Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050004586 A1
Publication typeApplication
Application numberUS 10/886,072
Publication dateJan 6, 2005
Filing dateJul 6, 2004
Priority dateJul 12, 2001
Also published asUS6887251
Publication number10886072, 886072, US 2005/0004586 A1, US 2005/004586 A1, US 20050004586 A1, US 20050004586A1, US 2005004586 A1, US 2005004586A1, US-A1-20050004586, US-A1-2005004586, US2005/0004586A1, US2005/004586A1, US20050004586 A1, US20050004586A1, US2005004586 A1, US2005004586A1
InventorsWilliam Suval
Original AssigneeSuval William D.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for vessel harvesting
US 20050004586 A1
Abstract
The present invention is a method and device for harvesting a vessel. The vessel harvester comprises an internal stenting catheter with proximal and distal ends, a sheath catheter with proximal and distal ends, and a cylindrical cutting tube that is attachable to the distal end of the sheath catheter. The vessel harvester is used to harvest vesseal such as the greater and lesser saphenous veins, the basilic vein, the cephalic vein, and the radial artery.
Images(4)
Previous page
Next page
Claims(31)
1-22. (Cancelled)
23. A method for harvesting a vessel from a patient, the method comprising:
opening a vessel in the patient, thereby defining a vessel portion extending between an opened proximal end and an opened distal end;
threading a flexible elongate member entirely through the vessel portion until a distal end of the flexible elongate member protrudes from the distal end of the vessel portion while a proximal end of flexible elongate member protrudes from the proximal end of the vessel portion, wherein the flexible elongate member comprises an elongate guide component slidably coupled to an elongate pulling component that is substantially coextensive therewith;
coupling a terminal member to the elongate pulling component of the flexible elongate member distal to the distal end of the vessel portion, wherein the terminal member is configured to sever the vessel portion from surrounding tissue of the patient when drawn along a length of the vessel portion; and
drawing the terminal member through the patient to the proximal end of the vessel portion, by pulling the elongate pulling component out the proximal end of the vessel portion while holding the elongate guide component distal to the distal end of the vessel portion, thereby severing the vessel portion from surrounding tissue of the patient.
24. The method of claim 23, further comprising maintaining tension in the elongate guide component during the drawing step.
25. The method of claim 23, further comprising splitting the elongate pulling component after it is drawn out the proximal end of the vessel portion during the drawing step.
26. The method of claim 23, further comprising rotating the elongate pulling component and the terminal member coupled thereto, while the pulling component is being drawn out the proximal end of the vessel portion during the drawing step.
27. The method of claim 26, wherein the rotating step further comprises causing rotation of the elongate pulling component by splitting the pulling component along a helical path after it is drawn out the proximal end of the vessel portion.
28. The method of claim 23, further comprising cutting around an outer perimeter of the vessel portion using the terminal member, during drawing step.
29. The method of claim 23, further comprising collecting the vessel portion in a receptacle connected to the terminal member, during the drawing step.
30. The method of claim 23, wherein the threading step further comprises threading the flexible elongate member comprising a sheath catheter disposed around a stenting catheter.
31. An apparatus for harvesting a length of vessel from a patient, the apparatus comprising:
a flexible elongate guide member longer than the length of vessel to be harvested;
a flexible elongate pulling member longer than the length of vessel to be harvested and shorter than the guide member, slidably coupled to the guide member and substantially coextensive therewith; and
a coupling connected to a distal end of the pulling member, and configured to permit the guide member to extend past the coupling, the coupling further configured to couple to a terminal member, wherein the guide member, the pulling member, and the coupling together comprise an assembly configured for threading through the length of vessel and that, when coupled to the terminal member, is configured to sever the length of vessel from the patient when the terminal member is drawn along the length of vessel by the pulling member, while at least a distal end of the guide member is substantially fixed relative to the patient.
32. The apparatus of claim 31, wherein the pulling member comprises a sheath catheter.
33. The apparatus of claim 31, wherein the guide member comprises a stenting catheter.
34. The apparatus of claim 31, wherein the pulling member comprises a stenting catheter.
35. The apparatus of claim 31, wherein the guide member comprises a wire.
36. The apparatus of claim 31, further comprising the terminal member coupled to the coupling.
37. The apparatus of claim 36, wherein the terminal member comprises a cutter configured to cut around an outer periphery of the length of vessel.
38. The apparatus of claim 37, wherein the cutter comprises a circular blade having an inside diameter greater than an outside diameter of the length of vessel.
39. The apparatus of claim 36, further comprising a receptacle connected to a distal portion of the terminal member, configured for collecting the length of vessel.
40. The apparatus of claim 39, wherein the terminal member and the receptacle together comprise a cylindrical cutting tube.
41. The apparatus of claim 31, wherein the pulling member comprises a peel-away catheter.
42. The apparatus of claim 31, wherein the pulling member comprises a peel-away catheter configured to peel along a helix.
43. A vessel harvesting device comprising a flexible elongate guide member, a pulling member disposed over the guide member and having proximal and distal ends, and a cutter connectable to the distal end of pulling member, wherein the guide member and the pulling member are arranged to be inserted through a length of vessel in an organism, and the cutter is connectable to the pulling member for movement relative to a fixed distal end of the guide member along the outside of the vessel.
44. The apparatus of claim 43, wherein the pulling member comprises a sheath catheter.
45. The apparatus of claim 43, wherein the guide member comprises a stenting catheter.
46. The apparatus of claim 43, wherein the pulling member comprises a stenting catheter.
47. The apparatus of claim 43, wherein the guide member comprises a wire.
48. The apparatus of claim 43, wherein the cutter comprises a circular blade having an inside diameter greater than an outside diameter of the vessel.
49. The apparatus of claim 43, further comprising a receptacle connected to a distal portion of the pulling member and disposed behind the cutter, configured for collecting the length of vessel.
50. The apparatus of claim 49, wherein the cutter and the receptacle together comprise a cylindrical cutting tube.
51. The apparatus of claim 43, wherein the pulling member comprises a peel-away catheter.
52. The apparatus of claim 43, wherein the pulling member comprises a peel-away catheter configured to peel along a helix.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to an apparatus and method for harvesting vessels, especially veins, for use in bypass grafting surgical procedures.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Atherosclerosis is a disease that affects hundreds of thousand of people each year. The disease can occur anywhere throughout the body including the lower extremities, the carotid arteries and the heart. When it affects the blood supply to the heart it is called coronary artery disease. Vascular complications produced by atherosclerosis, such as stenosis, aneurysm, rupture or occlusion oftentimes call for surgical intervention. If the disease is extensive, the affected artery or vessel is no longer reliable and is often replaced or bypassed around by a bypass graft, usually referred to as an “autograft.” To this end, the involved section of the vessel is bypassed with an autograft surgically attached proximal to the lesion and at a point distal to the lesion to provide a bypass path for blood flow. In a patient who undergoes coronary artery bypass grafting (CABG) surgery, a non-critical vessel (artery or vein) is harvested from elsewhere in the body and is sewn into place in such a manner that reestablishes the flow of blood to the heart region that had lost or diminished its supply of blood because of the atherosclerotic lesion.
  • [0003]
    The saphenous vein in the leg is a vessel that is commonly harvested for use as a bypass graft in coronary artery surgery. It is also common to use the saphenous vein for bypass surgery in the lower extremity to bypass lesions in the femeral or popliteal arteries. However, typical procedures for harvesting a saphenous vein autograft are tedious, time consuming, and cause undesirable patient trauma. In one harvesting procedure, an incision is made along the leg for a length corresponding to the length of the autograft required, wherein the vein is transected and is stripped from the leg. The incision then must be sutured or stapled along its length. In some patients, the incision must be made along the entire length of the leg. The surgery required for harvesting a vessel in this manner is traumatic to the patient, increases recovery time, increases the patient's hospital confinement, and adds to the cost of the coronary artery surgery.
  • [0004]
    Another method of harvesting a saphenous vein is by use of an endoscope. In this method, a few small incisions are made on the leg over the saphenous vein. The saphenous vein is transected and ligated at its ends and the endoscope is inserted into the small incisions. While visualizing the vein with the endoscope, the entire length of the vein is harvested by slow dissection. The endoscope is advanced under the skin along the saphenous vein's length while transecting and ligating its connecting branches until the entire segment of the saphenous vein is free and is able to be removed. This method is more advantageous to the patient in that only a few small incisions are made and much less scarring occurs. However, the endoscopic harvesting of the vein is a difficult procedure and takes a substantial amount of time. The increased time in the operating room increases the cost of the procedure and increases the risk of infection and complications to the patient.
  • [0005]
    Other vessels are often used as well in bypass surgical procedures. For example, the radial arteries are often used as coronary conduits. The lesser saphenous, basilic, and cephalic veins are also used.
  • [0006]
    Accordingly, it would be highly desirable to provide a less invasive procedure for harvesting vessels, especially the saphenous vein, which avoids the need for a long incision, is easy to use, and does not require a substantial amount of time to complete.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention provides a fast, uniform, and inexpensive way to harvest a vessel for bypass surgery. An embodiment of the present invention comprises an internal stenting catheter with proximal and distal ends, a sheath catheter with proximal and distal ends, and a cylindrical cutting tube that is attachable to the distal end of the sheath catheter. The stenting catheter is located within the sheath catheter and is used as a stent to straighten out the vein and to guide the cylindrical cutting tube around the vein. The sheath catheter is used to pull the cylindrical cutting tube under the skin and around the vein, cutting the side branches as it is pulled along the length of the vein and collecting the vein within the lumen of the cylindrical cutting tube.
  • [0008]
    The present invention is used in the following manner. The patient is prepared for surgery in standard manner and placed under proper anesthesia (local or general). A small skin incision is made at the distal end of the vessel. Next, a small skin incision is made at the proximal end of the vessel. Using a cut-down technique, for example the Seldinger Technique, the vessel is isolated and the vessel is ligated. The stenting catheter and the sheath catheter are then introduced within the vessel through the distal incision at the vessel's distal end and advanced to the vessel's proximal end where it exits the vessel and the proximal skin incision. Next, the cylindrical cutting tube is placed over the distal end of the sheath catheter and locked into place. The proximal and distal ends of the stenting catheter which are outside of the vessel and the skin are then placed into clamping devices and tension is placed on the stenting catheter until the catheter is straight. The cylindrical cutting tube is then advanced through the proximal skin incision and around the proximal end of the vessel to be harvested. The sheath catheter is used to pull the cutting tube distally down around the vessel cutting connective tissue and branches along the way. The vessel being harvested is collected within the collection lumen of the cutting tube as it is being cut free from the connective tissue and branches. Once the cutting tube has been pulled completely through the course of the vessel, the cutting tube is then removed from the distal skin incision. The cutting tube is then cut free from the stenting catheter and the remains of peel-away catheter. The harvested vessel is then removed from the lumen of the cutting tube, dilated, and the cut branches are sutured or clipped according to standard bypass grafting techniques. The vessel is now ready for the bypass grafting procedure (CABG or other bypass surgery). The area where the vessel was removed is then wrapped with elastic wraps to seal the cut edges and minimize swelling. At the end of the bypass procedure, the skin incisions are cleaned, any hematomas are expelled, and the wounds are closed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0009]
    For a better understanding of the invention, reference is now made to the drawings where like numerals represent similar objects throughout the figures where:
  • [0010]
    FIG. 1 is a perspective schematic view of an embodiment of the present invention for harvesting a vessel;
  • [0011]
    FIG. 2 is a cross-sectional view of the embodiment of FIG. 1;
  • [0012]
    FIG. 3 is a detailed schematic view of the cutting tube of FIG. 2;
  • [0013]
    FIG. 4 is a cross-sectional view of an alternate embodiment of the present invention;
  • [0014]
    FIG. 5 is a schematic view of a lower extremity of a patient and the greater saphenous vein;
  • [0015]
    FIG. 6 is a schematic view of incisions made on the lower extremity to harvest the greater saphenous vein;
  • [0016]
    FIG. 7 is a schematic view of the stenting catheter and peel-away catheter passed through the greater saphenous vein;
  • [0017]
    FIG. 8 is a schematic view of the stenting catheter with tension and the cutting tube connected to the distal end of the peel-away catheter; and
  • [0018]
    FIG. 9 is a schematic view of the peel-away catheter being pulled apart and the cutting tube advancing distally along the greater saphenous vein cutting connective tissue and side branches of the vein.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0019]
    Turning now to FIGS. 1 and 2, the vessel harvester of the present invention is illustrated. The vessel harvester comprises a stenting catheter 11 with proximal and distal ends, a sheath catheter 13 with proximal and distal ends, and a cylindrical cutting tube 15 with a proximal cutting edge 43 and a distal connecting port 33. The stenting catheter is located within the lumen of the sheath catheter. Both the stenting catheter and the sheath catheter are illustrated within the lumen of a vessel 17 with side branches 18. The cutting tube, on the other hand, is located around the outside of the vessel. The cutting tube is connectably attached to the distal end 35 of the sheath catheter via the connecting port and the connecting prongs 29 and 31 located on the sheath catheter.
  • [0020]
    The stenting catheter 11 can be made out of an appropriately strong biocompatible material. The catheter can be made from an extruded biocompatible plastic such as polyurethane or polyethyl terephtalate, a biocompatible metal such as surgical stainless steel wire or wire braids, a combination of wire and plastic, or other readily available materials known in the art. The catheter has to have enough flexibility to navigate the curved path of the vessel to be harvested, but also needs to have enough strength such that when axial tension is applied to straighten out the vessel, the catheter will not break. The size of the stenting catheter can vary depending on the length of the vessel to be harvested. For the greater saphenous vein, the length of the stenting catheter is about 36 to about 48 inches. For smaller veins, such as the lesser saphenous vein, the length of the stenting catheter is about 12 to about 36 inches. The diameter of the stenting catheter is about 1 to about 3 mm. The diameter has to be small enough to fit within the sheath catheter. Additionally, the catheter has to be fairly lubricious to allow for the sheath catheter to easily travel along its axial length when the vessel is being harvested. To this end the stenting catheter can be coated with a lubricious surface such as TeflonŽ or the like. The distal end of the stenting tube is provided with a rounded bullet nose member 39 for ease in threading the stenting catheter through the vein to be harvested. Additionally, the bullet nose can be used to fit in a clamping member 19 for placing tension on the stenting catheter once it has been threaded through the vein. The proximal end of the stenting catheter can also be placed in a clamping member 21 for opposing the tension placed by clamping member 19.
  • [0021]
    In the preferred embodiment, the sheath catheter 13 is a peel-away catheter which has two pull tabs 23 that have two notches 24 located on opposite sides for easy separation. Typical peel-away catheters have axial scoring along their length such that the catheter can peel away into two halves. It is contemplated in the present invention that this type of scoring can be used. If this type of scoring is used, then when the peel-away catheter is pulled apart, the cutting tube 15 attached to the distal end of the peel away catheter 35 is pulled straight down the stenting catheter. However, it is also contemplated in the present invention that the cutting tube is more effective when it is rotated while being pulled down. To achieve this rotation, the scoring 25 of the peel-away catheter is in a spiral configuration. Thus, when the peel-away catheter is pulled apart at its proximal end, the distal end of the peel-away catheter rotates, which in turn causes the rotation of the cutting tube. The peel away catheter can be made out of biocompatible plastics such as polyurethane, PET, or the like by extrusion and/or molding techniques or other means well known in the art. The peel-away catheter can also be reinforced with stainless steel wire to provide it strength for the rotational force needed to rotate the cutting tube within the patient. The size of the peel-away catheter can vary depending on the length of the vein to be harvested. For the greater saphenous vein, the length of the peel-away catheter is about 24 to about 48 inches. For smaller veins, such as the lesser saphenous vein, the length of the peel-away catheter is about 6 to about 36 inches. The diameter of the peel-away catheter is about 2 to about 4 mm.
  • [0022]
    The cylindrical cutting tube 15 is a hollow tube with a vein collecting lumen 47 in the proximal portion of the tube. The proximal edge of the cutting tube is a sharp circular blade 43 which can cut connective tissue and vessel branches. The blade is created by bevel 45 which is bevelled radially outward instead of inward. This beveling configuration prevents the cutting tube from cutting the vessel to be harvest if the tube axially torques and rubs against the side of the vessel. Instead, the cutting edge acts like a razor blade traveling along the surface of the vessel and cutting the connective tissue and vessel branches. The distal end of the cutting tube has a smaller lumen 49 for closely fitting over the peel-away catheter. Turning now to FIGS. 2 and 3, the smaller lumen 49 is provided with a taper 51 near the distal end which then narrows to the distal opening 33. The distal end of the cutting tube is also provided with two connecting channels 53 and 55 that are located radially outward from the distal lumen 33. The peel-away sheath catheter 13 is provided with a taper 59 to a smaller lumen 60 for closely fitting over the stenting catheter 11. Additionally, the peel-away catheter's outer diameter through this section remains the same until the taper 63 nearer the distal end which fits within the taper 51 of the cutting tube. This provides a thick area 61 where the peel-away catheter is thicker and stiffer to support the cutting tube and track over the stenting catheter to help prevent axial torqueing of the cutting tube while it is pulled down along the vessel. The peel-away catheter is also provided with connecting prongs 29 and 31 for insertion into the connecting ports 53 and 55 of the cutting tube. The connecting prongs of the sheath catheter are passed through a channel 34 in the cutting tube (see FIG. 1) and then rotated 90 degrees for insertion into the connecting ports. Once the connecting prongs are inserted into the connecting channels, pulling apart the peel-away catheter allows for the pulling of the cutting tube down the vessel and the rotation of the cutting tube if a spiral scoring of the peel-away catheter is used.
  • [0023]
    The cutting tube can come in different sizes depending on the size and length of the vessel to be harvested. For the greater saphenous vein, the length of the cutting tube is about 7 to about 20 cm and the length of the vessel collecting lumen is about 5 to about 15 cm. For smaller vessels, such as the lesser saphenous vein or the radial artery, the length of the cutting tube is about 5 to about 15 cm and the length of the vessel collecting lumen is about 3 to about 10 cm. The diameter of the cutting tube can vary from about 3 to about 15 mm depending on the size of the vessel being harvested.
  • [0024]
    Turning now to FIG. 4 an alternate embodiment is illustrated in cross-section. In this embodiment, the sheath catheter 13 is a peel-away catheter which is longitudinally scored and has the same outer diameter until the very distal end where a beveled flange 75 is provided. The flange is inserted through a small lumen 71 of the cutting tube 15 until it rests within a larger lumen 73 of the cutting tube at its distal end. In the center of the peel away catheter is a stenting catheter 11 with a bullet nose member 39 at its distal end. Additionally, within the center of the peel away catheter are a plurality of guide wires (two being illustrated 77 and 79) for helping to keep the cutting tube aligned when it is being pulled down under the skin of the patient. The guide wires are secured at both ends of the patient in clamping member 19 and 21. The stenting catheter on the other hand is inserted into a lumen 89 in a larger bullet member 81 for actually pulling the cutting tube under the skin. The guide wires travel though the bullet member 81 in small channels 83 and 85 that help to keep the cutting tube aligned while harvesting the vein.
  • [0025]
    To harvest the vessel using the embodiment of FIG. 4, the stenting catheter is used to pull the cutting tube while the peel away catheter is used as a sheath for covering the guide wires and stenting catheter during the procedure. The vessel 17 is collected in the large lumen 47 of the cutting tube and the side branches 18 are cut with the cutting edge 43.
  • [0026]
    Turning now to FIGS. 5-9, the method of harvesting a vessel is illustrated. FIG. 5 schematically illustrates a greater saphenous vein 17 with side branches 18 in a leg of a patient. As can be seen, the greater saphenous vein is a curved vein located on the medial to anterior parts of the leg. Two skin incisions 91 and 93 are made along the course of the vein (see FIG. 6). As would be apparent, one skin incision is located at the distal end 93 of the vein and one is at the proximal end 91 of the vein. The location of the skin incisions can vary depending on the length of saphenous vein needed. Using a cut-down procedure such as the Seldinger technique, the saphenous vein is isolated and ligated.
  • [0027]
    Turning now to FIG. 7, the stenting catheter 11 is then inserted into the sheath catheter 13 which is then inserted into the proximal end of the vein through incision 93 and then exits the vein at the distal incision 91. As illustrated in FIG. 8, the cutting tube is then inserted over the distal end of the peel-away catheter and locked into place using connecting tabs 29 and 31. The stenting catheter is then pulled taught and inserted into the clamping members 19 and 21. These clamping members are ideally secured to the operating table to allow for the tension to be maintained throughout the cutting process. When the stenting catheter is pulled taught, the saphenous vein 17 becomes straight. The cutting tube 15 is then inserted under the skin through the skin incision 91. The sheath catheter is a peel away catheter which is then broken apart at the tabs 23 on the proximal end and pulled apart at the serrations. While pulling the peel-away catheter apart, the cutting tube is pulled under the skin of the patient around the saphenous vein 17. As the cutting tube is being pulled, side branches 18 are cut by the cutting edge 43 of the cutting tube. If needed, the cutting tube can be manually manipulated from outside the skin of the patient to help keep it straight to prevent axial torquing and continue the harvesting of the vein. Eventually, the cutting tube is pulled all the way to the proximal incision 93 where the tube is removed from the patient. The peel-away catheter and the stenting catheter are then cut and removed from the cutting tube. The vein is then removed from the cutting tube and the cut side branches are sutured or clamped. The vein is then prepared for being a bypass conduit using standard techniques and then is used as a bypass conduit as needed.
  • [0028]
    The skin incisions 91 and 93 are then closed using standard surgical closure techniques and the leg of the patient is then wrapped with tight leg wrapping to seal the cut vein branches. The leg is monitored to insure that there is appropriate blood flow and proper recovery. If need be, hematomas are removed.
  • [0029]
    Similar methods are used for harvesting other vessels such as the lesor saphenous vein, the basilic vein, the cephalic vein, the radial artery and the like.
  • [0030]
    The vein harvesting device and method of the present invention may be embodied in other specific forms without departing from the teachings or essential characteristics of the invention. The described embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4793346 *Sep 4, 1986Dec 27, 1988Bruce MindichProcess and apparatus for harvesting vein
US5373840 *Oct 2, 1992Dec 20, 1994Knighton; David R.Endoscope and method for vein removal
US5695514 *Mar 15, 1996Dec 9, 1997Guidant CorporationMethod and apparatus for harvesting blood vessels
US5702412 *Oct 3, 1995Dec 30, 1997Cedars-Sinai Medical CenterMethod and devices for performing vascular anastomosis
US5817100 *Feb 7, 1995Oct 6, 1998Kabushikikaisya Igaki Iryo SekkeiStent device and stent supplying system
US5899913 *Sep 1, 1998May 4, 1999General Surgical Innovations, Inc.Methods and devices for blood vessel harvesting
US5906612 *Sep 19, 1997May 25, 1999Chinn; Douglas O.Cryosurgical probe having insulating and heated sheaths
US5913866 *Feb 27, 1998Jun 22, 1999Cardiothoracic Systems, Inc.Devices and methods for harvesting vascular conduits
US5928135 *Oct 6, 1997Jul 27, 1999Ethicon Endo-Surgery, Inc.Method and devices for endoscopic vessel harvesting
US5928138 *Oct 6, 1997Jul 27, 1999Ethicon Endo-Surgery, Inc.Method and devices for endoscopic vessel harvesting
US5938066 *Apr 16, 1998Aug 17, 1999Demars; Robert A.Food serving plate
US5938680 *Jun 19, 1997Aug 17, 1999Cardiothoracic Systems, Inc.Devices and methods for harvesting vascular conduits
US5968246 *Mar 6, 1998Oct 19, 1999BetzdearbornStabilized composition for treatment of metal surfaces
US5970982 *Feb 20, 1997Oct 26, 1999Perkins; Rodney C.Minimally invasive biological vessel harvesting method
US6019771 *Dec 2, 1996Feb 1, 2000Cardiothoracic Systems, Inc.Devices and methods for minimally invasive harvesting of a vessel especially the saphenous vein for coronary bypass grafting
US6036713 *Jan 23, 1997Mar 14, 2000Archimedes Surgical, Inc.Instruments and methods for minimally invasive vascular procedures
US6042538 *Nov 18, 1998Mar 28, 2000Emory UniversityDevice for endoscopic vessel harvesting
US6059802 *Feb 27, 1998May 9, 2000Cardiothoracic Systems, Inc.Dissecting retractor for harvesting vessels
US6551335 *Sep 1, 2000Apr 22, 2003Astra Tech AbMethods and devices for stripping blood vessels
US6582390 *Nov 8, 2000Jun 24, 2003Endovascular Technologies, Inc.Dual lumen peel-away sheath introducer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7367983Sep 15, 2005May 6, 2008Dziadik Stephen PVessel harvesting apparatus
US7547314May 26, 2006Jun 16, 2009Terumo Cardiovascular Systems CorporationSelf-cleaning endoscopic vein harvester rod
US7831297May 24, 2003Nov 9, 2010Scottsdale Medical Devices, Inc.Guide wire torque device
US8480696Jun 16, 2005Jul 9, 2013Medtronic, Inc.Minimally invasive coring vein harvester
US8623046Aug 10, 2007Jan 7, 2014Donald Lee SturtevantTreatment for patients after removal of saphenous vascular material
US20040092990 *Nov 7, 2003May 13, 2004Opie John C.Endovascular guide for use with a percutaneous device for harvesting tubular body members
US20040122458 *Jul 11, 2003Jun 24, 2004Opie John C.Percutaneous device and method for harvesting tubular body members
US20040236214 *May 24, 2003Nov 25, 2004Js Vascular, Inc.Guide wire torque device
US20050273125 *May 13, 2005Dec 8, 2005Opie John CPercutaneous vein harvester with shielded blade
US20070005084 *Jun 16, 2005Jan 4, 2007Clague Cynthia TMinimally invasive coring vein harvester
US20070189235 *Jan 31, 2007Aug 16, 2007Interdigital Technology CorporationQuality of service based resource determination and allocation apparatus and procedure in high speed packet access evolution and long term evolution systems
US20070276418 *May 26, 2006Nov 29, 2007Terumo Cardiovascular Systems CorporationSelf-cleaning endoscopic vein harvester rod
US20080161841 *Oct 16, 2007Jul 3, 2008Clague Cynthia TCutting device and method of vessel harvesting
US20080161843 *Oct 16, 2007Jul 3, 2008Clague Cynthia TVessel support device and method of vessel harvesting
US20080167669 *Oct 16, 2007Jul 10, 2008Clague Cynthia TVessel tensioning handle and method of vessel harvesting
US20090043277 *Aug 10, 2007Feb 12, 2009Donald Lee SturtevantTreatment for patients after removal of saphenous vascular material
US20100114136 *Jan 15, 2010May 6, 2010Scottsdale Medical Devices, Inc.Cutting device and method of vessel harvesting
US20100121362 *Jan 19, 2010May 13, 2010Scottsdale Medical Devices, Inc.Vessel support device and method of vessel harvesting
US20100305594 *Jan 24, 2010Dec 2, 2010Scottsdale Medical Devices, Inc.Percutaneous vein harvester with shielded blade
US20130158524 *Dec 4, 2012Jun 20, 2013Biotronik AgReleasing Device for Detaching a Medical Implant from a Catheter and a Catheter having a Releasing Device, and Method for Producing a Clamping Body of a Releasing Device and Method for Clamping an Implant in such a Clamping Body
DE102007034651B4 *Jul 25, 2007Feb 23, 2012Dongbu Hitek Co., Ltd.Halbleiterbauelement und Verfahren zu dessen Herstellung
Classifications
U.S. Classification606/159
International ClassificationA61B17/00
Cooperative ClassificationA61B2017/00969, A61B17/00008
European ClassificationA61B17/00B