ester ethoxylate surfactant and a lipase
WO2023227421A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Laundry liquid composition comprising a surfactant, an alkoxylated zwitterionic polyamine polymer, and a fragrance
WO2023227375A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Laundry liquid composition comprising a surfactant, an aminocarboxylate, an organic acid and a fragrance
WO2023227335A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Liquid composition comprising linear alkyl benzene sulphonate, methyl ester ethoxylate and alkoxylated zwitterionic polyamine polymer
WO2023227356A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition containing enzyme
CN114836408B (en) * 2022-05-28 2023-09-19 湖北大学 Alkaline protease containing propeptide mutant and application thereof
WO2023233025A1 (en) 2022-06-03 2023-12-07 Unilever Ip Holdings B.V. Liquid detergent product
WO2023247348A1 (en) 2022-06-21 2023-12-28 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2023247664A2 (en) 2022-06-24 2023-12-28 Novozymes A/S Lipase variants and compositions comprising such lipase variants
WO2024012894A1 (en) 2022-07-15 2024-01-18 Basf Se Alkanolamine formates for enzyme stabilization in liquid formulations
WO2024056334A1 (en) 2022-09-13 2024-03-21 Unilever Ip Holdings B.V. Washing machine and washing method
WO2024056333A1 (en) 2022-09-13 2024-03-21 Unilever Ip Holdings B.V. Washing machine and washing method
WO2024056332A1 (en) 2022-09-13 2024-03-21 Unilever Ip Holdings B.V. Washing machine and washing method
WO2024056278A1 (en) 2022-09-13 2024-03-21 Unilever Ip Holdings B.V. Washing machine and washing method
EP4349944A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition
EP4349948A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition
EP4349942A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition
EP4349943A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition
EP4349946A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Unit dose fabric treatment product
EP4349947A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition
EP4349945A1 (en) 2022-10-05 2024-04-10 Unilever IP Holdings B.V. Laundry liquid composition

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723250A (en) * 1967-10-03 1973-03-27 Novo Terapeutisk Labor As Proteolytic enzymes, their production and use
US4752585A (en) * 1985-12-17 1988-06-21 Cetus Corporation Oxidation-resistant muteins
US4760025A (en) * 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4914031A (en) * 1987-04-10 1990-04-03 Amgen, Inc. Subtilisin analogs
US4980288A (en) * 1986-02-12 1990-12-25 Genex Corporation Subtilisin with increased thermal stability
US5116741A (en) * 1988-04-12 1992-05-26 Genex Corporation Biosynthetic uses of thermostable proteases
US5122449A (en) * 1988-10-07 1992-06-16 Eastman Kodak Company Use of a protease in the extraction of chlamydial, gonococcal and herpes antigens
US5208158A (en) * 1990-04-19 1993-05-04 Novo Nordisk A/S Oxidation stable detergent enzymes
US5399283A (en) * 1986-01-15 1995-03-21 Amgen Inc. Thermally stable and pH stable subtilisin analogs and method for production thereof
US5665587A (en) * 1989-06-26 1997-09-09 Novo Nordisk A/S Modified subtilisins and detergent compositions containing same
US5700676A (en) * 1984-05-29 1997-12-23 Genencor International Inc. Modified subtilisins having amino acid alterations
US5741694A (en) * 1988-01-07 1998-04-21 Novo Nordisk A/S Useful mutations of bacterial alkaline protease
US5766898A (en) * 1990-12-05 1998-06-16 Novo Nordisk A/S Proteins with changed epitopes and methods for the production thereof
US5837517A (en) * 1995-05-05 1998-11-17 Novo Nordisk A/S Protease variants and compositions
US5858757A (en) * 1991-05-01 1999-01-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
US6300116B1 (en) * 1996-11-04 2001-10-09 Novozymes A/S Modified protease having improved autoproteolytic stability
US6555355B1 (en) * 1997-08-29 2003-04-29 Novozymes, A/S Protease variants and compositions
US6558938B1 (en) * 1997-08-29 2003-05-06 Novozymes, A/S Protease variants and compositions
US6605458B1 (en) * 1997-11-21 2003-08-12 Novozymes A/S Protease variants and compositions
US6682924B1 (en) * 1995-05-05 2004-01-27 Novozymes A/S Protease variants and compositions
US20040147008A1 (en) * 2002-11-06 2004-07-29 Novozymes A/S Subtilase variants
US6773907B2 (en) * 1997-11-21 2004-08-10 Peter Kamp Hansen Subtilase enzymes
US6777218B1 (en) * 2000-03-14 2004-08-17 Novozymes A/S Subtilase enzymes having an improved wash performance on egg stains
US6780629B2 (en) * 1997-11-21 2004-08-24 Novozymes A/S Subtilase enzymes
US20040197894A1 (en) * 2001-07-12 2004-10-07 Fano Tina Sejersgard Subtilase variants
US20040203130A1 (en) * 2000-04-03 2004-10-14 Novozymes A/S Subtilisin variants
US20040241820A1 (en) * 2000-08-21 2004-12-02 Novozymes A/S Subtilase enzymes
US20040248273A1 (en) * 2000-10-13 2004-12-09 Novozymes A/S Subtilase variants
US20050181446A1 (en) * 2000-04-28 2005-08-18 Novozymes A/S Protein variants having modified immunogenicity
US20070161531A1 (en) * 2005-07-08 2007-07-12 Novozymes A/S Subtilase variants

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929887A (en) 1970-05-18 1975-12-30 Endo Lab Alkylenepoly(aralkylamines) and the salts thereof
IE81141B1 (en) * 1983-06-24 2000-04-05 Genencor Int Procaryotic carbonyl hydrolases
US5972682A (en) * 1984-05-29 1999-10-26 Genencor International, Inc. Enzymatically active modified subtilisins
US5013657A (en) * 1988-04-12 1991-05-07 Bryan Philip N Subtilisin mutations
EP0260299A4 (en) * 1986-02-12 1988-11-24 Genex Corp Mutagenesis and screening method and product.
US4990452A (en) * 1986-02-12 1991-02-05 Genex Corporation Combining mutations for stabilization of subtilisin
ES2068181T3 (en) * 1986-04-30 1995-04-16 Genencor Int MUTANTS OF NON-HUMAN CARBONYL HYDROLASE, DNA SEQUENCES AND VECTORS CODING THEMSELVES AND HOSTS TRANSFORMED WITH THESE VECTORS.
WO1988006624A2 (en) * 1987-02-27 1988-09-07 Gist-Brocades N.V. Molecular cloning and expression of genes encoding proteolytic enzymes
EP0479396B1 (en) * 1987-02-27 1999-06-09 Genencor International, Inc. Transformation of alkalophilic bacillus strains
JP3155984B2 (en) * 1987-04-06 2001-04-16 ノヴォザイムズ・アクティーゼルスカブ Manipulating electrostatic interactions at metal ion binding sites for protein stabilization
US6799287B1 (en) 2000-05-01 2004-09-28 Hewlett-Packard Development Company, L.P. Method and apparatus for verifying error correcting codes

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723250A (en) * 1967-10-03 1973-03-27 Novo Terapeutisk Labor As Proteolytic enzymes, their production and use
US4760025A (en) * 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US5700676A (en) * 1984-05-29 1997-12-23 Genencor International Inc. Modified subtilisins having amino acid alterations
US4752585A (en) * 1985-12-17 1988-06-21 Cetus Corporation Oxidation-resistant muteins
US5399283A (en) * 1986-01-15 1995-03-21 Amgen Inc. Thermally stable and pH stable subtilisin analogs and method for production thereof
US4980288A (en) * 1986-02-12 1990-12-25 Genex Corporation Subtilisin with increased thermal stability
US4914031A (en) * 1987-04-10 1990-04-03 Amgen, Inc. Subtilisin analogs
US5741694A (en) * 1988-01-07 1998-04-21 Novo Nordisk A/S Useful mutations of bacterial alkaline protease
US6808913B2 (en) * 1988-01-07 2004-10-26 Novozymes A/S Useful mutations of bacterial alkaline protease
US6506589B1 (en) * 1988-01-07 2003-01-14 Novozymes, A/S Useful mutations of bacterial alkaline protease
US5116741A (en) * 1988-04-12 1992-05-26 Genex Corporation Biosynthetic uses of thermostable proteases
US5122449A (en) * 1988-10-07 1992-06-16 Eastman Kodak Company Use of a protease in the extraction of chlamydial, gonococcal and herpes antigens
US5665587A (en) * 1989-06-26 1997-09-09 Novo Nordisk A/S Modified subtilisins and detergent compositions containing same
US5208158A (en) * 1990-04-19 1993-05-04 Novo Nordisk A/S Oxidation stable detergent enzymes
US5766898A (en) * 1990-12-05 1998-06-16 Novo Nordisk A/S Proteins with changed epitopes and methods for the production thereof
US5858757A (en) * 1991-05-01 1999-01-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
US6190900B1 (en) * 1995-05-05 2001-02-20 Novo Nordisk A/S Subtilase variants
US5837517A (en) * 1995-05-05 1998-11-17 Novo Nordisk A/S Protease variants and compositions
US6682924B1 (en) * 1995-05-05 2004-01-27 Novozymes A/S Protease variants and compositions
US20040023355A1 (en) * 1995-05-05 2004-02-05 Novozymes A/S Subtilase variants
US20020102702A1 (en) * 1996-11-04 2002-08-01 Novozymes A/S Protease variants and compositions
US6300116B1 (en) * 1996-11-04 2001-10-09 Novozymes A/S Modified protease having improved autoproteolytic stability
US7098017B2 (en) * 1996-11-04 2006-08-29 Novozymes A/S Protease variants and compositions
US6555355B1 (en) * 1997-08-29 2003-04-29 Novozymes, A/S Protease variants and compositions
US6558938B1 (en) * 1997-08-29 2003-05-06 Novozymes, A/S Protease variants and compositions
US20050239185A1 (en) * 1997-08-29 2005-10-27 Novozymes A/S Protease variants and compositions
US6921657B2 (en) * 1997-08-29 2005-07-26 Novozymes A/S Protease variants and compositions
US20030180933A1 (en) * 1997-11-21 2003-09-25 Novozymes A/S Protease variants and compositions
US6605458B1 (en) * 1997-11-21 2003-08-12 Novozymes A/S Protease variants and compositions
US6780629B2 (en) * 1997-11-21 2004-08-24 Novozymes A/S Subtilase enzymes
US7026153B2 (en) * 1997-11-21 2006-04-11 Novozymes A/S Protease variants and compositions
US6773907B2 (en) * 1997-11-21 2004-08-10 Peter Kamp Hansen Subtilase enzymes
US6777218B1 (en) * 2000-03-14 2004-08-17 Novozymes A/S Subtilase enzymes having an improved wash performance on egg stains
US7220566B2 (en) * 2000-04-03 2007-05-22 Novozymes A/S Subtilisin variants
US20040203130A1 (en) * 2000-04-03 2004-10-14 Novozymes A/S Subtilisin variants
US6902922B2 (en) * 2000-04-03 2005-06-07 Novozymes A/S Subtilisin variants
US20050181446A1 (en) * 2000-04-28 2005-08-18 Novozymes A/S Protein variants having modified immunogenicity
US7109016B2 (en) * 2000-08-21 2006-09-19 Novozymes A/S Subtilase enzymes
US20040241820A1 (en) * 2000-08-21 2004-12-02 Novozymes A/S Subtilase enzymes
US6893855B2 (en) * 2000-10-13 2005-05-17 Novozymes A/S Subtilase variants
US7192757B2 (en) * 2000-10-13 2007-03-20 Novozymes A/S Subtilase variants
US20040248273A1 (en) * 2000-10-13 2004-12-09 Novozymes A/S Subtilase variants
US20040197894A1 (en) * 2001-07-12 2004-10-07 Fano Tina Sejersgard Subtilase variants
US20040147008A1 (en) * 2002-11-06 2004-07-29 Novozymes A/S Subtilase variants
US20070161531A1 (en) * 2005-07-08 2007-07-12 Novozymes A/S Subtilase variants

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270574A1 (en) * 2000-04-03 2007-11-22 Novozymes A/S Subtilisin variants
US7605115B2 (en) * 2000-04-03 2009-10-20 Novozymas Als Subtilisin variants
US20040248273A1 (en) * 2000-10-13 2004-12-09 Novozymes A/S Subtilase variants
US7192757B2 (en) * 2000-10-13 2007-03-20 Novozymes A/S Subtilase variants
US10087401B2 (en) 2012-03-16 2018-10-02 Monosol, Llc Water soluble compositions incorporating enzymes, and method of making same
EP3354716A1 (en) 2012-03-16 2018-08-01 Monosol, LLC Water soluble compositions incorporating enzymes, and method of making same
WO2013138288A1 (en) 2012-03-16 2013-09-19 Monosol, Llc. Water soluble compositions incorporating enzymes, and method of making same
WO2013158364A1 (en) 2012-04-16 2013-10-24 Monosol, Llc Powdered pouch and method of making same
US9394092B2 (en) 2012-04-16 2016-07-19 Monosol, Llc Powdered pouch and method of making same
US9908675B2 (en) 2012-04-16 2018-03-06 Monosol, Llc Powdered pouch and method of making same
US10696460B2 (en) 2012-04-16 2020-06-30 Monosol, Llc Powdered pouch and method of making same
US11753222B2 (en) 2012-04-16 2023-09-12 Monosol, Llc Powdered pouch and method of making same
US11104497B2 (en) 2014-10-03 2021-08-31 Monosol, Llc Degradable materials and packaging made from same
US11884467B2 (en) 2014-10-03 2024-01-30 Monosol, Llc Degradable materials and packaging made from same

Also Published As

Publication number Publication date
DK176102B1 (en) 2006-06-12
DK175697B1 (en) 2005-01-24
DK36196A (en) 1996-03-29
US20030148495A1 (en) 2003-08-07
US5741694A (en) 1998-04-21
US6808913B2 (en) 2004-10-26
EP0396608B1 (en) 1996-04-03
EP0396608A1 (en) 1990-11-14
DE68926163T2 (en) 1996-10-02
US6506589B1 (en) 2003-01-14
JPH0675504B2 (en) 1994-09-28
EP0675196A2 (en) 1995-10-04
JPH06292577A (en) 1994-10-21
DE68926163D1 (en) 1996-05-09
DK161290D0 (en) 1990-07-04
JP2726799B2 (en) 1998-03-11
EP1498481A1 (en) 2005-01-19
US6908991B2 (en) 2005-06-21
WO1989006279A1 (en) 1989-07-13
ATE136329T1 (en) 1996-04-15
EP1538204A2 (en) 2005-06-08
US20030175933A1 (en) 2003-09-18
JPH03503477A (en) 1991-08-08
DK161290A (en) 1990-09-07
EP0675196A3 (en) 1995-11-22
EP1538204A3 (en) 2007-07-04
US20030186378A1 (en) 2003-10-02
DK6488D0 (en) 1988-01-07
US6835821B2 (en) 2004-12-28
JPH10113179A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US6808913B2 (en) Useful mutations of bacterial alkaline protease
EP0328229B2 (en) Novel proteolytic enzymes and their use in detergents
JP3471797B2 (en) Stabilizing enzymes and detergents
JP4611531B2 (en) Subtilase enzyme subgroups I-S1 and I-S2 with additional amino acid residues in the active site loop region
JP5603164B2 (en) Subtilase enzyme subgroups I-S1 and I-S2 with additional amino acid residues in the active site loop region
JP4768128B2 (en) Subtilase enzyme subgroups I-S1 and I-S2 with additional amino acid residues in the active site loop region
KR100767710B1 (en) Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 97 and 98
JP4611530B2 (en) Subtilase enzyme subgroups I-S1 and I-S2 with additional amino acid residues in the active site loop region
JP4611529B2 (en) Subtilase enzyme subgroups I-S1 and I-S2 with additional amino acid residues in the active site loop region

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION