Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050038500 A1
Publication typeApplication
Application numberUS 10/900,632
Publication dateFeb 17, 2005
Filing dateJul 27, 2004
Priority dateDec 27, 2000
Also published asDE60139024D1, EP1355685A2, EP1355685B1, EP2039378A2, EP2039378A3, US6855161, US7918011, US20020082681, US20080027532, US20090098013, WO2002051462A2, WO2002051462A3
Publication number10900632, 900632, US 2005/0038500 A1, US 2005/038500 A1, US 20050038500 A1, US 20050038500A1, US 2005038500 A1, US 2005038500A1, US-A1-20050038500, US-A1-2005038500, US2005/0038500A1, US2005/038500A1, US20050038500 A1, US20050038500A1, US2005038500 A1, US2005038500A1
InventorsJohn Boylan, Daniel Cox
Original AssigneeBoylan John F., Cox Daniel L.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radiopaque nitinol alloys for medical devices
US 20050038500 A1
Abstract
A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same size and strut pattern coated with a thin layer of gold. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
Images(4)
Previous page
Next page
Claims(18)
1. A radiopaque medical device for use in a body lumen, comprising:
a tubular-shaped body having a thin wall defining a strut pattern;
wherein the body includes a superelastic alloy, and the alloy further includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, rhenium, palladium, rhodium, silver, and ruthenium;
wherein an atomic percent of the ternary element is greater than 3 percent and less than or equal to 10 percent; and
wherein the medical device exhibits a level of radiopacity.
2. The radiopaque medical device of claim 1, wherein the thin wall is at least 10 percent thinner than an identically-shaped and sized medical device having the same level of radiopacity.
3. The radiopaque medical device of claim 1, wherein the strut pattern has a cross-sectional area that is 10 percent smaller than a cross-sectional area of a strut of an identically-shaped and sized medical device having the same level of radiopacity.
4. The radiopaque medical device of claim 1, wherein the superelastic alloy includes a nickel-titanium alloy.
5. The radiopaque medical device of claim 4, wherein the atomic percent of titanium is greater than or equal to about 46 and less than or equal to about 52.
6. The radiopaque medical device of claim 1, wherein an austenite finish temperature (Af) of the superelastic alloy in the medical device is greater than or equal to zero and less than or equal to 37 degrees C.
7. The radiopaque medical device of claim 1, wherein the tubular-shaped body includes raw tubing having an austenite finish temperature (Af) of greater than or equal to about −15 degrees C. and less than or equal to about 15 degrees C.
8. A superelastic, radiopaque metallic stent for medical applications, comprising:
a tubular-shaped body having a thin wall defining a strut pattern;
wherein the body includes a superelastic nickel-titanium alloy and the alloy further includes a third element selected from the group of chemical elements consisting of iridium, platinum, rhenium, palladium, rhodium, silver, and ruthenium such that an atomic percent of the ternary element is greater than 3 percent and less than or equal to 10 percent; and
wherein the stent exhibits a level of radiopacity.
9. The superelastic, radiopaque metallic stent of claim 8, wherein the radiopacity of the stent is substantially equivalent to a 316L stainless steel stent having an identical strut pattern and size and coated with about 2.7 to about 6.5 μm of gold.
10. The superelastic, radiopaque metallic stent of claim 8, wherein the atomic percent of platinum is about 7.5.
11. The superelastic, radiopaque metallic stent of claim 8, wherein the strut pattern is laser cut from a tube.
12. A radiopaque medical device for use in a body lumen, comprising:
a self-expanding body, wherein the body includes a superelastic nickel-titanium alloy;
wherein the nickel-titanium alloy includes a radiopacity enhancing ternary element selected from the group consisting of palladium and platinum such that an atomic percent of palladium is greater than 3 percent and less than or equal to 20 percent and an atomic percent of platinum is greater than 3 percent and less than or equal to 15 percent; and
wherein the medical device exhibits a level of radiopacity greater than the nickel-titanium alloy without the radiopacity enhancing ternary element.
13. A radiopaque medical device for use in a body lumen, comprising:
a self-expanding cylindrical body, wherein the body includes a superelastic nickel-titanium alloy;
wherein the nickel-titanium alloy includes a radiopacity enhancing ternary element selected from the group of chemical elements consisting of iridium, platinum, rhenium, palladium, rhodium, silver, and ruthenium wherein an atomic percent of the ternary element is greater than 3 percent and less than or equal to 10 percent; and
wherein the medical device exhibits a level of radiopacity greater than the nickel-titanium alloy without the radiopacity enhancing ternary element.
14. A radiopaque medical device for use in a body lumen, comprising:
a self-expanding body, wherein the body includes a superelastic nickel-titanium alloy;
wherein the nickel-titanium alloy includes a radiopacity enhancing ternary element including platinum having an atomic percent greater than 3 percent and less than or equal to 15 percent; and
wherein the medical device exhibits a level of radiopacity greater than binary nickel-titanium.
15. A method for providing a radiopaque medical device, comprising:
providing a self-expanding tubular body made from a superelastic nickel-titanium alloy, wherein the nickel-titanium alloy includes a radiopacity enhancing ternary element selected from the group consisting of palladium and platinum such that an atomic percent of palladium is greater than 3 percent and less than or equal to 20 percent and an atomic percent of platinum is greater than 3 percent and less than or equal to 15 percent;
cutting a strut pattern into the tubular body;
heat treating the tubular body; and
wherein the medical device exhibits a level of radiopacity greater than the nickel-titanium alloy without the radiopacity enhancing ternary element.
16. A method for providing radiopaque tubing, comprising:
forming a tubular-shaped body having a thin wall, wherein the body includes a superelastic nickel-titanium alloy and the alloy further includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, and hafnium; wherein the step of providing a tubular-shaped body includes melting nickel, titanium, and the ternary element, cooling to form an alloy ingot, hot forming the alloy ingot, forming the alloy ingot into a cylinder, drilling the cylinder to form tubing, drawing the tubing, and annealing the tubing.
17. The method of claim 16, wherein the atomic percent of platinum is greater than 3 and less than or equal to 15.
18. The method of claim 16, wherein the atomic percent of palladium is greater than 3 and less than or equal to 20.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This is a continuation application of co-pending parent application having U.S. Ser. No. 09/752,212, filed Dec. 27, 2000, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention generally relates to self-expanding medical devices. More precisely, the present invention relates to self-expanding medical devices made of radiopaque nitinol that can be used in essentially any body lumen. Such devices include stents.
  • [0003]
    Stents are typically implanted in a body lumen, such as carotid arteries, coronary arteries, peripheral arteries, veins, or other vessels to maintain the patency of the lumen. These devices are frequently used in the treatment of atherosclerotic stenosis in blood vessels especially after percutaneous transluminal angioplasty (PTA) or percutaneous transluminal coronary angioplasty (PTCA) procedures with the intent to reduce the likelihood of restenosis of a vessel. Stents are also used to support a body lumen, tack-up a flap or dissection in a vessel, or in general where the lumen is weak to add support.
  • [0004]
    During PTCA procedures it is common to use a dilatation catheter to expand a diseased area to open the patient's lumen so that blood flows freely. Despite the beneficial aspects of PTCA procedures and its widespread and accepted use, it has several drawbacks, including the possible development of restenosis and perhaps acute thrombosis and sub-acute closure. This recurrent stenosis has been estimated to occur in seventeen to fifty percent of patients despite the initial PTCA procedure being successful. Restenosis is a complex and not fully understood biological response to injury of a vessel which results in chronic hyperplasia of the neointima. This neointimal hyperplasia is activated by growth factors which are released in response to injury. Acute thrombosis is also a result of vascular injury and requires systemic antithrombotic drugs and possibly thrombolytics as well. This therapy can increase bleeding complications at the catheter insertion site and may result in a longer hospital stay. Sub-acute closure is a result of thrombosis, elastic recoil, and/or vessel dissection.
  • [0005]
    Several procedures have been developed to combat restenosis and sub-acute or abrupt closure, one of which is the delivery and implant ing of an intravascular stent. Stents are widely used throughout the United States and in Europe and other countries. Generally speaking, the stents can take numerous forms. One of the most common is a generally cylindrical, hollow tube that holds open the vascular wall at the area that has been dilated by a dilation catheter. One highly regarded stent used and sold in the United States is known under the tradename ACS Multi-Link Stent, which is made by Advanced Cardiovascular Systems, Inc., Santa Clara, Calif.
  • [0006]
    In expandable stents that are delivered with expandable catheters, such as balloon catheters, the stents are positioned over the balloon portion of the catheter and are expanded from a reduced diameter to an enlarged diameter greater than or equal to the inner diameter of the arterial wall by inflating the balloon. Stents of this type can be expanded to an enlarged diameter by deforming the stent, by engagement of the stent walls with respect to one another, and by one way engagement of the stent walls together with endothelial growth onto and over the stent.
  • [0007]
    Examples of intravascular stents can be found in U.S. Pat. No. 5,292,331 (Boneau); U.S. Pat. No. 4,580,568 (Gianturco); U.S. Pat. No. 4,856,516 (Hillstead); U.S. Pat. No. 5,092,877 (Pinchuk); and U.S. Pat. No. 5,514,154 (Lau et al.), which are incorporated herein by reference in their entirety.
  • [0008]
    The problem with some prior art stents, especially those of the balloon expandable type, is that they are often stiff and inflexible. These balloon expandable type stents are commonly formed from stainless steel alloys and the stents are constructed so that they are expanded beyond their elastic limit. As a result, such stents are permanently deformed by the inflation balloon beyond their elastic limits to hold open a body lumen and thus maintain patency of that body lumen. There are several commercially available balloon expandable stents that are widely used; they are generally implanted in the coronary arteries after a PTCA procedure mentioned earlier.
  • [0009]
    Stents are often times implanted in vessels that are closer to the surface of the body, such as in the carotid arteries in the neck or in peripheral arteries and veins in the leg. Because these stents are so close to the surface of the body, they are particularly vulnerable to impact forces that can partially or completely collapse the stent and thereby block fluid flow in the vessel. Other forces can impact balloon expandable stents and cause similar partial or total vessel blockage. For instance, under certain conditions, muscle contractions might also cause balloon expandable stents to collapse partially or completely. The collapse occludes the lumen and restricts blood flow in the vessel in which they are implanted.
  • [0010]
    Since balloon expandable stents are plastically deformed, once collapsed or crushed they remain so, permanently blocking the vessel. Thus, balloon expandable stents under certain conditions might pose an undesirable condition for the patient.
  • [0011]
    Self-expanding stents as the name implies self-expand through the properties of the material constituting the stent. The inflation force of a balloon catheter is usually not necessary to deploy this kind of stent.
  • [0012]
    Important applications including those mentioned above have prompted designers to seek out superelastic shape memory alloys to exploit the materials' properties in their self-expanding stents. Examples of applying superelastic nickel-titanium alloys to a self-expanding stent and other medical devices are disclosed in U.S. Pat. Nos. 4,665,906; 5,067,957; 5,190,546; and 5,597,378 to Jervis and U.S. Pat. No. 4,503,569 to Dotter. Another example is disclosed in European Patent Application Publication No. EP0873734A2, entitled “Shape Memory Alloy Stent.” This publication suggests a stent for use in a lumen in a human or animal body having a generally tubular body formed from a shape memory alloy which has been treated so that it exhibits enhanced elastic properties. The publication further suggests use of specified ternary elements in a nickel-titanium alloy to obtain desired engineering characteristics.
  • [0013]
    Use of a ternary element in a superelastic stent is also shown in, for example, U.S. Pat. No. 5,907,893 to Zadno-Azizi et al. As a general proposition, there have been attempts at adding a ternary element to nickel-titanium alloys as disclosed in, for instance, U.S. Pat. No. 5,885,381 to Mitose et al
  • [0014]
    Clearly, self-expanding, nickel-titanium stents are useful and valuable to the medical field. But a distinct disadvantage with self-expanding nickel-titanium stents is the fact that they are not sufficiently radiopaque as compared to a comparable structure made from gold or tantalum. For example, radiopacity permits the cardiologist or physician to visualize the procedure involving the stent through use of fluoroscopes or similar radiological equipment. Good radiopacity is therefore a useful feature for self-expanding nickel-titanium stents to have.
  • [0015]
    Radiopacity can be improved by increasing the strut thickness of the nickel-titanium stent. But increasing strut thickness detrimentally affects the flexibility of the stent, which is a quality necessary for ease of delivery. Another complication is that radiopacity and radial force co-vary with strut thickness. Also, nickel-titanium is difficult to machine and thick struts exacerbates the problem.
  • [0016]
    Radiopacity can be improved through coating processes such as sputtering, plating, or co-drawing gold or similar heavy metals onto the stent. These processes, however, create complications such as material compatibility, galvanic corrosion, high manufacturing cost, coating adhesion or delamination, biocompatibility, loss of coating integrity following collapse and deployment of the stent, etc.
  • [0017]
    Radiopacity can also be improved by alloy addition. One specific approach is to alloy the nickel-titanium with a ternary element. What has been needed and heretofore unavailable in the prior art is a superelastic nickel-titanium stent that includes a ternary element to increase radiopacity yet preserves the superelastic qualities of the nitinol.
  • SUMMARY OF THE INVENTION
  • [0018]
    The present invention relates to a radiopaque medical device, such as a stent, for use or implantation in a body lumen. In a preferred embodiment, a radiopaque medical device, such as a stent, is constructed from a tubular-shaped body having a thin wall defining a strut pattern; wherein the tubular body includes a superelastic, nickel-titanium alloy, and the alloy further includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. In a preferred embodiment, the stent according to the present invention has 42.8 atomic percent nickel, 49.7 atomic percent titanium, and 7.5 atomic percent platinum.
  • [0019]
    As a result, the present invention stent is highly radiopaque as compared to an identical structure made of medical grade stainless steel that is coated with a thin layer of gold. From another perspective, for a given stent having a certain level of radiopacity, the present invention stent having identical dimensions and strut pattern has at least a 10 percent reduction in strut thickness yet maintains that same level of radiopacity.
  • [0020]
    Self-expanding nitinol stents are collapsed (that is, loaded) and then constrained within a delivery system. At the point of delivery, the stent is released (that is, unloaded) and allowed to return to its original diameter. The stent is designed to perform various mechanical functions within the lumen, all of which are based upon the lower unloading plateau stress. Therefore, it is crucial that the ternary element alloyed with the binary nickel-titanium does not diminish the superelastic characteristics of the nickel-titanium.
  • [0021]
    To achieve the sufficient degree of radiopacity yet maintaining the superelastic engineering properties of a binary nickel-titanium, preferably, the radiopaque stent of the present invention includes platinum whose atomic percent is greater than or equal to 2.5 and less than or equal to 15. In an alternative embodiment, the nickel-titanium is alloyed with palladium whose atomic percent is greater than or equal to 2.5 and less than or equal to 20. With such compositions, the stress-strain hysteresis curve of the present invention radiopaque nitinol alloy closely approximates the idealized stress-strain hysteresis curve of binary nickel-titanium.
  • [0022]
    The present invention further contemplates a method for providing a radiopaque nitinol stent. In a preferred embodiment, the method entails providing a tubular-shaped body having a thin wall, wherein the body includes a superelastic nickel-titanium alloy and the alloy further includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium; forming a strut pattern wherein the stent is highly radiopaque. The step of providing a tubular-shaped body includes melting nickel, titanium, and the ternary element and cooling the mixture to form an alloy ingot, hot forming the alloy ingot, hot or cold forming the alloy ingot into a cylinder, drilling the cylinder to form tubing, cold drawing the tubing, and annealing the tubing.
  • [0023]
    The present invention of course envisions the minor addition of a quaternary element, for example, iron, to further enhance the alloy's formability or its thermomechanical properties. In short, the presence of elements in addition to the ternary elements cited above is contemplated.
  • [0024]
    In a preferred embodiment, an austenite finish temperature (Af) of the superelastic alloy in the stent is greater than or equal to zero and less than or equal to 37 degrees C. Also in the preferred embodiment, the ingot after melting includes an austenite finish temperature (Af) of greater than or equal to 0 degrees C. and less than or equal to 40 degrees C. The tubing includes an austenite finish temperature (Af) of greater than or equal to −15 degrees C. and less than or equal to 15 degrees C.
  • [0025]
    Other features and advantages of the present invention will become more apparent from the following detailed description of the invention when taken in conjunction with the accompanying exemplary drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0026]
    FIG. 1 is a side elevational view, partially in section, depicting a stent mounted on a delivery catheter and expanded within a damaged vessel, pressing a damaged vessel lining against the vessel wall.
  • [0027]
    FIG. 2 is a side elevational view, partially in section, depicting an expanded stent within the vessel after withdrawal of the delivery catheter.
  • [0028]
    FIG. 3 is an idealized stress-strain hysteresis curve for a superelastic material.
  • [0029]
    FIG. 4 is a plan view of the flattened strut pattern of an exemplary embodiment superelastic stent.
  • [0030]
    FIG. 5 is a group of empirical data curves illustrating the highly similar stress-strain relationships among binary nitinol and the nickel-titanium-palladium and nickel-titanium-platinum alloys used in the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0031]
    The present invention relates to a medical device made of radiopaque nitinol. For the sake of illustration, the following exemplary embodiments are directed to stents, although it is understood that the present invention is applicable to other medical devices usable in a body lumen as well.
  • [0032]
    The stents of the present invention can have virtually any configuration that is compatible with the body lumen in which they are implanted. The stent should preferably be configured so that there is a substantial amount of open area and preferably the open area to metal ratio is at least 80 percent. The stent should also be configured so that dissections or flaps in the body lumen wall are covered and tacked up by the stent.
  • [0033]
    Referring to FIGS. 1, 2, and 4, in a preferred embodiment, a stent 10 of the present invention is formed partially or completely of alloys such as nitinol (NiTi) which have superelastic (SE) characteristics. Stent 10 is somewhat similar to the stent disclosed in U.S. Pat. No. 5,569,295, “Expandable Stents and Method for Making Same,” issued to Lam on Oct. 29, 1996, which patent is incorporated herein by reference. Some differences of the present invention stent from that disclosed in the '295 patent is that the present invention stent is preferably constructed of a superelastic material with the addition of a ternary element, and the strut pattern has changed. Of course, the configuration of the stent 10 is just one example of many stent configurations that are contemplated by the present invention.
  • [0034]
    Turning to FIG. 4, stent 10 has a tubular form which preferably includes a plurality of radially expandable cylindrical elements 24 disposed generally coaxially and interconnected by members 26 disposed between adjacent cylindrical elements 24. The shapes of the struts 12 forming the strut pattern are designed so they can preferably be nested. This strut pattern is best seen from the flattened plan view of FIG. 4. The serpentine patterned struts 12 are nested such that the extended portions of the struts of one cylindrical element 24 intrude into a complementary space within the circumference of an adjacent cylindrical element. In this manner, the plurality of cylindrical elements 24 can be more tightly packed lengthwise.
  • [0035]
    As introduced above, an exemplary stent of the present invention includes a superelastic material. In a general sense, superelasticity implies that the material can undergo a large degree of reversible strain as compared to common steel. In a technical sense, the term “superelasticity” and sometimes “pseudoelasticity” refer to an isothermal transformation in nitinol. More specifically, it refers to stress inducing a martensitic phase from an austenitic phase. Alloys having superelastic properties generally have at least two phases: a martensitic phase, which has a relatively low tensile strength and which is stable at relatively low temperatures, and an austenitic phase, which has a relatively high tensile strength and which is stable at temperatures higher than the martensitic phase. Superelastic characteristics generally allow the metal stent to be deformed by collapsing the stent and creating stress which causes the NiTi to reversibly change to the martensitic phase. The stent is restrained in the deformed condition inside a delivery sheath typically to facilitate the insertion into a patient's body, with such deformation causing the isothermal phase transformation. Once within the body lumen, the restraint on the stent is removed, thereby reducing the stress thereon so that the superelastic stent returns towards its original undeformed shape through isothermal transformation back to the austenitic phase. Under these conditions, the stent can be described as self-expanding.
  • [0036]
    Returning to FIG. 1, the graphic illustrates, in a partial cross-sectional view, the distal end of a rapid exchange stent delivery system that includes a guide wire 14, a delivery sheath 16, and an intravascular catheter 18. For the sake of clarity, the illustration of the delivery system in FIG. 1 has been simplified. It is just one example of a delivery system that may be used with the present invention. More details of a delivery system specifically for use with a self-expanding stent may be found in, for example, U.S. Pat. No. 6,077,295 to Limon et al., entitled “Self-Expanding Stent Delivery System,” which is incorporated herein by reference. Other delivery systems such as over-the-wire may be used without departing from the scope of the instant invention.
  • [0037]
    FIG. 1 further shows an optional expandable balloon 20 inflated through an inflation lumen (not shown), although the balloon is typically not needed for a self-expanding stent. The stent 10 is first crimped on to the deflated balloon 20, and the entire assembly is kept underneath the delivery sheath 16 until the moment the stent 10 is deployed. The stent 10 is self-expanding so that when the sheath 16 is withdrawn, the stent 10 expands to its larger deployment diameter without assistance from the balloon 20. Nevertheless, some procedures specifically use the balloon 20 to further expand the stent 10 for improved seating in the artery wall 29.
  • [0038]
    FIG. 2 illustrates the self-expanding stent 10 in the expanded condition after the delivery system has been removed. If an external force is applied to the artery 28, the expanded stent 10 temporarily and at least partially collapses or deforms. As the stent 10 deforms, stress in the nickel-titanium alloy causes an isothermal phase transformation from the austenitic phase to the martensitic phase. When the external force is removed, the stress in stent 10 is likewise diminished so that the stent quickly transforms back from the martensitic phase to the austenitic phase. As this almost instantaneous, isothermal transformation occurs, the stent 10 returns to its fully expanded state and the artery remains open. When the superelastic stent 10 is implanted in an artery 28, its high resilience effectively maintains the patency of the artery while minimizing the risk of permanent arterial collapse at the implant site if the stent is temporarily deformed due to external forces. Furthermore, the resilience of the stent 10 supports the flap 30 to maintain patency of the artery.
  • [0039]
    Stent 10 is preferably formed from a superelastic material such as nickel-titanium and undergoes an isothermal transformation when stressed if in the austenitic phase. For most purposes, the transformation temperature for the stent 10 is preferably set low enough such that the nickel-titanium alloy is in the austenitic phase while at body temperature.
  • [0040]
    According to theory, when stress is applied to a specimen of a metal such as nitinol exhibiting superelastic characteristics at a temperature at or above that which the transformation of the martensitic phase to the austenitic phase is complete, the specimen deforms elastically until it reaches a particular stress level where the alloy then undergoes a stress-induced phase transformation from the austenitic phase to the martensitic phase. As the phase transformation progresses, the alloy undergoes significant increases in strain with little or no corresponding increases in stress. The strain increases while the stress remains essentially constant until the transformation of the austenitic phase to the martensitic phase is complete. Thereafter, further increase in stress is necessary to cause further deformation. The martensitic metal first yields elastically upon the application of additional stress and then plastically with permanent residual deformation.
  • [0041]
    If the load on the specimen is removed before any permanent deformation has occurred, the stress-induced martensite elastically recovers and transforms back to the austenitic phase. The reduction in stress first causes a decrease in strain. As stress reduction reaches the level at which the martensitic phase begins to transform back into the austenitic phase, the stress level in the specimen remains essentially constant (but less than the constant stress level at which the austenitic crystalline structure transforms to the martensitic crystalline structure until the transformation back to the austenitic phase is complete); i.e., there is significant recovery in strain with only negligible corresponding stress reduction. After the transformation back to austenite is complete, further stress reduction results in elastic strain reduction. This ability to incur significant strain at relatively constant stress upon the application of a load and to recover from the deformation upon the removal of the load is commonly referred to as “superelasticity” and sometimes “pseudoelasticity.”
  • [0042]
    FIG. 3 illustrates an idealized stress-strain hysteresis curve for a superelastic, binary nickel-titanium alloy. The relationship is plotted on x-y axes, with the x axis representing strain and the y axis representing stress. For ease of illustration, the x-y axes are labeled on a scale typical for superelastic nitinol, with stress from 0 to 60 ksi and strain from 0 to 9 percent, respectively.
  • [0043]
    Looking at the plot in FIG. 3, the line from point A to point B represents the elastic deformation of the nickel-titanium alloy. After point B the strain or deformation is no longer proportional to the applied stress and it is in the region between point B and point C that the stress-induced transformation of the austenitic phase to the martensitic phase begins to occur.
  • [0044]
    At point C moving toward point D, the material enters a region of relatively constant stress with significant deformation or strain. This constant or plateau region is known as the loading stress, since it represents the behavior of the material as it encounters continuous increasing strain. It is in this plateau region C-D that the transformation from austenite to martensite occurs.
  • [0045]
    At point D the transformation to the martensitic phase due to the application of stress to the specimen is substantially complete. Beyond point D the martensitic phase begins to deform, elastically at first, but, beyond point E, the deformation is plastic or permanent.
  • [0046]
    When the stress applied to the superelastic metal is removed, the material behavior follows the curve from point E to point F. Within the E to F region, the martensite recovers its original shape, provided that there was no permanent deformation to the martensitic structure. At point F in the recovery process, the metal begins to transform from the stress-induced, unstable, martensitic phase back to the more stable austenitic phase.
  • [0047]
    In the region from point G to point H, which is also an essentially constant or plateau stress region, the phase transformation from martensite back to austenite takes place. This constant or plateau region G-H is known as the unloading stress. The line from point I to the starting point A represents the elastic recovery of the metal to its original shape.
  • [0048]
    Binary nickel-titanium alloys that exhibit superelasticity have an unusual stress-strain relationship as just described and as plotted in the curve of FIG. 3. As emphasized above, the superelastic curve is characterized by regions of nearly constant stress upon loading, identified above as loading plateau stress C-D and unloading plateau stress G-H. Naturally, the loading plateau stress C-D always has a greater magnitude than the unloading plateau stress G-H. The loading plateau stress represents the period during which martensite is being stress-induced in favor of the original austenitic crystalline structure. As the load is removed, the stress-induced martensite transforms back into austenite along the unloading plateau stress part of the curve. The difference in stress between the stress at loading C-D and unloading stress G-H defines the hysteresis of the system.
  • [0049]
    The present invention seeks to preserve the superelastic qualities of nickel-titanium alloys just described yet improve upon the material's radiopacity by addition of a ternary element. This is preferably accomplished in one embodiment by forming a composition consisting essentially of about 30 to about 52 percent titanium and the balance nickel and up to 10 percent of one or more additional ternary alloying elements. Such ternary alloying elements may be selected from the group consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. In the preferred embodiment, the atomic percentage of platinum is greater than or equal to 2.5 and less than or equal to 15. In an alternative embodiment, the atomic percentage of palladium is greater than or equal to 2.5 and less than or equal to 20.
  • [0050]
    A preferred embodiment stent according to the present invention has 42.8 atomic percent nickel, 49.7 atomic percent titanium, and 7.5 atomic percent platinum. Through empirical studies, the aforementioned compositions produce stent patterns having a radiopacity comparable to the same size and pattern stent made from 316L stainless steel with a 2.7 to 6.5 μm gold coating.
  • [0051]
    In various alternative embodiments, the present invention contemplates the minor addition of a quaternary element, for example, iron, to further enhance the alloy's formability or its thermomechanical properties. The presence of impurities such as carbon or oxygen or the like in the present invention alloy is also possible.
  • [0052]
    A preferred method of fabricating the present invention superelastic, radiopaque metallic stent entails first fashioning nickel-titanium tubing. The tubing is made from vacuum induction melting nickel and titanium with the ternary element according to the compositions suggested above. The ingot is then remelted for consistency. The ingot is next hot rolled into bar stock, then straightened and sized, and hot or cold formed into a cylinder. The cylinder is gun drilled to form the tubing. Instead of gun drilling, other methods of material removal known in the art may be used, including electric discharge machining (EDM), laser beam machining, and the like. Next, the tubing is cold drawn and annealed repeatedly to achieve the finished dimensions.
  • [0053]
    Any of the foregoing preferred embodiment steps may be repeated, taken out of sequence, or omitted as necessary depending on desired results. From here on, the tubing follows conventional stent fabrication techniques such as laser cutting the strut pattern, heat setting, etc.
  • [0054]
    The following are additional processing guide posts for the present invention to achieve a sufficiently radiopaque stent yet maintaining the superelastic stress-strain behavior of the alloy. Empirical evidence suggests that, in various preferred embodiments, a Ni—Ti—Pd or Ni—Ti—Pt ingot should have the following austenite finish temperature: 0 degrees C≦Af≦40 degrees C. The Ni—Ti—Pd or Ni—Ti—Pt tubing should exhibit an austenite finish temperature of: −15 degrees C≦Af≦15 degrees C. In an exemplary embodiment, the final laser cut Ni—Ti—Pd or Ni—Ti—Pt stent should exhibit an austenite finish temperature of: 0 degrees C≦Af≦37 degrees C. Of course, the Af of the finished laser cut stent can be set as needed by various heat treating processes known in the art.
  • [0055]
    It is understood that the austenite finish temperature (Af) is defined to mean the temperature at which the material completely reverts to austenite. In technical terms, the Af (and other transformation temperatures As, Ms, Mf) as it applies to an ingot made of Ni—Ti—Pd or Ni—Ti—Pt, for example, is determined by a Differential Scanning Calorimeter (DSC) test, known in the art. The DSC test method to determine transformation temperatures for the ingot is guided by ASTM standard no. F 2004-00, titled “Standard Test Method For Transformation Temperature Of Nickel-Titanium Alloys By Thermal Analysis.”
  • [0056]
    The “active Af” for the tubing and the finished stent is determined by a bend and free recovery test, also known in the art. In such a test, the tubing is cooled to under the Mf temperature, deformed, and warmed up. While monitoring the increasing temperature, the point of final recovery of the deformation in the tubing approximates the Af of the material. The active Af testing technique is guided by a second ASTM standard entitled “Standard Test Method For Determination Of Transformation Temperature Of Nickel-Titanium Shape Memory Alloys By Bend And Free Recovery,” or by equivalent test methods known in the art.
  • [0057]
    Samples of wire made in accordance with the foregoing exemplary embodiments were tested. Specifically, the stress-strain relationship based on empirical data for nickel-titanium-palladium and nickel-titanium-platinum are plotted against binary nitinol in FIG. 5. Curve A corresponds to a sample of nickel-titanium-platinum. Curve B is based on a sample of binary nitinol. Curve C is based on a sample of nickel-titanium-palladium. To generate the empirical data, the wire samples were placed under increasing tension until past the phase transformation from their initial austenitic phase to their martensitic phase. Tension was then slowly released prior to any plastic deformation until stress on the samples dropped to zero with full deformation recovery.
  • [0058]
    As is apparent from the plot of FIG. 5, the present invention nickel-titanium-palladium and nickel-titanium-platinum alloys have stress-strain curves that closely follow the hysteresis curve for binary nitinol. All three curves have essentially flat loading and unloading plateau stresses indicating the presence of a phase transformation that is characteristic of superelastic metals. Hence, the present invention nitinol stent incorporates a ternary element, in these exemplary embodiments palladium or platinum, to improve radiopacity yet the materials' superelastic capability is preserved. What has been missing heretofor is empirical evidence that this level of radiopacity can be achieved while preserving the superelastic characteristics of these alloys.
  • [0059]
    The present invention further provides a nitinol stent having improved radiopacity without reliance on increasing the stent wall thickness or strut thickness. Increasing wall or strut thicknesses detracts from the flexibility of the stent, which is detrimental to deliverability. Rather, the present invention superelastic nitinol stent has a thin wall/strut thickness and/or strut cross-sectional area akin to a conventional stainless steel stent, and has comparable radiopacity to a stainless steel stent with a thin coating of gold. The wall/strut thickness is defined by the difference between the inside diameter and the outside diameter of the tube.
  • [0060]
    Indeed, the improved radiopacity of the present invention stent can be characterized strictly by strut thickness. In this con, the present invention radiopaque stent has a reduced strut thickness yet exhibits the radiopacity of an identical stent having thicker struts. In other words, given a stent exhibiting a certain level of radiopacity, the present invention stent having the identical dimensions and strut pattern achieves that level of radiopacity yet it has at least a 10 percent reduction in strut thickness as compared to the reference stent.
  • [0061]
    Alternatively, the 10 percent reduction can also be quantified in terms of the cross-sectional area of the strut. That is, for a given stent having a certain level of radiopacity with struts with a given cross-sectional area, the present invention stent having the same dimensions and strut pattern achieves the same level of radiopacity but has struts with at least a 10 percent reduction in cross-sectional area as compared to the reference stent.
  • [0062]
    Another aspect of nitinol aside from its superelasticity is shape memory. The present invention can also be employed with respect to this physical attribute as described below.
  • [0063]
    The shape memory effect allows a nitinol structure to be deformed to facilitate its insertion into a body lumen or cavity, and then heated within the body so that the structure returns to its original, set shape. Nitinol alloys having shape memory effect generally have at least two phases: a martensitic phase, which has a relatively low tensile strength and which is stable at relatively low temperatures, and an austenitic phase, which has a relatively high tensile strength and which is stable at temperatures higher than the martensitic phase.
  • [0064]
    Shape memory effect is imparted to the alloy by heating the nickel-titanium metal to a temperature above which the transformation from the martensitic phase to the austenitic phase is complete; i.e., a temperature above which the austenitic phase is stable. The shape of the metal during this heat treatment is the shape “remembered.” The heat-treated metal is cooled to a temperature at which the martensitic phase is stable, causing the austenitic phase to transform to the martensitic phase. The metal in the martensitic phase is then plastically deformed, e.g., to facilitate the entry thereof into a patient's body. Subsequent heating of the deformed martensitic phase to a temperature above the martensite to austenite transformation temperature causes the deformed martensitic phase to transform to the austenitic phase. During this phase transformation the metal reverts back towards its original shape.
  • [0065]
    The recovery or transition temperature may be altered by making minor variations in the composition of the metal and in processing the material. In developing the correct composition, biological temperature compatibility must be determined in order to select the correct transition temperature. In other words, when the stent is heated, it must not be so hot that it is incompatible with the surrounding body tissue. Other shape memory materials may also be utilized, such as, but not limited to, irradiated memory polymers such as autocrosslinkable high density polyethylene (HDPEX). Shape memory alloys are known in the art and are discussed in, for example, “Shape Memory Alloys,” Scientific American, Vol. 281, pp. 74-82 (November 1979), incorporated herein by reference.
  • [0066]
    Shape memory alloys undergo a transition between an austenitic phase and a martensitic phase at certain temperatures. When they are deformed while in the martensitic phase, they retain this deformation as long as they remain in the same phase, but revert to their original configuration when they are heated to a transition temperature, at which time they transform to their austenitic phase. The temperatures at which these transitions occur are affected by the nature of the alloy and the condition of the material. Nickel-titanium-based alloys (NiTi), wherein the transition temperature is slightly lower than body temperature, are preferred for the present invention. It is desirable to have the transition temperature set at just below body temperature to insure a rapid transition from the martensitic state to the austenitic state when the stent is implanted in a body lumen.
  • [0067]
    Turning again to FIGS. 1, 2, and 4, the present invention stent 10 is formed from a shape memory alloy, such as NiTi discussed above. After the stent 10 is inserted into an artery 28 or other vessel, the delivery sheath 16 is withdrawn exposing the stent 10 to the ambient environment. The stent 10 then immediately expands due to contact with the higher temperature within artery 28 as described for devices made from shape memory alloys. An optional expandable balloon 20 may be inflated by conventional means to further expand the stent 10 radially outward.
  • [0068]
    Again, if an external force is exerted on the artery, the stent 10 temporarily at least partially collapses. But the stent 10 then quickly regains its former expanded shape due to its shape memory qualities. Thus, a crush-resistant stent, having shape memory characteristics, is implanted in a vessel. It maintains the patency of a vessel while minimizing both the risk of permanent vessel collapse and the risk of dislodgment of the stent from the implant site if the stent is temporarily deformed due to external forces.
  • [0069]
    When the stent 10 is made in accordance with the present invention, it is also highly radiopaque. The same alloying processes described earlier are used here to add the ternary element to increase the radiopacity of the stent. Insofar as the martensitic to austenitic phase transformation is thermally driven, the deployment of the present invention stent can be explained in terms of the shape memory effect.
  • [0070]
    While the present invention has been illustrated and described herein in terms of a radiopaque nitinol stent, it is apparent to those skilled in the art that the present invention can be used in other instances. Other modifications and improvements may be made without departing from the scope of the present invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4503569 *Mar 3, 1983Mar 12, 1985Dotter Charles TTransluminally placed expandable graft prosthesis
US4580568 *Oct 1, 1984Apr 8, 1986Cook, IncorporatedPercutaneous endovascular stent and method for insertion thereof
US4665906 *May 21, 1986May 19, 1987Raychem CorporationMedical devices incorporating sim alloy elements
US4856516 *Jan 9, 1989Aug 15, 1989Cordis CorporationEndovascular stent apparatus and method
US5067957 *Sep 27, 1988Nov 26, 1991Raychem CorporationMethod of inserting medical devices incorporating SIM alloy elements
US5092877 *Jul 5, 1990Mar 3, 1992Corvita CorporationRadially expandable endoprosthesis
US5190546 *Apr 9, 1991Mar 2, 1993Raychem CorporationMedical devices incorporating SIM alloy elements
US5201901 *Oct 7, 1988Apr 13, 1993Terumo Kabushiki KaishaExpansion unit and apparatus for expanding tubular organ lumen
US5292331 *Aug 24, 1989Mar 8, 1994Applied Vascular Engineering, Inc.Endovascular support device
US5341818 *Dec 22, 1992Aug 30, 1994Advanced Cardiovascular Systems, Inc.Guidewire with superelastic distal portion
US5411476 *Jun 2, 1993May 2, 1995Advanced Cardiovascular Systems, Inc.Superelastic guiding member
US5514154 *Jul 28, 1994May 7, 1996Advanced Cardiovascular Systems, Inc.Expandable stents
US5562641 *May 20, 1994Oct 8, 1996A Bromberg & Co. Ltd.Two way shape memory alloy medical stent
US5569295 *May 31, 1995Oct 29, 1996Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US5597378 *Oct 2, 1992Jan 28, 1997Raychem CorporationMedical devices incorporating SIM alloy elements
US5630840 *Jun 7, 1995May 20, 1997Schneider (Usa) IncClad composite stent
US5637089 *Feb 12, 1996Jun 10, 1997Advanced Cardiovascular Systems, Inc.Superelastic guiding member
US5667522 *Mar 2, 1995Sep 16, 1997Medinol Ltd.Urological stent and deployment device therefor
US5690644 *Feb 20, 1996Nov 25, 1997Schneider (Usa) Inc.Apparatus for deploying body implantable stent
US5843244 *Jun 13, 1996Dec 1, 1998Nitinol Devices And ComponentsShape memory alloy treatment
US5885381 *Feb 24, 1998Mar 23, 1999The Furukawa Electric Co., Ltd.Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US5902317 *Aug 19, 1997May 11, 1999Nitinol Medical Technologies, Inc.Stent and method and apparatus for forming and delivering the same
US5907893 *Jan 31, 1997Jun 1, 1999Medtronic, Inc.Methods for the manufacture of radially expansible stents
US5927345 *Apr 30, 1996Jul 27, 1999Target Therapeutics, Inc.Super-elastic alloy braid structure
US5951793 *Jul 9, 1996Sep 14, 1999The Furukawa Electric Co., Ltd.Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US6059810 *Jan 27, 1997May 9, 2000Scimed Life Systems, Inc.Endovascular stent and method
US6077295 *Jul 15, 1996Jun 20, 2000Advanced Cardiovascular Systems, Inc.Self-expanding stent delivery system
US6086610 *Oct 22, 1996Jul 11, 2000Nitinol Devices & ComponentsComposite self expanding stent device having a restraining element
US6312454 *Jun 13, 1996Nov 6, 2001Nitinol Devices & ComponentsStent assembly
US6325824 *Jul 22, 1998Dec 4, 2001Advanced Cardiovascular Systems, Inc.Crush resistant stent
US6380457 *Oct 27, 1997Apr 30, 2002Boston Scientific Scimed, Inc.Apparatus for deploying body implantable stents
US6419693 *May 1, 1998Jul 16, 2002Advanced Cardiovascular Systems, Inc.High strength member for intracorporeal use
US6461453 *Jun 7, 2000Oct 8, 2002Advanced Cardiovascular Systems, Inc.Superelastic guiding member
US6755855 *Mar 19, 2002Jun 29, 2004Boston Scientific Scimed, Inc.Apparatus for deploying body implantable stents
US20020082681 *Dec 27, 2000Jun 27, 2002Boylan John F.Radiopaque nitinol alloys for medical devices
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7714217Sep 16, 2008May 11, 2010Innovatech, LlcMarked precoated strings and method of manufacturing same
US7811623Mar 11, 2009Oct 12, 2010Innovatech, LlcMarked precoated medical device and method of manufacturing same
US7879071May 9, 2003Feb 1, 2011Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US7887555Jul 9, 2003Feb 15, 2011Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US7901428Oct 3, 2002Mar 8, 2011Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7918011Oct 10, 2007Apr 5, 2011Abbott Cardiovascular Systems, Inc.Method for providing radiopaque nitinol alloys for medical devices
US7918873Sep 18, 2006Apr 5, 2011Abbott Vascular Inc.Surgical staple
US7923617Apr 23, 2010Apr 12, 2011Innovatech LlcMarked precoated strings and method of manufacturing same
US7931669May 17, 2002Apr 26, 2011Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant and methods of use
US7938843Jun 9, 2003May 10, 2011Abbott Cardiovascular Systems Inc.Devices configured from heat shaped, strain hardened nickel-titanium
US7942892May 1, 2003May 17, 2011Abbott Cardiovascular Systems Inc.Radiopaque nitinol embolic protection frame
US7976648Nov 2, 2000Jul 12, 2011Abbott Cardiovascular Systems Inc.Heat treatment for cold worked nitinol to impart a shape setting capability without eventually developing stress-induced martensite
US8007512Oct 8, 2003Aug 30, 2011Integrated Vascular Systems, Inc.Plunger apparatus and methods for delivering a closure device
US8048471Dec 21, 2007Nov 1, 2011Innovatech, LlcMarked precoated medical device and method of manufacturing same
US8070794Jan 8, 2008Dec 6, 2011Stentys S.A.S.Frangible bridge structure for a stent, and stent including such bridge structures
US8128644Sep 19, 2003Mar 6, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8182497Oct 4, 2010May 22, 2012Integrated Vascular Systems, Inc.Closure device
US8192459Dec 13, 2010Jun 5, 2012Abbott Vascular Inc.Blood vessel closure clip and delivery device
US8202283Nov 12, 2010Jun 19, 2012Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US8202293Jun 20, 2008Jun 19, 2012Integrated Vascular Systems, Inc.Clip applier and methods of use
US8202294Dec 20, 2010Jun 19, 2012Integrated Vascular Systems, Inc.Clip applier and methods of use
US8226681Jun 25, 2007Jul 24, 2012Abbott LaboratoriesMethods, devices, and apparatus for managing access through tissue
US8231926Jul 11, 2008Jul 31, 2012Innovatech, LlcMarked precoated medical device and method of manufacturing same
US8231927Feb 9, 2009Jul 31, 2012Innovatech, LlcMarked precoated medical device and method of manufacturing same
US8236026Mar 27, 2006Aug 7, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8257390Feb 15, 2007Sep 4, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8303624Mar 15, 2010Nov 6, 2012Abbott Cardiovascular Systems, Inc.Bioabsorbable plug
US8313497Jun 28, 2006Nov 20, 2012Abbott LaboratoriesClip applier and methods of use
US8323312Jun 9, 2009Dec 4, 2012Abbott LaboratoriesClosure device
US8362344Mar 4, 2011Jan 29, 2013Innovatech, LlcMarked precoated strings and method of manufacturing same
US8398656Mar 2, 2011Mar 19, 2013Integrated Vascular Systems, Inc.Clip applier and methods of use
US8398676Oct 29, 2009Mar 19, 2013Abbott Vascular Inc.Closure device
US8469995Jun 4, 2012Jun 25, 2013Abbott Vascular Inc.Blood vessel closure clip and delivery device
US8486092Mar 11, 2009Jul 16, 2013Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8486108Feb 1, 2006Jul 16, 2013Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8500786 *May 15, 2007Aug 6, 2013Abbott LaboratoriesRadiopaque markers comprising binary alloys of titanium
US8518057Sep 13, 2012Aug 27, 2013Abbott LaboratoriesClip applier and methods of use
US8529587Jun 6, 2012Sep 10, 2013Integrated Vascular Systems, Inc.Methods of use of a clip applier
US8556930Jun 28, 2006Oct 15, 2013Abbott LaboratoriesVessel closure device
US8574171Jul 3, 2012Nov 5, 2013Innovatech, LlcMarked precoated medical device and method of manufacturing same
US8579932Feb 24, 2004Nov 12, 2013Integrated Vascular Systems, Inc.Sheath apparatus and methods for delivering a closure device
US8585836Jun 18, 2012Nov 19, 2013Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US8590760May 24, 2005Nov 26, 2013Abbott Vascular Inc.Surgical stapler
US8597325Nov 29, 2010Dec 3, 2013Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US8603116Aug 4, 2010Dec 10, 2013Abbott Cardiovascular Systems, Inc.Closure device with long tines
US8603136May 3, 2007Dec 10, 2013Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US8603137Nov 1, 2010Dec 10, 2013Abbott Cardiovascular Systems, Inc.Methods and systems for establishing hemostasis relative to a puncture
US8657852Mar 8, 2013Feb 25, 2014Abbott Vascular Inc.Closure device
US8672953Jun 6, 2011Mar 18, 2014Abbott LaboratoriesTissue closure system and methods of use
US8685047Feb 7, 2011Apr 1, 2014Abbott Vascular, Inc.Scaffold device for preventing tissue trauma
US8690910Mar 31, 2006Apr 8, 2014Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8728119Feb 18, 2011May 20, 2014Abbott Vascular Inc.Surgical staple
US8758396Apr 27, 2006Jun 24, 2014Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8758398Sep 7, 2007Jun 24, 2014Integrated Vascular Systems, Inc.Apparatus and method for delivering a closure element
US8758399Aug 2, 2010Jun 24, 2014Abbott Cardiovascular Systems, Inc.Expandable bioabsorbable plug apparatus and method
US8758400Nov 8, 2010Jun 24, 2014Integrated Vascular Systems, Inc.Closure system and methods of use
US8772614Jan 16, 2013Jul 8, 2014Innovatech, LlcMarked precoated strings and method of manufacturing same
US8784447Apr 25, 2005Jul 22, 2014Abbott Vascular Inc.Surgical stapler
US8801875Dec 16, 2008Aug 12, 2014Cook Medical Technologies LlcRadiopaque alloy and medical device made of this alloy
US8808310Feb 14, 2007Aug 19, 2014Integrated Vascular Systems, Inc.Resettable clip applier and reset tools
US8820602Nov 19, 2010Sep 2, 2014Abbott LaboratoriesModular clip applier
US8821534Dec 6, 2010Sep 2, 2014Integrated Vascular Systems, Inc.Clip applier having improved hemostasis and methods of use
US8852220Sep 7, 2011Oct 7, 2014Abbott Cardiovascular Systems, Inc.Thrombus penetrating devices, systems, and methods
US8858594Dec 18, 2009Oct 14, 2014Abbott LaboratoriesCurved closure device
US8893947Dec 17, 2007Nov 25, 2014Abbott LaboratoriesClip applier and methods of use
US8900652Mar 9, 2012Dec 2, 2014Innovatech, LlcMarked fluoropolymer surfaces and method of manufacturing same
US8905937Feb 26, 2009Dec 9, 2014Integrated Vascular Systems, Inc.Methods and apparatus for locating a surface of a body lumen
US8920442Aug 23, 2006Dec 30, 2014Abbott Vascular Inc.Vascular opening edge eversion methods and apparatuses
US8926633Jun 19, 2006Jan 6, 2015Abbott LaboratoriesApparatus and method for delivering a closure element
US8926656Jan 10, 2011Jan 6, 2015Integated Vascular Systems, Inc.Clip applier and methods of use
US8940357Jun 27, 2012Jan 27, 2015Innovatech LlcMarked precoated medical device and method of manufacturing same
US8956388Apr 21, 2008Feb 17, 2015Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant
US9005274Oct 7, 2008Apr 14, 2015Stentys SasMethod for treating a body lumen
US9050068May 20, 2013Jun 9, 2015Abbott LaboratoriesClip applier and methods of use
US9050087May 14, 2008Jun 9, 2015Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant and methods of use
US9055932Aug 26, 2011Jun 16, 2015Abbott Cardiovascular Systems, Inc.Suture fastener combination device
US9060769May 1, 2008Jun 23, 2015Abbott Vascular Inc.Surgical stapler
US9074274Apr 16, 2013Jul 7, 2015Cook Medical Technologies LlcNickel-titanium-rare earth alloy and method of processing the alloy
US9089311Jan 8, 2010Jul 28, 2015Abbott Vascular Inc.Vessel closure devices and methods
US9089674Sep 15, 2006Jul 28, 2015Integrated Vascular Systems, Inc.Apparatus and methods for positioning a vascular sheath
US9103006Sep 6, 2007Aug 11, 2015Cook Medical Technologies LlcNickel-titanium alloy including a rare earth element
US9149265Feb 26, 2011Oct 6, 2015Abbott Cardiovascular Systems, Inc.Hinged tissue support device
US9149276Mar 21, 2011Oct 6, 2015Abbott Cardiovascular Systems, Inc.Clip and deployment apparatus for tissue closure
US9173644Jan 8, 2010Nov 3, 2015Abbott Vascular Inc.Closure devices, systems, and methods
US9192492Feb 16, 2006Nov 24, 2015Jacques SeguinDevice allowing the treatment of bodily conduits at an area of a bifurcation
US9212409Jan 18, 2013Dec 15, 2015Cook Medical Technologies LlcMixture of powders for preparing a sintered nickel-titanium-rare earth metal (Ni-Ti-RE) alloy
US9241696Oct 29, 2009Jan 26, 2016Abbott Vascular Inc.Closure device
US9241706Jan 23, 2012Jan 26, 2016Abbott LaboratoriesSuture locking device and methods
US9271707Mar 8, 2013Mar 1, 2016Integrated Vascular Systems, Inc.Clip applier and methods of use
US9282965May 16, 2008Mar 15, 2016Abbott LaboratoriesApparatus and methods for engaging tissue
US9295469Jun 3, 2013Mar 29, 2016Abbott Vascular Inc.Blood vessel closure clip and delivery device
US9314230Aug 22, 2014Apr 19, 2016Abbott Vascular Inc.Closure device with rapidly eroding anchor
US9320522Aug 31, 2011Apr 26, 2016Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US9332976Nov 30, 2011May 10, 2016Abbott Cardiovascular Systems, Inc.Tissue closure device
US9345474Sep 11, 2012May 24, 2016Abbott Cardiovascular Systems, Inc.Needle removal devices, systems, and methods
US9345475Sep 11, 2012May 24, 2016Abbott Cardiovascular Systems, Inc.Needle harvesting devices, systems and methods
US9355621Jul 2, 2014May 31, 2016Innovatech, LlcMarked precoated strings and method of manufacturing same
US9358096Jun 3, 2013Jun 7, 2016Abbott LaboratoriesMethods of treatment with drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
US9364209Dec 21, 2012Jun 14, 2016Abbott Cardiovascular Systems, Inc.Articulating suturing device
US9398914Sep 3, 2013Jul 26, 2016Integrated Vascular Systems, Inc.Methods of use of a clip applier
US9402625May 2, 2008Aug 2, 2016Abbott Vascular Inc.Surgical stapler
US9402754 *May 18, 2010Aug 2, 2016Abbott Cardiovascular Systems, Inc.Expandable endoprostheses, systems, and methods for treating a bifurcated lumen
US9414820Jan 8, 2010Aug 16, 2016Abbott Vascular Inc.Closure devices, systems, and methods
US9414824Jul 3, 2014Aug 16, 2016Abbott Vascular Inc.Closure devices, systems, and methods
US9456811Aug 23, 2006Oct 4, 2016Abbott Vascular Inc.Vascular closure methods and apparatuses
US9456814Apr 9, 2012Oct 4, 2016Abbott Cardiovascular Systems, Inc.Closure devices, systems, and methods
US9468431Oct 11, 2013Oct 18, 2016Abbott Cardiovascular Systems, Inc.Hinged tissue support device
US9486191May 20, 2011Nov 8, 2016Abbott Vascular, Inc.Closure devices
US9498196Nov 11, 2013Nov 22, 2016Integrated Vascular Systems, Inc.Sheath apparatus and methods for delivering a closure device
US9554786Apr 7, 2014Jan 31, 2017Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US9579091Apr 3, 2006Feb 28, 2017Integrated Vascular Systems, Inc.Closure system and methods of use
US9585646Apr 7, 2014Mar 7, 2017Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US9585647Nov 12, 2014Mar 7, 2017Abbott LaboratoriesMedical device for repairing a fistula
US20020133193 *May 17, 2002Sep 19, 2002Ginn Richard S.Integrated vascular device with puncture site closure component and sealant and methods of use
US20030078598 *Oct 3, 2002Apr 24, 2003Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US20030195561 *May 9, 2003Oct 16, 2003Carley Michael T.Closure device and methods for making and using them
US20030199920 *Jun 9, 2003Oct 23, 2003Boylan John F.Devices configured from heat shaped, strain hardened nickel-titanium
US20040153122 *Jan 30, 2003Aug 5, 2004Integrated Vascular Systems, Inc.Clip applier and methods of use
US20040220608 *May 1, 2003Nov 4, 2004D'aquanni PeterRadiopaque nitinol embolic protection frame
US20060129166 *Dec 15, 2005Jun 15, 2006Vance Products Incorporated, D/B/A Cook Urological IncorporatedRadiopaque manipulation devices
US20060212068 *May 22, 2006Sep 21, 2006Advanced Cardiovascular Systems, Inc.Embolic protection device with an elongated superelastic radiopaque core member
US20070010853 *Sep 15, 2006Jan 11, 2007Integrated Vascular Systems, Inc.Apparatus and methods for positioning a vascular sheath
US20070010854 *Sep 18, 2006Jan 11, 2007Christy CumminsSurgical Staple
US20070131317 *Dec 12, 2005Jun 14, 2007AccellentNickel-titanium alloy with a non-alloyed dispersion and methods of making same
US20070131318 *Nov 9, 2006Jun 14, 2007Accellent, Inc.Medical alloys with a non-alloyed dispersion and methods of making same
US20070249965 *Apr 10, 2007Oct 25, 2007Advanced Cardiovascular System, Inc.Superelastic guiding member
US20070276416 *Feb 15, 2007Nov 29, 2007Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US20080053577 *Sep 6, 2007Mar 6, 2008Cook IncorporatedNickel-titanium alloy including a rare earth element
US20080215135 *Feb 16, 2006Sep 4, 2008Jacques SeguinDevice Allowing the Treatment of Bodily Conduits at an Area of a Bifurcation
US20080272173 *May 1, 2008Nov 6, 2008Abbott Vascular Inc.Surgical stapler
US20080288056 *May 15, 2007Nov 20, 2008Simpson John ARadiopaque markers comprising binary alloys of titanium
US20080312666 *Jun 20, 2008Dec 18, 2008Abbott LaboratoriesClip applier and methods of use
US20080319475 *Jun 25, 2007Dec 25, 2008Abbott LaboratoriesMethods, Devices, and Apparatus for Managing Access Through Tissue
US20090093875 *Apr 30, 2008Apr 9, 2009Abbott LaboratoriesDrug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
US20090162243 *Dec 16, 2008Jun 25, 2009Cook IncorporatedRadiopaque alloy and medical device made of this alloy
US20090162530 *Dec 21, 2007Jun 25, 2009Orion Industries, Ltd.Marked precoated medical device and method of manufacturing same
US20090181156 *Feb 9, 2009Jul 16, 2009Bruce NesbittMarked precoated medical device and method of manufacturing same
US20090211909 *Mar 11, 2009Aug 27, 2009Bruce NesbittMarked precoated medical device and method of manufacturing same
US20090230168 *Mar 12, 2009Sep 17, 2009Abbott Vascular Inc.Surgical stapler
US20090248130 *Feb 11, 2009Oct 1, 2009Abbott Cardiovascular Systems, Inc.Nitinol alloy design and composition for vascular stents
US20100030324 *Oct 7, 2008Feb 4, 2010Jacques SeguinMethod for treating a body lumen
US20100114159 *Oct 29, 2009May 6, 2010Abbott Vascular Inc.Closure device
US20100160958 *Jun 9, 2009Jun 24, 2010Abbott LaboratoriesClosure Device
US20100179567 *Jan 8, 2010Jul 15, 2010Abbott Vascular Inc.Closure devices, systems, and methods
US20100179571 *Jan 8, 2010Jul 15, 2010Abbott Vascular Inc.Closure devices, systems, and methods
US20100199830 *Apr 23, 2010Aug 12, 2010Innovatech, LlcMarked precoated strings and method of manufacturing same
US20110060355 *Nov 12, 2010Mar 10, 2011Integrated Vacular Systems, Inc.Methods for manufacturing a clip and clip
US20110071565 *Nov 29, 2010Mar 24, 2011Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US20110144663 *Dec 13, 2010Jun 16, 2011Abbott Vascular Inc.Blood Vessel Closure Clip and Delivery Device
US20110144664 *Dec 20, 2010Jun 16, 2011Integrated Vascular Systems, Inc.Clip applier and methods of use
US20110144668 *Oct 4, 2010Jun 16, 2011Integrated Vascular Systems, Inc.Closure device
US20110230897 *Mar 2, 2011Sep 22, 2011Integrated Vascular Systems, Inc.Clip applier and methods of use
US20110288622 *May 18, 2010Nov 24, 2011Abbott Cardiovascular Systems, Inc.Expandable endoprostheses, systems, and methods for treating a bifurcated lumen
WO2007070474A2 *Dec 11, 2006Jun 21, 2007Accellent, Inc.Nickel-titanium alloy with a non-alloyed dispersion and methods of making same
WO2007070474A3 *Dec 11, 2006Nov 29, 2007Accellent IncNickel-titanium alloy with a non-alloyed dispersion and methods of making same
WO2010081101A2Jan 11, 2010Jul 15, 2010Abbott Vascular Inc.Closure devices, systems, and methods
WO2010081102A2Jan 11, 2010Jul 15, 2010Abbott Vascular Inc.Closure devices, systems, and methods
WO2010081106A1Jan 11, 2010Jul 15, 2010Abbott Vascular IncClosure devices, systems, and methods
Classifications
U.S. Classification623/1.18, 623/1.34
International ClassificationA61F2/06, A61F2/84, A61L29/00, A61F2/00, A61F2/90
Cooperative ClassificationY10T29/49995, Y10S623/901, C22C19/00, A61L31/18, A61F2002/91533, A61F2002/91516, A61L31/022, A61L2400/16, A61F2002/91525, A61F2/915, A61F2250/0098, A61F2002/91575, A61F2230/0013
European ClassificationA61F2/915, A61L31/18, A61L31/02B, C22C19/00
Legal Events
DateCodeEventDescription
Apr 25, 2007ASAssignment
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:019235/0557
Effective date: 20070209
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC.,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:019235/0557
Effective date: 20070209