Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050022739 A1
Publication typeApplication
Application numberUS 10/933,605
Publication dateFeb 3, 2005
Filing dateSep 2, 2004
Priority dateJul 8, 2002
Also published asUS6821347, US7387685, US20040003777, US20050133161
Publication number10933605, 933605, US 2005/0022739 A1, US 2005/022739 A1, US 20050022739 A1, US 20050022739A1, US 2005022739 A1, US 2005022739A1, US-A1-20050022739, US-A1-2005022739, US2005/0022739A1, US2005/022739A1, US20050022739 A1, US20050022739A1, US2005022739 A1, US2005022739A1
InventorsCraig Carpenter, Allen Mardian, Ross Dando, Kimberly Tschepen, Garo Derderian
Original AssigneeCarpenter Craig M., Mardian Allen P., Dando Ross S., Tschepen Kimberly R., Derderian Garo J.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for depositing materials onto microelectronic workpieces
US 20050022739 A1
Abstract
Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate. For example, the occluded passageway can be canted at an oblique angle relative to the first surface of the distributor plate so that gas flowing through the canted passageway changes direction as it passes through the distributor plate.
Images(6)
Previous page
Next page
Claims(11)
1-62. (Canceled)
63. A method for forming a thin layer on a micro-device workpiece, comprising:
providing a flow of gas to a gas distributor having a distributor plate with an inner region and an outer region;
passing a first portion of the gas flow through the inner region of the plate along a path extending at an oblique angle relative to a plane defined by the plate such that the first portion of the gas exits the plate having a first flow characteristic; and
flowing a second portion of the gas flow through the outer region of the plate such that the second portion of the gas exits the plate having a second flow characteristic different than the first flow characteristic.
64. The method of claim 63 wherein flowing the second portion of the gas through the outer region of the plate comprises dispensing the second portion of the gas at an angle that is at least substantially normal to the plane defined by the plate.
65. The method of claim 63 wherein passing the first portion of the gas through the inner region of the plate comprises dispensing the first portion of the gas at an angle that is oblique relative to the plane defined by the plate.
66. The method of claim 63 wherein:
flowing the second portion of the gas through the outer region of the plate comprises dispensing the second portion of the gas at an angle that is at least substantially normal to the plane defined by the plate; and
passing the first portion of the gas through the inner region of the plate comprises dispensing the first portion of the gas at an angle that is oblique relative to the plane defined by the plate.
67. The method of claim 63 wherein flowing the second portion of the gas through the outer region of the plate comprises dispensing the second portion of the gas at an angle that is oblique relative to the plane defined by the plate.
68. The method of claim 63 wherein passing the first portion of the gas through the inner region of the plate comprises dispensing the first portion of the gas at an angle of approximately 15 to approximately 85 relative to the plane defined by the plate.
69. The method of claim 63 wherein:
flowing the second portion of the gas through the outer region of the plate comprises dispensing the second portion of the gas at an oblique angle α relative to the plane defined by the plate; and
passing the first portion of the gas through the inner region of the plate comprises dispensing the first portion of the gas at an oblique angle β relative to the plane defined by the plate different than the angle α.
70. The method of claim 63 wherein:
flowing the second portion of the gas through the outer region of the plate comprises dispensing the second portion of the gas at an oblique angle α relative to the plane defined by the plate; and
passing the first portion of the gas through the inner region of the plate comprises dispensing the first portion of the gas at the oblique angle α relative to the plane defined by the plate.
71. The method of claim 63, further comprising directing a portion of the gas flow through a gap between a peripheral portion of the distributor plate and a sidewall.
72. A method for forming a thin layer on a micro-device workpiece, comprising:
providing a flow of gas to a gas distributor having a distributor plate with an inner region and an outer region;
restricting a portion of the gas flow from passing through a plurality of first passageways at the inner region of the distributor plate;
passing another portion of the gas flow through a plurality of second passageways at the outer region of the distributor plate; and
flowing still another portion of the gas flow through a gap around a peripheral edge of the distributor plate.
Description
TECHNICAL FIELD

The present invention is related to the field of thin film deposition in the manufacturing of micro-devices.

BACKGROUND

Thin film deposition techniques are widely used in the manufacturing of microelectronic devices to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the devices is constantly decreasing, and the number of layers in the devices is increasing. As a result, the density of components and the aspect ratios of depressions (e.g., the ratio of the depth to the size of the opening) is increasing. The size of workpieces is also increasing to provide more real estate for forming more dies (i.e., chips) on a single workpiece. Many fabricators, for example, are transitioning from 200 mm to 300 mm workpieces, and even larger workpieces will likely be used in the future. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms and corners in deep depressions that have very small openings.

One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed in a gas or vapor state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a thin solid film at the workpiece surface. The most common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.

Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials that are already formed on the workpiece. Implanted or doped materials, for example, migrate in the silicon substrate when a workpiece is heated. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is not desirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used. Thus, CVD techniques may not be appropriate for many thin film applications.

Atomic Layer Deposition (ALD) is another thin film deposition technique that addresses several of the drawbacks associated with CVD techniques. FIGS. 1A and 1B schematically illustrate the basic operation of ALD processes. Referring to FIG. 1A, a layer of gas molecules Ax coats the surface of a workpiece W. The layer of Ax molecules is formed by exposing the workpiece W to a precursor gas containing Ax molecules, and then purging the chamber with a purge gas to remove excess Ax molecules. This process can form a monolayer of Ax molecules on the surface of the workpiece W because the Ax molecules at the surface are held in place during the purge cycle by physical adsorption forces at moderate temperatures or chemisorption forces at higher temperatures. The layer of Ax molecules is then exposed to another precursor gas containing By molecules. The Ax molecules react with the By molecules to form an extremely thin solid layer of material on the workpiece W. The chamber is then purged again with a purge gas to remove excess By molecules.

FIG. 2 illustrates the stages of one cycle for forming a thin solid layer using ALD techniques. A typical cycle includes (a) exposing the workpiece to the first precursor Ax, (b) purging excess Ax molecules, (c) exposing the workpiece to the second precursor By, and then (d) purging excess By molecules. In actual processing several cycles are repeated to build a thin film on a workpiece having the desired thickness. For example, each cycle may form a layer having a thickness of approximately 0.5-1.0 Å, and thus it takes approximately 60-120 cycles to form a solid layer having a thickness of approximately 60 Å.

FIG. 3 schematically illustrates an ALD reactor 10 having a chamber 20 coupled to a gas supply 30 and a vacuum 40. The reactor 10 also includes a heater 50 that supports the workpiece W and a gas dispenser 60 in the chamber 20. The gas dispenser 60 includes a plenum 62 operatively coupled to the gas supply 30 and a distributor plate 70 having a plurality of holes 72. In operation, the heater 50 heats the workpiece W to a desired temperature, and the gas supply 30 selectively injects the first precursor Ax, the purge gas, and the second precursor By as shown above in FIG. 2. The vacuum 40 maintains a negative pressure in the chamber to draw the gases from the gas dispenser 60 across the workpiece W and then through an outlet of the chamber 20.

One drawback of ALD processing is that it is difficult to avoid mixing between the first and second precursors in the chamber apart from the surface of the workpiece. For example, a precursor may remain on surfaces of the gas dispenser or on other surfaces of the chamber even after a purge cycle. This results in the unwanted deposition of the solid material on components of the reaction chamber. The first and second precursors may also mix together in a supply line or other area of a reaction chamber to prematurely form solid particles before reaching the surface of the workpiece. Thus, the components of the ALD reactor and the timing of the Ax/purge/By/purge pulses of a cycle should not entrap or otherwise cause mixing of the precursors in a manner that produces unwanted deposits or premature reactions.

Another drawback of ALD processing is that the film thickness may be different at the center of the workpiece than at the periphery. To overcome this problem, the center of some distributor plates do not have any holes 72. In practice, however, this may cause the film at the center of the workpiece to be thinner than the film at the periphery. Moreover, the center portion of such plates may become coated with the solid material because it is difficult to purge all of the precursors from this portion of the gas dispenser 60 during normal purge cycles. Therefore, there is a need to resolve the problem of having a different film thickness at the center of the workpiece than at the periphery.

SUMMARY

The present invention is directed toward reactors for deposition of materials onto a micro-device workpiece, systems that include such reactors, and methods for depositing materials onto micro-device workpieces. In one embodiment, a reactor for depositing a material comprises a reaction chamber and a gas distributor that directs gas flows to a workpiece. The reaction chamber can include an inlet and an outlet, and the gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate. For example, the occluded passageway can be canted at an oblique angle relative to the first surface of the distributor plate so that gas flowing through the canted passageway changes direction as it passes through the distributor plate.

The compartment of the gas distributor can be defined by a sidewall, and the distributor plate can extend transverse relative to the sidewall. In one embodiment, the distributor plate has an inner region, an outer region, and a peripheral edge spaced laterally inward from the sidewall to define a gap between the peripheral edge and the sidewall. In other embodiments, the peripheral edge of the distributor plate can be coupled to the sidewall.

The distributor plate can have several different embodiments. The distributor plate, for example, can have a first plurality of passageways in the inner region that are canted at an oblique angle relative to the first surface of the distributor plate, and a second plurality of passageways in the outer region that are generally normal to the first surface of the distributor plate. In another embodiment, all of the passageways through the distributor plate can be canted at an angle. The size of the passageways can also vary across the distributor plate. In one embodiment, a first plurality of passageways in the inner region have a cross-sectional dimension of approximately 0.01-0.07 inch, and a second plurality of passageways in the outer region have a cross-sectional dimension of approximately 0.08-0.20 inch. In still other embodiments, a first plurality of passageways in the inner region are canted at a first oblique angle relative to the first surface of the distributor plate, and a second plurality of passageways in the outer region are canted at a second oblique angle relative to the first surface of the distributor plate. The canted passageways are generally angled downward and radially outward from the first surface to the second surface to direct the gas flow radially outward across the surface of the workpiece. For example, the canted passageways can extend at an angle of approximately 15 degrees to approximately 85 degrees relative to the first surface of the distributor plate. The passageways, however, can be angled at different angles or canted in different directions in other embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are schematic cross-sectional views of stages in atomic layer deposition processing in accordance with the prior art.

FIG. 2 is a graph illustrating a cycle for forming a layer using atomic layer deposition in accordance with the prior art.

FIG. 3 is a schematic representation of a system including a reactor for vapor deposition of a material onto a microelectronic workpiece in accordance with the prior art.

FIG. 4 is a schematic representation of a system having a reactor for depositing a material onto a micro-device workpiece in accordance with one embodiment of the invention.

FIG. 5 is an isometric, cross-sectional view illustrating a portion of a reactor for depositing a material onto a micro-device workpiece in accordance with an embodiment of the invention.

FIG. 6 is a cross-sectional view of a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.

FIG. 7 is a partial cross-sectional view of a distributor plate for use in a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.

FIG. 8 is a schematic representation of a system including a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.

DETAILED DESCRIPTION

The following disclosure is directed toward reactors for depositing a material onto a micro-device workpiece, systems including such reactors, and methods for depositing a material onto a micro-device workpiece. Many specific details of the invention are described below with reference to depositing materials onto micro-device workpieces. The term “micro-device workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, and other features are fabricated. For example, micro-device workpieces can be semiconductor wafers, glass substrates, insulative substrates, and many other types of materials. The term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquified or solidified by compression at a constant temperature). Additionally, several aspects of the invention are described with respect to Atomic Layer Deposition (“ALD”), but certain aspects may be applicable to other types of deposition processes. Several embodiments in accordance with the invention are set forth in FIGS. 4-8 and the related text to provide a thorough understanding of particular embodiments of the invention. A person skilled in the art will understand, however, that the invention may have additional embodiments, or that the invention may be practiced without several of the details in the embodiments shown in FIGS. 4-8.

A. Deposition Systems

FIG. 4 is a schematic representation of a system 100 for depositing a material onto a micro-device workpiece W in accordance with an embodiment of the invention. In this embodiment, the system 100 includes a reactor 110 having a reaction chamber 120 coupled to a gas supply 130 and a vacuum 140. For example, the reaction chamber 120 can have an inlet 122 coupled to the gas supply 130 and an outlet 124 coupled to the vacuum 140.

The gas supply 130 includes a plurality of gas sources 132 (identified individually as 132 a-c), a valve assembly 133 having a plurality of valves 134 (identified individually as 134 a-c), and a plurality of gas lines 136 and 137. The gas sources 132 can include a first gas source 132 a for providing a first precursor gas “A,” a second gas source 132 b for providing a second precursor gas “B,” and a third gas source 132 c for providing a purge gas P. The first and second precursors A and B can be the constituents that react to form the thin, solid layer on the workpiece W. The p-urge gas P can a type of gas that is compatible with the reaction chamber 120 and the workpiece W. The first gas source 132 a is coupled to a first valve 134 a, the second gas source 132 b is coupled to a second valve 134 b, and the third gas source 132 c is coupled to a third valve 134 c. The valves 134 a-c are operated by a controller 142 that generates signals for pulsing the individual gases through the reaction chamber 120 in a number of cycles. Each cycle can include a first pulse of the first precursor A, a second pulse of the purge gas, a third pulse of the second precursor B, and a fourth pulse of the purge gas.

The reactor 110 in the embodiment illustrated in FIG. 4 also includes a workpiece support 150 and a gas distributor 160 in the reaction chamber 120. The workpiece support 150 can be a plate having a heating element to heat the workpiece W to a desired temperature for catalyzing the reaction between the first precursor A and the second precursor B at the surface of the workpiece W. The workpiece support 150, however, may not be heated in all applications.

The gas distributor 160 is positioned at the inlet 122 of the reaction chamber 120. The gas distributor 160 has a compartment or plenum 162 that is defined, at least in part, by a sidewall 164. The compartment or plenum 162 can be further defined by a chamber lid 166. The gas distributor 160 further includes a distributor plate 170 having a first surface 171 a facing the compartment 162, a second surface 171 b facing away from the compartment 162, and a plurality of passageways 172 (identified by reference numbers 172 a and 172 b). As explained in more detail below, a gas flow F in the compartment 162 flows through the passageways 172 a-b and through a gap 180 between the sidewall 164 and the distributor plate 170. As explained in more detail below, this particular embodiment of the distributor plate 170 performs the following functions: (a) directs the gas flow F to provide a more uniform film thickness across the workpiece W; and (b) limits areas in the reaction chamber where the precursors can adduct and mix prematurely before contacting the workpiece.

B. Gas Distributors and Distributor Plates

FIG. 5 illustrates a particular embodiment of the gas distributor 160 and the distributor plate 170 in greater detail. In this embodiment, the distributor plate 170 has an inner region 173 a with a first plurality of passageways 172 a and an outer region 173 b with a second plurality of passageways 172 b. The first passageways 172 a extend from the first surface 171 a to the second surface 171 b, and at least a portion of each of the first passageways 172 a is at least partially occluded along a flow path to the plate 170. In this particular embodiment, the first passageways 172 a are occluded by being canted at an oblique angle relative to the first surface 171 a and/or the plane defined by the plate 170. The term “occluded,” as used herein, is not limited to an obstruction that blocks the passageways 172, but rather means that some of the gas molecules flowing through the first passageways 172 a cannot flow through the plate 170 along a direct “line-of-sight” between the first surface 171 a and the second surface 171 b normal to the plane defined by the plate 170. It will be appreciated that canting the first passageways 172 a at an oblique angle relative to the plate 170 can either fully or at least partially block the direct line-of-sight to the workpiece while still allowing gas to flow through the first passageways 172 a. The first passageways 172 a can be canted at an angle of approximately 15 to approximately 85 relative to the plane defined by the plate 170. The second passageways 172 b extend through the plate 170 generally normal to the first surface 171 a such that they provide a direct line-of-sight to the workpiece throughout the full cross-sectional dimension of the second passageways 172 b. The second passageways 172 b can also have bevels 176 at the first surface 171 a and/or the second surface 171 b.

The distributor plate 170 is carried by a number of retainers 177 that are coupled to the lid 166 or another component of the reaction chamber 120. The retainers 177 are brackets, posts, or other suitable devices that can hold the distributor plate 170 relative to the inlet 122 and the sidewall 164. In this embodiment, the distributor plate 170 has a peripheral edge 175 spaced apart from the sidewall 164 by an annular gap 180. In operation, therefore, the gas flow F has a first component F1 that flows through the first passageways 172 a, a second component F2 that flows through the second passageways 172 b, and a third component F3 that flows through the gap 180. The first passageways 172 a direct the first flow component F1 downward and radially outward to prevent over-saturating the center portion of the workpiece with the precursors. The second passageways 172 b direct the second flow component F2 downward and generally normal to the plate 170 to provide more gas molecules to an outer region of the workpiece. The gap 180 also provides an enhanced flow of gas at the outer and peripheral regions of the workpiece.

Several embodiments of the distributor plate 170 are accordingly expected to provide more uniform saturation of the workpiece W with the first and second precursors A and B to provide a more uniform layer of material on the workpiece. Additionally, because the inner region 173 a of the plate 170 includes the first plurality of passageways 172 a, the surface areas upon which the first and second precursors A and B can adduct is reduced compared to conventional plates that do not have any openings in the inner region. This is expected to reduce the build up of the deposited material on the first surface 171 a of the distributor plate 170. It is also expected that such a reduction in the surface area will enhance the ability to control the uniformity of the deposited layer and the endpoints of the gas pulses for better quality depositions and enhanced throughput.

The first passageways 172 a can also have a different cross-sectional dimension than the second passageways 172 b as shown in the particular embodiment illustrated in FIG. 5. The first passageways, for example, can have openings of approximately 0.01-0.07 inch, and the second passageways 172 b can have openings of approximately 0.08-0.20 inch. In a particular embodiment, the first passageways 172 a at the inner region 173 a have a circular opening with a diameter of approximately 0.03 inch, and the second passageways 172 b in the outer region 173 b have a circular opening with a diameter of approximately 0.10 inch. It will be appreciated that the cross-sectional size of the first and second passageways 172 a-b can be the same, or that they can have cross-sectional dimensions that are different than the ranges set forth above.

The passageways 172 can accordingly be configured to further enhance or restrict the gas flow to particular areas of the workpiece by canting, or otherwise occluding selected passageways, and/or varying the sizes of the cross-sectional dimensions of the passageways. In the embodiment shown in FIG. 5, for example, the smaller cross-sectional dimension of the first passageways 172 a inhibits gas molecules from contacting the central region of the workpiece W, and the larger cross-sectional dimension of the second passageways 172 b enhances the number of gas molecules that contact the outer region of the workpiece. Therefore, the cross-sectional dimensions and the angles of inclination of the passageways can be used either separately or together to provide the desired distribution of gas to the surface of the workpiece.

FIG. 6 is a cross-sectional view of a distributor plate 670 in accordance with another embodiment of the invention. Several components of the distributor plate 670 are the same as the distributor plate 170, and thus like reference numbers refer to like components in FIGS. 4-6. The distributor plate 670 can include a plurality of passageways 172 that are canted at an oblique angle relative to the plane defined by the plate 670. In this embodiment, all of the passageways 172 are canted at the same angle. The angle of inclination can be approximately 15 degrees to approximately 85 degrees. In operation, the embodiment of the distributor plate 670 shown in FIG. 6 has a first flow component F1 that flows radially outwardly and downward from the plate 670, and a second flow component F2 that flows through the gap 180. The passageways 172 can have the same cross-sectional dimensions, or they can have different cross-sectional dimensions similar to the plate 170 described above.

FIG. 7 is a partial cross-sectional view of a distributor plate 770 in accordance with another embodiment of the invention. The distributor plate 770 is similar to the distributor plate 170, and thus like reference numbers refer to like components in FIGS. 4, 5 and 7. In this embodiment, the first passageways 172 a at the inner region 173 a are canted at a first angle α, and the second passageways 172 b in the second region 173 b are canted at a second angle β. The angle α is generally less than the angle 62 relative to the plane P-P defined by the plate 770. As such, the first passageways 172 a have a first occlusion area A1 in which there is no direct line-of-sight through the plate 770 to the workpiece W along a path normal to the plate 170. The second passageways 172 b, however, have a smaller occlusion area A2 because the higher angle β allows gas to pass completely through a portion of the second passageways 172 b along a path normal to the plate 770 or the workpiece W. By increasing the size of the occlusion area A, for the first passageways 172 a relative to the occlusion area A2 for the second passageways 172 b, fewer gas molecules are likely to be deposited on the central region C of the workpiece W. It will be appreciated that the distributor plate 770 can have variable canting of the passageways 172 from the center to the perimeter of the plate along a continuum or throughout several regions in which the angle of incline increases toward the periphery of the plate 770. Accordingly, in other embodiments, the distributor plate 770 can have more than two regions in which the passageways are canted at different angles.

C. Additional Deposition Systems

FIG. 8 is a schematic illustration of another embodiment of a system 800 for depositing a material onto a microelectronic workpiece. The system 800 is similar to the system 100, and thus like reference numbers refer to like components in FIGS. 4 and 8. The difference between the system 800 and the system 100 is that the system 800 includes a gas distributor 860 with a distributor plate 870 that extends to the sidewall 164 to eliminate the gap 180 shown in FIG. 4. It will be appreciated that the distributor plate 870 can include any of the distributor plates explained above with reference to FIGS. 4-7. Therefore, other aspects of the invention include a completely enclosed compartment or plenum 862.

From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US579269 *Jan 21, 1896Mar 23, 1897 Roller-bearing
US3634212 *May 6, 1970Jan 11, 1972M & T Chemicals IncElectrodeposition of bright acid tin and electrolytes therefor
US4313783 *May 19, 1980Feb 2, 1982Branson International Plasma CorporationComputer controlled system for processing semiconductor wafers
US4436674 *Apr 12, 1983Mar 13, 1984J.C. Schumacher Co.Vapor mass flow control system
US4438724 *Aug 13, 1982Mar 27, 1984Energy Conversion Devices, Inc.Grooved gas gate
US4894132 *Oct 19, 1988Jan 16, 1990Mitsubishi Denki Kabushiki KaishaSputtering method and apparatus
US4911638 *May 18, 1989Mar 27, 1990Direction IncorporatedControlled diffusion environment capsule and system
US5090985 *Oct 4, 1990Feb 25, 1992Libbey-Owens-Ford Co.Method for preparing vaporized reactants for chemical vapor deposition
US5091207 *Jul 19, 1990Feb 25, 1992Fujitsu LimitedProcess and apparatus for chemical vapor deposition
US5286296 *Jan 9, 1992Feb 15, 1994Sony CorporationMulti-chamber wafer process equipment having plural, physically communicating transfer means
US5377429 *Apr 19, 1993Jan 3, 1995Micron Semiconductor, Inc.Method and appartus for subliming precursors
US5380396 *Oct 19, 1993Jan 10, 1995Hitachi, Ltd.Valve and semiconductor fabricating equipment using the same
US5480818 *Feb 9, 1993Jan 2, 1996Fujitsu LimitedMethod for forming a film and method for manufacturing a thin film transistor
US5496410 *Mar 10, 1993Mar 5, 1996Hitachi, Ltd.Plasma processing apparatus and method of processing substrates by using same apparatus
US5498292 *Jan 19, 1995Mar 12, 1996Kishimoto Sangyo Co., Ltd.Heating device used for a gas phase growing mechanism or heat treatment mechanism
US5500256 *May 24, 1995Mar 19, 1996Fujitsu LimitedDry process apparatus using plural kinds of gas
US5592581 *Jul 18, 1994Jan 7, 1997Tokyo Electron Kabushiki KaishaHeat treatment apparatus
US5595606 *Apr 18, 1996Jan 21, 1997Tokyo Electron LimitedShower head and film forming apparatus using the same
US5599513 *May 7, 1991Feb 4, 1997Showa Denko K.K.Gas distribution plate for use with fluidized-bed gas-phase polymerizer
US5716796 *Jan 29, 1996Feb 10, 1998Medical Devices CorporationOptical blood hemostatic analysis apparatus and method
US5729896 *Oct 31, 1996Mar 24, 1998International Business Machines CorporationMethod for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US5865417 *Sep 27, 1996Feb 2, 1999Redwood Microsystems, Inc.Integrated electrically operable normally closed valve
US5866986 *Aug 5, 1996Feb 2, 1999Integrated Electronic Innovations, Inc.Microwave gas phase plasma source
US5868159 *Jul 12, 1996Feb 9, 1999Mks Instruments, Inc.Pressure-based mass flow controller
US5879459 *Aug 29, 1997Mar 9, 1999Genus, Inc.Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US5885425 *Jun 6, 1995Mar 23, 1999International Business Machines CorporationMethod for selective material deposition on one side of raised or recessed features
US6022483 *Mar 10, 1998Feb 8, 2000Intergrated Systems, Inc.System and method for controlling pressure
US6032923 *Jan 8, 1998Mar 7, 2000Xerox CorporationFluid valves having cantilevered blocking films
US6039557 *Apr 7, 1997Mar 21, 2000Imarx Pharmaceutical Corp.Apparatus for making gas-filled vesicles of optimal size
US6042652 *Sep 7, 1999Mar 28, 2000P.K. LtdAtomic layer deposition apparatus for depositing atomic layer on multiple substrates
US6173673 *Mar 31, 1999Jan 16, 2001Tokyo Electron LimitedMethod and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
US6174366 *Dec 20, 1994Jan 16, 2001Heikki IhantolaApparatus and method for processing of semiconductors, such as silicon chips
US6174377 *Jan 4, 1999Jan 16, 2001Genus, Inc.Processing chamber for atomic layer deposition processes
US6174809 *Dec 15, 1998Jan 16, 2001Samsung Electronics, Co., Ltd.Method for forming metal layer using atomic layer deposition
US6178660 *Aug 3, 1999Jan 30, 2001International Business Machines CorporationPass-through semiconductor wafer processing tool and process for gas treating a moving semiconductor wafer
US6182603 *Jul 13, 1998Feb 6, 2001Applied Komatsu Technology, Inc.Surface-treated shower head for use in a substrate processing chamber
US6183563 *May 18, 1999Feb 6, 2001Ips Ltd.Apparatus for depositing thin films on semiconductor wafers
US6190459 *Dec 15, 1998Feb 20, 2001Tokyo Electron LimitedGas treatment apparatus
US6192827 *Jul 3, 1998Feb 27, 2001Applied Materials, Inc.Double slit-valve doors for plasma processing
US6193802 *Oct 30, 1996Feb 27, 2001Applied Materials, Inc.Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
US6194628 *Sep 25, 1995Feb 27, 2001Applied Materials, Inc.Method and apparatus for cleaning a vacuum line in a CVD system
US6197119 *Feb 18, 1999Mar 6, 2001Mks Instruments, Inc.Method and apparatus for controlling polymerized teos build-up in vacuum pump lines
US6200415 *Jun 30, 1999Mar 13, 2001Lam Research CorporationLoad controlled rapid assembly clamp ring
US6203613 *Oct 19, 1999Mar 20, 2001International Business Machines CorporationAtomic layer deposition with nitrate containing precursors
US6206967 *Jun 14, 2000Mar 27, 2001Applied Materials, Inc.Low resistivity W using B2H6 nucleation step
US6206972 *Jul 8, 1999Mar 27, 2001Genus, Inc.Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6207937 *Aug 31, 1999Mar 27, 2001Semitool, Inc.Temperature control system for a thermal reactor
US6334928 *Jan 29, 1999Jan 1, 2002Kabushiki Kaisha ToshibaSemiconductor processing system and method of using the same
US6342277 *Apr 14, 1999Jan 29, 2002Licensee For Microelectronics: Asm America, Inc.Sequential chemical vapor deposition
US6346477 *Jan 9, 2001Feb 12, 2002Research Foundation Of Suny - New YorkMethod of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt
US6347602 *Dec 4, 2000Feb 19, 2002Tokyo Electron LimitedPlasma processing apparatus
US6347918 *Jan 27, 1999Feb 19, 2002Applied Materials, Inc.Inflatable slit/gate valve
US6355561 *Nov 21, 2000Mar 12, 2002Micron Technology, Inc.ALD method to improve surface coverage
US6358323 *Jul 21, 1998Mar 19, 2002Applied Materials, Inc.Method and apparatus for improved control of process and purge material in a substrate processing system
US6503330 *Dec 22, 1999Jan 7, 2003Genus, Inc.Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6506254 *Jun 30, 2000Jan 14, 2003Lam Research CorporationSemiconductor processing equipment having improved particle performance
US6507007 *Dec 18, 2000Jan 14, 2003Asm America, Inc.System of controlling the temperature of a processing chamber
US6508268 *Nov 12, 1999Jan 21, 2003Ckd CorporationVacuum pressure control apparatus
US6509280 *Feb 13, 2002Jan 21, 2003Samsung Electronics Co., Ltd.Method for forming a dielectric layer of a semiconductor device
US6534007 *Aug 1, 1997Mar 18, 2003Applied Komatsu Technology, Inc.Method and apparatus for detecting the endpoint of a chamber cleaning
US6534395 *Mar 6, 2001Mar 18, 2003Asm Microchemistry OyMethod of forming graded thin films using alternating pulses of vapor phase reactants
US6673196 *Aug 31, 2000Jan 6, 2004Tokyo Electron LimitedPlasma processing apparatus
US6689220 *Nov 22, 2000Feb 10, 2004Simplus Systems CorporationPlasma enhanced pulsed layer deposition
US6704913 *Nov 8, 2002Mar 9, 2004Applied Materials Inc.In situ wafer heat for reduced backside contamination
US6705345 *Nov 8, 2000Mar 16, 2004The Trustees Of Boston UniversityMicro valve arrays for fluid flow control
US6706334 *Nov 10, 1999Mar 16, 2004Tokyo Electron LimitedProcessing method and apparatus for removing oxide film
US6845734 *Apr 11, 2002Jan 25, 2005Micron Technology, Inc.Deposition apparatuses configured for utilizing phased microwave radiation
US6849131 *Oct 5, 2002Feb 1, 2005Taiwan Semiconductor Manufacturing Co., LtdTruncated dummy plate for process furnace
US6858264 *Apr 24, 2002Feb 22, 2005Micron Technology, Inc.Chemical vapor deposition methods
US6861094 *Apr 25, 2002Mar 1, 2005Micron Technology, Inc.Methods for forming thin layers of materials on micro-device workpieces
US6991684 *Sep 28, 2001Jan 31, 2006Tokyo Electron LimitedHeat-treating apparatus and heat-treating method
US20020000202 *Mar 28, 2001Jan 3, 2002Katsuhisa YudaRemote plasma apparatus for processing sustrate with two types of gases
US20020007790 *May 3, 2001Jan 24, 2002Park Young-HoonAtomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method
US20030000473 *Aug 7, 2002Jan 2, 2003Chae Yun-SookMethod of delivering gas into reaction chamber and shower head used to deliver gas
US20030003697 *Aug 21, 2002Jan 2, 2003Micron Techology, Inc.Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US20030003730 *Aug 28, 2002Jan 2, 2003Micron Technology, Inc.Sequential pulse deposition
US20030023338 *Jul 27, 2001Jan 30, 2003Applied Materials, Inc.Atomic layer deposition apparatus
US20030024477 *Jul 30, 2002Feb 6, 2003Hitachi Kokusai Electric Inc.Substrate processing apparatus
US20030027428 *Jul 18, 2001Feb 6, 2003Applied Materials, Inc.Bypass set up for integration of remote optical endpoint for CVD chamber
US20030027431 *Sep 27, 2002Feb 6, 2003Ofer SnehApparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US20030031794 *Aug 12, 2002Feb 13, 2003Kunihiro TadaMethod of forming titanium film by CVD
US20030049372 *Aug 9, 2002Mar 13, 2003Cook Robert C.High rate deposition at low pressures in a small batch reactor
US20040000270 *Jun 26, 2002Jan 1, 2004Carpenter Craig M.Methods and apparatus for vapor processing of micro-device workpieces
US20040003777 *Jul 8, 2002Jan 8, 2004Carpenter Craig M.Apparatus and method for depositing materials onto microelectronic workpieces
US20040007188 *May 27, 2003Jan 15, 2004Novellus Systems, Inc.Gas-purged vacuum valve
US20040025786 *Apr 4, 2003Feb 12, 2004Tadashi KontaniSubstrate processing apparatus and reaction container
US20040040502 *Aug 29, 2002Mar 4, 2004Micron Technology, Inc.Micromachines for delivering precursors and gases for film deposition
US20040040503 *Dec 27, 2002Mar 4, 2004Micron Technology, Inc.Micromachines for delivering precursors and gases for film deposition
US20050016956 *Mar 1, 2004Jan 27, 2005Xinye LiuMethods and apparatus for cycle time improvements for atomic layer deposition
US20050016984 *Aug 19, 2004Jan 27, 2005Dando Ross S.Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US20050022739 *Sep 2, 2004Feb 3, 2005Carpenter Craig M.Apparatus and method for depositing materials onto microelectronic workpieces
US20050028734 *Sep 1, 2004Feb 10, 2005Carpenter Craig M.Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US20050039680 *Aug 21, 2003Feb 24, 2005Beaman Kevin L.Methods and apparatus for processing microfeature workpieces; methods for conditioning ALD reaction chambers
US20050039686 *Aug 21, 2003Feb 24, 2005Zheng Lingyi A.Microfeature workpiece processing apparatus and methods for batch deposition of materials on microfeature workpieces
US20050045100 *Oct 5, 2004Mar 3, 2005Derderian Garo J.Reactors, systems with reaction chambers, and methods for depositing materials onto micro-device workpieces
US20050045102 *Aug 28, 2003Mar 3, 2005Zheng Lingyi A.Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
US20050048742 *Aug 26, 2003Mar 3, 2005Tokyo Electron LimitedMultiple grow-etch cyclic surface treatment for substrate preparation
US20050059261 *Sep 17, 2003Mar 17, 2005Cem BasceriMicrofeature workpiece processing apparatus and methods for controlling deposition of materials on microfeature workpieces
US20050061243 *Sep 18, 2003Mar 24, 2005Demetrius SarigiannisSystems and methods for depositing material onto microfeature workpieces in reaction chambers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7494560 *Nov 27, 2002Feb 24, 2009International Business Machines CorporationNon-plasma reaction apparatus and method
US7647886Oct 15, 2003Jan 19, 2010Micron Technology, Inc.Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US7699932Jun 2, 2004Apr 20, 2010Micron Technology, Inc.Reactors, systems and methods for depositing thin films onto microfeature workpieces
US7771537May 4, 2006Aug 10, 2010Micron Technology, Inc.Methods and systems for controlling temperature during microfeature workpiece processing, E.G. CVD deposition
US7906393Jan 28, 2004Mar 15, 2011Micron Technology, Inc.Methods for forming small-scale capacitor structures
US8110891Dec 29, 2005Feb 7, 2012Micron Technology, Inc.Method of increasing deposition rate of silicon dioxide on a catalyst
US8158488Aug 31, 2004Apr 17, 2012Micron Technology, Inc.Method of increasing deposition rate of silicon dioxide on a catalyst
US8470686Apr 17, 2012Jun 25, 2013Micron Technology, Inc.Method of increasing deposition rate of silicon dioxide on a catalyst
US20040099377 *Nov 27, 2002May 27, 2004International Business Machines CorporationNon-plasma reaction apparatus and method
US20040226507 *Apr 24, 2003Nov 18, 2004Carpenter Craig M.Methods for controlling mass flow rates and pressures in passageways coupled to reaction chambers and systems for depositing material onto microfeature workpieces in reaction chambers
US20050016984 *Aug 19, 2004Jan 27, 2005Dando Ross S.Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US20050022739 *Sep 2, 2004Feb 3, 2005Carpenter Craig M.Apparatus and method for depositing materials onto microelectronic workpieces
US20050039680 *Aug 21, 2003Feb 24, 2005Beaman Kevin L.Methods and apparatus for processing microfeature workpieces; methods for conditioning ALD reaction chambers
US20050081786 *Oct 15, 2003Apr 21, 2005Kubista David J.Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US20050087130 *Oct 9, 2003Apr 28, 2005Derderian Garo J.Apparatus and methods for plasma vapor deposition processes
US20050087302 *Oct 10, 2003Apr 28, 2005Mardian Allen P.Apparatus and methods for manufacturing microfeatures on workpieces using plasma vapor processes
US20050126489 *Dec 10, 2003Jun 16, 2005Beaman Kevin L.Methods and systems for controlling temperature during microfeature workpiece processing, e.g., CVD deposition
US20050133161 *Sep 2, 2004Jun 23, 2005Carpenter Craig M.Apparatus and method for depositing materials onto microelectronic workpieces
US20050164466 *Jan 28, 2004Jul 28, 2005Zheng Lingyi A.Methods for forming small-scale capacitor structures
US20050249873 *May 5, 2004Nov 10, 2005Demetrius SarigiannisApparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
US20050249887 *May 6, 2004Nov 10, 2005Dando Ross SMethods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US20050268856 *Jun 2, 2004Dec 8, 2005Miller Matthew WReactors, systems and methods for depositing thin films onto microfeature workpieces
Classifications
U.S. Classification118/715, 427/248.1
International ClassificationC23C16/44, C23C16/455
Cooperative ClassificationC23C16/45565, C23C16/45544
European ClassificationC23C16/455K2, C23C16/455F2D