Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050028976 A1
Publication typeApplication
Application numberUS 10/634,705
Publication dateFeb 10, 2005
Filing dateAug 5, 2003
Priority dateAug 5, 2003
Also published asWO2005017313A1
Publication number10634705, 634705, US 2005/0028976 A1, US 2005/028976 A1, US 20050028976 A1, US 20050028976A1, US 2005028976 A1, US 2005028976A1, US-A1-20050028976, US-A1-2005028976, US2005/0028976A1, US2005/028976A1, US20050028976 A1, US20050028976A1, US2005028976 A1, US2005028976A1
InventorsPhilip Nguyen
Original AssigneeNguyen Philip D.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Compositions and methods for controlling the release of chemicals placed on particulates
US 20050028976 A1
Abstract
The present invention relates to methods and compositions for creating and using particulate materials having treating agents absorbed thereon and coated with a degradable coating material. One embodiment of a method of the present invention provides a method treating to a subterranean formation comprising placing a coated, treated particulate into a subterranean formation wherein the coated, treated particulate comprises a particulate material having a treating agent placed thereon and a substantially complete layer of a degradable coating material coated placed thereon over the treating agent.
Images(6)
Previous page
Next page
Claims(39)
1. (Cancelled)
2. The method of claim 36 wherein the particulate material has at least one recessed or depressed area along a surface of the particulate material.
3. The method of claim 36 wherein the treating agent comprises a gel breaker, an acid, an oxidizer, an enzyme, a hydrolyzable ester, a scale inhibitor, a biocide, a corrosion inhibitor, a paraffin inhibitor, a cement slurry set accelerator, a cement slurry set retarder, a cement slurry dispersant, a cement slurry fluid loss control additive, a cement slurry thixotropic additive, a cement slurry suspending agent, or a combination thereof.
4. The method of claim 36 wherein the particulate material is coated with the treating agent in an amount of from about 0.1% to about 50% by weight of the particulate material.
5. The method of claim 36 wherein the degradable coating material comprises a substantially water insoluble ester; an ortho ester; a poly(orthoester); an aliphatic polyester; a lactide; a poly(lactide); a glycolide; a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a substantially water insoluble anhydride; a poly(anhydride); an aliphatic carbonate; a polycarbonate; a poly(amino acid); a polyphosphazene; or a combination thereof.
6. The method of claim 36 wherein the degradable coating material comprises a solvent.
7. The method of claim 6 wherein the solvent comprises acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, or a combination thereof.
8. (Cancelled)
9. The method of claim 37 wherein the particulate material has at least one recessed or depressed area along a surface of the particulate material.
10. The method of claim 37 wherein the treating agent comprises a gel breaker, an acid, an oxidizer, an enzyme, a hydrolyzable ester, a scale inhibitor, a biocide, a corrosion inhibitor, a paraffin inhibitor, a cement slurry set accelerator, a cement slurry set retarder, a cement slurry dispersant, a cement slurry fluid loss control additive, a cement slurry thixotropic additive, a cement slurry suspending agent, or a combination thereof.
11. The method of claim 37 wherein the particulate material is coated with the treating agent in an amount of from about 0.1% to about 50% by weight of the particulate material.
12. The method of claim 37 wherein the degradable coating material comprises a substantially water insoluble ester; an ortho ester; a poly(orthoester); an aliphatic polyester; a lactide, a poly(lactide); a glycolide; a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a substantially water insoluble anhydride; a poly(anhydride); an aliphatic carbonate; a polycarbonate; a poly(amino acid); a polyphosphazene; or a combination thereof.
13. The method of claim 37 wherein the degradable coating material comprises a solvent.
14. The method of claim 13 wherein the solvent comprises acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, or a combination thereof.
15. (Cancelled)
16. The method of claim 38 wherein the particulate material has at least one recessed or depressed area alone a surface of the particulate material.
17. The method of claim 38 wherein the treating agent comprises a gel breaker, an acid, an oxidizer, an enzyme, a hydrolyzable ester, a scale inhibitor, a biocide, a corrosion inhibitor, a paraffin inhibitor, a cement slurry set accelerator, a cement slurry set retarder, a cement slurry dispersant, a cement slurry fluid loss control additive, a cement slurry thixotropic additive, a cement slurry suspending agent, or a combination thereof.
18. The method of claim 38 wherein the particulate material is coated with the treating agent in an amount of from about 0.1% to about 50% by weight of the particulate material.
19. The method of claim 38 wherein the degradable coating material comprises a substantially water insoluble ester; an ortho ester; a poly(orthoester); an aliphatic polyester; a lactide; a poly(lactide); a glycolide; a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a substantially water insoluble anhydride; a poly(anhydride); an aliphatic carbonate; a polycarbonate; a poly(amino acid); a polyphosphazene; or a combination thereof.
20. The method of claim 38 wherein the degradable coating material comprises a solvent.
21. The method of claim 20 wherein the solvent comprises acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, or a combination thereof.
22. (Cancelled)
23. The coated, treated particulate material of claim 39 wherein the particulate material has at least one recessed or depressed area along a surface of the particulate material.
24. The coated, treated particulate material of claim 39 wherein the treating agent comprises a gel breaker, an acid, an oxidizer, an enzyme, a hydrolyzable ester, a scale inhibitor, a biocide, a corrosion inhibitor, a paraffin inhibitor, a cement slurry set accelerator, a cement slurry set retarder, a cement slurry dispersant, a cement slurry fluid loss control additive, a cement slurry thixotropic additive, a cement slurry suspending agent, or a combination thereof.
25. The coated, treated particulate material of claim 39 wherein the particulate material is coated with the treating agent in an amount of from about 0.1% to about 50% by weight of the particulate material.
26. The coated, treated particulate material of claim 39 wherein the degradable coating material comprises a substantially water insoluble ester; an ortho ester; a poly(orthoester); an aliphatic polyester; a lactide; a poly(lactide); a glycolide; a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a substantially water insoluble anhydride; a poly(anhydride); an aliphatic carbonate; a polycarbonate; a poly(amino acid); a polyphosphazene; or a combination thereof.
27. The coated, treated particulate material of claim 39 wherein the degradable coating material comprises a solvent.
28. The coated, treated particulate material of claim 27 wherein the solvent comprises acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, or a combination thereof.
29. A method of preparing a coated, treated particulate material, comprising:
adsorbing a treating agent onto a particulate material; and
coating the particulate material with a coating material comprising a degradable material so that the coating material at least partially encapsulates the particulate material.
30. The method of claim 29 wherein the particulate material has at least one recessed or depressed area alone a surface of the particulate material.
31. The method of claim 29 wherein the treating agent comprises a gel breaker, an acid, an oxidizer, an enzyme, a hydrolyzable ester, a scale inhibitor, a biocide, a corrosion inhibitor, a paraffin inhibitor, a cement slurry set accelerator, a cement slurry set retarder, a cement slurry dispersant, a cement slurry fluid loss control additive, a cement slurry thixotropic additive, a cement slurry suspending agent, or a combination thereof.
32. The method of claim 29 wherein the particulate material is coated with the treating agent in an amount of from about 0.1% to about 50% by weight of the particulate material.
33. The method of claim 29 wherein the degradable material comprises a substantially water insoluble ester; an ortho ester; a poly(orthoester); an aliphatic polyester; a lactide; a poly(lactide); a glycolide; a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxybutyrate); a substantially water insoluble anhydride; a poly(anhydride); an aliphatic carbonate; a polycarbonate; a poly(amino acid); a polyphosphazene; or a combination thereof.
34. The method of claim 29 wherein the degradable material comprises a solvent.
35. The method of claim 34 wherein the solvent comprises acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, or a combination thereof.
36. A method of treating a subterranean formation comprising:
providing a coated, treated particulate material comprising a treating agent adsorbed on a particulate material and an outer coating that comprises a degradable coating material, the outer coating at least partially encapsulating the particulate material; and
introducing the coated, treated particulate material into a subterranean formation.
37. A method of forming a gravel pack in a well bore comprising:
providing a gravel composition comprising a servicing fluid and a coated, treated particulate material, the coated, treated particulate material comprising a treating agent adsorbed on a particulate material and an outer coating that comprises a degradable coating material, the outer coating at least partially encapsulating the particulate material; and
depositing the coated, treated particulate material into a well bore.
38. A method of creating a proppant pack in a fracture comprising:
providing a proppant composition comprising a servicing fluid and a coated, treated particulate material, wherein the coated, treated particulate material comprises a treating agent adsorbed on a particulate material and an outer coating that comprises a degradable coating material, the outer coating at least partially encapsulating the particulate material; and
depositing the coated, treated particulate material into a fracture in a subterranean formation.
39. A coated, treated particulate material comprising a treating agent adsorbed on a particulate material and an outer coating that comprises a degradable coating material, the outer coating at least partially encapsulating the particulate material.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods for creating and using particulate materials having treating agents absorbed thereon and coated with a degradable coating material.
  • [0003]
    2. Description of the Prior Art
  • [0004]
    Particulate materials are often introduced into subterranean zones in conjunction with fracturing and sand control treatments.
  • [0005]
    A subterranean formation may be treated to increase its conductivity by hydraulically fracturing the formation to create one or more cracks or “fractures.” Such hydraulic fracturing is usually accomplished by injecting a viscous fracturing fluid into a subterranean formation at a rate and pressure sufficient to cause the formation to break down and produce one or more fractures. The fracture or fractures may be horizontal or vertical, with the latter usually predominating, and with the tendency toward vertical fractures increasing with the depth of the formation being fractured. The fracturing fluid is generally a gel, emulsion, or foam that may comprise a particulate material often referred to as a proppant. When used, the proppant is deposited in the fracture to prevent the fracture from fully closing and to maintain conductive channels through which produced fluids can flow upon completion of the fracturing treatment and release of the attendant hydraulic pressure.
  • [0006]
    Sand control treatments may be used to reduce the migration of unconsolidated formation particulates into the wellbore. One such sand control treatment involves the use of a “gravel pack.” One common type of gravel packing operation involves placing a gravel pack screen in the well bore and packing the surrounding annulus between the screen and the well bore with gravel of a specific size designed to prevent the passage of formation sand. The gravel pack screen is generally a filter assembly used to retain the gravel placed during gravel pack operation. A wide range of sizes and screen configurations are available to suit the characteristics of the gravel used. Similarly, a wide range of sizes of gravel is available to suit the characteristics of the unconsolidated or poorly consolidated particulates in the subterranean formation. The resulting structure presents a barrier to migrating sand from the formation while still permitting fluid flow. When installing the gravel pack, the gravel is carried to the formation in the form of a slurry by mixing the gravel with a transport fluid. Gravel packs act, inter alia, to stabilize the formation while causing minimal impairment to well productivity. The gravel, inter alia, acts to prevent the particulates from occluding the screen or migrating with the produced fluids, and the screen, inter alia, acts to prevent the gravel from entering the production tubing.
  • [0007]
    In addition to being useful in fracturing and sand control operations, particulates also may be used to carry a variety of treating agents that may be useful in the subterranean zone. Treating agents may be placed onto particulate material by, for example, impregnation, deposition, or adsorption thereon. Examples of such treating agents include, but are not limited to, gel breakers, scale inhibitors, biocides, corrosion inhibitors, paraffin inhibitors, and other any other treating agent that does not adversely impact the formation or the proppant pack. However, treating agents placed on particulate material and introduced into a subterranean zone often dissolve into the fluids present in the subterranean zone too rapidly. When the treating agents dissolve too rapidly, they may not remain in the subterranean formation for a long enough period of time or may not be delivered to the desired location in the subterranean formation. High sheer rates in the subterranean zone, high temperature, and solubility and interaction with delivery and formation fluids are factors known to increase the rate at which the treating agents dissolve off of the particulate material.
  • SUMMARY OF THE INVENTION
  • [0008]
    The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods for creating and using particulate materials having treating agents absorbed thereon and coated with a degradable coating material.
  • [0009]
    One embodiment of a method of the present invention provides a method of treating to a subterranean formation comprising placing a coated, treated particulate into a subterranean formation wherein the coated, treated particulate comprises a particulate material having a treating agent placed thereon and a substantially complete layer of a degradable coating material placed thereon over the treating agent.
  • [0010]
    Another embodiment of the present invention provides a chemically treated, coated particulate material comprising a particulate material having a treating agent placed thereon and a substantially complete layer of a degradable coating material coated placed thereon over the treating agent.
  • [0011]
    The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments which follows.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0012]
    The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods for creating and using particulate materials having treating agents absorbed thereon and coated with a degradable coating material.
  • [0013]
    In the methods and compositions of the present invention, treating agents are adsorbed onto a particulate material, such as proppant or gravel, for introduction into a subterranean formation. In certain embodiments of the present invention, once the treating agents are adsorbed onto a particulate material, the particulate material is coated with a degradable coating material that temporarily shields the chemical from the fluids present in the subterranean formation until at least a portion of the coating degrades away, at which point the treating agent is exposed to the fluids in the subterranean formation and begins to be released. When a coated and treated particulate is mixed with a liquid such as a servicing fluid, the treating agent is gradually released into the servicing fluid as the degradable coating gradually degrades or dissolves.
  • [0014]
    Any particulate material suitable for use in conjunction with subterranean applications is suitable for use as the particulate material in the compositions and methods of the present invention. For instance, natural sand, quartz sand, garnet, glass, walnut hulls, nylon pellets, bauxite, ceramics, polymeric materials, carbon composites, natural or synthetic polymers, resin beads, and mixtures thereof are suitable. Suitable sizes range from 4 to 100 U.S. mesh, in certain preferred embodiments the sizes range from 10 to 60 US mesh. The proppant particles may be in any form, including that of regular or irregular pellets, fibers, flakes, ribbons, beads, shavings, platelets and the like. In some embodiments of the present invention, it is preferable for the particulate material to exhibit a surface geometry such that at least one recessed or depressed area exists along the surface of the particulate. Such a particulate surface geometry is referred to herein as porous, or partially hollow.
  • [0015]
    The methods of the present invention can be used to deliver almost any treating agent, including but not limited to gel breakers, acids, oxidizers, enzymes, hydrolyzable esters, scale inhibitors, biocides, corrosion inhibitors, paraffin inhibitors, cement slurry set accelerators, cement slurry set retarders, cement slurry dispersants, cement slurry fluid loss control additives, cement slurry thixotropic additives, cement slurry suspending agents, or substantially any other chemical that is soluble in the formation fluids under the environmental conditions of the formation within which it is placed. The degradable coating material of the present invention protects the treating agent from exposure to the formation fluids and environmental conditions until that degradable coating degrades away. As the degradable coating is lost, the treating agent is slowly released by contact with the fluids in the subterranean formation.
  • [0016]
    The treating agent may be impregnated, deposited, coated, permeated, or saturated onto the particulate material. For the purposes of this application, the term “adsorbed” will be used to refer to any method known in the art to incorporate a chemical with a solid particulate. Any such method known in the art that allows a treating agent to be physically incorporated with a particulate material in a manner in which it is later able to leech off of the particulate material is suitable for use in the present invention. In one method of placing a desired treating agent onto a particulate known in the art, a liquid treating agent is adsorbed onto a particulate material by simply spraying the treating agent onto the particulate material in an amount such that the particulate material surface is substantially dry after the adsorption is substantially complete. Another method involves mixing the treating agent with a solvent, adsorbing the solvent/agent mixture onto the particulate material, and then allowing the solvent to substantially evaporate from the surface of the particulate over time or under vacuum conditions. This method may be used where the treating agent is solid at room temperature to facilitate the coating process. One skilled in the art, with the benefit of this disclosure, will be able to determine the proper amount of chemical to place onto the particulate and a method for placing the desired treating agent onto the particulate. In some embodiments, the amount of treating agent absorbed onto the particulate material ranged from about 0.1% to about 50% by weight of the particulate material. In other embodiments, the amounts of treating agent adsorbed onto the particulate can be several times the weight of the particulate depending on the agent chosen and the desired effect.
  • [0017]
    By adsorbing the treating agent on the particulate material as in the methods of the present invention, the treating agents are not subject to the gravity segregation or premature settling out of the servicing fluid that carries the agent into the subterranean formation. This allows the treating agent to be substantially uniformly dispersed along with the particulate material without undesired segregation or settling, and enables uniform release of the treating agent within the formation.
  • [0018]
    The degradable coating materials suitable for use in the present invention are those compounds that degrade over time in the subterranean formation. Any material capable of acting as a temporary barrier between the fluids in the subterranean formation and the chemical carried on the particulate material and that does not undesirably interfere with the subterranean formation, the particulate, or the treating agent is suitable for use as a coating material in the present invention. It is not necessary for the degradable coating material to cover 100% of the surface area of the impregnated particulate. Rather, the degradable coating material need only cover enough of the particulate's surface area to delay the release of the adsorbed treating agent in the formation to a desired extent. In one embodiment of the present invention, the surface area is coated to a sufficient extent as to allow the particulates to be placed in a desirable location in the subterranean formation before the majority of the treating agent is released.
  • [0019]
    Degradable materials that may be used in conjunction with the present invention are those materials than can be coated onto a particulate and, in preferred embodiments, are substantially water insoluble such that they degrade over time, rather than instantaneously. Examples of suitable degradable materials include substantially water insoluble esters such as ortho esters; poly(orthoesters); aliphatic polyesters; lactides, poly(lactides); glycolides; poly(glycolides); poly(ε-caprolactone); poly(hydroxybutyrate); substantially water insoluble anhydrides; poly(anhydrides); and poly(amino acids).
  • [0020]
    Polymers suitable for use as a degradable material of the present invention may be considered degradable if the degradation is due, inter alia, to chemical and/or radical process such as hydrolysis, oxidation, or enzymatic decomposition. The degradability of a polymer depends at least in part on its backbone structure, type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how it degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like.
  • [0021]
    Blends of certain degradable materials may also be suitable as the degradable coating materials of the present invention. One example of a suitable blend of materials is a mixture of poly(lactic acid) and a poly(anhydride) where the mixing of an acid and base could result in a neutral solution where this is desirable. Another example would include a blend of poly(lactic acid) and boric oxide. Other materials that undergo an irreversible degradation may also be suitable, if the products of the degradation do not undesirably interfere with either the conductivity of the proppant matrix or with the production of any of the fluids from the subterranean formation.
  • [0022]
    In choosing the appropriate degradable material, one should consider the degradation products that will result. The degradation products should not adversely affect other operations or components. The choice of degradable material also can depend, at least in part, on the conditions of the well, e.g., wellbore temperature. For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of 60 F. to 150 F., and polylactides have been found to be suitable for well bore temperatures above this range.
  • [0023]
    A preferable result is achieved if the degradable material degrades slowly over time as opposed to instantaneously. Even more preferable results have been obtained when the degradable material does not substantially degrade until after the particulate impregnated with a treating agent has been placed in a desired location in the subterranean formation. Even more preferable results have been obtained when the coating material does not substantially degrade until after the operation delivering the particulate, such as a fracturing operation or gravel packing operation, is substantially complete.
  • [0024]
    Where the chosen degradable coating material is a solid material at ambient temperatures it may be advantageous to mix it with a solvent to facilitate the coating of the degradable coating material onto the particulate material. A variety of solvents known in the art are suitable for this purpose in the present invention. Some suitable solvents include, but are not limited to acetone, propylene carbonate, dipropylene glycol methyl ether, methylene chloride, isopropyl alcohol, and combinations thereof.
  • [0025]
    In some embodiments of the present invention the particle material is coated with from about 0.1% to about 30% degradable coating material by weight of the particulate material. In some embodiments of the present invention, all of the treated particle material used in the subterranean operation is coated with a degradable coating material while in other embodiments, only a portion of the particulate material is coated. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine the thickness of degradable coating that should be applied to the treated particulate material and the percentage of the treated particulate material that should be coated.
  • [0026]
    In one embodiment of a method of the present invention, a treating agent is absorbed onto a particulate material after which the absorbed particulate material is coated with a degradable coating material and the absorbed, coated particulate material is placed into a subterranean formation. Once in the formation, the coating material degrades off of the particulate material, exposing the treating agent, which is then released into the subterranean formation.
  • [0027]
    Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2238671 *Feb 9, 1940Apr 15, 1941Du PontMethod of treating wells
US2703316 *Jun 5, 1951Mar 1, 1955Du PontPolymers of high melting lactide
US3173484 *Sep 2, 1958Mar 16, 1965Gulf Research Development CoFracturing process employing a heterogeneous propping agent
US3195635 *May 23, 1963Jul 20, 1965Pan American Petroleum CorpSpacers for fracture props
US3272650 *Feb 21, 1963Sep 13, 1966Union Carbide CorpProcess for cleaning conduits
US3302719 *Jan 25, 1965Feb 7, 1967Union Oil CoMethod for treating subterranean formations
US3364995 *Feb 14, 1966Jan 23, 1968Dow Chemical CoHydraulic fracturing fluid-bearing earth formations
US3366178 *Sep 10, 1965Jan 30, 1968Halliburton CoMethod of fracturing and propping a subterranean formation
US3455390 *Dec 3, 1965Jul 15, 1969Union Oil CoLow fluid loss well treating composition and method
US3784585 *Oct 21, 1971Jan 8, 1974American Cyanamid CoWater-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3819525 *Aug 21, 1972Jun 25, 1974Avon Prod IncCosmetic cleansing preparation
US3828854 *Oct 30, 1973Aug 13, 1974Shell Oil CoDissolving siliceous materials with self-acidifying liquid
US3868998 *May 15, 1974Mar 4, 1975Shell Oil CoSelf-acidifying treating fluid positioning process
US3948672 *Sep 26, 1974Apr 6, 1976Texaco Inc.Permeable cement composition and method
US3955993 *Sep 26, 1974May 11, 1976Texaco Inc.Method and composition for stabilizing incompetent oil-containing formations
US3960736 *Jun 3, 1974Jun 1, 1976The Dow Chemical CompanySelf-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
US3968840 *May 25, 1973Jul 13, 1976Texaco Inc.Controlled rate acidization process
US4068718 *Oct 26, 1976Jan 17, 1978Exxon Production Research CompanyHydraulic fracturing method using sintered bauxite propping agent
US4387769 *Aug 10, 1981Jun 14, 1983Exxon Production Research Co.Method for reducing the permeability of subterranean formations
US4460052 *Aug 10, 1981Jul 17, 1984Judith GockelPrevention of lost circulation of drilling muds
US4470915 *Sep 27, 1982Sep 11, 1984Halliburton CompanyMethod and compositions for fracturing subterranean formations
US4498995 *Jul 1, 1983Feb 12, 1985Judith GockelLost circulation drilling fluid
US4526695 *Feb 4, 1983Jul 2, 1985Exxon Production Research Co.Composition for reducing the permeability of subterranean formations
US4716964 *Dec 10, 1986Jan 5, 1988Exxon Production Research CompanyUse of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4797262 *Jun 3, 1987Jan 10, 1989Shell Oil CompanyDownflow fluidized catalytic cracking system
US4800960 *Dec 18, 1987Jan 31, 1989Texaco Inc.Consolidatable gravel pack method
US4809783 *Jan 14, 1988Mar 7, 1989Halliburton ServicesMethod of dissolving organic filter cake
US4817721 *Dec 14, 1987Apr 4, 1989Conoco Inc.Reducing the permeability of a rock formation
US4843118 *Jun 19, 1987Jun 27, 1989Air Products And Chemicals, Inc.Acidized fracturing fluids containing high molecular weight poly(vinylamines) for enhanced oil recovery
US4848467 *Feb 16, 1988Jul 18, 1989Conoco Inc.Formation fracturing process
US4986353 *Sep 14, 1988Jan 22, 1991Conoco Inc.Placement process for oil field chemicals
US4986354 *Sep 14, 1988Jan 22, 1991Conoco Inc.Composition and placement process for oil field chemicals
US4986355 *May 18, 1989Jan 22, 1991Conoco Inc.Process for the preparation of fluid loss additive and gel breaker
US5082056 *Oct 16, 1990Jan 21, 1992Marathon Oil CompanyIn situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
US5142023 *Jan 24, 1992Aug 25, 1992Cargill, IncorporatedContinuous process for manufacture of lactide polymers with controlled optical purity
US5216050 *Sep 6, 1990Jun 1, 1993Biopak Technology, Ltd.Blends of polyactic acid
US5295542 *Oct 5, 1992Mar 22, 1994Halliburton CompanyWell gravel packing methods
US5325923 *Sep 30, 1993Jul 5, 1994Halliburton CompanyWell completions with expandable casing portions
US5330005 *Apr 5, 1993Jul 19, 1994Dowell Schlumberger IncorporatedControl of particulate flowback in subterranean wells
US5386874 *Nov 8, 1993Feb 7, 1995Halliburton CompanyPerphosphate viscosity breakers in well fracture fluids
US5396957 *Mar 4, 1994Mar 14, 1995Halliburton CompanyWell completions with expandable casing portions
US5402846 *Nov 15, 1993Apr 4, 1995Mobil Oil CorporationUnique method of hydraulic fracturing
US5439055 *Mar 8, 1994Aug 8, 1995Dowell, A Division Of Schlumberger Technology Corp.Control of particulate flowback in subterranean wells
US5484881 *Aug 23, 1993Jan 16, 1996Cargill, Inc.Melt-stable amorphous lactide polymer film and process for manufacturing thereof
US5497830 *Apr 6, 1995Mar 12, 1996Bj Services CompanyCoated breaker for crosslinked acid
US5499678 *Aug 2, 1994Mar 19, 1996Halliburton CompanyCoplanar angular jetting head for well perforating
US5505787 *Jan 28, 1994Apr 9, 1996Total Service Co., Inc.Method for cleaning surface of external wall of building
US5512071 *Feb 25, 1994Apr 30, 1996Church & Dwight Co., Inc.Water soluble blast media containing surfactant
US5536807 *Aug 23, 1993Jul 16, 1996Cargill, IncorporatedMelt-stable semi-crystalline lactide polymer film and process for manufacture thereof
US5591700 *Dec 22, 1994Jan 7, 1997Halliburton CompanyFracturing fluid with encapsulated breaker
US5594095 *Jul 27, 1994Jan 14, 1997Cargill, IncorporatedViscosity-modified lactide polymer composition and process for manufacture thereof
US5604186 *Feb 15, 1995Feb 18, 1997Halliburton CompanyEncapsulated enzyme breaker and method for use in treating subterranean formations
US5607905 *Mar 15, 1994Mar 4, 1997Texas United Chemical Company, Llc.Well drilling and servicing fluids which deposit an easily removable filter cake
US5765642 *Dec 23, 1996Jun 16, 1998Halliburton Energy Services, Inc.Subterranean formation fracturing methods
US5791415 *Mar 13, 1997Aug 11, 1998Halliburton Energy Services, Inc.Stimulating wells in unconsolidated formations
US5893416 *Nov 28, 1997Apr 13, 1999Aea Technology PlcOil well treatment
US5908073 *Jun 26, 1997Jun 1, 1999Halliburton Energy Services, Inc.Preventing well fracture proppant flow-back
US5924488 *Jun 11, 1997Jul 20, 1999Halliburton Energy Services, Inc.Methods of preventing well fracture proppant flow-back
US6024170 *Jun 3, 1998Feb 15, 2000Halliburton Energy Services, Inc.Methods of treating subterranean formation using borate cross-linking compositions
US6028113 *Sep 27, 1995Feb 22, 2000Sunburst Chemicals, Inc.Solid sanitizers and cleaner disinfectants
US6047772 *Nov 9, 1998Apr 11, 2000Halliburton Energy Services, Inc.Control of particulate flowback in subterranean wells
US6169058 *Jun 5, 1997Jan 2, 2001Bj Services CompanyCompositions and methods for hydraulic fracturing
US6172011 *Mar 8, 1996Jan 9, 2001Schlumberger Technolgy CorporationControl of particulate flowback in subterranean wells
US6189615 *Dec 15, 1998Feb 20, 2001Marathon Oil CompanyApplication of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6202751 *Jul 28, 2000Mar 20, 2001Halliburton Energy Sevices, Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6209643 *Mar 6, 2000Apr 3, 2001Halliburton Energy Services, Inc.Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US6209646 *Apr 21, 1999Apr 3, 2001Halliburton Energy Services, Inc.Controlling the release of chemical additives in well treating fluids
US6214773 *Sep 29, 1999Apr 10, 2001Halliburton Energy Services, Inc.High temperature, low residue well treating fluids and methods
US6242390 *Jul 31, 1998Jun 5, 2001Schlumberger Technology CorporationCleanup additive
US6260622 *Dec 23, 1998Jul 17, 2001Shell Oil CompanyApparatus and method of injecting treatment fluids into a formation surrounding an underground borehole
US6357527 *May 5, 2000Mar 19, 2002Halliburton Energy Services, Inc.Encapsulated breakers and method for use in treating subterranean formations
US6364945 *Dec 13, 2000Apr 2, 2002Halliburton Energy Services, Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6387986 *Jun 24, 1999May 14, 2002Ahmad Moradi-AraghiCompositions and processes for oil field applications
US6390195 *Oct 27, 2000May 21, 2002Halliburton Energy Service,S Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6394185 *Jul 27, 2000May 28, 2002Vernon George ConstienProduct and process for coating wellbore screens
US6422314 *Aug 1, 2000Jul 23, 2002Halliburton Energy Services, Inc.Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6508305 *Sep 14, 2000Jan 21, 2003Bj Services CompanyCompositions and methods for cementing using elastic particles
US6527051 *Jul 12, 2002Mar 4, 2003Halliburton Energy Services, Inc.Encapsulated chemicals for use in controlled time release applications and methods
US6554071 *Jul 12, 2002Apr 29, 2003Halliburton Energy Services, Inc.Encapsulated chemicals for use in controlled time release applications and methods
US6569814 *Apr 20, 2000May 27, 2003Schlumberger Technology CorporationFluids and techniques for hydrocarbon well completion
US6599863 *Aug 20, 1999Jul 29, 2003Schlumberger Technology CorporationFracturing process and composition
US6681856 *May 16, 2003Jan 27, 2004Halliburton Energy Services, Inc.Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US6686328 *Jul 9, 1999Feb 3, 2004The Procter & Gamble CompanyDetergent tablet
US6710019 *Jul 16, 1999Mar 23, 2004Christopher Alan SawdonWellbore fluid
US6761218 *Apr 1, 2002Jul 13, 2004Halliburton Energy Services, Inc.Methods and apparatus for improving performance of gravel packing systems
US6763888 *Mar 20, 2000Jul 20, 2004Cleansorb LimitedMethod for treatment of underground reservoirs
US20010016562 *Nov 29, 2000Aug 23, 2001Muir David J.Encapsulated breakers, compositions and methods of use
US20020036088 *Jan 9, 2001Mar 28, 2002Todd Bradley L.Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US20030060374 *Sep 24, 2002Mar 27, 2003Cooke Claude E.Method and materials for hydraulic fracturing of wells
US20030114314 *Dec 19, 2001Jun 19, 2003Ballard David A.Internal breaker
US20030130133 *Dec 11, 2002Jul 10, 2003Vollmer Daniel PatrickWell treatment fluid
US20040014607 *Jul 16, 2002Jan 22, 2004Sinclair A. RichardDownhole chemical delivery system for oil and gas wells
US20040040706 *Aug 28, 2002Mar 4, 2004Tetra Technologies, Inc.Filter cake removal fluid and method
US20040055747 *Sep 20, 2002Mar 25, 2004M-I Llc.Acid coated sand for gravel pack and filter cake clean-up
US20040106525 *Oct 17, 2003Jun 3, 2004Schlumberger Technology Corp.Self-Destructing Filter Cake
US20040138068 *Dec 19, 2003Jul 15, 2004Schlumberger Technology CorporationMethod For Providing Treatment Chemicals In A Subterranean Well
US20040152601 *Oct 27, 2003Aug 5, 2004Schlumberger Technology CorporationGenerating Acid Downhole in Acid Fracturing
US20040152602 *Jan 15, 2004Aug 5, 2004Boles Joel LynnCrosslinking delaying agents for acid fluids
US20050006095 *Jul 8, 2003Jan 13, 2005Donald JustusReduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7216705 *Feb 22, 2005May 15, 2007Halliburton Energy Services, Inc.Methods of placing treatment chemicals
US7276466 *Aug 26, 2003Oct 2, 2007Halliburton Energy Services, Inc.Compositions and methods for reducing the viscosity of a fluid
US7426961Sep 2, 2003Sep 23, 2008Bj Services CompanyMethod of treating subterranean formations with porous particulate materials
US7491682Dec 15, 2004Feb 17, 2009Bj Services CompanyMethod of inhibiting or controlling formation of inorganic scales
US7598208 *May 16, 2006Oct 6, 2009Halliburton Energy Services, Inc.Filter cake degradation compositions and methods of use in subterranean operations
US7598209Jan 26, 2006Oct 6, 2009Bj Services CompanyPorous composites containing hydrocarbon-soluble well treatment agents and methods for using the same
US7648946Nov 17, 2004Jan 19, 2010Halliburton Energy Services, Inc.Methods of degrading filter cakes in subterranean formations
US7662753May 12, 2005Feb 16, 2010Halliburton Energy Services, Inc.Degradable surfactants and methods for use
US7673686Mar 9, 2010Halliburton Energy Services, Inc.Method of stabilizing unconsolidated formation for sand control
US7674753Dec 5, 2006Mar 9, 2010Halliburton Energy Services, Inc.Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US7677315Oct 5, 2005Mar 16, 2010Halliburton Energy Services, Inc.Degradable surfactants and methods for use
US7678723May 19, 2008Mar 16, 2010Carbo Ceramics, Inc.Sintered spherical pellets
US7678742Sep 20, 2006Mar 16, 2010Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US7678743Mar 16, 2010Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US7686080Mar 30, 2010Halliburton Energy Services, Inc.Acid-generating fluid loss control additives and associated methods
US7687438Sep 20, 2006Mar 30, 2010Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US7700525Sep 23, 2009Apr 20, 2010Halliburton Energy Services, Inc.Orthoester-based surfactants and associated methods
US7712531Jul 26, 2007May 11, 2010Halliburton Energy Services, Inc.Methods for controlling particulate migration
US7713916Sep 22, 2005May 11, 2010Halliburton Energy Services, Inc.Orthoester-based surfactants and associated methods
US7713918Apr 14, 2004May 11, 2010Bj Services CompanyPorous particulate materials and compositions thereof
US7721804Jul 2, 2008May 25, 2010Carbo Ceramics Inc.Proppants for gel clean-up
US7757768Jul 20, 2010Halliburton Energy Services, Inc.Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7762329Jan 27, 2009Jul 27, 2010Halliburton Energy Services, Inc.Methods for servicing well bores with hardenable resin compositions
US7766099Oct 23, 2008Aug 3, 2010Halliburton Energy Services, Inc.Methods of drilling and consolidating subterranean formation particulates
US7819192Feb 10, 2006Oct 26, 2010Halliburton Energy Services, Inc.Consolidating agent emulsions and associated methods
US7825053 *Nov 2, 2010Carbo Ceramics Inc.Sintered spherical pellets
US7828998Nov 9, 2010Carbo Ceramics, Inc.Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
US7829507Nov 9, 2010Halliburton Energy Services Inc.Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US7833943Nov 16, 2010Halliburton Energy Services Inc.Microemulsifiers and methods of making and using same
US7833944Nov 16, 2010Halliburton Energy Services, Inc.Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7883740Feb 8, 2011Halliburton Energy Services, Inc.Low-quality particulates and methods of making and using improved low-quality particulates
US7906464Mar 15, 2011Halliburton Energy Services, Inc.Compositions and methods for the removal of oil-based filtercakes
US7918277Dec 31, 2008Apr 5, 2011Baker Hughes IncorporatedMethod of treating subterranean formations using mixed density proppants or sequential proppant stages
US7926591Jan 12, 2009Apr 19, 2011Halliburton Energy Services, Inc.Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7931966 *Apr 26, 2011Schlumberger Technology CorporationProppant material and formation hydraulic fracturing method
US7934557Feb 15, 2007May 3, 2011Halliburton Energy Services, Inc.Methods of completing wells for controlling water and particulate production
US7950455May 31, 2011Baker Hughes IncorporatedNon-spherical well treating particulates and methods of using the same
US7960314Jun 14, 2011Halliburton Energy Services Inc.Microemulsifiers and methods of making and using same
US7963330Jun 21, 2011Halliburton Energy Services, Inc.Resin compositions and methods of using resin compositions to control proppant flow-back
US7998910Aug 16, 2011Halliburton Energy Services, Inc.Treatment fluids comprising relative permeability modifiers and methods of use
US8006760Apr 10, 2008Aug 30, 2011Halliburton Energy Services, Inc.Clean fluid systems for partial monolayer fracturing
US8017561Sep 13, 2011Halliburton Energy Services, Inc.Resin compositions and methods of using such resin compositions in subterranean applications
US8030249Oct 4, 2011Halliburton Energy Services, Inc.Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US8030251Apr 14, 2010Oct 4, 2011Halliburton Energy Services, Inc.Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US8063000Aug 30, 2007Nov 22, 2011Carbo Ceramics Inc.Low bulk density proppant and methods for producing the same
US8082992Dec 27, 2011Halliburton Energy Services, Inc.Methods of fluid-controlled geometry stimulation
US8167045May 1, 2012Halliburton Energy Services, Inc.Methods and compositions for stabilizing formation fines and sand
US8188013Mar 11, 2009May 29, 2012Halliburton Energy Services, Inc.Self-degrading fibers and associated methods of use and manufacture
US8205675Oct 9, 2008Jun 26, 2012Baker Hughes IncorporatedMethod of enhancing fracture conductivity
US8216675Jul 10, 2012Carbo Ceramics Inc.Methods for producing sintered particles from a slurry of an alumina-containing raw material
US8220548Jan 12, 2007Jul 17, 2012Halliburton Energy Services Inc.Surfactant wash treatment fluids and associated methods
US8329621Apr 6, 2007Dec 11, 2012Halliburton Energy Services, Inc.Degradable particulates and associated methods
US8354279Feb 12, 2004Jan 15, 2013Halliburton Energy Services, Inc.Methods of tracking fluids produced from various zones in a subterranean well
US8443885Aug 30, 2007May 21, 2013Halliburton Energy Services, Inc.Consolidating agent emulsions and associated methods
US8541051Dec 15, 2003Sep 24, 2013Halliburton Energy Services, Inc.On-the fly coating of acid-releasing degradable material onto a particulate
US8598092Nov 8, 2007Dec 3, 2013Halliburton Energy Services, Inc.Methods of preparing degradable materials and methods of use in subterranean formations
US8613320Feb 15, 2008Dec 24, 2013Halliburton Energy Services, Inc.Compositions and applications of resins in treating subterranean formations
US8664168Mar 30, 2011Mar 4, 2014Baker Hughes IncorporatedMethod of using composites in the treatment of wells
US8689872Jul 24, 2007Apr 8, 2014Halliburton Energy Services, Inc.Methods and compositions for controlling formation fines and reducing proppant flow-back
US8735333 *Dec 1, 2006May 27, 2014Ewen RobertsonParticles
US8757259Nov 12, 2010Jun 24, 2014Schlumberger Technology CorporationHeterogeneous proppant placement in a fracture with removable channelant fill
US8853137 *Jan 31, 2011Oct 7, 2014Halliburton Energy Services, Inc.Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate
US9010430Jul 19, 2010Apr 21, 2015Baker Hughes IncorporatedMethod of using shaped compressed pellets in treating a well
US9029300Apr 26, 2011May 12, 2015Baker Hughes IncorporatedComposites for controlled release of well treatment agents
US9085727Jul 13, 2012Jul 21, 2015Schlumberger Technology CorporationHeterogeneous proppant placement in a fracture with removable extrametrical material fill
US9371479Mar 15, 2012Jun 21, 2016Schlumberger Technology CorporationControlled release biocides in oilfield applications
US20040040708 *Sep 2, 2003Mar 4, 2004Stephenson Christopher JohnMethod of treating subterranean formations with porous ceramic particulate materials
US20040200617 *Apr 14, 2004Oct 14, 2004Stephenson Christopher JohnMethod of treating subterranean formations with porous ceramic particulate materials
US20040214724 *Aug 26, 2003Oct 28, 2004Todd Bradley L.Compositions and methods for reducing the viscosity of a fluid
US20050034865 *Aug 14, 2003Feb 17, 2005Todd Bradley L.Compositions and methods for degrading filter cake
US20050034868 *Jan 7, 2004Feb 17, 2005Frost Keith A.Orthoester compositions and methods of use in subterranean applications
US20050045328 *Feb 24, 2004Mar 3, 2005Frost Keith A.Orthoester compositions and methods for reducing the viscosified treatment fluids
US20050051330 *Sep 5, 2003Mar 10, 2005Nguyen Philip D.Methods for forming a permeable and stable mass in a subterranean formation
US20050056423 *Sep 11, 2003Mar 17, 2005Todd Bradey L.Methods of removing filter cake from well producing zones
US20050059556 *Apr 26, 2004Mar 17, 2005Trinidad MunozTreatment fluids and methods of use in subterranean formations
US20050059557 *Sep 17, 2003Mar 17, 2005Todd Bradley L.Subterranean treatment fluids and methods of treating subterranean formations
US20050059558 *Sep 20, 2004Mar 17, 2005Blauch Matthew E.Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050126780 *Feb 1, 2005Jun 16, 2005Halliburton Energy Services, Inc.Compositions and methods for improving fracture conductivity in a subterranean well
US20050126785 *Dec 15, 2003Jun 16, 2005Todd Bradley L.Filter cake degradation compositions and methods of use in subterranean operations
US20050130848 *Feb 1, 2005Jun 16, 2005Halliburton Energy Services, Inc.Compositions and methods for improving fracture conductivity in a subterranean well
US20050161220 *Jan 27, 2004Jul 28, 2005Todd Bradley L.Fluid loss control additives for use in fracturing subterranean formations
US20050167104 *Jan 30, 2004Aug 4, 2005Roddy Craig W.Compositions and methods for the delivery of chemical components in subterranean well bores
US20050167105 *Jan 30, 2004Aug 4, 2005Roddy Craig W.Contained micro-particles for use in well bore operations
US20050167107 *Jan 30, 2004Aug 4, 2005Roddy Craig W.Methods of cementing in subterranean formations using crack resistant cement compositions
US20060016596 *Jul 23, 2004Jan 26, 2006Pauls Richard WTreatment fluids and methods of use in subterranean formations
US20060032633 *Aug 10, 2004Feb 16, 2006Nguyen Philip DMethods and compositions for carrier fluids comprising water-absorbent fibers
US20060046938 *Sep 2, 2004Mar 2, 2006Harris Philip CMethods and compositions for delinking crosslinked fluids
US20060048938 *Sep 3, 2004Mar 9, 2006Kalman Mark DCarbon foam particulates and methods of using carbon foam particulates in subterranean applications
US20060065397 *Sep 24, 2004Mar 30, 2006Nguyen Philip DMethods and compositions for inducing tip screenouts in frac-packing operations
US20060105917 *Nov 17, 2004May 18, 2006Halliburton Energy Services, Inc.In-situ filter cake degradation compositions and methods of use in subterranean formations
US20060105918 *Nov 17, 2004May 18, 2006Halliburton Energy Services, Inc.Methods of degrading filter cakes in subterranean formations
US20060124301 *Dec 15, 2004Jun 15, 2006Bj Services CompanySlow release scale inhibitor composites and methods of using the same
US20060169182 *Jan 28, 2005Aug 3, 2006Halliburton Energy Services, Inc.Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20060169448 *Feb 1, 2005Aug 3, 2006Halliburton Energy Services, Inc.Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US20060169449 *Jan 31, 2005Aug 3, 2006Halliburton Energy Services, Inc.Self-degrading fibers and associated methods of use and manufacture
US20060169450 *Feb 2, 2005Aug 3, 2006Halliburton Energy Services, Inc.Degradable particulate generation and associated methods
US20060169451 *Feb 1, 2005Aug 3, 2006Halliburton Energy Services, Inc.Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US20060169452 *Jul 22, 2005Aug 3, 2006Savery Mark RMethods of directional drilling and forming kickoff plugs using self-degrading cement in subterranean well bores
US20060169454 *Jul 22, 2005Aug 3, 2006Savery Mark RMethods of isolating zones in subterranean formations using self-degrading cement compositions
US20060172893 *Jan 28, 2005Aug 3, 2006Halliburton Energy Services, Inc.Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20060172894 *Feb 2, 2005Aug 3, 2006Halliburton Energy Services, Inc.Degradable particulate generation and associated methods
US20060172895 *Feb 2, 2005Aug 3, 2006Halliburton Energy Services, Inc.Degradable particulate generation and associated methods
US20060185847 *Feb 22, 2005Aug 24, 2006Halliburton Energy Services, Inc.Methods of placing treatment chemicals
US20060185848 *Feb 22, 2005Aug 24, 2006Halliburton Energy Services, Inc.Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
US20060205608 *May 16, 2006Sep 14, 2006Halliburton Energy Services, Inc.Filter cake degradation compositions and methods of use in subterranean operations
US20060219600 *Mar 1, 2006Oct 5, 2006Carbo Ceramics Inc.Methods for producing sintered particles from a slurry of an alumina-containing raw material
US20060243449 *Apr 29, 2005Nov 2, 2006Halliburton Energy Services, Inc.Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US20060247135 *Apr 29, 2005Nov 2, 2006Halliburton Energy Services, Inc.Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US20060254774 *Oct 5, 2005Nov 16, 2006Halliburton Energy Services, Inc.Degradable surfactants and methods for use
US20060276345 *Jun 7, 2005Dec 7, 2006Halliburton Energy Servicers, Inc.Methods controlling the degradation rate of hydrolytically degradable materials
US20060283597 *Aug 24, 2006Dec 21, 2006Halliburton Energy Services, Inc.Methods of degrading filter cakes in a subterranean formation
US20070039733 *Aug 16, 2005Feb 22, 2007Halliburton Energy Services, Inc.Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070042912 *Aug 16, 2005Feb 22, 2007Halliburton Energy Services, Inc.Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070049501 *Sep 1, 2005Mar 1, 2007Halliburton Energy Services, Inc.Fluid-loss control pills comprising breakers that comprise orthoesters and/or poly(orthoesters) and methods of use
US20070066492 *Sep 22, 2005Mar 22, 2007Halliburton Energy Services, Inc.Orthoester-based surfactants and associated methods
US20070078063 *Dec 5, 2006Apr 5, 2007Halliburton Energy Services, Inc.Subterranean treatment fluids and methods of treating subterranean formations
US20070078064 *Dec 5, 2006Apr 5, 2007Halliburton Energy Services, Inc.Treatment fluids and methods of forming degradable filter cakes and their use in subterranean formations
US20070100029 *Dec 12, 2006May 3, 2007Reddy B RCement compositions containing degradable materials and methods of cementing in subterranean formations
US20070114030 *Nov 21, 2005May 24, 2007Halliburton Energy Services, Inc.Methods of modifying particulate surfaces to affect acidic sites thereon
US20070169938 *Jan 20, 2006Jul 26, 2007Halliburton Energy Services, Inc.Methods of controlled acidization in a wellbore
US20070173416 *Jan 20, 2006Jul 26, 2007Halliburton Energy Services, Inc.Well treatment compositions for use in acidizing a well
US20070173417 *Jan 26, 2006Jul 26, 2007Bj Services CompanyPorous composites containing hydrocarbon-soluble well treatment agents and methods for using the same
US20070238623 *Mar 30, 2006Oct 11, 2007Halliburton Energy Services, Inc.Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
US20070298977 *Feb 2, 2005Dec 27, 2007Halliburton Energy Services, Inc.Degradable particulate generation and associated methods
US20080000638 *Jun 26, 2007Jan 3, 2008Alexander BurukhinProppant material and formation hydraulic fracturing method
US20080006406 *Jul 6, 2006Jan 10, 2008Halliburton Energy Services, Inc.Methods of enhancing uniform placement of a resin in a subterranean formation
US20080009423 *Jan 31, 2005Jan 10, 2008Halliburton Energy Services, Inc.Self-degrading fibers and associated methods of use and manufacture
US20080011478 *Jul 24, 2007Jan 17, 2008Welton Thomas DMethods and Compositions for Controlling Formation Fines and Reducing Proppant Flow-Back
US20080026955 *Sep 6, 2007Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080026959 *Jul 25, 2006Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080026960 *Sep 15, 2006Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080058228 *Aug 30, 2007Mar 6, 2008Carbo Ceramics Inc.Low bulk density proppant and methods for producing the same
US20080070805 *Sep 20, 2006Mar 20, 2008Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US20080070807 *Sep 20, 2006Mar 20, 2008Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US20080070808 *Sep 20, 2006Mar 20, 2008Halliburton Energy Services, Inc.Drill-in fluids and associated methods
US20080078549 *Sep 29, 2006Apr 3, 2008Halliburton Energy Services, Inc.Methods and Compositions Relating to the Control of the Rates of Acid-Generating Compounds in Acidizing Operations
US20080135246 *Feb 15, 2008Jun 12, 2008Carbo Ceramics Inc.Sintered spherical pellets useful for gas and oil well proppants
US20080135251 *Feb 15, 2008Jun 12, 2008Halliburton Energy Services, Inc.Compositions and applications of resins in treating subterranean formations
US20080139415 *Nov 9, 2006Jun 12, 2008Halliburton Energy Services, Inc.Acid-generating fluid loss control additives and associated methods
US20080150493 *Nov 7, 2007Jun 26, 2008Potenco, Inc.Gearless human power generation
US20080220996 *May 19, 2008Sep 11, 2008Carbo Ceramics Inc.Sintered spherical pellets
US20080241540 *Jun 9, 2008Oct 2, 2008Carbo Ceramics Inc.Method for producing solid ceramic particles using a spray drying process
US20090008093 *Jul 2, 2008Jan 8, 2009Carbo Ceramics Inc.Proppants for gel clean-up
US20090038799 *Jul 17, 2008Feb 12, 2009Garcia-Lopez De Victoria MarielizSystem, Method, and Apparatus for Combined Fracturing Treatment and Scale Inhibition
US20090062157 *Aug 30, 2007Mar 5, 2009Halliburton Energy Services, Inc.Methods and compositions related to the degradation of degradable polymers involving dehydrated salts and other associated methods
US20090107674 *Dec 31, 2008Apr 30, 2009Harold Dean BrannonMethod of Treating Subterranean Formations Using Mixed Density Proppants or Sequential Proppant Stages
US20090118145 *Oct 17, 2008May 7, 2009Carbo Ceramics Inc.Method for producing proppant using a dopant
US20090143259 *Dec 1, 2006Jun 4, 2009Ewen RobertsonParticles
US20090151943 *Jan 12, 2009Jun 18, 2009Halliburton Energy Services, Inc.Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US20090176665 *Mar 11, 2009Jul 9, 2009Mang Michael NSelf-Degrading Fibers and Associated Methods of Use and Manufacture
US20090197780 *Jan 28, 2009Aug 6, 2009Weaver Jimmie DUltrafine Grinding of Soft Materials
US20090258798 *Jun 18, 2009Oct 15, 2009Trinidad MunozMethods and compositions using crosslinked aliphatic polyesters in well bore applications
US20100059224 *Sep 21, 2009Mar 11, 2010Carbo Ceramics Inc.Methods for producing sintered particles from a slurry of an alumina-containing raw material
US20100089580 *Oct 9, 2008Apr 15, 2010Harold Dean BrannonMethod of enhancing fracture conductivity
US20100126728 *Jan 25, 2010May 27, 2010Carbo Ceramics Inc.Sintered spherical pellets
US20100147518 *Feb 8, 2010Jun 17, 2010Dusterhoft Ronald GMethod and Composition for Enhancing Coverage and Displacement of Treatment Fluids into Subterranean Formations
US20100212906 *Feb 20, 2009Aug 26, 2010Halliburton Energy Services, Inc.Method for diversion of hydraulic fracture treatments
US20100216672 *Aug 26, 2010Halliburton Energy Services, Inc.Treatment fluids comprising relative permeability modifiers and methods of use
US20110021388 *Jan 27, 2011Halliburton Energy Services, Inc.Microemulsifiers and methods of making and using same
US20110114313 *May 19, 2011Timothy LeskoHeterogeneous proppant placement in a fracture with removable channelant fill
US20110168395 *Jul 14, 2011Halliburton Energy Services, Inc.Methods of Fluid Loss Control and Fluid Diversion in Subterranean Formations
US20110220358 *Aug 26, 2009Sep 15, 2011Schlumberger Technology CorporationAssemblies for the purification of a reservoir or process fluid
US20120024530 *Feb 2, 2012Halliburton Energy Services, Inc.Increasing Fracture Complexity in Ultra-Low Permeable Subterranean Formation Using Degradable Particulate
US20120138295 *Jun 7, 2012Novotny Rudolf JWell Bore Operations Using Reactive Proppant
US20140008067 *Sep 12, 2013Jan 9, 2014Halliburton Energy Services, Inc.Well Treatment Fluids and Methods Utilizing Nano-Particles
US20140221257 *Dec 31, 2013Aug 7, 2014Halliburton Energy Services, Inc.Well Treatment Fluids and Methods Utilizing Nano-Particles
WO2009009370A1 *Jul 2, 2008Jan 15, 2009Carbo Ceramics Inc.Proppants for gel clean-up
WO2011012861A1 *Jul 29, 2010Feb 3, 2011Halliburton Energy Services, Inc.Methods of fluid loss control and fluid diversion in subterranean formations
WO2012127191A1 *Mar 22, 2012Sep 27, 2012Halliburton Energy Services, Inc.Methods of fluid loss control and fluid diversion in subterranean formations
WO2015112130A1 *Jan 22, 2014Jul 30, 2015Halliburton Energy Services, Inc.Delayed delivery of chemicals in a wellbore
Classifications
U.S. Classification166/276, 166/279, 507/269, 166/300, 428/407, 507/902, 507/924, 166/310, 166/278, 428/403, 166/280.2
International ClassificationE21B43/04, E21B43/267, C09K8/80, C09K8/516, C09K8/536, C09K8/70
Cooperative ClassificationY10T428/2998, C09K8/516, C09K8/536, E21B43/267, C09K8/706, E21B43/04, C09K8/80, Y10T428/2991
European ClassificationC09K8/536, C09K8/80, E21B43/04, C09K8/516, E21B43/267, C09K8/70E
Legal Events
DateCodeEventDescription
Aug 5, 2003ASAssignment
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NGUYEN, PHILIP D.;REEL/FRAME:014379/0903
Effective date: 20030801