Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050059888 A1
Publication typeApplication
Application numberUS 10/960,622
Publication dateMar 17, 2005
Filing dateOct 6, 2004
Priority dateDec 24, 1998
Also published asUS6356782, US7668582, US8306602, US8320993, US8320994, US8600481, US20020035324, US20020107437, US20050080337, US20050080338, US20050080339, US20050085724, US20060036159, US20060079770, US20120330153, US20130066195, US20140051996, US20140194741
Publication number10960622, 960622, US 2005/0059888 A1, US 2005/059888 A1, US 20050059888 A1, US 20050059888A1, US 2005059888 A1, US 2005059888A1, US-A1-20050059888, US-A1-2005059888, US2005/0059888A1, US2005/059888A1, US20050059888 A1, US20050059888A1, US2005059888 A1, US2005059888A1
InventorsD. Sirimanne, Douglas Sutton, Natalie Fawzi, Gail Lebovic
Original AssigneeSirimanne D. Laksen, Sutton Douglas S., Fawzi Natalie V., Gail Lebovic
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Biopsy cavity marking device and method
US 20050059888 A1
Abstract
These are biopsy cavity marking devices and methods. The devices and methods include a bioabsorbable filler body and a detectable marker attached to the filler body, where the detectable marker has a predetermined shape. The detectable marker may be mammographic, radiopaque, echogenic, or palpable. The predetermined shape may be non-spherical, a barb, a sphere, a ring, a wire, or a band. It may also be affixed to the interior of the body or to the surface of the body. In another embodiment, the device may include a bioabsorbable filler body and a detectable marker attached to the filler body, where the detectable marker is a wire. Methods of using these devices to mark a biopsy cavity are also included.
Images(11)
Previous page
Next page
Claims(31)
1. A biopsy cavity marking device comprising:
a bioabsorbable filler body, and
a detectable marker attached to the bioabsorbable filler body, wherein the detectable marker comprises a wire.
2-21. (Canceled)
22. A method of marking a biopsy cavity, comprising the steps of:
accessing the biopsy cavity via a delivery device; and
deploying a bioabsorbable filler body through the delivery device, wherein the bioabsorbable filler body has a detectable marker attached thereto, and wherein the detectable marker comprises a wire.
23-40. (Canceled)
41. A biopsy cavity marking device comprising:
a bioabsorbable filler body, and
a detectable marker attached to the bioabsorbable filler body, wherein the detectable marker has a predetermined shape.
42-64. (Canceled)
65. A method of marking a biopsy cavity, comprising the steps of:
accessing the biopsy cavity via a delivery device; and
deploying a bioabsorbable filler body through the delivery device, wherein the bioabsorbable filler body has a detectable marker attached thereto, and wherein the detectable marker has a predetermined shape.
66. The method of claim 65, further comprising the step of determining the location of the biopsy cavity by detecting the location of the detectable marker.
67. The method of claim 65, wherein the detectable marker is mammographic.
68. The method of claim 65, wherein the detectable marker is radiopaque.
69. The method of claim 65, wherein the detectable marker is echogenic.
70. The method of claim 65, wherein the detectable marker is palpable.
71. The method of claim 65, wherein the predetermined shape is non-spherical.
72. The method of claim 65, wherein the predetermined shape is a barb.
73. The method of claim 65, wherein the predetermined shape is a sphere.
74. The method of claim 65, wherein the predetermined shape is a ring.
75. The method of claim 65, wherein the detectable marker is a wire.
76. The method of claim 65, wherein the detectable marker is a band.
77. The method of claim 65, wherein the detectable marker is adapted to mark the center of the bioabsorbable filler body.
78. The method of claim 77, wherein the detectable marker is substantially located at the geometric center of the bioabsorbable filler body.
79. The method of claim 65, wherein the detectable marker is adapted to mark the center of the biopsy cavity.
80. The method of claim 65, wherein the detectable marker is affixed to the interior of the bioabsorbable filler body.
81. The method of claim 65, wherein the detectable marker is affixed to the surface of the bioabsorbable filler body.
82. The method of claim 65, wherein the detectable marker is suspended in the interior of the bioabsorbable filler body.
83. The method of claim 65, wherein the bioabsorbable filler body comprises collagen.
84. The method of claim 65, wherein the bioabsorbable filler body comprises cellulose.
85. The method of claim 65, wherein the bioabsorbable filler body comprises polyglycolic acid.
86. The method of claim 65, wherein the bioabsorbable filler body comprises polylactic acid.
87. The method of claim 65, wherein the bioabsorbable filler body comprises copolymers of polyglycolic acid and polylactic acid.
88. The method of claim 65, wherein the bioabsorbable filler body comprises at least one bioabsorbable filler body.
89. The method of claim 65, wherein the detectable marker comprises at least one detectable marker.
Description

This is a continuation of U.S. application Ser. No. 10/114,712, filed Apr. 1, 2002, which is a continuation of U.S. application Ser. No. 09/805,652, filed March 13, 2001, which is a continuation of U.S. application Ser. No. 09/285,329, filed Apr. 2, 1999, now U.S. Pat. No. 6,356,782, which is a continuation-in-part of U.S. application Ser. No. 09/220,618, filed Dec. 24, 1998, now abandoned. All of the above patents and applications are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

This invention is directed to subcutaneous cavity marking devices and methods. More particularly, a cavity marking device and method is disclosed that enable one to determine the location, orientation, and periphery of the cavity by radiographic, mammographic, echographic, or other non-invasive techniques. The invention typically is made up of one or more resilient bodies and a radiopaque or echogenic marker.

BACKGROUND OF THE INVENTION

Over 1.1 million breast biopsies are performed each year in the United States alone. Of these, about 80% of the lesions excised during biopsy are found to be benign while about 20% of these lesions are malignant.

In the field of breast cancer, stereotactically guided and percutaneous biopsy procedures have increased in frequency as well as in accuracy as modern imaging techniques allow the physician to locate lesions with ever-increasing precision. However, for any given biopsy procedure, a subsequent examination of the biopsy site is very often desirable. There is an important need to determine the location, most notably the center, as well as the orientation and periphery (margins) of the subcutaneous cavity from which the lesion is removed.

In those cases where the lesion is found to be benign, for example, a follow-up examination of the biopsy site is often performed to ensure the absence of any suspect tissue and the proper healing of the cavity from which the tissue was removed. This is also the case where the lesion is found to be malignant and the physician is confident that all suspect tissue was removed and the tissue in the region of the perimeter or margins of the cavity is “clean.”

In some cases, however, the physician may be concerned that the initial biopsy failed to remove a sufficient amount of the lesion. Such a lesion is colloquially referred to as a “dirty lesion” or “dirty margin” and requires follow-up observation of any suspect tissue growth in the surrounding marginal area of the initial biopsy site. Thus, a re-excision of the original biopsy site must often be performed. In such a case, the perimeter of the cavity must be identified since the cavity may contain cancerous cells. Identification of the cavity perimeter necessary to avoid the risk of opening the cavity, which could release and spread cancerous cells. Moreover, the site of the re-excised procedure itself requires follow-up examination, providing further impetus for accurate identification of the location of the re-excised site. Therefore, a new marker will be placed after re-excision.

Prior methods of marking biopsy cavities utilize one or more tissue marking clips as the biopsy site marking device. Most commonly, these marker clips have a “horseshoe” configuration. The marker clips attach to the walls of the cavity when the free ends or limbs of the “horseshoe” are pinched together, trapping the tissue. This device has significant drawbacks.

For instance, prior to placing the marker clip at the cavity site, the site must be thoroughly cleaned, typically by vacuum, to remove any residual tissue debris. This minimizes the possibility that the marker clip attaches to any loose tissue as opposed to the cavity wall. Once the cavity is prepared, the clip must be examined to ensure that the limbs of the clip are substantially straight. If the limbs have been prematurely bent together, the clip will be discarded since it will most likely not attach properly to the cavity wall. Actual placement of the clip often requires additional vacuum of the cavity wall to draw the wall into the aperture between the limbs of the marking clip so that a better grip is obtained between the limbs of the clip. Additionally, there is always the possibility that the clip may detach from the cavity wall during or after withdrawal of the tools used to place the clip into the cavity.

Aside from the problems inherent in the placement of the marking clip, there are also limitations associated with how well the marking clip can identify a biopsy cavity. As the marking clip must trap tissue for proper attachment, in cases of endoscopic placement, the clip can only be placed on a wall of the cavity substantially opposite to the opening of the cavity.

Moreover, patient concern limits the number of clips that may be placed in a cavity. As a result, the medical practitioner is forced to identify the outline of a three dimensional cavity by a single point as defined by the marking clip. Obviously, determination of the periphery of a biopsy cavity from one point of the periphery is not possible.

These limitations are compounded as the biopsy cavity fills within a few hours with bodily fluids, which eventually renders the cavity invisible to non-invasive techniques. Another difficulty in viewing the clip stems from the fact that the clip is attached to the side, not the center, of the cavity. This makes determining the spatial orientation and position of the cavity difficult if not impossible during follow-up examination. Additionally, during a stereotactic breast biopsy procedure, the breast is under compression when the marking clip is placed. Upon release of the compressive force, determining the location of the clip can be unpredictable, and the orientation as well as the location of the periphery of the cavity are lost.

The marker clip does not aid in the healing process of the biopsy wound. Complications may arise if the marker strays from its original placement site. As described above, if a re-excision of the site is required, the marker clip may also interfere when excision of a target lesion is sought.

Other devices pertaining to biopsy aids are directed to assisting in the healing and closure of the biopsy wound; thus they do not aid the clinical need or desirability of accurately preserving the location and orientation of the biopsy cavity. See, e.g., U.S. Pat. Nos. 4,347,234, 5,388,588, 5,326,350, 5,394,886, 5,467;780, 5,571,181, and 5,676,146.

SUMMARY OF THE INVENTION

This invention relates to devices and procedures for percutaneously marking a biopsy cavity. In particular, the inventive device is a biopsy cavity-marking body made of a resilient, preferably bioabsorbable material having at least one preferably radiopaque or echogenic marker. The device may take on a variety of shapes and sizes tailored for the specific biopsy cavity to be filled. For example, the device in its simplest form is a spherical or cylindrical collagen sponge having a single radiopaque or echogenic marker located in its geometric center. Alternatively, the body may have multiple components linked together with multiple radiopaque or echogenic markers.

A further aspect of the invention allows the marker or the body, singly or in combination, to be constructed to have a varying rate of degradation or bioabsorption. For instance, the body may be constructed to have a layer of bioabsorbable material as an outer “shell.” Accordingly, prior to degradation of the shell, the body is palpable. Upon degradation of the shell, the remainder of the body would degrade at an accelerated rate in comparison to the outer shell.

The device may additionally contain a variety of drugs, such as hemostatic agents, pain-killing substances, or even healing or therapeutic agents that may be delivered directly to the biopsy cavity. Importantly, the device is capable of accurately marking a specific location, such as the center, of the biopsy cavity, and providing other information about the patient or the particular biopsy or device deployed.

The device is preferably, although not necessarily, delivered immediately after removal of the tissue specimen using the same device used to remove the tissue specimen itself. Such devices are described in U.S. Pat. Nos. 6,126,014 and 6,036,698, the entirety of each are hereby incorporated by reference. The device is compressed and loaded into the access device and percutaneously advanced to the biopsy site where, upon exiting from the access device, it expands to substantially fill the cavity of the biopsy. Follow-up noninvasive detection techniques, such as x-ray mammography or ultrasound may then be used by the physician to identify, locate, and monitor the biopsy cavity site over a preferred period of time.

The device is usually inserted into the body either surgically via an opening in the body cavity, or through a minimally invasive procedure using such devices as a catheter, introducer or similar type device. When inserted via the minimally invasive procedure, the resiliency of the body allows the device to be compressed upon placement in a delivery device. Upon insertion of the cavity marking device into the cavity, the resiliency of the body causes the cavity marking device to self-expand, substantially filling the cavity. The resiliency of the body can be further pre-determined so that the body is palpable, thus allowing tactile location by a surgeon in subsequent follow-up examinations. Typically, the filler body is required to be palpable for approximately 3 months. However, this period may be increased or decreased as needed.

The expansion of the resilient body can be aided by the addition of a bio-compatible fluid which is absorbed into the body. For instance, the fluid can be a saline solution, a painkilling substance, a healing agent, a therapeutic fluid, or any combination of such fluids. The fluid or combination of fluids may be added to and absorbed by the body of the device before or after deployment of the device into a cavity. For example, the body of the device may be pre-soaked with the fluid and then delivered into the cavity. In this instance, the fluid aids the expansion of the body of the device upon deployment. Another example is provided as the device is delivered into the cavity without being pre-soaked. In such a case, fluid is delivered into the cavity after the body of the device is deployed into the cavity. Upon delivery of the fluid, the body of the device soaks the fluid, thereby aiding the expansion of the cavity marking device as it expands to fit the cavity. The fluid may be, but is not limited to being, delivered by the access device.

By “bio-compatible fluid” what is meant is a liquid, solution, or suspension that may contain inorganic or organic material. For instance, the bio-compatible fluid is preferably saline solution, but may be water or contain adjuvants such as medications to prevent infection, reduce pain, or the like. Obviously, the liquid is intended to be a type that does no harm to the body.

After placement of the cavity marking device into the cavity, the bioabsorbable body degrades at a predetermined rate. As the body of the cavity marking device is absorbed, tissue is substituted for the bioabsorbable material. Moreover, while the body degrades, the marker, which is usually suspended substantially in the volumetric center of the body of the device, is left in the center of the cavity. Thus, during a subsequent examination, a medical practitioner having knowledge of the dimensions of the body of the cavity marking device can determine the location as well as the periphery of the biopsy cavity. The orientation of the cavity is self-evident as the marker is left in substantially the center of the cavity. For the case where multiple markers are used, the markers are usually placed in a manner showing directionality.

Both the body and the marker can be made, via radiopaque or echogenic coatings or in situ, to degrade and absorb into the patient's body over a predetermined period of time. It is generally preferred that if the marker's radiopacity or echogenicity is chosen to degrade over time, such degradation does not take place within at least one year after implantation of the inventive device. In this way, if a new lump or calcification (in the case of a breast biopsy) is discovered after the biopsy, such a marker will allow the physician to know the relation of such new growth in relation to the region of excised tissue. On the other hand, and as discussed below, a bioabsorption period of three months is preferred for any such coatings on the perimeter of the body itself.

This invention further includes the act of filling the biopsy cavity with a bioabsorbable liquid, aerosol or gelatinous material, preferably gelatinous collagen, allowing the material to partially solidify or gel and then placing a marker, which may have a configuration as described above, into the center of the bioabsorbable material. The gel may also be made radiopaque or echogenic by the addition of radiopaque materials, such as barium- or bismuth-containing compounds and the like, as well as particulate radio-opaque fillers, e.g., powdered tantalum or tungsten, barium carbonate, bismuth oxide, barium sulfate, to the gel. This method may be combined with any aspect of the previously described devices as needed. For instance, one could insert a hemostatic or pain-killing substance as described above into the biopsy cavity along with the bioabsorbable material. Alternatively, a bioabsorbable marker could be inserted into a predetermined location, such as the center, of the body of bioabsorbable material.

It is within the scope of this invention that either or both of the marker or markers and the bioabsorbable body may be radioactive, if a regimen of treatment using radioactivity is contemplated.

This procedure may be used in any internal, preferably soft, tissue, but is most useful in breast tissue, lung tissue, prostate tissue, lymph gland tissue, etc. Obviously, though, treatment and diagnosis of breast tissue problems forms the central theme of the invention.

In contrast to the marker clips as described above, the cavity marking device has the obvious advantage of marking the geometric center of a biopsy cavity. Also, unlike the marking clip which has the potential of attaching to loose tissue and moving after initial placement, the marking device self-expands upon insertion into the cavity, thus providing resistance against the walls of the cavity thereby anchoring itself within the cavity. The marking device may be configured to be substantially smaller, larger, or equal to the size of the cavity; however, in some cases the device will be configured to be larger than the cavity. This aspect of the biopsy marking device provides a cosmetic benefit to the patient, especially when the biopsy is taken from the breast. For example, the resistance provided by the cavity marking device against the walls of the cavity may minimize any “dimpling” effect observed in the skin when large pieces of tissue are removed, as, for example, during excisional biopsies.

Although the subcutaneous cavity marking device and method described above are suited for percutaneous placement of the marker within a biopsy cavity it is not intended that the invention is limited to such placement. The device and method are also appropriate for intra-operative or surgical placement of the marker within a biopsy cavity.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a tissue cavity marking device with a spherical body and a single centrally-located marker.

FIG. 1B shows a tissue cavity marking device with a cylindrical body and two ring-shaped markers aligned near the cylinder's longitudinal axis.

FIG. 1C shows another tissue cavity marking device with a multi-faced or irregular body and a single centrally-located marker.

FIG. 1D illustrates a tissue cavity marking device with a body having pores.

FIG. 1E is a partial cross-sectional view of FIG. 1D.

FIG. 1F illustrates a tissue cavity marking device with a body having an outer shell of a bioabsorbable material.

FIGS. 2A-2F illustrate various configurations of the marker.

FIG. 3A illustrates a cavity marking device having multiple body components traversed by a single wire or suture marker, or multiple wires or suture markers.

FIG. 3B illustrates a cavity marking device having a helically wound wire or suture marker.

FIG. 3C illustrates a cavity marking device having wire or suture markers on the perimeter of the body.

FIG. 3D illustrates a cavity marking device having wire or markers on the ends of the body.

FIGS. 4A-4C illustrate a method of marking a biopsy tissue cavity with the device of the present invention.

FIGS. 4D-4F illustrate a method of marking a biopsy tissue cavity with the device of the present invention wherein a bio-compatible fluid is delivered to the cavity marking device after placement.

FIGS. 4G-4I illustrate a method of marking a biopsy tissue cavity with the device of the present invention wherein a bio-compatible fluid is used to push the cavity marking device out of the access device and into the biopsy tissue cavity.

FIGS. 4J-4K illustrate a method of marking a biopsy tissue cavity with the device of the present invention wherein the body material of the marking device is deposited into the biopsy cavity prior to the placement of the marker within the biopsy device.

FIGS. 5A-B illustrate a spherical wire marking device for deployment without a filler body into a tissue cavity.

FIG. 5C illustrates a cylindrical wire marking device for deployment without a filler body into a tissue cavity.

FIGS. 5D-E illustrate a helical coil wire marking device for deployment without a filler body into a tissue cavity.

DETAILED DESCRIPTION OF THE INVENTION

FIGS. 1A-1C show various configurations of a preferred subcutaneous cavity marking device of the present invention. Here the marking device (100) is displayed as having either a generally spherical body (102) (FIG. 1A), a generally cylindrical body (104) (FIG. 1B), or a multi-faced or irregular body (106) (FIG. 1C). In general, it is within the scope of this invention for the body to assume a variety of shapes. For example, the body may be constructed to have substantially curved surfaces, such as the preferred spherical (102) and cylindrical (104) bodies of FIGS. 1A and 1B, respectively. The body may have conical or ellipsoidal, etc., shapes as well. It is further within the scope of this invention for the body to have substantially planar surfaces, such as polyhedric (i.e., cubic, tetrahedral, etc.) or prismatic, etc., forms. Finally, the body may also have an irregular or random shape, in the case of a gel, combining features of various curved and planar surfaces. Body (106) of FIG. 1C is an example of such an irregular body shape. The particular body shape will be chosen to best match to the biopsy cavity in which the device is placed. However, it is also contemplated that the body shape can be chosen to be considerably larger than the cavity. Therefore, expansion of the device will provide a significant resistance against the walls of the cavity. Moreover, the aspect ratio of the device is not limited to what is displayed in the figures. For example, the cylindrical body (104) may have a shorter or longer length as required.

In the bodies of FIGS. 1A and 1C, the generally spherical marker (150) is located at or near the geometric center of the body. Such a configuration will aid the physician in determining the exact location of the biopsy cavity, even after the body degrades and is absorbed into the human or mammalian body.

In the case of the ring-shaped markers (154) of FIG. 1B, they are generally aligned along the longitudinal axis (114) of body (104). Note that although the ring-shaped markers (154) are spatially oriented so that the longitudinal axis (114) of the body (104) lies along the longitudinal axis (not shown) of each marker (154), each marker may individually or together assume a wide variety of random or predetermined spatial orientations other than the aligned orientation as seen in FIG. 1C. It can be appreciated that any asymmetric marker such as marker (154) is useful in aiding a physician to determine the spatial orientation of the deployed inventive device.

Obviously, marker (150), (154) may reside in locations other than those demonstrated in FIGS. 1A-1C. It is, however, preferred that markers (150), (154) dwell in a predetermined, preferably central, location and orientation in the device body so to aid the physician in determining the location and orientation of the biopsy cavity. The markers herein described may be affixed to the interior or on the surface of the body by any number of suitable methods. For instance, the marker may be merely suspended in the interior of the body (especially in the case where the body is a gel), it may be woven into the body (especially in the case where the marker is a wire or suture), it may be press fit onto the body (especially in the case where the marker is a ring or band), or it may affixed to the body by a biocompatible adhesive. Any suitable means to affix or suspend the marker into the body in the preferred location is within the scope of the present invention.

Tissue regrowth in a particular orientation can also be promoted by a body design shown in FIG. 1D. Here, body (110) contains a number of pores (138) through which tissue may grow. The pores may also be aligned in a substantially parallel fashion, traversing the thickness of the body so that tissue may regrow from one side of the body through to the other side. This is demonstrated in inset FIG. 1E, which shows a portion (130) of FIG. 1D in partial longitudinal cross section, complete with pores (138) traversing through the thickness of portion (130). Such pores (138) can be parallel to each other as shown in FIG. 1E, or they may be perpendicularly, radially, or even randomly oriented in the device body.

A trio of markers is also shown in FIG. 1D evenly aligned along the body longitudinal axis (140). Barb marker (156), spherical marker (150), and ring-shaped marker (154) demonstrate the use of different multiple markers in a single body (110). As previously described, such a design helps a physician to determine the spatial orientation of the inventive device when it is deployed in a biopsy cavity. Although the barb marker (156) is illustrated in a ‘V’ configuration, it is an important aspect of the barb marker (156) to have a shape that is clearly not spherical. This allows the barb marker (156) to be easily distinguished from calcifications that may be observed during any non-invasive imaging techniques.

FIG. 1F depicts a further embodiment of the present invention in which body (112) is enveloped in an outer shell (142) consisting of a layer of bioabsorbable material such those mentioned above. This configuration allows the perimeter of the biopsy cavity to be marked to avoid exposing the cavity, in the case of a “dirty” margin where re-excision may be necessary, to remaining cancerous cells as the tissue begins to re-grow into the cavity. Such a shell (142) can be radiopaque and/or echogenic in situ, or it may be augmented with an additional coating of an echogenic and/or radiopaque material. The shell (142) can also be made to be palpable so that the physician or patient can be further aided in determining the location and integrity of the implanted inventive device.

Shell (142) may be designed to have a varying bioabsorption rate depending upon the thickness and type of material making up the shell (142). In general, the shell can be designed to degrade over a period ranging from as long as a year or more to as little as several months, weeks, or even days. It is preferred that such a bioabsorbable shell be designed to degrade between two and six months; especially preferred is three months. In the design of FIG. 1F, interior (144) of body (112) may be a cross-linked, collagenous material that is readily absorbed by the human or mammalian body once the shell (142) degrades. Interior (144) may be filled with a solid or gelatinous material that can be optionally made radiopaque by any number of techniques herein described.

As will be described in additional detail with respect to FIGS. 2A-2F, marker (150) in the device shown in FIG. 1F may be permanently radiopaque or echogenic, or it also may be bioabsorbable and optionally coated with a radiopaque and/or echogenic coating that similarly degrades over a predetermined period of time. It is more important from a clinical standpoint that the marker remain detectable either permanently or, if the patient is uncomfortable with such a scenario, for at least a period of about one to five years so that the physician may follow up with the patient to ensure the health of the tissue in the vicinity of the biopsy cavity. Especially preferable is a marker whose radiopacity or echogenicity lasts from between about one and three years.

Each of the bodies depicted in FIGS. 1A-1E may be made from a wide variety of solid, liquid, aerosol-spray, spongy, or expanding gelatinous bioabsorbable materials such as collagen, cross-linked collagen, regenerated cellulose, synthetic polymers, synthetic proteins, and combinations thereof. Also contemplated is a body made from a fibrin-collagen matrix, which further prevent unnecessary bleeding, and minimizes the possibility of hematoma formation.

Examples of synthetic bioabsorbable polymers that may be used for the body of the device are polyglycolide, or polyglycolic acid (PGA), polylactide, or polylactic acid (PLA), poly ε-caprolactone, polydioxanone, polylactide-co-glycolide, e.g., block or random copolymers of PGA and PLA, and other commercial bioabsorbable medical polymers. Preferred is spongy collagen or cellulose. As mentioned above, materials such as hemostatic and pain-killing substances may be incorporated into the body and marker of the cavity marking device. The use of hemostasis-promoting agents provides an obvious benefit as the device not only marks the site of the biopsy cavity but it aids in healing the cavity as well. Furthermore, such agents help to avoid hematomas. These hemostatic agents may include AVITENE Microfibrillar Collagen Hemostat, ACTIFOAM collagen sponge, sold by C. R. Bard Inc., GELFOAM, manufactured by Upjohn Company, SURGICEL Fibrillar from Ethicon Endosurgeries, Inc., and TISSEEL VH, a surgical fibrin sealant sold by Baxter Healthcare Corp. The device may also be made to emit therapeutic radiation to preferentially treat any suspect tissue remaining in or around the margin of the biopsy cavity. It is envisioned that the marker would be the best vehicle for dispensing such local radiation treatment or similar therapy. Also, the body itself may be adapted to have radiopaque, echogenic, or other characteristics that allow the body to be located by non-invasive technique without the use of a marker. Such characteristics permit the possibility of locating and substantially identifying the cavity periphery after deployment but prior to absorption of the device. Furthermore, an echogenic coating may be placed over the radiopaque marker to increase the accuracy of locating the marker during ultrasound imaging.

FIGS. 2A-2F illustrate various forms of the marker (110). The marker (110) may be in the form of a sphere (150) (FIG. 2A), a hollow sphere (152) (FIG. 2B), a ring or band (154) (FIG. 2C), a barb (156) (FIG. 2D), or a flexible suture or flexible wire (158) (FIG. 2E). Also, the marker may have a distinguishing mark (170) (FIG. 2F). As mentioned above, the barb (156) is illustrated in FIG. 2D as having a “V” shape. The barb (156) is intended to distinguish the marker from calcifications when viewed under non-invasive imaging techniques. As such, the barb (156) is not limited to the “V” shape; rather it has a shape that is easily distinguishable from a spherical or oval calcification.

The hollow sphere (152) marker design of FIG. 2B is more susceptible to detection by ultrasound than the solid sphere (150) of FIG. 2A. Such sphere markers (150, 152) can be a silicon bead, for instance. In the case of a ring or band marker (154) seen in FIG. 2C, the body of the cavity marking device may be woven or placed through the band/ring (154). The marker may also be a wire or suture (158) as shown in FIG. 2E and as discussed in greater detail below. In such a case, the marker (158) may be affixed to the exterior perimeter of the body by an adhesive or woven through the body. Another improvement may arise from the marker wire or suture (158) being configured in a particular pattern within the body of the device, e.g., wrapping around the body in a helical manner. Further, the suture or wire marker can be deployed as a loosely wound ball or mass of suture that when deployed into a tissue cavity, fills the cavity. The suture or wire can also looped through the band/ring (154); in this configuration (not shown), the suture or wire can also act as the body of the inventive device. The suture or wire (158) is flexible to facilitate the expansion of the body while in the cavity. In the case of the marker (150) shown in FIG. 2F, distinguishing or identifying mark (170) can be in the form of simple marks as shown, or it may be one or more numbers, letters, symbols, or combinations thereof. These marks (170) are preferably located in more than one location on the marker (150) so that the marker may be readily and simply identified from multiple orientations under a variety of viewing conditions. Such a mark (170) can be used to identify the patient and her condition, provide information about the marker and body of the tissue cavity marking device, provide information about the circumstances and date of the implantation, who performed the procedure, where the procedure was performed, etc. In the case of multiple biopsy sites, this distinguishing mark (170) permits one to differentiate and identify each different site. The mark (170) may be applied via any number of techniques such as physical inscription, physical or plasma deposition, casting, adhesives, etc. The mark (170) may also be an electronic chip providing any necessary information in electronic form that can be remotely detected by appropriate means.

An important aspect of the invention is that the marker may be radiopaque, echogenic, mammographic, etc., so that it can be located by non-invasive techniques. Such a feature can be an inherent property of the material used for the marker. Alternatively, a coating or the like can be added to the marker to render the marker detectable or to enhance its detectability. For radiopacity, the marker may be made of a non-bioabsorbable radiopaque material such as platinum, platinum-iridium, platinum-nickel, platinum-tungsten, gold, silver, rhodium, tungsten, tantalum, titanium, nickel, nickel-titanium, their alloys, and stainless steel or any combination of these metals. By mammographic we mean that the component described is visible under radiography or any other traditional or advanced mammography technique in which breast tissue is imaged.

As previously discussed, the marker can alternatively be made of or coated with a bioabsorbable material. In this case, the marker can, for instance, be made from an additive-loaded polymer. The additive is a radiopaque, echogenic, or other type of substance that allows for the non-invasive detection of the marker. In the case of radiopaque additives, elements such as barium- and bismuth-containing compounds, as well as particulate radio-opaque fillers, e.g., powdered tantalum or tungsten, barium carbonate, bismuth oxide, barium sulfate, etc., are preferred. To aid in detection by ultrasound or similar imaging techniques, any component of the device may be combined with an echogenic coating. One such coating is ECHO-COAT from STS Biopolymers. Such coatings contain echogenic features which provide the coated item with an acoustically reflective interface and a large acoustical impedance differential. As stated above, an echogenic coating may be placed over a radiopaque marker to increase the accuracy of locating the marker during ultrasound imaging.

Note that the radiopacity and echogenicity described herein for the marker and the body are not mutually exclusive. It is within the scope of the present invention for the marker or the body to be radiopaque but not necessarily echogenic, and for the marker or the body to be echogenic but not necessarily radiopaque. It is also within the scope of the invention that the marker and the body are both capable of being simultaneously radiopaque and echogenic. For example, if a platinum ring marker were coated with an echogenic coating, such a marker would be readily visible under x-ray and ultrasonic energy. A similar configuration can be envisioned for the body or for a body coating.

The marker is preferably large enough to be readily visible to the physician under x-ray or ultrasonic viewing, for example, yet be small enough to be able to be percutaneously deployed into the biopsy cavity and to not cause any difficulties with the patient. More specifically, the marker will not be large enough to be palpable or felt by the patient.

Another useful version of the invention is shown in FIG. 3A. In this device, there are several cylindrical body members (302); however, there is no limit to the number of body members that can make up the device. The body members (302) can individually or together take on a variety of sizes and shapes as discussed above depending on the characteristics of the biopsy cavity to be filled. The body members (302) may uniformly or in combination be made of one or more materials suitable for use in a biopsy cavity as previously described.

Here one or more markers may traverse two or more body member segments through the interior of the body members (302) as shown in FIG. 3A. Here, markers (318) are located substantially parallel to the longitudinal axis (320) of each right cylindrical body member (302) in their interior, connecting each body member (302) while marking their geometric center as between the markers. Such a marker (318) may be used in conjunction with the other markers as described above and may also be accompanied by one or more additional markers arranged randomly or in a predetermined pattern to variously mark particular sections of the device. Alternately, such a marker may, singly or in combination with other markers, be affixed on or near the surface of the sponge so as to mark the perimeter of the body member (302).

Of course, when used in conjunction with other connecting markers, marker (318) need not necessarily connect each body member; it may be used solely to indicate the orientation or location of each individual sponge or the entire device, depending on the material, geometry, size, orientation, etc., of marker (318). When not used in this connecting function, therefore, marker (318) need not traverse two body members (302) as shown in FIG. 3A.

A variety of patterns can be envisioned in which all or part of the perimeter of the sponge body is marked. For example, a marker (322) can wrap around the body (302) in a helical pattern (FIG. 3B), or it can be used in conjunction with other markers (324) in a pattern parallel to the longitudinal axis (320) of the body (FIG. 3C). Another useful perimeter marking pattern is shown in FIG. 3D, where marker segments (326) are affixed at or near the surface of the circular bases of the cylindrical body (302) in a cross pattern, indicating the ends of the sponge and their center. As seen form the figures, the markers(s) may, but do not necessarily, have some texture. Any marker pattern, internal or external to the body, is within the scope of the present invention. For the applications depicted in FIGS. 3A-3D, it is preferred that the marker be a radiopaque or echogenic wire or suture.

Another possible configuration is obtained by combining the suture or wire markers (158) in a body with any other type marker (150, 152, 154, or 156) or vice versa. For example, in FIG. 3B, a spherical marker (150) may be placed in the center of the cylindrical body (302.) Therefore, the cylindrical body (302) would contain the suture or wire marker (322) wrapped helically adjacent to the outer perimeter, and a marker (150) would be placed in the center of the cylindrical body (302). Such a combination may be obtained with any of the body and marker configurations as defined above.

Also, turning back to the marking device (100) in FIG. 1A or the marking device (100) of FIG. 1B, the markers (150 or 154) may be substituted with one or more suture or wire markers (158) preferably, but not exclusively, extending through the center and pointing radially away from the center. This configuration allows marking of the cavity perimeter and establishing of the directionality of the cavity itself.

Any of the previously-described additional features of the inventive device, such as presence of pain-killing or hemostatic drugs, the capacity for the marker to emit therapeutic radiation for the treatment of various cancers, the various materials that may make up the marker and body, as well as their size, shape, orientation, geometry, etc., may be incorporated into the device described above in conjunction with FIGS. 3A-3D.

Turning now to FIGS. 4A-4C, a method of delivering the inventive device of FIG. 1A is shown. FIG. 4A details the marking device (402) just prior to delivery into a tissue cavity (404) of human or other mammalian tissue, preferably breast tissue (406). As can be seen, the step illustrated in FIG. 4A shows a suitable tubular percutaneous access device (400), such as a catheter or delivery tube, with a distal end (408) disposed in the interior of cavity (404). As previously described, the marking device (402) may be delivered percutaneously through the same access device (400) used to perform the biopsy in which tissue was removed from cavity (404). Although this is not necessary, it is less traumatic to the patient and allows more precise placement of the marking device (402) before fluid begins to fill the cavity (400).

In FIG. 4B, marking device (402) is shown being pushed out of the distal end (408) of access device (400) by a pusher (412) and resiliently expanding to substantially fill the tissue cavity (404).

Finally, in FIG. 4C, access device (400) is withdrawn from the breast tissue, leaving marking device (402) deployed to substantially fill the entire cavity (404) with radiopaque or echogenic marker (410) suspended in the geometric center of the marking device (402) and the cavity (404). As mentioned above, the marking device (402) may be sized to be larger than the cavity (404) thus providing a significant resistance against the walls of the cavity (404).

FIGS. 4D-4F show a method of delivering the marking device (402) into a tissue cavity (404) by a plunger (414) that is capable of both advancing the marking device (402) and delivering a bio-compatible fluid (416). The “bio-compatible fluid” is a liquid, solution, or suspension that may contain inorganic or organic material. The fluid (416) is preferably a saline solution, but may be water or contain adjuvants such as medications to prevent infection, reduce pain, or the like. Obviously, the fluid (416) is intended to be a type that does no harm to the body.

FIG. 4D details the marking device (402) prior to delivery into the tissue cavity (404). In FIG. 4E, a plunger (414) pushes the marking device (402) out of the access device (400). Upon exiting the access device (400) the marking device (402) begins resiliently expanding to substantially fill the cavity (404).

FIG. 4F shows the plunger (414) delivering the bio-compatible fluid (416) into the cavity (404). The fluid (416) aids the marking device (402) in expanding to substantially fill the cavity (404). In this example, the bio-compatible fluid (416) is delivered subsequent to the placement of the marking device (402) in the cavity (404). The marking device (402) may also be soaked with fluid (416) prior to placement in the cavity (404).

FIGS. 4G-4I show another method of delivering the marking device (402) into the tissue cavity (404) by using the bio-compatible fluid (416) as the force to deliver the marking device (402) into the tissue cavity (404).

FIG. 4G details the marking device (402) prior to delivery into the tissue cavity (404). FIG. 4H illustrates flow of the bio-compatible fluid (416) in the access device (400), the fluid (416) flow then pushes the marking device (402) out of the access device (400).

FIG. 4I shows the delivery device (400) continuing to deliver the bio-compatible fluid (416) into the cavity (404). The fluid (416) aids the marking device (402) in expanding to substantially fill the cavity (404). In this example, the bio-compatible fluid (416) is delivered after the placement of the marking device (402) in the cavity (404) although the invention is not limited to the continued delivery of the fluid (416).

FIG. 4J-4K shows the method of delivering the body (418) of the cavity marking device directly into the cavity (404) prior to the placement of the marker (410) in the device (402).

FIG. 4J shows the deposit of the body material (418) into the cavity (404). In this case the body material (418) may be a gel type material as described above. FIG. 4K details the filling of the cavity (404) with the body material (418). At this point, the delivery device (not shown in FIG. 4K) may be withdrawn. FIG. 4L details the placement of the marker (410) into the body material (418).

FIGS. 5A-5E show yet another version of the invention in which a marker, preferably consisting of a radiopaque or echogenic wire, is deployed alone into a tissue cavity without the use of any body. In this device, the marker can be made of a shape memory material, such as a nickel-titanium alloy, which when deployed into the biopsy cavity, assumes a predetermined configuration to substantially fill the cavity, mark the cavity location and margin, and indicate the orientation of the marker inside the cavity.

In FIG. 5A, marker (500) is a three-dimensional sphere consisting of two rings (502), (504) pivotally connected at ends (506), (508) so to assume a spherical shape. Such a marker can be made of a shape memory metal so that when it is placed in a deployment tube (510) shown in FIG. 5B, marker (500) assumes a collapsed profile suitable for deployment through tube (510) by pusher (512). Upon exiting into the tissue cavity (not shown), marker (500) assumes the spherical shape of FIG. 5A to fill the cavity. The marker (500) may also be shaped into any similar shape such as an ellipsoidal shape.

Turning now to FIG. 5C, a marker (520) in the form of a wire cylinder is shown. Again, this device is structurally configured to assume the depicted cylindrical configuration when deployed in the tissue cavity, but may be (as described above) “collapsed” into a deployment tube for percutaneous delivery. This device is especially suitable for marking the distal and proximal ends of the tissue cavity due to its asymmetrical shape.

FIG. 5D shows a shape memory marker (530) in the form of a helical coil deployed into tissue cavity (532). Again, as seen in FIG. 5E, such a marker (530) may be deployed through delivery tube (510) by pusher (512) in a substantially elongated, straightened form, only to substantially assume the shape of the cavity (532) as shown in FIG. 5D. Any suitable delivery device or pusher (512) capable of deploying marker (530) into cavity (532) is within the scope of this invention.

Each of the markers shown in FIGS. 5A-5E is preferably a shape memory material coated or supplemented with a radiopacity-enhancing material, such as gold, platinum, or any other radiopaque material herein discussed. The markers may singly, or in combination with being radiopaque, be echogenic or be made echogenic by any of the materials or methods herein described.

From the foregoing, it is understood that the invention provides an improved subcutaneous cavity marking device and method. While the above descriptions have described the invention for use in the marking of biopsy cavities, the invention is not limited to such. One such application is evident as the invention may further be used as a lumpectomy site marker. In this use, the cavity marking device yield an improved benefit by marking the perimeter of the lumpectomy cavity.

The invention herein has been described by examples and a particularly desired way of practicing the invention has been described. However, the invention as claimed herein is not limited to that specific description in any manner. Equivalence to the description as hereinafter claimed is considered to be within the scope of protection of this patent.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2740405 *Aug 4, 1948Apr 3, 1956Howard C RiordanSurgical sponge with radioactive tracer
US2972350 *Dec 30, 1957Feb 21, 1961Johnson & JohnsonSurgical sponge
US4087791 *Sep 9, 1974May 2, 1978Minnesota Mining And Manufacturing CompanyElectromagnetically responsive device and system for detecting the same
US4197846 *Jun 25, 1975Apr 15, 1980Louis BucaloMethod for structure for situating in a living body agents for treating the body
US4202349 *Apr 24, 1978May 13, 1980Jones James WRadiopaque vessel markers
US4320201 *Sep 2, 1980Mar 16, 1982Firma Carl FreudenbergMethod for making collagen sponge for medical and cosmetic uses
US4636208 *Feb 7, 1985Jan 13, 1987Ewald RathSurgical sponge
US4639253 *Nov 25, 1985Jan 27, 1987Johnson & Johnson Products, Inc.Nonwoven surgical sponge with X-ray detectable element
US4645499 *Sep 24, 1985Feb 24, 1987The Kendall CompanySurgical sponge
US4718897 *Sep 18, 1985Jan 12, 1988ChicopeeNonwoven surgical sponge with x-ray detectable element
US4735210 *Jul 5, 1985Apr 5, 1988Immunomedics, Inc.Lymphographic and organ imaging method and kit
US4735796 *May 7, 1985Apr 5, 1988Gordon Robert TFerromagnetic, diamagnetic or paramagnetic particles useful in the diagnosis and treatment of disease
US4744364 *Feb 17, 1987May 17, 1988Intravascular Surgical Instruments, Inc.Device for sealing percutaneous puncture in a vessel
US4795463 *Apr 23, 1987Jan 3, 1989Baylor College Of MedicineLabeled breast prosthesis and methods for detecting and predicting rupture of the prosthesis
US4803075 *Jun 25, 1986Feb 7, 1989Collagen CorporationInjectable implant composition having improved intrudability
US4812120 *Nov 2, 1987Mar 14, 1989Flanagan Dennis FImplantable percutaneous device
US4832686 *Jun 24, 1986May 23, 1989Anderson Mark EMethod for administering interleukin-2
US4909250 *Nov 14, 1988Mar 20, 1990Smith Joseph RImplant system for animal identification
US4917694 *May 20, 1986Apr 17, 1990The Kendall CompanySurgical sponge
US5002548 *Sep 23, 1988Mar 26, 1991Bio Medic Data Systems, Inc.Animal marker implanting system
US5018530 *Jun 15, 1989May 28, 1991Research Corporation Technologies, Inc.Helical-tipped lesion localization needle device and method of using the same
US5085629 *Sep 27, 1989Feb 4, 1992Medical Engineering CorporationBiodegradable stent
US5101827 *Mar 11, 1988Apr 7, 1992Immunomedics, Inc.Lymphographic and organ imaging method and kit
US5108421 *Oct 1, 1990Apr 28, 1992Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5111828 *Sep 18, 1990May 12, 1992Peb Biopsy CorporationDevice for percutaneous excisional breast biopsy
US5112325 *Feb 17, 1989May 12, 1992Deroyal Industries, Inc.Surgical sponge with plurality of radiopaque monofilaments
US5114703 *May 29, 1990May 19, 1992Alliance Pharmaceutical Corp.Percutaneous lymphography using particulate fluorocarbon emulsions
US5120802 *Dec 17, 1987Jun 9, 1992Allied-Signal Inc.Polycarbonate-based block copolymers and devices
US5183463 *Oct 29, 1990Feb 2, 1993Elie DebbasApparatus for locating a breast mass
US5192300 *Jan 28, 1992Mar 9, 1993Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5195540 *Aug 12, 1991Mar 23, 1993Samuel ShiberLesion marking process
US5195988 *Nov 4, 1991Mar 23, 1993Haaga John RMedical needle with removable sheath
US5197482 *Apr 2, 1991Mar 30, 1993Research Corporation Technologies, Inc.Helical-tipped lesion localization needle device and method of using the same
US5197484 *May 8, 1992Mar 30, 1993Peb Biopsy CorporationMethod and device for precutaneous excisional breast biopsy
US5201314 *Jan 21, 1992Apr 13, 1993Vance Products IncorporatedEchogenic devices, material and method
US5204382 *Jul 27, 1992Apr 20, 1993Collagen CorporationInjectable ceramic compositions and methods for their preparation and use
US5207705 *Dec 8, 1989May 4, 1993Brigham And Women's HospitalProsthesis of foam polyurethane and collagen and uses thereof
US5221269 *Oct 15, 1990Jun 22, 1993Cook IncorporatedGuide for localizing a nonpalpable breast lesion
US5275616 *Dec 18, 1992Jan 4, 1994Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5300120 *Aug 24, 1992Apr 5, 1994Lipomatrix IncorporatedImplant with electrical transponder marker
US5301682 *Sep 22, 1992Apr 12, 1994Elie DebbasMethod for locating a breast mass
US5380646 *Oct 19, 1992Jan 10, 1995Temple University Of The Commonwealth System Of Higher EducationThrombus detection using radiolabelled disintegrins
US5382251 *Feb 14, 1992Jan 17, 1995Biomet, Inc.Plug pulling method
US5388588 *May 4, 1993Feb 14, 1995Nabai; HosseinBiopsy wound closure device and method
US5394886 *Sep 20, 1993Mar 7, 1995Nabai; HosseinSkin biopsy plug and method
US5403306 *Jun 22, 1993Apr 4, 1995Vanderbilt UniversityLaser surgery method
US5405402 *Apr 14, 1993Apr 11, 1995Intermedics Orthopedics, Inc.Implantable prosthesis with radiographic marker
US5409004 *Apr 6, 1994Apr 25, 1995Cook IncorporatedLocalization device with radiopaque markings
US5482040 *Apr 14, 1994Jan 9, 1996The Ohio State University Research FoundationBiostaging of adenocarcinomas utilizing radiolabeled tumor-associated glycoprotein antibodies
US5487392 *Nov 15, 1993Jan 30, 1996Haaga; John R.Biopxy system with hemostatic insert
US5496536 *Apr 25, 1995Mar 5, 1996Wolf; GeraldPercutaneous lymphography
US5507813 *Dec 9, 1993Apr 16, 1996Osteotech, Inc.Shaped materials derived from elongate bone particles
US5511566 *Jun 2, 1994Apr 30, 1996Hauni Maschinenbau AgDistributor for particles of tobacco and the like
US5514379 *Aug 7, 1992May 7, 1996The General Hospital CorporationHydrogel compositions and methods of use
US5595177 *Jun 3, 1994Jan 21, 1997Harbor-Ucla Research And Education Institute, Inc.Scintigraphy guided stereotaxic localizations apparatus for breast carcinomas
US5626611 *Feb 10, 1994May 6, 1997United States Surgical CorporationComposite bioabsorbable materials and surgical articles made therefrom
US5628744 *Dec 21, 1993May 13, 1997LaserscopeTreatment beam handpiece
US5707393 *Feb 21, 1996Jan 13, 1998Kensey Nash CorporationHemostatic puncture closure system and method of use
US5709676 *Nov 27, 1995Jan 20, 1998Alt; EckhardSynergistic treatment of stenosed blood vessels using shock waves and dissolving medication
US5714551 *Jun 14, 1996Feb 3, 1998Ethicon, Inc.High strength, melt processable, lactide-rich, poly (lactide-co-p-dioxanone) copolymers
US5716404 *Dec 16, 1994Feb 10, 1998Massachusetts Institute Of TechnologyBreast tissue engineering
US5716407 *Jan 20, 1995Feb 10, 1998Lipomatrix, IncorporatedMethod of rendering identifiable a living tissue implant using an electrical transponder marker
US5718237 *Mar 30, 1995Feb 17, 1998Haaga; John R.Biopsy needle
US5720772 *Jul 27, 1995Feb 24, 1998Esc Medical Systems Ltd.Method and apparatus for therapeutic electromagnetic treatment
US5725517 *Sep 10, 1996Mar 10, 1998Deroyal Industries, Inc.Absorbent woven article including radiopaque element woven therein and anchored at the ends thereof
US5725578 *Jun 5, 1995Mar 10, 1998Lipomatrix IncoporatedTemporary implant with transponder and methods for locating and indentifying
US5732704 *Oct 13, 1995Mar 31, 1998Neoprobe CorporationRadiation based method locating and differentiating sentinel nodes
US5752974 *Dec 18, 1995May 19, 1998Collagen CorporationInjectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5855609 *Jan 20, 1995Jan 5, 1999Lipomatrix, Incorporated (Bvi)Medical information transponder implant and tracking system
US5856367 *Dec 19, 1995Jan 5, 1999Minnesota Mining And Manufacturing CompanyBiocompatible porous matrix of bioabsorbable material
US5857463 *Oct 13, 1995Jan 12, 1999Neoprobe CorporationRemotely controlled apparatus and system for tracking and locating a source of photoemissions
US5868778 *May 5, 1997Feb 9, 1999Vascular Solutions, Inc.Vascular sealing apparatus and method
US5869080 *May 28, 1996Feb 9, 1999Johnson & Johnson Medical, Inc.Absorbable implant materials having controlled porosity
US5871501 *Jan 12, 1998Feb 16, 1999Datascope Investment Corp.Guide wire with releasable barb anchor
US5871535 *Apr 27, 1995Feb 16, 1999Medtronic, Inc.Intralumenal drug eluting prosthesis
US5873904 *Feb 24, 1997Feb 23, 1999Cook IncorporatedSilver implantable medical device
US5879357 *Sep 10, 1997Mar 9, 1999United States Surgical CorporationApparatus for marking tissue location
US5895395 *Jul 17, 1997Apr 20, 1999Yeung; Teresa T.Partial to full thickness suture device & method for endoscopic surgeries
US5895640 *Oct 31, 1996Apr 20, 1999Harbor-Ucla Research And Education InstituteNuclear medicine techniques for detecting carcinoma in the dense breast
US5899965 *Apr 11, 1997May 4, 1999Matsushita Electric Industrial Co., Ltd.Parts identifying method
US6030333 *Oct 24, 1997Feb 29, 2000Radiomed CorporationImplantable radiotherapy device
US6056700 *Oct 13, 1998May 2, 2000Emx, Inc.Biopsy marker assembly and method of use
US6057122 *May 5, 1997May 2, 2000Abbott LaboratoriesAntiangiogenic peptides polynucleotides encoding same and methods for inhibiting angiogenesis
US6066325 *Feb 27, 1998May 23, 2000Fusion Medical Technologies, Inc.Fragmented polymeric compositions and methods for their use
US6068325 *Sep 18, 1996May 30, 2000Hughes; Charles A.Golf club cover for golf carts
US6068857 *Aug 25, 1994May 30, 2000Schering AktiengesellchaftMicroparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production
US6179860 *Aug 18, 1999Jan 30, 2001Artemis Medical, Inc.Target tissue localization device and method
US6181960 *Jan 15, 1999Jan 30, 2001University Of Virginia Patent FoundationBiopsy marker device
US6183497 *Jun 17, 1999Feb 6, 2001Sub-Q, Inc.Absorbable sponge with contrasting agent
US6200328 *Jun 16, 1999Mar 13, 2001Sub Q, IncorporatedDevice and method for facilitating hemostasis of a biopsy tract
US6214045 *Oct 9, 1998Apr 10, 2001John D. Corbitt, Jr.Bioabsorbable breast implant
US6228055 *May 19, 1997May 8, 2001Ethicon Endo-Surgery, Inc.Devices for marking and defining particular locations in body tissue
US6231834 *Dec 2, 1997May 15, 2001Imarx Pharmaceutical Corp.Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US6234177 *Aug 12, 1999May 22, 2001Thomas BarschApparatus and method for deploying an expandable biopsy marker
US6340367 *Aug 1, 1997Jan 22, 2002Boston Scientific Scimed, Inc.Radiopaque markers and methods of using the same
US6347241 *Jun 30, 1999Feb 12, 2002Senorx, Inc.Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6356782 *Apr 2, 1999Mar 12, 2002Vivant Medical, Inc.Subcutaneous cavity marking device and method
US6371904 *Jul 2, 1999Apr 16, 2002Vivant Medical, Inc.Subcutaneous cavity marking device and method
US20010021873 *Dec 26, 2000Sep 13, 2001Stinson Jonathan S.Bioabsorbable marker having radiopaque constituents and method of using same
US20010041936 *Apr 10, 2001Nov 15, 2001Corbitt John D.Bioabsorbable breast implant
US20020058883 *Dec 20, 2001May 16, 2002Artemis Medical, Inc.Biopsy localization method and device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8219182Jul 10, 2012Senorx, Inc.Cavity-filling biopsy site markers
US8288745 *Apr 28, 2008Oct 16, 2012Senorx, Inc.Method of utilizing an implant for targeting external beam radiation
US8361082Mar 1, 2011Jan 29, 2013Senorx, Inc.Marker delivery device with releasable plug
US8541764Aug 6, 2012Sep 24, 2013Senorx, Inc.Method of utilizing an implant for targeting external beam radiation
US8544162 *Apr 19, 2010Oct 1, 2013Breast-Med, Inc.Tissue marker for multimodality radiographic imaging
US8626270Jun 13, 2012Jan 7, 2014Senorx, Inc.Cavity-filling biopsy site markers
US8668737Mar 21, 2012Mar 11, 2014Senorx, Inc.Tissue marking implant
US8680498Sep 9, 2013Mar 25, 2014Senorx, Inc.Method of utilizing an implant in a human breast
US8965486Dec 6, 2013Feb 24, 2015Senorx, Inc.Cavity filling biopsy site markers
US8966735 *Sep 10, 2013Mar 3, 2015Breast-Med, Inc.Tissue marker for multimodality radiographic imaging
US9039763Jan 28, 2014May 26, 2015Senorx, Inc.Tissue marking implant
US9042965Mar 6, 2013May 26, 2015C. R. Bard, Inc.Biopsy marker with in situ-generated imaging properties
US9044162Jan 25, 2013Jun 2, 2015Senorx, Inc.Marker delivery device with releasable plug
US20090216115 *Jul 25, 2005Aug 27, 2009Calypso Medical Technologies, Inc.Anchoring wirless markers within a human body
US20100287887 *Apr 19, 2010Nov 18, 2010Breast-Med, Inc.Tissue marker for multimodality radiographic imaging
US20150173848 *Mar 2, 2015Jun 25, 2015Breast-Med, Inc.Imaging fiducial markers and methods
WO2006097331A2Mar 17, 2006Sep 21, 2006Bkh Technotransfer GmbhMarker for human or animal tissues, in particular for soft tissues
WO2009134314A1 *Apr 14, 2009Nov 5, 2009Senorx, Inc.Assembly with hemostatic and radiographically detectable pellets
WO2009134340A1 *Apr 24, 2009Nov 5, 2009Corbitt John D JrSystem for utilizing an implant for targeting external beam radiation
Classifications
U.S. Classification600/431
International ClassificationA61B19/00, A61K49/00
Cooperative ClassificationA61K49/006, A61B2019/5408, A61K49/222, A61B2019/5487, A61B8/481, A61B19/54
European ClassificationA61B19/54, A61K49/00P8, A61K49/22P
Legal Events
DateCodeEventDescription
Jul 12, 2007ASAssignment
Owner name: ETHICON ENDO-SURGERY, INC., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVANT MEDICAL, INC.;REEL/FRAME:019661/0912
Effective date: 20031003
Owner name: ETHICON ENDO-SURGERY, INC.,OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVANT MEDICAL, INC.;REEL/FRAME:019661/0884
Effective date: 20031006
Jul 9, 2010ASAssignment
Owner name: DEVICOR MEDICAL PRODUCTS, INC., WISCONSIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON ENDO-SURGERY, INC.;REEL/FRAME:024656/0606
Effective date: 20100709
Jul 13, 2010ASAssignment
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA
Free format text: SECURITY AGREEMENT;ASSIGNOR:DEVICOR MEDICAL PRODUCTS, INC.;REEL/FRAME:024672/0088
Effective date: 20100709