US 20050029745 A1 Abstract In accordance with the present invention, a gaming device such as a slot machine calculates a speed of game play, and in turn determines a pay schedule based on the speed of game play. The pay schedule for higher speeds of game play typically provides a higher payout percentage, which attracts players and provides an incentive to play faster and for longer periods of time. The greater speed of play and time period of playing may actually increase revenues derived from the gaming device, even though the payout percentage is higher. Speed of game play may be calculated by measuring the number of games played in a predetermined time period, or the time elapsed between games. The gaming device may select a payout table from a plurality of payout tables based on this speed. Alternatively, the gaming device may determine a multiplier based on the speed of game play, and adjust a base payout table in accordance with the multiplier.
Claims(4) 1. A method for directing a game, comprising:
calculating a speed of game play; and determining an outcome probability based on the speed of game play. 2. The method of measuring a number of games in a predetermined time period. 3. The method of measuring a time elapsed between a first game and a second game. 4. The method of Description The present invention relates to amusement devices, and more specifically to electronic chance devices. Casinos and other entities that derive revenue from gaming devices, such as slot machines, video poker machines and video blackjack machines, attempt to maximize revenue. Gaming devices generate revenue in accordance with the following equation:
Players are primarily concerned with finding a gaming device with a low “House Edge”, also known as “hold percentage” (average percentage of wagered money which is kept by the gaming device per game). Equivalently, players are primarily concerned with finding a gaming device with a high “payout percentage” (100% less House Edge, which equals the average percentage of wagered money which is returned to a player per game). Low hold percentages (high payout percentages) are a significant factor in attracting players to one casino rather than another. Accordingly, many casinos advertise that they have gaming devices with very high payout percentages. Although a high payout percentage (low House Edge) may attract players, it also results in lower revenue. Casinos, of course, would prefer higher revenue, and may increase the House Edge to increase revenue. Paradoxically, increasing the House Edge does not always increase revenue. The House Edges of gaming devices are often displayed in publications or on the gaming device itself. Many players will avoid gaming devices that they believe to have low payout percentages, or high House Edges. Thus, if the House Edge is increased on certain gaming devices, the Hours Played or Plays/Hour on those gaming devices may decrease, and revenues may likewise decrease. In addition, when a casino wants to adjust the hold percentage of a slot machine, state and/or local regulations may require that the machine be removed from the casino floor, adjusted accordingly, then reactivated. Accordingly, some casinos may be reluctant to increase the House Edge of gaming devices in an attempt to increase revenues from those devices. Increasing the Hours Played is difficult or impossible because a casino cannot easily modify player behavior. Casinos typically remove clocks from the view of players, make the seats and playing area more comfortable and serve free drinks in an attempt to modify player behavior. Additionally, the gaming devices themselves have become increasingly more entertaining in order to entice the player to play longer. Such measures may, at best, indirectly increase the Hours Played, but do not necessarily increase the Hours Played significantly or at all. Increasing the Plays/Hour (speed of game play) is likewise difficult or impossible. Efforts to increase this factor include providing a spin button, rather than a handle, on some slot machines, allowing the player to initiate each game quickly. In addition, some slot machines have faster stopping reels, which end each game more quickly. Furthermore, a group of gaming machines may be in communication over a network, allowing each of a group of players to influence the movement of an object in a race, such as a horse race or car race. Such a racing game may make some players play faster than they would have. However, other players view such a game as annoyingly complicated and do not participate. Casinos may also sponsor tournaments, in which the first player to win a jackpot or reach a certain score wins a prize. Casinos may also organize player clubs, in which players receive points for the number of plays or amounts wagered. Such points can be redeemed for goods and services once the player has reached a certain threshold. Casinos may also offer players the chance to win a “progressive jackpot”, which increases over time and is typically available to all players in a casino playing slot machines. When a progressive jackpot reaches a large dollar amount, players typically play rapidly in an attempt to win that jackpot. Since each player knows that all other players have a chance to win, they play faster in an attempt to increase their chances of winning the jackpot. However, other players are not attracted by such casino promotions, and their playing behavior is thus unaffected by the promotions. In summary, it would be advantageous to increase a player's attraction to a gaming device. Applicants have recognized that it is possible to increase the speed of play (Plays/Hour) of a gaming device significantly, and thereby significantly increase the revenue. Players typically do not consider the speed of play, but instead attempt to find a gaming device with a low House Edge. Accordingly, a gaming device that is played rapidly will not discourage players, and can thus generate more revenue by providing an incentive to play faster and for longer periods of time. Such a gaming device may generate so much revenue that the higher payout percentage will be offset. By offering an incentive to play faster, a gaming device will typically be played more often over time than those devices that do not provide such an incentive. In this way the present invention increases a player's attraction to a gaming device embodying the present invention. The casino can in turn derive greater revenue from the gaming device, even though the player is afforded a higher payout percentage. In jurisdictions which require a gaming device to be monitored, the gaming device could maintain an audit trail for later review by regulators. Thus, the gaming device could automatically adjust the hold percentages as desired while conforming to regulatory requirements. In accordance with the present invention, a gaming device such as a slot machine calculates a speed of game play, and in turn determines a pay schedule or outcome probability based on the speed of game play. The pay schedule or outcome probabilities for higher speeds of game play may provide a higher payout percentage, which attracts players and provides an incentive to play faster and for longer periods of time. The greater speed of play and time period of playing may actually increase revenues derived from the gaming device, even though the payout percentage is higher. Speed of game play may be calculated by measuring the number of games played in a predetermined time period, or the time elapsed between games. The gaming device may select a payout table from a plurality of payout tables based on this speed. Alternatively, the gaming device may determine a multiplier based on the speed of game play, and adjust a base payout table in accordance with the multiplier. As will be understood by those skilled in the art, the drawings and accompanying descriptions presented herein are exemplary arrangements for stored representations of information. A number of other arrangements may be employed besides the tables shown. Similarly, the illustrated entries represent exemplary information, but those skilled in the art will understand that the number and content of the entries can be different from those illustrated herein. Referring to The processor The processor The processor A clock The storage device In the above-described embodiment, the gaming device Referring to Referring to For each reel in a slot machine-type game, the selected element is one of twenty-two equally likely choices, each choice being one of the set It is noted that the number of choices is greater than the number of elements. For example, although there are six elements Referring to Each entry of the outcome probabilities database Each entry further includes a random number range Note that the random number ranges However, in various embodiments, random number ranges corresponding to a particular combination need not include a number of integers equal to the number of arrangements of elements that yield the combination. For example, even though only one arrangement of elements yields the combination “7/7/7”, there may be twenty integers in a random number range corresponding to the combination “7/7/7”. As is well known in the art, a combination may be chosen as an outcome of a particular handle pull by using a random number generator to determine a random integer, and choosing the combination if the randomly chosen integer falls within a random number range corresponding to the combination. Of course, there are many other ways of choosing a combination, such as using a separate random number to determine the symbol on each reel. In any event, it follows that the probability of occurrence of a particular combination need not be based on the number of arrangements of elements that will yield the combination. In the prior example using “7/7/7”, the probability of the combination's occurrence may thus be set to 20/10648, even though there is only one arrangement that yields “7/7/7”. Embodiments involving changing probabilities for particular combinations will be described further herein. Referring to Each entry of the payout table Referring to The step Once the speed of game play is calculated, the gaming device determines a pay schedule based on the calculated speed of game play. In general, a pay schedule may be determined by (i) selecting a payout table from a plurality of payout tables based on the speed of game play, or (ii) multiplying the payout values of a payout table by a multiplier that is based on the speed of game play. As mentioned above, a speed of play may be measured or estimated based on an elapsed time interval between many types of events. Such events may include: (i) the occurrence of a particular outcome, such as “cherry/cherry/cherry”; (ii) the occurrence of a particular symbol, such as “plum”; (iii) the occurrence of a particular number of symbols (e.g., a measuring time starts when a fifth “orange” symbol occurs, regardless of when earlier “orange” symbols occurred); (iv) the occurrence of a particular number of like outcomes (e.g., a measuring time starts when the third “bar/bar/bar” occurs; (v) the occurrence of a particular sequence of outcomes (e.g., “cherry/bar/any” occurs on a handle pull immediately following “plum/bell/any”); (vi) the occurrence of a particular sequence of symbols (e.g., “plum” occurs in the outcome of a first pull, and “cherry” occurs in the outcome of the next pull); (vii) the initiation of a bonus round; (viii) the occurrence of a payout of a certain amount; (ix) the occurrence of a certain number of consecutive losses; and so on. Additionally, a measured time interval may include an interval between any two or more of the above events, in any particular order. For example, a measured time interval may begin when a player loses three times in a row, and end when a player achieves an outcome “plum/plum/bell”. A measured time interval may also begin at an arbitrary or desired time (e.g., at a time chosen by the gaming device or server), and may end with one of the above events. In various embodiments, a pay schedule may be determined directly based on the elapsed time between two or more events, such as the events described above. For example, if less than twenty minutes has elapsed between two outcomes of “plum/bell/bar”, then a first pay schedule may be selected. However, if more than twenty minutes has elapsed, then a second pay schedule may be selected. The second pay schedule may have a higher house edge than the first. In various embodiments, a measure of an elapsed time between certain events may be used to estimate a rate of play. The rate of play may be estimated based on the elapsed time, and based on the probability of occurrence of the events defining the bounds of the measured time interval. An example is illustrated below. Suppose a measured time interval starts immediately upon the conclusion of a game. The measured time interval ends when event E occurs. Suppose further that event E occurs with probability p during any given handle pull. It follows that the probability that event E will occur for the first time after one handle pull is p. The probability that event E will occur for the first time after two handle pulls is p*(1−p). The probability that event E will occur for the first time after three handle pulls is p*(1−p) To use a more tangible example, suppose that a measured time interval will begin immediately and end upon the occurrence of a combination of the form “cherry/any/cherry”. Suppose further that the combination “cherry/any/cherry” occurs after 20 minutes of play. According to the table of In various embodiments, a rate of play may alternatively be estimated by measuring the number of a particular event or group of events within a fixed time period. For example, a rate of play may be estimated based upon the number of outcomes “any/any/cherry” that occur within a ten-minute interval. In various embodiments, a pay schedule may be determined directly from a measure of a particular number of events per unit time, even if such events do not correspond to discrete handle pulls. For example, if a person achieves at least three outcomes of the form “any/any/cherry” in a ten minute period, then the person may be eligible to receive the benefit of a first pay schedule. However, if the person achieves at least six outcomes of the form “any/any/cherry” in a ten minute period, then the person may be eligible to receive the benefit of a second pay schedule. Referring to Referring to
In Table 1, minimum and maximum average revenue per minute are calculated by multiplying the hold percentage with the minimum and maximum plays per minute, respectively. In addition, the listed values for revenue are in proportion to the amount wagered. For example, the maximum average revenue per minute of 0.046 indicates a revenue per minute of 4.6 cents for games in which a dollar (100 cents) is wagered. As noted above, in the example illustrated by The speed of play thus indicates a multiplier. For example, if the speed of game play is calculated to be nine games per minute, then the entry Referring to
In some embodiments, a pay schedule may be selected based on the probabilities of occurrence of one or more combinations contained therein. Referring to The probability of an outcome may be varied from pay table to pay table in a number of ways. In some embodiments, a random number range corresponding to a particular outcome is expanded to include additional integers (e.g., to increase the probability of the corresponding outcome's occurrence), or reduced to include fewer integers (e.g., to decrease the probability of the corresponding outcome's occurrence). For instance, in order to achieve the probability for the outcome “7/7/7” illustrated in table In some embodiments, the probability of occurrence of a particular outcome may be changed by adding or removing symbols from the reels of a gaming device. For example, if a physical or virtual reel (e.g., a representation of a physical reel stored in memory), has a fixed length, and each symbol on the reel is equally likely to occur in an outcome, then adding or subtracting symbols may change the number of possible combinations of symbols that can yield a particular outcome. For instance, removing a “cherry” symbol from the first reel of a gaming device may result in fewer possible combinations for the outcome “cherry/any/any”, which may in turn reduce the probability of occurrence of the outcome “cherry/any/any”. In some embodiments, the probability of occurrence of an outcome may be altered through the addition or removal of “wild” symbols. Wild symbols may take the place of one or more other symbols in creating the combination for an outcome. For example, an outcome of “wild/7/7” may be equivalent to “7/7/7”, as the wild symbol may act as a “7” so as to result in the highest paying outcome. Thus, with the addition of wild symbols “7/7/7” and/or other outcomes may occur with greater probability. Similarly, if wild symbols are removed from a game (e.g., removed from the reels of a gaming device, or removed from a deck of cards) then the probabilities of certain outcomes may be reduced. In related embodiments, the probability of the occurrence of one or more outcomes may be changed by designating a symbol to be wild. For example, in a game of poker, all threes may be designated as wild. This may increase the probability of occurrence of various winning outcomes. Similarly, symbols that are already designated as wild may be un-designated, with a corresponding effect on the probabilities of occurrence of various outcomes. In some embodiments, the payout percentage of a pay schedule may be altered through the addition or subtraction of combinations altogether. For example, in a game of video poker, a new combination designated a “wrap-around straight” may be added to a pay schedule. The new combination may have an associated payout where it had none before. Thus, the payout percentage of a gaming device may increase with the addition of combinations. Similarly, certain combinations may be removed from a pay schedule. For example, “cherry/any/any” may be removed as a winning combination. The payout percentage of a gaming device may thereby be reduced. In some embodiments, a pay schedule may be based upon multiple games, or handle pulls at a gaming device. For example, a pay schedule may describe a first payout if a player obtains a total of ten “cherry” symbols over the course of a designated number of handle pulls, and a second payout if the player obtains a total of eight “cherry” symbols. In such embodiments, the probability of the player achieving a certain outcome or result may be varied by varying the time allowed, or the number of handle pulls in which a player must obtain the outcome or result. To continue the prior example, the probability of the player obtaining a certain number of “cherry” symbols may be altered by giving the player more handle pulls in which to obtain the “cherry” symbols. For example, a player may be more likely to obtain ten “cherry” symbols if given ten handle pulls than if he is given only five handle pulls. In another embodiments, a pay schedule is based upon a game in which a player advances a character on a game board. The player may advance the character by achieving certain outcomes during handle pulls. For example, an outcome may indicate that a game character is to advance three spaces on the game board. The player may be paid according to a pay schedule where payouts are based on locations on the game board that have been reached by a game character. For instance, a first payout is made if a game character reaches a first location, and a second payout is made if a game character reaches a second location. In a game board embodiment, the probability with which a game character reaches a certain location on the game board may be altered by altering the layout of the game board. For instance, extra spaces may be inserted into the game board in order to make it more difficult for a game character to reach the final space. Alternatively, trap doors may be added to the game board. The trap doors may steer a game character away from the optimal path to the final space. As will be appreciated, there are many other ways of altering a probability of achieving a certain outcome or result in a game. In some embodiments, the present invention contemplates all the ways of adjusting such a probability in order to effect the payout percentage of a pay schedule. In various embodiments of the present invention, it may be difficult to estimate a rate of play at certain times. For example, when a player makes the first few pulls of a gaming session, there is little data based upon which to judge a rate of play. Accordingly, even though a player may in fact play rapidly from the very start of a session, the player may not receive the benefit of enhanced, superior, or other improved pay schedules until he is well into a session. Therefore, in one or more embodiments, a pay schedule may be applied retroactively to a player. At a first point in time, such as at the time a player achieves an outcome, a player may receive a first payout based on a first pay schedule. At a second point in time after the first point in time, it may be determined that a second pay schedule should be retroactively applied to the outcome achieved at the first point in time. If a second payout from the second pay schedule corresponding to the outcome is greater than the first payout, then the player may be paid the difference. For example, suppose a player achieves an outcome of “7/7/7” during the first game of a session. The player is paid one hundred coins using “standard” pay schedule Embodiments involving retroactively applied pay schedules are described more fully with reference to At step If, after step The retroactive application of pay schedules provides a number of advantages. A player who achieves a winning outcome may be motivated to continue playing at a gaming device in the hopes of garnering even greater winnings when a larger payout is retroactively applied to the winning outcome. A player may be further motivated to engage in certain behaviors, such as rapid play, that will trigger a retroactive application of a pay schedule. Such behaviors may lead to greater profits for a casino. In should be noted that any benefit may be provided to a player retroactively. For instance, rather than applying a retroactive pay schedule to a winning outcome achieved by a player, a gaming device may provide free handle pulls, a fixed payout, a free entry into a bonus round, an ability to select one or more symbols of an outcome, and so on. In addition, a casino may provide benefits such as free or discounted hotel rooms, meals, show tickets, and so on. In various embodiments, although a player's speed of play may not be immediately discernable (e.g., the player has just begun playing), the gaming device or network server may infer an initial rate of play. Such an initial rate of play may be a universally applicable default rate of play. Alternatively, the initial rate of play may be inferred based on historical rates of play as measured from prior players at the casino or at the particular gaming device. In some embodiments, the network server may store a historical rate of play in association with a player. For example, a network server may store an average rate of play for a player over his last five sessions. If the player later inserts his player tracking card (or otherwise provides an identifier), the network server may retrieve the player's historical rate of play, and use the rate as the starting rate for a session. Accordingly, the applicable pay schedule at the start of the session may be based upon the historical rate of play. In one embodiment, a player may achieve a first winning outcome and receive a first corresponding payout. The winning outcome may remain displayed in a corner of a display screen of the player's gaming device as the player continues to initiate handle pulls. If the player again achieves the same winning outcome, the player may be paid for the latest outcome. However, the player may also receive an additional payout for the first of the winning outcomes. In other words, a player can continue to earn payouts on an outcome if like outcomes are subsequently achieved. This scheme is analogous in some ways to a commission-based sales system, where a seller to a first party may earn further commissions on sales made by the first party to a second party. A player who achieves winning outcomes may thus be motivated to remain at a gaming device so that the outcomes may continue to “earn” further payouts. Of course, a player may receive additional payouts for a first outcome based on any event, such as achieving a second outcome that is not identical to the first outcome. Additionally, a player may earn payouts for a first event based on the subsequent achievement of a second event, even if the first event is not the occurrence of a particular outcome. For example, the first event may be the occurrence of two “7” symbols in an outcome. The player need not necessarily receive a payout for the first event. However, the player may receive a payout for each subsequent “7” that occurs in future outcomes. In various embodiments, a player's speed of play may be indicated by a gaming device. The indication may take the form of (i) a numerical speed expressed in pulls per unit time (e.g., 10 pulls per minute); (ii) a graphical depiction of a speed in relation to a target speed (e.g., the level of mercury in a thermometer as a percentage of the total volume of the thermometer indicates the player's current speed as a percentage of a speed required to achieve a more favorable pay schedule); (iii) a colored display where, for example, reds and other colors near the bottom of the spectrum indicate slow speeds, while purples and other colors near the top of the spectrum indicate rapid speeds; (iv) a graphical depiction of a dial or other meter indexed from “slow” to “fast”, with an indicator pointing somewhere in between; (v) a depiction of a character moving at a speed proportional to the player's rate of play (e.g., a horse runs around a track at a speed proportional to the player's rate of play); and on. When a gaming device indicates a player's speed, the player may become better aware of his speed, and may be motivated to play more rapidly. A gaming device may also provide indications of a pay schedule to be applied to a player should the player play at one or more speeds. For example, a gaming device may display a “superior” pay schedule along with a message saying, “Play a little faster and you can use this pay schedule. The jackpot is twice the normal level!” Indications of a pay schedule may further motivate a player to play more rapidly. In one or more embodiments, an applicable pay schedule may be determined based on rates other than just a rate of completing handle pulls. In some embodiments, a pay schedule is determined based on a rate at which a player makes wagers, i.e., a rate of coin-in. Such a rate may be expressed in terms of dollars per minute, coins per minute, tokens per minute, yen per minute, or some other expression of currency per unit time. Notably, if a first player has a higher rate of play than a second player, the second player may still have a higher rate of coin in. For example, a first player may wager one coin per handle pull and make ten handle pulls per minute. The first player's rate of coin-in is then ten coins per minute. A second player may wager two coins per handle pull and make seven handle pulls per minute. The second player's rate of coin-in is then fourteen coins per minute. Although the second player's rate of play is slower, his rate of coin-in is higher. Accordingly, the second player may receive the benefit of a more favorable pay schedule that does the first player. In some embodiments, a pay schedule may be determined based on a rate of lines wagered per unit time. For example, a player who plays three paylines per game, and plays ten games per minute, plays a total of thirty paylines per minute. Varying embodiments of the present invention may use different time windows for calculating a speed of play. Time windows of different sizes have different advantages and disadvantages. For example, in an embodiment involving a short time window, a speed of play may be calculated based on the number of handle pulls made in the last minute. An embodiment involving a short time window has the advantage of quickly detecting changes in a player's rate of play. For example, if a player begins a session at a slow rate of play, but then increases his speed of play rapidly, then this increase will be detected quickly. However, using a short time window has the disadvantage of calculating a rate of play based on a potentially anomalous sample. For example, a player who has hitherto played rapidly may take a one-minute break in order to talk to a friend. If the player's rate of play is measured over the time window in which he takes a break, then the player may be ascribed an unfairly low rate of play. Such a player may become frustrated that he is given the “standard” pay schedule, and may depart the gaming device. An embodiment involving a long time window may avoid to some degree the possibility of anomalous sample measurements. However, long time windows may not as readily capture sudden changes in a player's rate of play. For example, a player who plays slowly for a time but then quickly increases his rate of play may still be ascribed a slow rate of play, since the long time window will account for some of the play during the slow period. Such a player may also become frustrated, since he has started to play rapidly, but has not obtained a more favorable pay schedule. Although the present invention has been described with respect to a preferred embodiment thereof, those skilled in the art will note that various substitutions may be made to those embodiments described herein without departing from the spirit and scope of the present invention. For example, although a slot machine-type game has been described, the present invention is likewise applicable to other types of games, such as video poker, video blackjack and video roulette. Referenced by
Classifications
Legal Events
Rotate |