Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050005698 A1
Publication typeApplication
Application numberUS 10/615,328
Publication dateJan 13, 2005
Filing dateJul 8, 2003
Priority dateJul 8, 2003
Also published asCN1816747A, CN100437118C, EP1646878A1, US6845670, US6936492, US20050097957, WO2005017536A1
Publication number10615328, 615328, US 2005/0005698 A1, US 2005/005698 A1, US 20050005698 A1, US 20050005698A1, US 2005005698 A1, US 2005005698A1, US-A1-20050005698, US-A1-2005005698, US2005/0005698A1, US2005/005698A1, US20050005698 A1, US20050005698A1, US2005005698 A1, US2005005698A1
InventorsAndrew McNeil, Gary Li, Daniel Koury
Original AssigneeMotorola Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Single proof mass, 3 axis mems transducer
US 20050005698 A1
Abstract
A transducer is provided herein which comprises an unbalanced proof mass (51), and which is adapted to sense acceleration in at least two mutually orthogonal directions. The proof mass (51) has first (65) and second (67) opposing sides that are of unequal mass.
Images(6)
Previous page
Next page
Claims(51)
1. A transducer being adapted to sense acceleration in at least two mutually orthogonal directions, comprising:
an unbalanced proof mass; and
a first set of sense fingers aligned along a first axis.
2. The transducer of claim. 1, wherein the transducer contains a single proof mass.
3. (Cancelled)
4. The transducer of claim 3, wherein said transducer further comprises a second set of sense fingers aligned along a second axis, and wherein said first and second axes are orthogonal.
5. The transducer of claim 4, wherein the first and second set of sense fingers have longitudinal axes that are parallel to a first plane.
6. (Cancelled)
7. The transducer of claim 1, wherein said transducer is adapted to sense acceleration in three mutually orthogonal directions.
8. The transducer of claim 1, wherein said proof mass has a central portion with a plurality of sense fingers disposed therein, and opposing sides adjacent to said central portion that are of unequal mass.
9. The transducer of claim 8, wherein said opposing sides are of unequal dimensions.
10. The transducer of claim 1, further comprising first and second capacitive plates disposed beneath said proof mass, said plates being adapted to detect movement of the proof mass along an axis perpendicular to the surface of at least one of said first and second capacitive plates.
11. The transducer of claim 4, wherein each of said sense fingers in said first and second set is disposed between two parallel fingers that are fixably attached to a substrate.
12. The transducer of claim 1, wherein the proof mass is mounted to the substrate on a suspension that is compliant in at least two mutually orthogonal directions.
13. The transducer of claim 1, wherein said proof mass is mounted on a substrate, and further comprising two conductive plates that are mounted on the substrate under the proof mass.
14. The transducer of claim 4, wherein the first and second set of sense fingers are disposed in an arrangement that has at least one plane of mirror symmetry.
15. The transducer of claim 4, wherein the first and second set of sense fingers are disposed in an arrangement that has at least two planes of mirror symmetry.
16. The transducer of claim 14, further comprising two conductive plates, wherein said proof mass is mounted on a substrate, wherein said conductive plates are mounted on the substrate under the proof mass, and wherein said conductive plates are also disposed in an arrangment that has at least one plane of mirror symmetry.
17. The transducer of claim 16, wherein there is a line of symmetry between the two conductive plates, and wherein the proof mass is asymmetrically disposed about the line of symmetry between the two conductive plates.
18. The transducer of claim 1, further comprising a plurality of suspension springs that are disposed in an arrangement having at least two planes of symmetry.
19. The transducer of claim 1, wherein said transducer is a two layer transducer.
20. A transducer, comprising:
a proof mass having first and second sets of fingers adapted to sense acceleration along first and second mutually orthogonal axes;
first and second capacitive plates adapted to sense acceleration along a third axis that is orthogonal to said first and second axes; and
at least one anchor for said proof mass, said anchor being attached to said proof mass;
wherein the weight of the proof mass is asymmetrically supported by the at least one anchor.
21. The transducer of claim 20, wherein said first and second plates are disposed on the same side of said proof mass.
22. The transducer of claim 20, wherein said anchors and said first and second plates are supported on a substrate.
23. The transducer of claim 20, wherein said first and second plates are adapted to capacitively sense acceleration in a direction perpendicular to said first and second axes.
24. The transducer of claim 20, wherein said transducer is an accelerometer.
25. The transducer of claim 20, wherein said transducer is a two layer transducer.
26. A transducer, comprising:
an unbalanced proof mass;
first and second capacitive plates disposed beneath said proof mass, said plates being adapted to detect movement of the proof mass alone an axis perpendicular to the plane of at least one of said first and second plates; and
a first set of sense fingers aligned along a first axis.
27. The transducer of claim 26, wherein said transducer further comprises a second set of sense fingers aligned along a second axis, and wherein said first and second axes are orthogonal.
28. (Cancelled)
29. A transducer, comprising:
a substrate;
a first conductive layer disposed on said substrate, said first conductive layer having first and second capacitive structures defined therein; and
a second conductive layer disposed over the first conductive layer;
wherein the second conductive layer has a proof mass and sense fingers defined therein such that the center of mass of the proof mass is asymmetrically disposed relative to said first and second capacitive structures.
30. (Cancelled)
31. The transducer of claim 29, wherein said first and second conductive layers comprise polysilicon.
32. The transducer of claim 29, wherein the transducer is an accelerometer adapted to sense acceleration in a direction perpendicular to the substrate by measuring the capacitances between the proof mass and the first and second capacitive structures.
33. The transducer of claim 29, wherein the first and second capacitive structures are plates.
34. The transducer of claim 29, wherein said proof mass comprises a first set of sense fingers whose longitudinal axes are parallel to a first axis, and a second set of sense fingers whose longitudinal axes are parallel to a second axis.
35. The transducer of claim 29, wherein said proof mass comprises a plurality of compliant structures that support the proof mass above the first and second capacitive structures.
36. The transducer of claim 29, wherein said proof mass comprises a plurality of fixed fingers, and wherein each sense finger is disposed between a pair of fixed fingers.
37. The transducer of claim 29, wherein said proof mass comprises:
a first set of sense fingers whose longitudinal axes are parallel to a first axis, and a second set of sense fingers whose longitudinal axes are parallel to a second axis;
a plurality of compliant structures that support the proof mass above the first and second capacitive structures; and
a plurality of fixed fingers;
wherein each sense finger is disposed between a pair of fixed fingers, and wherein the first and second sets of sense fingers, the plurality of compliant structures, and the plurality of fixed fingers are disposed in an arrangement that has at least one plane of mirror symmetry.
38. The transducer of claim 37, further comprising a substrate, a first conductive layer, and a second conductive layer, wherein the first and second sets of sense fingers, the plurality of compliant structures, and the plurality of fixed fingers are formed in the second conductive layer, and wherein the arrangement has at least two planes of mirror symmetry about an axis orthogonal to a major surface of the second conductive layer.
39. The transducer of claim 38, wherein the arrangement has at least a four-fold rotational axis of symmetry around an axis orthogonal to a major surface of the second conductive layer.
40. The transducer of claim 29, wherein the proof mass is asymmetrically disposed relative to said first and second capacitive structures.
41. The transducer of claim 29, further comprising a material disposed on a surface of the proof mass such that the center of mass of the proof mass is asymmetrically disposed relative to said first and second plates.
42. The transducer of claim 41, wherein the material comprises a metal.
43. A transducer being adapted to sense acceleration in at least two mutually orthogonal directions, comprising:
a proof mass comprising a central portion equipped with a plurality of sense fingers, and further comprising opposing side portions, adjacent to said central portion, that are of unequal mass.
44. The transducer of claim 43, wherein said side portions are of unequal size.
45. The transducer of claim 43, wherein said side portions are of equal size.
46. The transducer of claim 45, wherein at least one of said side portions has a metal disposed thereon.
47. A transducer being adapted to sense acceleration in at least two mutually orthogonal directions, comprising:
a proof mass supported on a substrate, said proof mass having a first set of sense fingers aligned along a first axis; and
first and second capacitive structures disposed between said substrate and said proof mass;
wherein the center of mass of said proof mass is closer to said first capacitive structure than to said second capacitive structure.
48. The transducer of claim 47, wherein said proof mass is supported on said substrate by a plurality of springs.
49. The transducer of claim 47, wherein said first and second capacitive structures are supported on said substrate.
50. The transducer of claim 1, wherein said proof mass is essentially planar, and wherein said proof mass is unbalanced when there is no acceleration along an axis perpendicular to the plane of said proof mass.
51. The transducer of claim 26, wherein said proof mass is unbalanced when there is no acceleration along an axis perpendicular to the plane of at least one of said first and second plates.
Description
FIELD OF THE INVENTION

The present invention relates generally to microelectromechanical sensors (MEMS), and more particularly to transducers containing proof masses.

BACKGROUND OF THE INVENTION

Transducers are useful in inertial guidance systems to sense the acceleration or orientation of a device, such as a spacecraft, aircraft, land-based vehicle, or handheld device. They are also used in vehicles to sense impacts and deploy various devices to protect the passengers (for example, air bags in automobiles). Transducers may be required to sense acceleration or other phenomena along one, two, or three axes or directions. From this information, the movement or orientation of the device can be ascertained.

In the ongoing effort to reduce the size and cost of transducers, a variety of sensing devices have been proposed. Many of these devices, especially those which function as accelerometers, include capacitive structures, some of which are constructed using semiconductor manufacturing techniques and/or bulk micromachining. The capacitive structures generally consist of at least one conductive plate, formed of doped silicon or the like, which is mounted on a substrate by way of a compliant suspension. The plate is positioned parallel to a planar surface of the substrate and forms capacitances with fixed structures mounted on the substrate. When the plate moves due to acceleration, the capacitances between the plate and these fixed structures changes. These changes are then sensed by the electronic circuitry of the device and are converted to signals representative of the acceleration.

FIGS. 1 and 2 illustrate one example of a prior art capacitive accelerometer 111 of the type described above. The accelerometer, which is adapted to sense Z axis accelerations (that is, accelerations perpendicular to the major planar surface of the device) comprises a proof mass plate 113 that is suspended by torsional spring flexures 115 in a see-saw type configuration. This proof mass is “unbalanced” because of the extra mass present on the “heavy” end 116. The proof mass plate is supported by a central anchor 121 which is attached to a substrate 123 (see FIG. 2). When the device experiences an acceleration along the Z-axis, the proof mass rotates (or tips) around the flexure axis defined by the suspension. The resulting motion, which is proportional to the amount of acceleration the device is experiencing, is measured by capacitive sensor plates 117, 119 disposed beneath the proof mass, and is converted into electronic signals representative of the acceleration. The use of an unbalanced proof mass in this device is required, because a balanced proof mass would not tilt when subjected to Z axis acceleration, and hence would not properly sense the acceleration.

The device shown in FIGS. 1 and 2 is a single axis accelerometer which senses acceleration only along the Z axis. However, accelerometers are also known to the art which are adapted to sense accelerations along multiple axes. One such device is shown in FIG. 3. The device illustrated therein is an XY displacement accelerometer 231 that is adapted to sense accelerations along two orthogonal in-plane axes of the device. The accelerometer includes a proof mass plate 233 that comprises a central mass 235 attached to a frame 237 by way of first 241 and second 243 sets of sense fingers. The first and second sets of sense fingers are disposed in a mutually perpendicular arrangement. The frame is supported by a plurality of anchors 245 to which it is attached by a series of compliant springs 247. In structures of this type that are designed to sense a similar magnitude acceleration along the two orthogonal sense axes, the springs 247 will have similar stiffness in the X and Y directions.

In FIG. 3, each sense finger 241 is surrounded by two sets of fixed fingers 251 and 252, respectively. Similarly, each sense finger 243 is surrounded by two sets of fixed fingers 253 and 254, respectively, which are anchored to the substrate. When the proof mass moves in the Y direction, the capacitances between the moving fingers 241 and the fixed fingers 251, 252 change. Similarly, when the proof mass moves in the X direction, the capacitances between the moving fingers 243 and the fixed fingers 253, 254 change. The device is provided with electronic circuitry which converts these capacitive changes to signals representative of the acceleration along the X and Y axes.

The accelerometers described above are manufactured as single axis or dual axis devices. However, some applications require the ability to sense acceleration along three mutually orthogonal axes. This has been achieved, in some instances, by utilizing three accelerometers of the type depicted in FIG. 1, and positioning them such that their sensitive axes are disposed in a mutually orthogonal configuration. However, the final package resulting from such a configuration is inherently bulky, since each accelerometer must be positioned such that its sense axis is orthogonal to the sense axes of the other accelerometers. Hence, the entire package can never be formed as a single planar device.

Some transducers have also been proposed which are adapted to sense accelerations along three axes, and which are more compact than the three-axis accelerometer designs described above. An example of such a transducer is shown in FIGS. 7 and 8. In the construction depicted therein, the middle layer 32 typically serves as a single proof mass equipped with capacitive plates 30 for sensing accelerations along the X and Y axes. The devices of FIGS. 7 and 8 are similar in some respects to the devices of FIG. 3, but have additional plates 40 and 43 disposed above the proof mass 32, as well as a series of conductors 23, 24, 26 and 27 mounted on the substrate 11 and disposed below the proof mass that are capacitively coupled to the proof mass. Accelerations along the Z axis (that is, the direction orthogonal to the major surfaces of the substrate) are sensed in this type of device by measuring the differential capacitance between the proof mass 30 and the plates above, 40-43, vs. below, 23, 24, 26 and 27. Accelerations in the x-y plane (that is, the plane of the major surfaces of the substrate) are sensed by measuring differential overlap capacitances between the proof mass and the appropriate plates below it (i.e., 13 and 14 vs. 18 and 19, 16 and 17 vs. 21 and 22).

While the transducers shown in FIGS. 7 and 8 are a notable advance in the art and do achieve reductions in the size of the overall package, their construction requires a “three layer” process flow. This phrase refers to the number of layers of conductive material (typically doped polysilicon) used to fabricate the sense capacitor plates present in the device or required by the manufacturing process. In particular, the devices of FIGS. 7 and 8 require one conductive layer each for the proof mass 32, the series of conductors 23, 24, 26 and 27, and the plates 40 and 41. By contrast, the accelerometers depicted in FIGS. 1 and 2 may be fabricated by a “two layer” process flow. In particular, in those devices, the bottom plates 117, 119 are formed from a first conductive layer, and the proof mass 113 is formed from a second conductive layer. Compared to a two layer process flow, a three layer process flow is less desirable in that it requires at least two additional masking steps. Consequently, devices manufactured by a three layer process are generally more expensive to manufacture, and have a lower yield, than comparable devices manufactured via a two layer process.

Transducers made by a three layer process flow are also typically more susceptible to packaging stresses and conductive layer stress gradients than those made by two layer process flows. These effects are particularly problematic for the Z axis output of the device. This can be appreciated from FIG. 9, which depicts a general three layer device 121 containing top 123, middle 125 and bottom 127 layers supported on a substrate 129. The middle layer 125 and top layer 123 are supported several microns above the substrate 129, and thus tends to deform along the Z axis when the device is subjected to strain along the in-plane axes of the substrate. Such strain is commonly encountered, for example, during thermal cycling. In addition, stress gradients in the conductive layers 123 and 125 also contribute to the deformation (curvature) of these layers. The deformation of the top layer modifies the capacitance 131 between the top and middle layers, and hence changes the Z axis output of the device. Packaging stresses can be reduced by coating the transducer die with an elastomer (sometimes referred to as a “dome coat”). However, such coatings complicate the manufacturing process.

There is thus a need in the art for a compact, single die transducer that can sense along multiple axes, that can be fabricated as a planar structure in a two layer process flow, that is less susceptible to package stress and conductive layer stress gradients, and that does not require the use of a dome coat or other features designed to reduce packaging stress.

SUMMARY OF THE INVENTION

In one aspect, a transducer is provided which comprises an unbalanced proof mass, and which is adapted to sense acceleration in at least two, and preferably three, mutually orthogonal directions. The transducer preferably contains a single proof mass that is mounted to the substrate on a suspension that is compliant in all three axes, and two or more conductive plates that are mounted on the substrate under the proof mass. The proof mass preferably comprises a first set of sense fingers aligned along a first axis, and a second set of sense fingers aligned along a second axis, wherein said first and second axes are orthogonal. Each of the sense fingers in the first and second set is typically surrounded by two parallel fingers that are fixably attached to a substrate. The first and second set of sense fingers are preferably disposed in an arrangement that has at least two planes of symmetry, and more preferably, at least four planes of symmetry. It is also preferred that the conductive plates are arranged with the same planes of symmetry as the first and second sets of sense fingers, that the substrate is mounted on compliant springs that are disposed in an arrangement having at least two planes of symmetry, and that the proof mass is asymmetric about the line of symmetry between the two bottom plates. The first and second set of sense fingers in the transducer preferably have longitudinal axes that are parallel to a first plane, and one of said two mutually orthogonal directions is perpendicular to said first plane. The proof mass of the transducer has a central portion with a plurality of sense fingers disposed therein, and opposing sides adjacent to the central portion that are of unequal mass. The opposing sides are of preferably of unequal dimensions. The transducer may further comprise first and second capacitive plates which are disposed beneath the proof mass, and which are adapted to detect movement of the proof mass along an axis perpendicular to the first plane.

In another aspect, a transducer, such as an accelerometer, is provided which comprises a proof mass having first and second sets of fingers adapted to sense acceleration along first and second mutually orthogonal axes, first and second capacitive plates adapted to sense acceleration along a third axis that is orthogonal to said first and second axes, and a plurality of anchors for said proof mass, each of said anchors being attached to said proof mass by way of a spring, and wherein the weight of the proof mass is asymmetrically supported by the anchors. The first and second plates are typically disposed on the same side (vertically) of the proof mass and are supported on a substrate, and are adapted to capacitively sense acceleration in a direction perpendicular to said first and second axes.

In yet another aspect, a method for making a transducer is provided, comprising the steps of providing a substrate, depositing a first conductive layer on said substrate, patterning said first conductive layer to define first and second capacitive structures therein, depositing a sacrificial layer over said first conductive layer, depositing a second conductive layer over the sacrificial layer, and patterning the second conductive layer to define a proof mass therein such that the center of mass of the proof mass is asymmetrically disposed relative to said first and second plates. The first and second conductive layers may comprise a metal, but preferably comprise polysilicon, and the first and second capacitive structures are plates. The proof mass, which may be asymmetrically disposed relative to said first and second plates, preferably comprises a first set of sense fingers whose longitudinal axes are parallel to a first axis, and a second set of sense fingers whose longitudinal axes are parallel to a second axis. The proof mass also preferably comprises a plurality of fixed fingers, such that each sense finger is disposed between a pair of fixed fingers, and a plurality of compliant structures that support the proof mass above the first and second capacitive structures. The transducer may be an accelerometer adapted to sense acceleration in a direction perpendicular to the substrate by measuring the capacitances between the proof mass and the first and second capacitive structures. Preferably, the first and second sets of sense fingers, the plurality of compliant structures, and the plurality of fixed fingers are disposed in an arrangement that has at least one plane, and more preferably at least two planes, of mirror symmetry orthogonal to a major surface of the second conductive- layer. The method may further comprise the steps of removing at least a portion of the sacrificial layer to obtain release of the proof mass, or depositing a metal on a surface of the proof mass such that the center of mass of the proof mass is asymmetrically disposed relative to said first and second plates.

These and other aspects of the teachings herein are described in further detail below.

DESCRIPTION OF THE FIGURES

FIG. 1 is an illustration of a prior art Z axis accelerometer;

FIG. 2 is a cross-section taken along LINE 2-2 of FIG. 1;

FIG. 3 is an illustration of a prior art XY accelerometer;

FIG. 4 is an illustration of a first embodiment of a 3-axis accelerometer made in accordance with the teachings herein;

FIG. 5 is a simplified cross-sectional illustration showing the unbalanced proof mass in a device of the type depicted in FIG. 4 (a more detailed cross-sectional illustration taken along LINE 17-17 of FIG. 4 is shown in FIG. 17);

FIG. 6 is an illustration of a second embodiment of a 3-axis accelerometer made in accordance with the teachings herein;

FIG. 7 is an illustration of a prior art accelerometer made by a three layer process flow;

FIG. 8 is a cross-section taken along LINE 8-8 of FIG. 7;

FIG. 9 is an illustration depicting the effect of packaging stress in an accelerometer made by a three layer process flow;

FIG. 10 is an illustration depicting the effect of packaging stress in an accelerometer made in accordance with the teachings herein; and

FIGS. 11-17 illustrate one embodiment of a method for making a transducer in accordance with the teachings herein.

DETAILED DESCRIPTION

The terms “two layer” and “three layer”, when used herein in reference to an accelerometer or transducer or to a process flow for making the same, refer to the number of layers of conductive material (typically doped polysilicon) used to fabricate the sense capacitor plates present in the device or required by the manufacturing process.

In accordance with the teachings herein, a compact, single die transducer, which may be, for example, an accelerometer or other sensing device, is provided which may be fabricated in a two layer process flow. Embodiments made from a two layer process flow may be easier and less expensive to implement than a typical three layer process flow. Moreover, the resulting transducer has no contribution to package stress sensitivity from the third conductive layer. The transducer can be made to sense along two or more mutually orthogonal axes.

FIGS. 4-5 depict one embodiment of a transducer 51 made in accordance with the teachings herein. The device comprises a central mass 53 which is supported from a frame 55 by Y sense fingers 57 and X sense fingers 59. The frame, in turn, is attached to a plurality of anchors 61 by a series of springs 63 that are preferably compliant in three mutually orthogonal directions. The anchors are mounted on a die or other substrate 75 (see FIG. 5). Each Y sense finger 57 is surrounded by two pairs of fixed fingers 66 and 68. Similarly, each X sense finger 59 is surrounded by two fixed fingers 62 and 64. When the transducer experiences acceleration along the X axis, the distance between the X sense fingers 59 and the adjacent fixed fingers 62 and 64 changes, thus changing the capacitance between these fingers. This change in capacitance is registered by the sense circuitry (not shown) and converted to an output signal representative of the acceleration along this axis. Acceleration along the Y axis is sensed in an analogous manner by registering the change in capacitance between the Y sense fingers 57 and the corresponding fixed fingers 66 and 68.

The frame 55 has opposing sides 65, 67 which are of unequal mass. In this particular embodiment, this is accomplished by constructing the frame such that the opposing sides 65 and 67 are essentially equal in thickness and width, but unequal in length. Consequently, side 65 has greater mass than side 67, thus causing the proof mass 52 (which includes the frame 55 and the central mass 53) to rotate/tilt about the Y axis in response to acceleration along the Z axis. This acceleration is sensed by capacitive plates 71 and 73 which are disposed beneath the proof mass.

In the device of FIGS. 4-5, the Y sense fingers 57, the X sense fingers 59, the fixed fingers 62, 64, 66, 68, and the springs 63 are evenly spaced and are disposed on opposing sides of the central mass 53 in such a way that the arrangement of these elements has two planes of mirror symmetry. Such symmetry is advantageous in that it allows for the substantial cancellation of cross-axis sensitivities so that, in sensing acceleration along the X and Y axes, the device senses only the components of acceleration that occur along each of these axes. In particular, this symmetry has the effect that each cross-axis sensitivity occurring at one sense finger is cancelled by an equal, but opposite, cross-axis sensitivity occurring-at another sense finger.

Various other configurations for the proof mass are also possible in accordance with the teachings herein. One such configuration is shown in FIG. 6. The transducer 81 depicted therein comprises a central mass 83 which is supported from a frame 85 by first 87 and second 89 sets of sensing fingers. Each of the first set of sensing fingers 87 is disposed between fixed fingers 86 and 88. Likewise, each of the second set of sensing fingers 89 is disposed between fixed fingers 82 and 84. The frame, in turn, is supported by a series of springs 93 that are preferably compliant in three mutually orthogonal directions. Each of the springs is attached to an anchor 91. The anchors 91 and the fixed fingers 82, 84, 86 and 88 are mounted on a die or other substrate (not shown).

The frame has opposing sides 95 and 97 which are of unequal mass. As with the embodiment of FIGS. 4-5, this is accomplished by constructing the frame such that the opposing sides 95 and 97 are essentially equal in thickness and width, but unequal in length. Consequently, side 95 has greater mass than side 97. The proof mass tilts about the Y axis in response to acceleration along the Z axis. This acceleration is sensed by capacitive plates 101, 103 disposed beneath the proof mass.

The transducer of FIGS. 4-5 is designed such that the arrangement of the first 67 and second 69 sets of sense fingers, the fixed fingers 62, 64, 66, 68, and the springs 63 has two planes of mirror symmetry. Similarly, in the transducer 81 depicted in FIG. 6, the first 87 and second 89 sets of fingers used to support the central mass 83, the fixed fingers 82, 84, 86, 88, and the springs 93 are disposed in an arrangement that has two planes of mirror symmetry. Both arrangements allow for the effective elimination of cross-axis sensitivities.

In the embodiments described in FIGS. 4 and 5, the disposition of mass in the proof mass is caused to be asymmetric by making one end of the proof mass larger than the other. However, a similar result may be achieved by other means. For example, the opposing sides 65 and 67 of FIGS. 4-5 could be of the same length and width, but of differing thickness. The mass of one of the sides could also be made greater than that of the other side through the selective addition of materials to it, as through selective metallization or the addition of further layers or structures to a surface thereof. The use of such techniques to increase the weight of a proof mass are described in commonly assigned and copending application U.S. Ser. No. 10/426,148, which was filed on Apr. 29, 2003 and has attorney docket number SC12477ZP, and which is incorporated by reference herein in its entirety.

The transducer designs described above may have a number of advantages. For example, these devices may be made in the same type of two layer process flow used for single axis accelerometers of the type depicted in FIGS. 1 and 2 or the dual axis accelerometers of the type depicted in FIG. 3, with all the advantages that may occur attendant thereto as have been noted above. Moreover, the compact nature of these transducers allows them to be packaged in single small packages (similar to those used for single-axis accelerometers) with an appropriate ASIC (application specific integrated circuitry). These transducers may be less complex than existing three-axis transducers, with some embodiments requiring only one proof mass and one movable element bond pad, since all three sense axes use the same intermediate layer. By contrast, in devices utilizing separate transducers to sense in each direction, each transducer has its own proof mass and is supplied with its own movable element bond pad. Furthermore, the transducers disclosed herein are inherently less expensive to manufacture than three-axis devices fashioned out of individual transducers, since these transducers may be fabricated as unitary packaged devices whose fabrication costs are about the same as that for a single axis transducer. By contrast, the cost of fabricating a three-axis device fashioned out of individual transducers is approximately three times as much.

The designs described herein may also be resistant to polysilicon stress gradients and to package stress. This fact can be appreciated with reference to FIG. 10. The transducer 141 depicted therein contains a first conductive layer in the form of first 147 and second 149 sense plates, a second conductive layer 145, and a substrate 151. The second conductive layer forms a first capacitance 155 with the first sense plate, and a second capacitance 153 with the second sense plate. Package stress causes in-plane strain (stretching) of the substrate 151, which can cause the second layer of polysilicon to move vertically, thereby increasing the gap between the second layer of polysilicon and each of the first 147 and second 149 sense plates. However, in contrast to the situation encountered in the three layer device depicted in FIG. 9, in the two layer device of FIG. 10, if the second layer of polysilicon 145 moves vertically, essentially the same change in gap occurs at both sense plates. Since the output is proportional to ratios of capacitances 153 and 155 for an easily implemented sense circuit, no change in the output signal occurs as a result of this movement. Similarly, stress gradients in the second conductive layer 145 result in a curvature as shown in FIG. 10. However, because the first 147 and second 149 sense plates are located symmetrically with respect to the anchor locations for the second layer 145, there is also no change in the output signal as a result of the curvature arising from stress gradients in the second conductive layer 145.

The transducers described herein can be achieved through a number of different fabrication routes. One such route is depicted in FIGS. 11-17.

As shown in FIG. 11, a substrate 75 is provided, which typically comprises silicon. A first conductive layer 70 of a first conductive material is deposited on a major surface of the substrate. In some applications, prior to deposition of the first conductive layer, the surface to which this layer is to be applied may be coated with one or more layers of a dielectric material. The first conductive layer 70 preferably comprises polysilicon (which may be suitably doped in some applications), but may also comprise other semiconductor materials or various metals.

After the first conductive layer 70 is deposited, it is then masked, patterned and etched (not shown) to define capacitive plates 71 and 73, as shown in FIG. 12. A sacrificial layer 72 is then deposited over the capacitive plates as shown in FIG. 13. The sacrificial layer is preferably phosphorosilicate glass (PSG), but may also comprise other suitable sacrificial materials as are known to the art.

As depicted in FIG. 14, a series of contact openings 74, 76 are then formed in the sacrificial layer to define, respectively, the anchors 61 for the spring suspension system and the fixed fingers 62, 64 (see FIG. 4). If the sacrificial layer is PSG, this may be accomplished by a suitable oxide etch that exhibits etch stop behavior at the substrate 75. A second conductive material 52 is deposited in the openings and overlying the sacrificial layer 72, as shown in FIG. 15. The second conductive material preferably comprises polysilicon (which may be suitably doped according to the application), but may also comprise various metals. Even more preferably, the second conductive material is the same, or similar to, the first conductive material of layer 70 (see FIG. 11). Most preferably, the first and second conductive materials are both polysilicon. The second conductive material 52 may be deposited through chemical vapor deposition (CVD) or by other suitable means as are known to the art.

The second conductive layer is then masked, patterned and etched (not shown) to define the various elements of the proof mass as are shown in FIG. 16. In the particular embodiment depicted, these include the spring anchor 61, the fixed fingers 62 and 64, the sense fingers 59, and the springs 63. Release of the structure is then achieved through the use of a suitable etchant to result in the device depicted in FIG. 17, which is a cross-section taken along LINE 17-17 of FIG. 4. If the sacrificial layer is PSG, the etchant is preferably aqueous HF.

In the method described above, the sacrificial layer preferably comprises PSG and the second conductive material overlying it preferably comprises polysilicon. The use of these materials is advantageous in that aqueous HF, which can be used to achieve release of the structure, is highly selective to polysilicon. Hence, if the contacts 74 and 76 (see, e.g., FIG. 14) which define the anchors for the springs and fixed fingers is overlaid with polysilicon, and if aqueous HF is used to release the structure, the perimeters of these anchors will be well defined and will be relatively independent of release etch process parameters such as etch time and HF concentration.

A compact, three-axis, single die transducer and a method for making the same has been provided herein. The transducer, which may be fabricated as a planar structure in a two layer polysilicon process flow, is thus easier to fabricate than those build in a three layer process.

The above description of the invention is illustrative, and is not intended to be limiting. It will thus be appreciated that various additions, substitutions and modifications may be made to the above described embodiments without departing from the scope of the present invention. Accordingly, the scope of the present invention should be construed solely in reference to the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4736629 *Dec 20, 1985Apr 12, 1988Silicon Designs, Inc.Micro-miniature accelerometer
US5487305 *Jul 12, 1994Jan 30, 1996Motorola, Inc.Three axes accelerometer
US5594171 *Oct 25, 1995Jan 14, 1997Kabushiki Kaisha Tokai Rika Denki SeisakushoCapacitance type acceleration sensor
US5806365 *Apr 30, 1996Sep 15, 1998Motorola, Inc.Acceleration sensing device on a support substrate and method of operation
US5939633 *Jun 18, 1997Aug 17, 1999Analog Devices, Inc.Apparatus and method for multi-axis capacitive sensing
US5962787 *Oct 18, 1996Oct 5, 1999Wacoh CorporationAcceleration sensor
US6148670 *Jun 10, 1999Nov 21, 2000Analog Devices, Inc.Apparatus and method for multi-axis capacitive sensing
US6159761 *Apr 3, 1998Dec 12, 2000Wacoh CorporationMethod of manufacturing a force sensor having an electrode which changes resistance or electrostatic capacitance in response to force
US6223598 *Jun 18, 1997May 1, 2001Analog Devices, Inc.Suspension arrangement for semiconductor accelerometer
US6629461 *Mar 14, 2001Oct 7, 2003Onix Microsystems, Inc.Biased rotatable combdrive actuator methods
US6705167 *May 22, 2001Mar 16, 2004Sensonor AsaAccelerometer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7371982 *Jul 29, 2005May 13, 2008Lucent Technologies Inc.MEMS safety and arming devices having launch and rotation interlocks and method of manufacturing the same
US7736931Jul 20, 2009Jun 15, 2010Rosemount Aerospace Inc.Wafer process flow for a high performance MEMS accelerometer
US8056415May 30, 2008Nov 15, 2011Freescale Semiconductor, Inc.Semiconductor device with reduced sensitivity to package stress
US8079262Oct 26, 2007Dec 20, 2011Rosemount Aerospace Inc.Pendulous accelerometer with balanced gas damping
US8176782Apr 25, 2007May 15, 2012Panasonic Electric Works Co., Ltd.Capacitive sensor
US8549921 *Oct 12, 2007Oct 8, 2013Fraunhofer-Gesellschaft Zur Foererung Der Angewandten Forschung E.V.Sensor for detecting acceleration
US8555719 *Jan 24, 2011Oct 15, 2013Freescale Semiconductor, Inc.MEMS sensor with folded torsion springs
US8596122Apr 1, 2009Dec 3, 2013Robert Bosch GmbhMicromechanical component and method for operating a micromechanical component
US8710599Aug 3, 2010Apr 29, 2014Fairchild Semiconductor CorporationMicromachined devices and fabricating the same
US8739626Aug 3, 2010Jun 3, 2014Fairchild Semiconductor CorporationMicromachined inertial sensor devices
US8742964Jan 16, 2013Jun 3, 2014Fairchild Semiconductor CorporationNoise reduction method with chopping for a merged MEMS accelerometer sensor
US8754694Jan 21, 2013Jun 17, 2014Fairchild Semiconductor CorporationAccurate ninety-degree phase shifter
US8813564Jan 31, 2013Aug 26, 2014Fairchild Semiconductor CorporationMEMS multi-axis gyroscope with central suspension and gimbal structure
US8839670 *Sep 30, 2011Sep 23, 2014Invensense, Inc.Anchor-tilt cancelling accelerometer
US8978475Feb 1, 2012Mar 17, 2015Fairchild Semiconductor CorporationMEMS proof mass with split z-axis portions
US9006846Sep 20, 2011Apr 14, 2015Fairchild Semiconductor CorporationThrough silicon via with reduced shunt capacitance
US9062972Jan 31, 2012Jun 23, 2015Fairchild Semiconductor CorporationMEMS multi-axis accelerometer electrode structure
US9069006Feb 12, 2013Jun 30, 2015Fairchild Semiconductor CorporationSelf test of MEMS gyroscope with ASICs integrated capacitors
US9094027Apr 11, 2013Jul 28, 2015Fairchild Semiconductor CorporationMicro-electro-mechanical-system (MEMS) driver
US9095072Sep 16, 2011Jul 28, 2015Fairchild Semiconductor CorporationMulti-die MEMS package
US20100139401 *Oct 12, 2007Jun 10, 2010Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Sensor for detecting acceleration
US20120125104 *May 24, 2012Invensense, Inc.Anchor-tilt cancelling accelerometer
US20120186346 *Jul 26, 2012Freescale Semiconductor, Inc.Mems sensor with folded torsion springs
CN102323449A *May 26, 2011Jan 18, 2012西北工业大学Dual mass block-based triaxial micro accelerometer
CN102356324A *Feb 26, 2010Feb 15, 2012飞思卡尔半导体公司Vertically integrated mems acceleration transducer
EP1688315A2 *Feb 2, 2006Aug 9, 2006Delphi Technologies, Inc.Method of producing a rollover arming signal based on off-axis acceleration
EP2053412A2 *Oct 21, 2008Apr 29, 2009Rosemount Aerospace Inc.Pendulous accelerometer with balanced gas damping
EP2053412A3 *Oct 21, 2008Jun 3, 2009Rosemount Aerospace Inc.Pendulous accelerometer with balanced gas damping
WO2008043831A1 *Oct 12, 2007Apr 17, 2008Fraunhofer Ges ForschungSensor for detecting acceleration
WO2008127849A2 *Mar 26, 2008Oct 23, 2008Custom Sensors & TechnologiesMulti-axis micromachined accelerometer and rate sensor
WO2009132917A1 *Apr 1, 2009Nov 5, 2009Robert Bosch GmbhMicromechanical component and method for operating a micromechanical component
WO2009145967A1 *Mar 16, 2009Dec 3, 2009Freescale Semiconductor Inc.Semiconductor device with reduced sensitivity to package stress
WO2012037539A1 *Sep 18, 2011Mar 22, 2012Fairchild Semiconductor CorporationMicromachined 3-axis accelerometer with a single proof-mass
Classifications
U.S. Classification73/514.32, 73/510
International ClassificationG01P15/125, G01P15/18
Cooperative ClassificationG01P15/125, G01P15/18
European ClassificationG01P15/18, G01P15/125
Legal Events
DateCodeEventDescription
Jul 8, 2003ASAssignment
Owner name: MOTOROLA, INC., ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNEIL, ANDREW C.;LI, GARY;KOURY, DANIEL N. JR.;REEL/FRAME:014295/0300;SIGNING DATES FROM 20030702 TO 20030703
May 7, 2004ASAssignment
Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:015360/0718
Effective date: 20040404
Owner name: FREESCALE SEMICONDUCTOR, INC.,TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:015360/0718
Effective date: 20040404
Feb 2, 2007ASAssignment
Owner name: CITIBANK, N.A. AS COLLATERAL AGENT,NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNORS:FREESCALE SEMICONDUCTOR, INC.;FREESCALE ACQUISITION CORPORATION;FREESCALE ACQUISITION HOLDINGS CORP.;AND OTHERS;REEL/FRAME:018855/0129
Effective date: 20061201
Jun 19, 2008FPAYFee payment
Year of fee payment: 4
May 13, 2010ASAssignment
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001
Effective date: 20100413
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001
Effective date: 20100413
Jul 25, 2012FPAYFee payment
Year of fee payment: 8
Jun 18, 2013ASAssignment
Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR
Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:030633/0424
Effective date: 20130521
Nov 6, 2013ASAssignment
Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR
Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:031591/0266
Effective date: 20131101