US20050070131A1 - Electrical circuit assembly with micro-socket - Google Patents

Electrical circuit assembly with micro-socket Download PDF

Info

Publication number
US20050070131A1
US20050070131A1 US10/673,652 US67365203A US2005070131A1 US 20050070131 A1 US20050070131 A1 US 20050070131A1 US 67365203 A US67365203 A US 67365203A US 2005070131 A1 US2005070131 A1 US 2005070131A1
Authority
US
United States
Prior art keywords
substrate
circuit device
assembly
connecting element
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/673,652
Other versions
US6881074B1 (en
Inventor
Allen McLenaghan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alent Inc
Original Assignee
Cookson Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cookson Electronics Inc filed Critical Cookson Electronics Inc
Priority to US10/673,652 priority Critical patent/US6881074B1/en
Assigned to COOKSON ELECTRONICS, INC. reassignment COOKSON ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCLENAGHAN, ALLEN JAMES
Priority to PCT/US2004/031754 priority patent/WO2005034294A1/en
Publication of US20050070131A1 publication Critical patent/US20050070131A1/en
Application granted granted Critical
Publication of US6881074B1 publication Critical patent/US6881074B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2435Contacts for co-operating by abutting resilient; resiliently-mounted with opposite contact points, e.g. C beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/20Pins, blades, or sockets shaped, or provided with separate member, to retain co-operating parts together
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13011Shape comprising apertures or cavities, e.g. hollow bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83897Mechanical interlocking, e.g. anchoring, hook and loop-type fastening or the like
    • H01L2224/83898Press-fitting, i.e. pushing the parts together and fastening by friction, e.g. by compression of one part against the other
    • H01L2224/83899Press-fitting, i.e. pushing the parts together and fastening by friction, e.g. by compression of one part against the other using resilient parts in the layer connector or in the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB
    • H05K2201/10303Pin-in-hole mounted pins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10333Individual female type metallic connector elements

Definitions

  • the present invention relates generally to an electrical circuit assembly, and more particularly to an electromechanical connection between a microchip and a substrate.
  • Integrated circuit devices i.e., microchips, chips, or dies
  • a substrate e.g., chip carrier, package, or circuit board
  • DCA Direct Chip Attach
  • wire bonding uses joining materials such as metallurgical solders or polymeric conductive adhesives that are typically applied to the electrical connection pads (i.e, bond pads) of the chip.
  • the chip can then be electromechanically connected to corresponding bond pads on a substrate by applying heat to melt, or reflow the solder.
  • a protective polymer, called underfill is applied to the gap between the chip and substrate and then hardened by heating to cause the liquid to polymerize to a solid and provide further bonding between the chip and substrate.
  • wire bonding an adhesive or solder is used to attach the chip to the substrate. After chip attachment, fine metal wires are then welded to each chip electrical connection pad and to the corresponding substrate electrical connection pad by using heat or ultrasonic energy.
  • U.S. Pat. Nos. 5,439,162 and 5,665,654 both of which are incorporated by reference herein for all purposes, for additional background information relating to DCA and wire bonding chip attachment processes. While DCA and wire bonding processes typically result in a reliable chip connection, the connection is considered permanent and does not allow removal and reconnection of the chip. Also, the heat required to reflow the solder or adhesive may damage the microchip and decrease production efficiencies.
  • an assembly which allows an electromechanical connection of a integrated circuit device to a substrate at ambient temperatures; the provision of such an assembly which allows economical manufacture; the provisions of such an assembly which permits simple testing; the provision of such an assembly which allows easy rework; the provisions of such an assembly which provides a reliable electrical and mechanical connection; and the provision of such an assembly that allows easy removal and replacement of the integrated circuit device.
  • an assembly of the present invention comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate.
  • At least one electrically conductive connecting element is on one of the substrate and circuit device and at least one socket is on the other of the substrate and circuit device.
  • the socket receives the at least one connecting element and comprises at least two resilient members. The resilient members are biased against the connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
  • the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate.
  • At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device.
  • the connecting element comprises a body having a headless free end that is received in the socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the connecting element and the socket.
  • the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate.
  • At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device.
  • the connecting element comprises a body having an axial surface and at least one shoulder extending from the axial surface that is received in the socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the connecting element and the socket.
  • the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate.
  • At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device.
  • the connecting element comprises a conductive ball deposited on the circuit device or the substrate that is received in said socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the ball and the socket.
  • FIG. 1 is an elevation, partially in section, of an electrical circuit assembly of the present invention
  • FIG. 2 is an exploded perspective of an integrated circuit device and a substrate of the assembly
  • FIG. 3 is an enlarged exploded side elevation of the integrated circuit device and the substrate of the first embodiment
  • FIG. 3A is an enlarged perspective of the integrated circuit device of the first embodiment
  • FIG. 4 is an enlarged side elevation similar to FIG. 3 but showing the circuit device and the substrate in electrical and mechanical connection;
  • FIG. 5 is an enlarged exploded side elevation of an integrated circuit device and substrate of a second embodiment of the present invention.
  • FIG. 6 is an enlarged side elevation similar to FIG. 5 but showing the circuit device and the substrate in electrical and mechanical connection;
  • FIG. 7 is an enlarged exploded side elevation of an integrated circuit device and substrate of a third embodiment of the present invention.
  • FIG. 8 is an enlarged side elevation similar to FIG. 7 but showing the circuit device and the substrate in electrical and mechanical connection.
  • an electrical circuit assembly comprises an integrated circuit device 3 assembled in accordance with the present invention.
  • the integrated circuit device 3 is electrically and mechanically attached to a chip carrier substrate 7 that is mounted on a conventional ball grid array 9 having solder balls 13 for electrical connection to a printed circuit board (not shown).
  • the circuit device 3 could be directly attached to the circuit board or could be attached via other conventional connecting substrates (e.g., a pin-grid array or a land grid array).
  • the assembly 1 could include more than one integrated circuit device 3 assembled in accordance with the present invention.
  • the circuit device 3 is shown schematically but it will be understood that each device could comprise any typical integrated circuit device such as a Micro-Electronic Mechanical Systems (MEMS) device, Optoelectronic (OE) device or any other microchip that may be used in an electrical circuit assembly.
  • the chip carrier substrate 7 could comprise a printed circuit board of a finished electronic component (e.g., cell phone), a circuit board configured for testing of integrated circuit devices, or any other electronic circuit substrate that is in electrical and mechanical connection with an integrated circuit device 3 .
  • the assembly 1 has eight sets of electrical connection pads (i.e., bond pads) 17 on the integrated circuit device 3 for mating with corresponding electrical connection pads 21 on the substrate 7 .
  • Each connection pad 17 on the circuit device 3 is a metal pad fabricated on the surface of the device and arranged to contact a corresponding pad 21 on an opposing surface of the chip carrier substrate 7 .
  • Each electrical connection pad 17 , 21 is electrically connected via conventional means to the circuitry of the microchip 3 , or the substrate 7 , so that electrical signals can be received and transmitted through the pads.
  • connection pads 17 are located near the periphery of the bottom (passive) side 25 of the device 3 but it will be understood that the pads could be located on the top (active) side 27 of the chip. Also, more or less than eight pads 17 , 21 could be provided without departing from the scope of this invention. It will be understood that the total number of connection pads 17 , 21 on the chip 3 and the substrate 7 will vary depending on the specific technology and application of the integrated circuit device 3 and that hundreds or thousands of external connection terminals may exist on the microchip and the substrate 7 . Each connection pad 17 is located for attachment to a corresponding (mating) connection pad 21 on the substrate 7 so that an electrically conductive path is provided between the integrated circuit device 3 and the substrate.
  • At least one of the electrical connection pads 17 , 21 on the chip 3 and the substrate 7 includes at least one electrically conductive connecting element, generally indicated 31
  • the other of the chip and the substrate includes at least one socket, generally indicated 35 , for receiving a respective connecting element.
  • a plurality of electrically conductive connecting elements 31 are shown as being attached to the substrate 7 and a plurality of sockets 35 are shown as being attached to the integrated circuit device 3 . It will be understood that the connecting elements 31 could be attached to the circuit device 3 and the sockets 35 could be attached to the substrate 7 without departing from the scope of this invention.
  • each electrical connection pad 17 on the integrated circuit device 3 has an external surface 39 generally parallel with the device and comprises at least one, and probably more than one, socket 35 .
  • Each socket comprises at least two resilient members in the form of adjacent spring fingers, designated 43 a and 43 b , that cooperate to form the socket.
  • each socket 35 comprises two spring fingers 43 a , 43 b with one of the fingers 43 a being generally C-shaped and the adjacent spring finger 43 b being a mirror image of the C-shaped finger.
  • Each spring finger 43 a , 43 b is a curved conductive metal strip that protrudes from the flat external surface 39 of the pad 17 .
  • each spring finger 43 a , 43 b is fabricated on the electrical connection pad 17 and is made from a “stress-engineered” metal or metal alloy (e.g., molybdenum (Mo), molybdenum chromide (MoCr), or nickel zirconium (NiZr)) as disclosed in U.S. Pat. No. 6,560,861, incorporated by reference herein for all purposes. It will be understood that the spring fingers 43 a , 43 b can be manufactured and attached to the electrical connection pads in accordance with existing circuit fabrication methods such as any of the typical methods disclosed in the '861 patent or any other conventional micro-circuit fabrication method.
  • a “stress-engineered” metal or metal alloy e.g., molybdenum (Mo), molybdenum chromide (MoCr), or nickel zirconium (NiZr)
  • each electrical connection pad 21 on the substrate 7 comprises a plurality of spaced apart electrically conductive connecting elements 31 extending from a flat external surface 57 of the pad that is substantially parallel with the substrate.
  • each electrically conductive connecting element 31 comprises a pin having a base 61 attached to the electrical connection pad 21 and an elongate body 65 that is formed integral with the base.
  • the body 65 of the pin 31 has a headless free end 69 and an external surface with an axial length generally perpendicular to the flat external surface 57 of the connection pad 21 .
  • the body 65 of the pin 31 may have the shape of a solid cylinder, for example, or may have a generally tubular shape.
  • each pin 31 is made of metal (e.g., gold) and is fabricated from conventional microfabrication processes such as electroplating, sputtering, or LIGA that are well suited for making three-dimensional metal projections bonded to the flat surface 57 of the connection pad 21 .
  • the pins 31 may be fabricated as an integral part of the connection pad 21 and comprise any suitable metal or metal alloy (e.g., copper or copper alloys).
  • Each connecting element 31 could comprise a projection made from the same semi-conductor material as the substrate 7 (e.g., silicon, ceramic, or any other suitable semi-conductor material) by using conventional fabrication processes such as microelectronic photolithographic techniques (i.e., LIGA processes or surface micromachining and etching) prior to metallizing the connection pad 21 .
  • the pins 31 and connection pads 21 on the substrate may be metallized by conventional processes such as vacuum metal deposition, electroless plating, or electrolytic plating to form the electrically conductive chip connection pad that comprises the metallized pins and the flat external surface 57 surrounding the pins.
  • the integrated circuit device 3 is aligned with the substrate 7 such that the pins 31 on the substrate are received in the sockets 35 to form an electrical and mechanical connection between the device and the substrate.
  • the pin body 65 is sized to fit between the opposed spring fingers 43 a , 43 b of the socket 35 so that the resilient spring fingers flex outward to receive the pin.
  • the biasing force of the spring fingers 43 a , 43 b causes the fingers to press against the axial exterior surface of the body 65 to form a secure mechanical and electrical connection between the circuit device and the substrate.
  • the contact of the axial surface of each pin 31 and the exterior axial surface of each resilient spring finger 43 a , 43 b creates an electrical connection between the circuit device 3 and the substrate 7 .
  • the device 3 and the substrate 7 may also be held in contact by surface attractive forces (e.g., stiction forces) that are common in microchip connections.
  • Surface attractive forces common in microchip connections include friction or chemical adhesion, electrostatic forces, and capillary forces between the components of the electrical circuit assembly.
  • the spring and surface attraction forces created by the insertion of the pins 31 in the sockets 35 provide a connection force which is sufficient to hold the integrated circuit device 3 in a fixed position relative to the substrate 7 .
  • the connection force holding the integrated circuit device 3 and substrate 7 in electromechanical connection is small enough so that the device may be removed, replaced and repositioned on the substrate without the need for extensive rework of the connection pads 17 , 21 , pins 31 , or sockets 35 .
  • the device 3 may be mounted on the substrate 7 by insertion of the pins 31 into the sockets during final component assembly or during testing of the integrated circuit device 3 .
  • the integrated circuit device 3 may be attached to the substrate 7 such that the pins 31 on the substrate 7 are fully inserted into the sockets 35 on the circuit device (i.e., at least one of the free ends 69 of the pins contacts the flat surface 57 of the connection pad 21 on the substrate).
  • the circuit device 3 could be spaced away from the substrate 7 by stops (not shown) on the device that contact the substrate to limit the spacing of the chip relative to the substrate and also assure that the chip and substrate are aligned in parallel planes.
  • each pin 31 may have a length L 1 of approximately 1 millimeter and a diameter D 1 of approximately 0.1 millimeter with approximately 1 millimeter of spacing between adjacent pins.
  • each spring finger 43 a , 43 b may have a thickness T of approximately 15 microns, a length L 2 of approximately 50 microns, and a width W of approximately 5 microns.
  • Each spring finger may have a distance D 2 of approximately 0.4 millimeter between the opposed free end portions 47 a , 47 b of adjacent spring fingers 43 a , 43 b .
  • the electrically conductive connecting elements 31 and sockets 35 described above can have other dimensions and can be otherwise arranged without departing from the scope of this invention.
  • the amount of contact surface area between pins 31 and the spring fingers 43 a , 43 b is directly proportional to the electrical conductivity between chip 3 and the substrate 7 .
  • the size of the pins 31 and the spring fingers 43 a , 43 b , the spacing between the spring fingers, and the amount of curvature of the spring fingers is directly proportional to the mechanical force connecting the integrated circuit device 3 and the substrate 7 .
  • the number of pins 31 and sockets 35 and their dimensional configurations will vary based on the specific application and the amount of electrical conductivity and mechanical connection force required. For example, high current applications may require a larger number of pins 31 and sockets 35 so that a higher amount of current can be transferred between the circuit device 3 and the substrate 7 .
  • an integrated circuit assembly 1 of the present invention is created by electrically and mechanically connecting the integrated circuit device 3 to the chip carrier substrate 7 .
  • the circuit device 3 is mechanically and electrically connected to the substrate 7 by the insertion of the pins 31 on the substrate into respective sockets 35 on the circuit device.
  • the spring force of the spring fingers 43 a , 43 b biased against the pins 31 creates a secure electrical and mechanical connection between the integrated circuit device 3 and the substrate 7 .
  • the chip carrier substrate 7 receives electrical signals from a printed circuit board (not shown), or other components of an electrical circuit, that are transferred to the integrated circuit device 3 through the contact of the electrically conductive pins 31 with the electrically conductive spring fingers 43 a , 43 b of each socket 35 .
  • the assembly 1 may be configured with the pins 31 on the substrate 7 and the sockets 35 on the integrated circuit device 3 so that the electrical and mechanical connection between the device and the substrate is established through insertion of the pins into the sockets.
  • FIGS. 5 and 6 show a second embodiment of the present invention, generally designated 101 , which provides for a locking connection of the integrated circuit device 3 with the substrate 7 so that circuit device can be spaced away from the substrate a desired (selected) distance and held in a fixed position relative to the substrate.
  • This embodiment 101 is particularly useful when the circuit device 3 is an optoelectronic or optical-MEMS device that requires vertical alignment for the transfer of light between adjacent devices.
  • each electrically conductive connecting element 107 comprises a stud bump attached to the electrical connection pad 111 having a body 115 that comprises multiple protruding shoulder portions 119 and a generally conical tip 123 .
  • each stud bump 107 has six shoulder portions 119 , but it will be understood that each stud bump could have at least one or more than six shoulder portions without departing from the scope of this invention.
  • Each stud bump 107 is formed on the surface 129 of the substrate electrical connection pad 111 by conventional fabrication methods and is adhered to the connection pad by thermocompression or adhesive bonding. Reference is made to U.S. Patent No. 6 , 214 , 642 , incorporated by reference herein for all purposes, for information relating to conventional stud bumping processes.
  • Each stud bump 107 may be made from suitable conductive metal such as gold or aluminum and may include a layer of solder or conductive adhesive on the outer surface of the stud bump to enhance the connection between the stud bump and the socket 35 .
  • the layer of solder or conductive adhesive is particularly useful in enhancing the mechanical connection force between the circuit device 3 and the substrate 7 in electronic assemblies (e.g., cell phones) that require a high amount of drop shock resistance.
  • the biasing force of the spring fingers 43 a , 43 b against the stud bumps 107 provides a mechanical force holding the integrated circuit device 3 and the substrate 7 in electrical and mechanical connection.
  • the resilient members 43 a , 43 b engage the shoulders 119 of the stud bumps 107 to provide an additional latching force that supplements the biasing force of the spring fingers against the connecting elements.
  • each shoulder 119 has an axial length of approximately 0.1 millimeter to provide a total of approximately 0.6 millimeter of adjustable length of the stud bump 107 .
  • the total range of adjustable length of each stud bump 107 as well as the axial length of each shoulder 119 may vary without departing from the scope of this invention.
  • the connecting force holding the circuit device 3 in electromechanical connection with the substrate 7 is large enough to provide a secure and reliable connection and small enough to allow the circuit device to be easily removed from the substrate and reconnected.
  • FIGS. 7 and 8 illustrate a third embodiment of the present invention, generally designated 151 .
  • Each electrically conductive connecting element 155 of this embodiment comprises an electrically conductive ball affixed to the electrical connection pad 159 of the substrate 7 .
  • the integrated circuit device 3 is electrically and mechanically attached to the substrate by the engagement of each ball 155 with the spring fingers 43 a , 43 b of a respective socket 35 .
  • the resilient force of the spring fingers 43 a , 43 b creates a mechanical holding force of sufficient magnitude to allow the releasable attachment of the circuit device 3 to the substrate 7 .
  • the conductive balls 155 could comprise solder spheres made of conventional solder materials (e.g., tin, lead, copper, etc.) that are frequently used in micro-circuit interconnects and are commercially available from Cookson Electronics—Semiconductor Products of Alpharetta, Ga.
  • the electrically conductive connecting elements 155 of this embodiment could comprise balls of electrically conductive adhesive such as the type sold under the trade name POLYSOLDER® also sold by Cookson Electronics—Semiconductor Products.
  • the biasing force of the spring fingers 43 a , 43 b can be supplemented by heating the assembly to the corresponding reflow temperature of the conductive ball 155 and allowing the ball to cool so that the solder or conductive adhesive is activated to increase the strength of the connection between the sockets 35 and the connecting elements.
  • removal and reattachment of the circuit device 3 requires the additional step of heating the solder or adhesive ball 155 to its respective reflow temperature so that the circuit device can be removed from the substrate 7 .
  • the biasing force of the sockets 35 against the electrically conductive connecting elements 31 allows for secure assembly and attachment of the integrated circuit device 3 to the substrate 7 .
  • the connecting elements 31 and the sockets 35 are configured to allow the device 3 to be easily removed from a testing substrate 7 and reconnected to an electronic device substrate without extensive rework. Also, the fit between the connecting elements 31 and the sockets 35 allows easy removal, repair and replacement of an integrated circuit device 3 in a final assembly.
  • the electrically conductive connecting elements 31 could have alternative shapes and sizes that allow the biasing force of the sockets 35 against the connecting elements to hold the integrated circuit device 3 in electrical and mechanical contact with the substrate 13 or that provide a supplemental latching force that increases the mechanical holding force between the device and the substrate.

Abstract

An assembly of the present invention has an integrated circuit device electrically and mechanically connected to the substrate. At least one electrically conductive connecting element is on one of the substrate and circuit device and at least one socket is on the other of the substrate and circuit device. The socket receives the at least one connecting element and comprises at least two resilient members. The resilient members are biased against the connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates generally to an electrical circuit assembly, and more particularly to an electromechanical connection between a microchip and a substrate.
  • Integrated circuit devices (i.e., microchips, chips, or dies) are typically connected to a substrate (e.g., chip carrier, package, or circuit board) using well-know methods such as Direct Chip Attach (DCA) and wire bonding. DCA uses joining materials such as metallurgical solders or polymeric conductive adhesives that are typically applied to the electrical connection pads (i.e, bond pads) of the chip. The chip can then be electromechanically connected to corresponding bond pads on a substrate by applying heat to melt, or reflow the solder. A protective polymer, called underfill, is applied to the gap between the chip and substrate and then hardened by heating to cause the liquid to polymerize to a solid and provide further bonding between the chip and substrate. In wire bonding, an adhesive or solder is used to attach the chip to the substrate. After chip attachment, fine metal wires are then welded to each chip electrical connection pad and to the corresponding substrate electrical connection pad by using heat or ultrasonic energy. Reference may be made to U.S. Pat. Nos. 5,439,162 and 5,665,654, both of which are incorporated by reference herein for all purposes, for additional background information relating to DCA and wire bonding chip attachment processes. While DCA and wire bonding processes typically result in a reliable chip connection, the connection is considered permanent and does not allow removal and reconnection of the chip. Also, the heat required to reflow the solder or adhesive may damage the microchip and decrease production efficiencies.
  • Existing electromechanical chip connection methods that eliminate thermal bonding processes allow a conventional microchip device to be electrically and mechanically mounted on a substrate of the circuit so that the chip can be removed and reconnected without heating the chip or the substrate. These conventional electro-mechanical connection methods typically include metallized interlocking structures (i.e., hook and loop configurations, interlocking inserts, interlocking micromechanical barbs) located on the electrical connection pads of the microchip and the substrate. Reference may be made to U.S. Pat. Nos. 5,411,400, 5,774,341, and 5,903,059, which are incorporated by reference herein for all purposes, for additional background information relating to existing reconnectable electromechanical connections between an integrated circuit device and a substrate. Existing reconnectable chip interface structures have not seen widespread acceptance in the industry because of high manufacturing costs and low reliability of operation.
  • SUMMARY OF THE INVENTION
  • Among the several objects of this invention may be noted the provision of an assembly which allows an electromechanical connection of a integrated circuit device to a substrate at ambient temperatures; the provision of such an assembly which allows economical manufacture; the provisions of such an assembly which permits simple testing; the provision of such an assembly which allows easy rework; the provisions of such an assembly which provides a reliable electrical and mechanical connection; and the provision of such an assembly that allows easy removal and replacement of the integrated circuit device.
  • In general, an assembly of the present invention comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate. At least one electrically conductive connecting element is on one of the substrate and circuit device and at least one socket is on the other of the substrate and circuit device. The socket receives the at least one connecting element and comprises at least two resilient members. The resilient members are biased against the connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
  • In another aspect of the invention, the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate. At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device. The connecting element comprises a body having a headless free end that is received in the socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the connecting element and the socket.
  • In another aspect of the present invention, the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate. At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device. The connecting element comprises a body having an axial surface and at least one shoulder extending from the axial surface that is received in the socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the connecting element and the socket.
  • In yet another aspect of the present invention, the assembly comprises a substrate and an integrated circuit device electrically and mechanically connected to the substrate. At least one electrically conductive socket is on one of the substrate and the circuit device and at least one electrically conductive connecting element is on the other of the substrate and circuit device. The connecting element comprises a conductive ball deposited on the circuit device or the substrate that is received in said socket so that the circuit device and the substrate are held in electrical and mechanical connection by the contact of the ball and the socket.
  • Other objects and features will be in part apparent and in part pointed out hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an elevation, partially in section, of an electrical circuit assembly of the present invention;
  • FIG. 2 is an exploded perspective of an integrated circuit device and a substrate of the assembly;
  • FIG. 3 is an enlarged exploded side elevation of the integrated circuit device and the substrate of the first embodiment;
  • FIG. 3A is an enlarged perspective of the integrated circuit device of the first embodiment;
  • FIG. 4 is an enlarged side elevation similar to FIG. 3 but showing the circuit device and the substrate in electrical and mechanical connection;
  • FIG. 5 is an enlarged exploded side elevation of an integrated circuit device and substrate of a second embodiment of the present invention;
  • FIG. 6 is an enlarged side elevation similar to FIG. 5 but showing the circuit device and the substrate in electrical and mechanical connection;
  • FIG. 7 is an enlarged exploded side elevation of an integrated circuit device and substrate of a third embodiment of the present invention;
  • FIG. 8 is an enlarged side elevation similar to FIG. 7 but showing the circuit device and the substrate in electrical and mechanical connection.
  • Corresponding parts are designated by corresponding reference numbers throughout the drawings.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Referring now to the drawings, and more particularly to FIG. 1, an electrical circuit assembly, generally designated 1, comprises an integrated circuit device 3 assembled in accordance with the present invention. In the particular embodiment of FIG. 1, the integrated circuit device 3 is electrically and mechanically attached to a chip carrier substrate 7 that is mounted on a conventional ball grid array 9 having solder balls 13 for electrical connection to a printed circuit board (not shown). It will be understood that the circuit device 3 could be directly attached to the circuit board or could be attached via other conventional connecting substrates (e.g., a pin-grid array or a land grid array). Also, the assembly 1 could include more than one integrated circuit device 3 assembled in accordance with the present invention.
  • In the illustrated embodiments, the circuit device 3 is shown schematically but it will be understood that each device could comprise any typical integrated circuit device such as a Micro-Electronic Mechanical Systems (MEMS) device, Optoelectronic (OE) device or any other microchip that may be used in an electrical circuit assembly. The chip carrier substrate 7 could comprise a printed circuit board of a finished electronic component (e.g., cell phone), a circuit board configured for testing of integrated circuit devices, or any other electronic circuit substrate that is in electrical and mechanical connection with an integrated circuit device 3.
  • As shown in FIG. 2, the assembly 1 has eight sets of electrical connection pads (i.e., bond pads) 17 on the integrated circuit device 3 for mating with corresponding electrical connection pads 21 on the substrate 7. Each connection pad 17 on the circuit device 3 is a metal pad fabricated on the surface of the device and arranged to contact a corresponding pad 21 on an opposing surface of the chip carrier substrate 7. Each electrical connection pad 17, 21 is electrically connected via conventional means to the circuitry of the microchip 3, or the substrate 7, so that electrical signals can be received and transmitted through the pads. In the illustrated embodiment the connection pads 17 are located near the periphery of the bottom (passive) side 25 of the device 3 but it will be understood that the pads could be located on the top (active) side 27 of the chip. Also, more or less than eight pads 17, 21 could be provided without departing from the scope of this invention. It will be understood that the total number of connection pads 17, 21 on the chip 3 and the substrate 7 will vary depending on the specific technology and application of the integrated circuit device 3 and that hundreds or thousands of external connection terminals may exist on the microchip and the substrate 7. Each connection pad 17 is located for attachment to a corresponding (mating) connection pad 21 on the substrate 7 so that an electrically conductive path is provided between the integrated circuit device 3 and the substrate.
  • As will be discussed below in more detail, at least one of the electrical connection pads 17, 21 on the chip 3 and the substrate 7 includes at least one electrically conductive connecting element, generally indicated 31, and the other of the chip and the substrate includes at least one socket, generally indicated 35, for receiving a respective connecting element. In the illustrated embodiment (FIG. 3), a plurality of electrically conductive connecting elements 31 are shown as being attached to the substrate 7 and a plurality of sockets 35 are shown as being attached to the integrated circuit device 3. It will be understood that the connecting elements 31 could be attached to the circuit device 3 and the sockets 35 could be attached to the substrate 7 without departing from the scope of this invention.
  • As shown in FIG. 3, each electrical connection pad 17 on the integrated circuit device 3 has an external surface 39 generally parallel with the device and comprises at least one, and probably more than one, socket 35. Each socket comprises at least two resilient members in the form of adjacent spring fingers, designated 43 a and 43 b, that cooperate to form the socket. In the illustrated embodiment, each socket 35 comprises two spring fingers 43 a, 43 b with one of the fingers 43a being generally C-shaped and the adjacent spring finger 43 b being a mirror image of the C-shaped finger. Each spring finger 43 a, 43 b is a curved conductive metal strip that protrudes from the flat external surface 39 of the pad 17. Spring finger 43 a has an inturned free end portion 47 a that converges near the opposed free end portion 47 b of the adjacent spring member 43 b. It will be understood that the resilient spring fingers 43 a, 43 b may have other shapes and configurations without departing from the scope of this invention. In one embodiment, each spring finger 43 a, 43 b is fabricated on the electrical connection pad 17 and is made from a “stress-engineered” metal or metal alloy (e.g., molybdenum (Mo), molybdenum chromide (MoCr), or nickel zirconium (NiZr)) as disclosed in U.S. Pat. No. 6,560,861, incorporated by reference herein for all purposes. It will be understood that the spring fingers 43 a, 43 b can be manufactured and attached to the electrical connection pads in accordance with existing circuit fabrication methods such as any of the typical methods disclosed in the '861 patent or any other conventional micro-circuit fabrication method.
  • Referring again to FIG. 3, each electrical connection pad 21 on the substrate 7 comprises a plurality of spaced apart electrically conductive connecting elements 31 extending from a flat external surface 57 of the pad that is substantially parallel with the substrate. In the embodiment of FIGS. 3 and 4, each electrically conductive connecting element 31 comprises a pin having a base 61 attached to the electrical connection pad 21 and an elongate body 65 that is formed integral with the base. The body 65 of the pin 31 has a headless free end 69 and an external surface with an axial length generally perpendicular to the flat external surface 57 of the connection pad 21. The body 65 of the pin 31 may have the shape of a solid cylinder, for example, or may have a generally tubular shape. It will be understood that the electrically conductive connecting elements 31 may have other shapes and configurations without departing from the scope of this invention. In one embodiment, each pin 31 is made of metal (e.g., gold) and is fabricated from conventional microfabrication processes such as electroplating, sputtering, or LIGA that are well suited for making three-dimensional metal projections bonded to the flat surface 57 of the connection pad 21. Alternatively, the pins 31 may be fabricated as an integral part of the connection pad 21 and comprise any suitable metal or metal alloy (e.g., copper or copper alloys). Each connecting element 31 could comprise a projection made from the same semi-conductor material as the substrate 7 (e.g., silicon, ceramic, or any other suitable semi-conductor material) by using conventional fabrication processes such as microelectronic photolithographic techniques (i.e., LIGA processes or surface micromachining and etching) prior to metallizing the connection pad 21. After fabrication of the substrate 7, the pins 31 and connection pads 21 on the substrate may be metallized by conventional processes such as vacuum metal deposition, electroless plating, or electrolytic plating to form the electrically conductive chip connection pad that comprises the metallized pins and the flat external surface 57 surrounding the pins.
  • As seen in FIGS. 3 and 4, the integrated circuit device 3 is aligned with the substrate 7 such that the pins 31 on the substrate are received in the sockets 35 to form an electrical and mechanical connection between the device and the substrate. More specifically, the pin body 65 is sized to fit between the opposed spring fingers 43 a, 43 b of the socket 35 so that the resilient spring fingers flex outward to receive the pin. The biasing force of the spring fingers 43 a, 43 b causes the fingers to press against the axial exterior surface of the body 65 to form a secure mechanical and electrical connection between the circuit device and the substrate. The contact of the axial surface of each pin 31 and the exterior axial surface of each resilient spring finger 43 a, 43 b creates an electrical connection between the circuit device 3 and the substrate 7. It will be understood that the device 3 and the substrate 7 may also be held in contact by surface attractive forces (e.g., stiction forces) that are common in microchip connections. Surface attractive forces common in microchip connections include friction or chemical adhesion, electrostatic forces, and capillary forces between the components of the electrical circuit assembly. The spring and surface attraction forces created by the insertion of the pins 31 in the sockets 35 provide a connection force which is sufficient to hold the integrated circuit device 3 in a fixed position relative to the substrate 7. However, the connection force holding the integrated circuit device 3 and substrate 7 in electromechanical connection is small enough so that the device may be removed, replaced and repositioned on the substrate without the need for extensive rework of the connection pads 17, 21, pins 31, or sockets 35. Also, the resiliency of the spring fingers 43 a, 43 b allows the sockets 35 to return to their disengaged (relaxed) state shown in FIG. 3 upon removal of the electrical connecting elements 31 so that the sockets have an extended life and can be reused for subsequent electromechanical connections. The device 3 may be mounted on the substrate 7 by insertion of the pins 31 into the sockets during final component assembly or during testing of the integrated circuit device 3. In the embodiment of FIGS. 3 and 4, the integrated circuit device 3 may be attached to the substrate 7 such that the pins 31 on the substrate 7 are fully inserted into the sockets 35 on the circuit device (i.e., at least one of the free ends 69 of the pins contacts the flat surface 57 of the connection pad 21 on the substrate). Alternatively, the circuit device 3 could be spaced away from the substrate 7 by stops (not shown) on the device that contact the substrate to limit the spacing of the chip relative to the substrate and also assure that the chip and substrate are aligned in parallel planes.
  • In one exemplary embodiment illustrated in FIG. 3, each pin 31 may have a length L1 of approximately 1 millimeter and a diameter D1 of approximately 0.1 millimeter with approximately 1 millimeter of spacing between adjacent pins. As shown in FIGS. 3 and 3A, each spring finger 43 a, 43 b may have a thickness T of approximately 15 microns, a length L2 of approximately 50 microns, and a width W of approximately 5 microns. Each spring finger may have a distance D2 of approximately 0.4 millimeter between the opposed free end portions 47 a, 47 b of adjacent spring fingers 43 a, 43 b. It will be understood that the electrically conductive connecting elements 31 and sockets 35 described above can have other dimensions and can be otherwise arranged without departing from the scope of this invention. The amount of contact surface area between pins 31 and the spring fingers 43 a, 43 b is directly proportional to the electrical conductivity between chip 3 and the substrate 7. The size of the pins 31 and the spring fingers 43 a, 43 b, the spacing between the spring fingers, and the amount of curvature of the spring fingers is directly proportional to the mechanical force connecting the integrated circuit device 3 and the substrate 7. The number of pins 31 and sockets 35 and their dimensional configurations will vary based on the specific application and the amount of electrical conductivity and mechanical connection force required. For example, high current applications may require a larger number of pins 31 and sockets 35 so that a higher amount of current can be transferred between the circuit device 3 and the substrate 7.
  • In operation, an integrated circuit assembly 1 of the present invention is created by electrically and mechanically connecting the integrated circuit device 3 to the chip carrier substrate 7. The circuit device 3 is mechanically and electrically connected to the substrate 7 by the insertion of the pins 31 on the substrate into respective sockets 35 on the circuit device. The spring force of the spring fingers 43 a, 43 b biased against the pins 31 creates a secure electrical and mechanical connection between the integrated circuit device 3 and the substrate 7. The chip carrier substrate 7 receives electrical signals from a printed circuit board (not shown), or other components of an electrical circuit, that are transferred to the integrated circuit device 3 through the contact of the electrically conductive pins 31 with the electrically conductive spring fingers 43 a, 43 b of each socket 35. Alternatively, the assembly 1 may be configured with the pins 31 on the substrate 7 and the sockets 35 on the integrated circuit device 3 so that the electrical and mechanical connection between the device and the substrate is established through insertion of the pins into the sockets.
  • FIGS. 5 and 6 show a second embodiment of the present invention, generally designated 101, which provides for a locking connection of the integrated circuit device 3 with the substrate 7 so that circuit device can be spaced away from the substrate a desired (selected) distance and held in a fixed position relative to the substrate. This embodiment 101 is particularly useful when the circuit device 3 is an optoelectronic or optical-MEMS device that requires vertical alignment for the transfer of light between adjacent devices. In the embodiment of FIGS. 5 and 6, each electrically conductive connecting element 107 comprises a stud bump attached to the electrical connection pad 111 having a body 115 that comprises multiple protruding shoulder portions 119 and a generally conical tip 123. In one embodiment, each stud bump 107 has six shoulder portions 119, but it will be understood that each stud bump could have at least one or more than six shoulder portions without departing from the scope of this invention. Each stud bump 107 is formed on the surface 129 of the substrate electrical connection pad 111 by conventional fabrication methods and is adhered to the connection pad by thermocompression or adhesive bonding. Reference is made to U.S. Patent No. 6,214,642, incorporated by reference herein for all purposes, for information relating to conventional stud bumping processes. Each stud bump 107 may be made from suitable conductive metal such as gold or aluminum and may include a layer of solder or conductive adhesive on the outer surface of the stud bump to enhance the connection between the stud bump and the socket 35. The layer of solder or conductive adhesive is particularly useful in enhancing the mechanical connection force between the circuit device 3 and the substrate 7 in electronic assemblies (e.g., cell phones) that require a high amount of drop shock resistance.
  • As seen in FIG. 6, insertion of the stud bumps 107 on the substrate into respective sockets 35 on the integrated circuit device creates a mechanical and electrical connection between the circuit device 3 and the substrate 7. As in the previous embodiment, the biasing force of the spring fingers 43 a, 43 b against the stud bumps 107 provides a mechanical force holding the integrated circuit device 3 and the substrate 7 in electrical and mechanical connection. In the embodiment of FIGS. 5 and 6, the resilient members 43 a, 43 b engage the shoulders 119 of the stud bumps 107 to provide an additional latching force that supplements the biasing force of the spring fingers against the connecting elements. The position of the integrated circuit device 3 relative to the substrate 7 is fixed by the spring biasing force and by the interlocking force created by the engagement of the inhumed free end portions 47 a, 47 b of the spring fingers 43 a, 43 b with the protruding shoulders 119 of the stud bumps 107. In one exemplary embodiment, each shoulder 119 has an axial length of approximately 0.1 millimeter to provide a total of approximately 0.6 millimeter of adjustable length of the stud bump 107. The total range of adjustable length of each stud bump 107 as well as the axial length of each shoulder 119 may vary without departing from the scope of this invention. As in the previous embodiment, the connecting force holding the circuit device 3 in electromechanical connection with the substrate 7 is large enough to provide a secure and reliable connection and small enough to allow the circuit device to be easily removed from the substrate and reconnected.
  • FIGS. 7 and 8 illustrate a third embodiment of the present invention, generally designated 151. Each electrically conductive connecting element 155 of this embodiment comprises an electrically conductive ball affixed to the electrical connection pad 159 of the substrate 7. As seen in FIG. 8, the integrated circuit device 3 is electrically and mechanically attached to the substrate by the engagement of each ball 155 with the spring fingers 43 a, 43 b of a respective socket 35. As in the previous embodiments, the resilient force of the spring fingers 43 a, 43 b creates a mechanical holding force of sufficient magnitude to allow the releasable attachment of the circuit device 3 to the substrate 7. It will be understood that the conductive balls 155 could comprise solder spheres made of conventional solder materials (e.g., tin, lead, copper, etc.) that are frequently used in micro-circuit interconnects and are commercially available from Cookson Electronics—Semiconductor Products of Alpharetta, Ga. Alternatively, the electrically conductive connecting elements 155 of this embodiment could comprise balls of electrically conductive adhesive such as the type sold under the trade name POLYSOLDER® also sold by Cookson Electronics—Semiconductor Products. In this embodiment, the biasing force of the spring fingers 43 a, 43 b can be supplemented by heating the assembly to the corresponding reflow temperature of the conductive ball 155 and allowing the ball to cool so that the solder or conductive adhesive is activated to increase the strength of the connection between the sockets 35 and the connecting elements. In the embodiment of FIGS. 7 and 8, removal and reattachment of the circuit device 3 requires the additional step of heating the solder or adhesive ball 155 to its respective reflow temperature so that the circuit device can be removed from the substrate 7.
  • In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained. The biasing force of the sockets 35 against the electrically conductive connecting elements 31 allows for secure assembly and attachment of the integrated circuit device 3 to the substrate 7. The connecting elements 31 and the sockets 35 are configured to allow the device 3 to be easily removed from a testing substrate 7 and reconnected to an electronic device substrate without extensive rework. Also, the fit between the connecting elements 31 and the sockets 35 allows easy removal, repair and replacement of an integrated circuit device 3 in a final assembly.
  • As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter and dimensions contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. For example, the electrically conductive connecting elements 31 could have alternative shapes and sizes that allow the biasing force of the sockets 35 against the connecting elements to hold the integrated circuit device 3 in electrical and mechanical contact with the substrate 13 or that provide a supplemental latching force that increases the mechanical holding force between the device and the substrate.
  • When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.

Claims (44)

1. (cancelled)
2. An assembly as set forth in claim 36 wherein said at least one electrically conductive connecting element is on the substrate and at least one resilient socket is on the circuit device.
3. An assembly as set forth in claim 36 wherein said at least one electrically conductive connecting element comprises a pin projecting from a surface of the substrate or circuit device.
4. An assembly as set forth in claim 36 wherein said at least two resilient members comprise opposed spring fingers electrically connected to the substrate or the circuit device.
5. An assembly as set forth in claim 4 wherein said spring fingers have inturned free end portions which form an opening for receiving said at least one electrically conductive connecting element.
6. An assembly as set forth in claim 5 wherein said spring fingers are C-shaped.
7. An assembly as set forth in claim 36 wherein said at least one electrically conductive connecting element has a body with an axial length extending from a first end of the connecting element connected to the substrate or circuit device to a second free end.
8. An assembly as set forth in claim 7 wherein the body of said at least one electrically conductive connecting element is headless.
9. An assembly as set forth in claim 8 wherein said body is cylindric and of substantially uniform diameter throughout the axial length of the connecting element.
10. An assembly as set forth in claim 7 wherein said body comprises at least one shoulder that engages the resilient members of the socket to provide an interlocking force supplementing the biasing force of the resilient members to hold the circuit device and the substrate in electrical contact.
11. An assembly as set forth in claim 36 wherein said at least one electrically conductive connecting element comprises a stud bump made from metal deposited on the electrical connection pad of the substrate or circuit device.
12. An assembly as set forth in claim 11 wherein said metal is gold.
13. An assembly as set forth in claim 36 wherein said at least one electrically conductive connecting element comprises a solder ball.
14. An assembly as set forth in claim 36 further comprising a bonding agent on either of the electrically conductive connecting element or the socket to strengthen the electrical and mechanical connection between the connecting element and the socket.
15. An assembly as set forth in claim 14 wherein said bonding agent is a solder alloy.
16. An assembly as set forth in claim 14 wherein said bonding agent is a conductive adhesive.
17. An assembly as set forth in claim 36 wherein said integrated circuit device is a MEMS device.
18. An assembly as set forth in claim 36 wherein said integrated circuit device is a chip scale package.
19. An assembly as set forth in claim 36 wherein said integrated circuit device is an optoelectronic device.
20. An assembly as set forth in claim 36 wherein said substrate is a test substrate for performing testing of the integrated circuit device.
21. An assembly as set forth in claim 36 wherein said substrate is a printed circuit board for an electronic device.
22. (cancelled)
23. An assembly as set forth in claim 37 wherein said electrical conductive connecting element comprises a pin projecting from a surface of the substrate or the circuit device.
24. An assembly as set forth in claim 37 wherein said socket comprises at least two resilient members biased against said connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
25. An assembly as set forth in claim 24 wherein said at least two resilient members comprise opposed spring fingers electrically connected to the substrate or the circuit device, the spring fingers having inturned free end portions forming an opening for receiving said at least one electrically conductive connecting element.
26. (cancelled)
27. An assembly as set forth in claim 38 wherein said electrical conductive connecting element comprises a stud bump projecting from a surface of the substrate or the circuit device.
28. An assembly as set forth in claim 27 wherein said stud bump comprises metal deposited on an electrical connection pad of the substrate or the circuit device.
29. An assembly as set forth in claim 38 wherein said socket comprises at least two resilient members biased against said at least one connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
30. An assembly as set forth in claim 29 wherein said at least two resilient members comprise opposed spring fingers electrically connected to the substrate or the circuit device, the spring fingers having inturned free end portions forming an opening for receiving said at least one electrically conductive connecting element.
31. (cancelled)
32. An assembly as set forth in claim 39 wherein said socket comprises at least two resilient members biased against said connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
33. An assembly as set forth in claim 32 wherein said at least two resilient members comprise opposed spring fingers electrically connected to the substrate or the circuit device, the spring fingers having inturned free end portions forming an opening for receiving said at least one electrically conductive connecting element.
34. An assembly as set forth in claim 39 wherein said conductive ball comprises a solder sphere.
35. An assembly as set forth in claim 39 wherein said conductive ball comprises a conductive adhesive.
36. An electrical circuit assembly, comprising
a substrate having a first electrical connection pad,
an integrated circuit device having a second electrical connection pad,
at least one electrically conductive connecting element attached to one of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
at least one socket comprising at least two resilient members attached to the other of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
said at least one socket being adapted to receive said at least one electrically conductive connecting element when the substrate and integrated circuit device are assembled such that the at least two resilient members of the socket exert a biasing force against said at least one electrically conductive connecting element to hold the substrate and integrated circuit device in electrical and mechanical connection without the need for a connector separate from the substrate and integrated circuit device, said assembly being free of any containment structure between the substrate and the integrated circuit device surrounding the at least two resilient members.
37. An electrical circuit assembly, comprising
a substrate having a first electrical connection pad,
an integrated circuit device having a second electrical connection pad,
at least one socket attached to one of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
at least one electrically conductive connecting element attached to the other of said first and second connection pads prior to assembly of the substrate and the integrated circuit device, the connecting element comprising a body having a headless free end,
said at least one electrically conductive connecting element being received in said at least one socket when the substrate and integrated circuit device are assembled such that the socket exerts a biasing force against said body to hold the substrate and integrated circuit device in electrical and mechanical connection without the need for a connector separate from the substrate and integrated circuit device, said assembly being free of any containment structure between the substrate and the integrated circuit device surrounding the at least one socket.
38. An electrical circuit assembly, comprising
a substrate having a first electrical connection pad,
an integrated circuit device having a second electrical connection pad,
at least one socket directly attached to one of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
at least one electrically conductive connecting element attached to the other of said first and second connection pads prior to assembly of the substrate and the integrated circuit device, the connecting element comprising a body having an axial surface and at least one shoulder extending from the axial surface,
said at least one electrically conductive connecting element being received in said at least one socket when the substrate and integrated circuit device are assembled such that the socket exerts a biasing force against said at least one shoulder to hold the substrate and integrated circuit device in electrical and mechanical connection without the need for a connector separate from the substrate and integrated circuit device, said assembly being free of any containment structure between the substrate and the integrated circuit device surrounding the at least one socket.
39. An electrical circuit assembly, comprising
a substrate having a first electrical connection pad,
an integrated circuit device having a second electrical connection pad,
at least one socket attached to one of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
at least one electrically conductive connecting element attached to the other of said first and second connection pads prior to assembly of the substrate and the integrated circuit device, the connecting element comprising a conductive sphere deposited on the other of said first and second connection pads,
said conductive sphere being received in said socket when the substrate and integrated circuit device are assembled such that the at least one socket exerts a biasing force against said conductive sphere to hold the substrate and integrated circuit device in electrical and mechanical connection without the need for a connector separate from the substrate and integrated circuit device, said assembly being free of any containment structure between the substrate and the integrated circuit device surrounding the at least one socket.
40. An electrical circuit assembly comprising
a substrate,
an integrated circuit device electrically and mechanically connected to the substrate,
at least one electrically conductive connecting element on the substrate,
at least one socket on the circuit device for receiving said at least one connecting element, said socket comprising at least two resilient members biased against said connecting element so that the circuit device and the substrate are held in electrical and mechanical connection by the biasing force of the resilient members against the connecting element.
41. An electrical circuit assembly, comprising
a substrate having a first electrical connection pad with a connection surface,
an integrated circuit device having a second electrical connection pad with a connection surface,
at least one electrically conductive connecting element non-releasably attached to the connection surface of one of said first and second connection pads prior to assembly of the substrate and the integrated circuit device,
at least one socket comprising at least two resilient members having pad connection portions directly and non-releasably attached to the connection surface of the other of said first and second connection pads prior to assembly of the substrate and the integrated circuit device, said pad connection portions extending generally parallel to said connection surface of the other of said first and second connection pads and being attached in face-to-face contact with said connection surface,
said at least one socket being adapted to receive said at least one electrically conductive connecting element when the substrate and integrated circuit device are assembled such that the at least two resilient members of the socket exert a biasing force against said at least one electrically conductive connecting element to hold the substrate and integrated circuit device in electrical and mechanical connection.
42. An assembly as set forth in claim 41 wherein each of said at least two resilient members is formed from a flat metal strip.
43. An assembly as set forth in claim 42 wherein said flat metal strip is bent generally into the shape of a C.
44. An assembly as set forth in claim 43 wherein said at least two resilient members have inturned free end portions which form an opening for receiving said at least one electrically conductive connecting element.
US10/673,652 2003-09-29 2003-09-29 Electrical circuit assembly with micro-socket Expired - Fee Related US6881074B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/673,652 US6881074B1 (en) 2003-09-29 2003-09-29 Electrical circuit assembly with micro-socket
PCT/US2004/031754 WO2005034294A1 (en) 2003-09-29 2004-09-28 An electrical circuit assembly with micro-socket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/673,652 US6881074B1 (en) 2003-09-29 2003-09-29 Electrical circuit assembly with micro-socket

Publications (2)

Publication Number Publication Date
US20050070131A1 true US20050070131A1 (en) 2005-03-31
US6881074B1 US6881074B1 (en) 2005-04-19

Family

ID=34376656

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/673,652 Expired - Fee Related US6881074B1 (en) 2003-09-29 2003-09-29 Electrical circuit assembly with micro-socket

Country Status (2)

Country Link
US (1) US6881074B1 (en)
WO (1) WO2005034294A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057685A1 (en) * 2005-09-14 2007-03-15 Touchdown Technologies, Inc. Lateral interposer contact design and probe card assembly
WO2008005989A1 (en) * 2006-07-06 2008-01-10 Harris Corporation Ball grid array (bga) connection system and related method and ball socket
EP2117082A1 (en) * 2006-10-27 2009-11-11 Asahi Denka Kenkyusho Co., Ltd. Electrical connection structure
US20150360934A1 (en) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Microelectromechanical system and method for manufacturing a microelectromechanical system
US20190150311A1 (en) * 2017-11-13 2019-05-16 Te Connectivity Corporation Socket connector for an electronic package

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117673B2 (en) * 2002-05-06 2006-10-10 Alfmeier Prazision Ag Baugruppen Und Systemlosungen Actuator for two angular degrees of freedom
US7096568B1 (en) 2003-07-10 2006-08-29 Zyvex Corporation Method of manufacturing a microcomponent assembly
US7042080B2 (en) * 2003-07-14 2006-05-09 Micron Technology, Inc. Semiconductor interconnect having compliant conductive contacts
US7025619B2 (en) * 2004-02-13 2006-04-11 Zyvex Corporation Sockets for microassembly
US6956219B2 (en) * 2004-03-12 2005-10-18 Zyvex Corporation MEMS based charged particle deflector design
US7081630B2 (en) * 2004-03-12 2006-07-25 Zyvex Corporation Compact microcolumn for automated assembly
US7172347B1 (en) * 2004-09-07 2007-02-06 Finisar Corporation Optoelectronic arrangement with a pluggable optoelectronic module and an electrical connector to be mounted on a host-printed circuit board and electrical connector
US7314382B2 (en) 2005-05-18 2008-01-01 Zyvex Labs, Llc Apparatus and methods of manufacturing and assembling microscale and nanoscale components and assemblies
DE502005007115D1 (en) * 2005-06-23 2009-05-28 Siemens Ag electronic module
US7683464B2 (en) * 2005-09-13 2010-03-23 Alpha And Omega Semiconductor Incorporated Semiconductor package having dimpled plate interconnections
US20070057368A1 (en) * 2005-09-13 2007-03-15 Yueh-Se Ho Semiconductor package having plate interconnections
US7622796B2 (en) * 2005-09-13 2009-11-24 Alpha And Omega Semiconductor Limited Semiconductor package having a bridged plate interconnection
US7900336B2 (en) * 2006-04-14 2011-03-08 Massachusetts Institute Of Technology Precise hand-assembly of microfabricated components
US7605377B2 (en) * 2006-10-17 2009-10-20 Zyvex Corporation On-chip reflectron and ion optics
US8487428B2 (en) * 2007-11-20 2013-07-16 Fujitsu Limited Method and system for providing a reliable semiconductor assembly
US8680658B2 (en) * 2008-05-30 2014-03-25 Alpha And Omega Semiconductor Incorporated Conductive clip for semiconductor device package
US8634682B1 (en) 2008-06-02 2014-01-21 Wavefront Research, Inc. Alignment tolerant optical interconnect devices
DE102016225973B4 (en) * 2016-12-22 2019-06-13 Conti Temic Microelectronic Gmbh Method for contacting a contact surface on a flexible printed circuit board with a metal contact, connection of flexible printed circuit board and metal contact and control unit
WO2024016020A1 (en) * 2022-07-15 2024-01-18 University Of Hawaii Systems and methods for mechanically interlocking structures and metamaterials for component integration

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164893A (en) * 1875-06-22 Improvement in hame-fasteners
US3526867A (en) * 1967-07-17 1970-09-01 Keeler Brass Co Interlocking electrical connector
US3585569A (en) * 1969-09-02 1971-06-15 Gen Electric Electrical contact closure
US3825876A (en) * 1971-08-12 1974-07-23 Augat Inc Electrical component mounting
US4526429A (en) * 1983-07-26 1985-07-02 Augat Inc. Compliant pin for solderless termination to a printed wiring board
US4601526A (en) * 1983-10-28 1986-07-22 Honeywell Inc. Integrated circuit chip carrier
US4657336A (en) * 1985-12-18 1987-04-14 Gte Products Corporation Socket receptacle including overstress protection means for mounting electrical devices on printed circuit boards
US4746300A (en) * 1985-06-10 1988-05-24 Gilles Thevenin Mounting panel for removable elements
US4950173A (en) * 1983-06-15 1990-08-21 Hitachi, Ltd. Service temperature connector and packaging structure of semiconductor device employing the same
US5046972A (en) * 1990-07-11 1991-09-10 Amp Incorporated Low insertion force connector and contact
US5059130A (en) * 1988-06-23 1991-10-22 Ltv Aerospace And Defense Company Minimal space printed cicuit board and electrical connector system
US5110298A (en) * 1990-07-26 1992-05-05 Motorola, Inc. Solderless interconnect
US5299939A (en) * 1992-03-05 1994-04-05 International Business Machines Corporation Spring array connector
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5411400A (en) * 1992-09-28 1995-05-02 Motorola, Inc. Interconnect system for a semiconductor chip and a substrate
US5439162A (en) * 1993-06-28 1995-08-08 Motorola, Inc. Direct chip attachment structure and method
US5457610A (en) * 1993-06-01 1995-10-10 Motorola, Inc. Low profile mechanical interconnect system having metalized loop and hoop area
US5479105A (en) * 1993-06-25 1995-12-26 Samsung Electronics Co., Ltd. Known-good die testing apparatus
US5561594A (en) * 1994-01-11 1996-10-01 Sgs-Thomson Microelectronics Ltd. Circuit connection in an electrical assembly
US5634267A (en) * 1991-06-04 1997-06-03 Micron Technology, Inc. Method and apparatus for manufacturing known good semiconductor die
US5665654A (en) * 1995-02-10 1997-09-09 Micron Display Technology, Inc. Method for forming an electrical connection to a semiconductor die using loose lead wire bonding
US5677203A (en) * 1993-12-15 1997-10-14 Chip Supply, Inc. Method for providing known good bare semiconductor die
US5746608A (en) * 1995-11-30 1998-05-05 Taylor; Attalee S. Surface mount socket for an electronic package, and contact for use therewith
US5771341A (en) * 1992-11-06 1998-06-23 Canon Kabushiki Kaisha Graphics apparatus and method for dividing parametric surface patches defining an object into polygons
US5774341A (en) * 1995-12-20 1998-06-30 Motorola, Inc. Solderless electrical interconnection including metallized hook and loop fasteners
US5772451A (en) * 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US5903059A (en) * 1995-11-21 1999-05-11 International Business Machines Corporation Microconnectors
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US6093053A (en) * 1997-09-25 2000-07-25 Hokuriku Electric Industry Co., Ltd. Electric component with soldering-less terminal fitment
US6166556A (en) * 1998-05-28 2000-12-26 Motorola, Inc. Method for testing a semiconductor device and semiconductor device tested thereby
US6179625B1 (en) * 1999-03-25 2001-01-30 International Business Machines Corporation Removable interlockable first and second connectors having engaging flexible members and process of making same
US6200143B1 (en) * 1998-01-09 2001-03-13 Tessera, Inc. Low insertion force connector for microelectronic elements
US6214642B1 (en) * 1997-11-21 2001-04-10 Institute Of Materials Research And Engineering Area array stud bump flip chip device and assembly process
US6247938B1 (en) * 1997-05-06 2001-06-19 Gryphics, Inc. Multi-mode compliance connector and replaceable chip module utilizing the same
US6345991B1 (en) * 1999-06-09 2002-02-12 Avaya Technology Corp. Printed wiring board for connecting to pins
US6352436B1 (en) * 2000-06-29 2002-03-05 Teradyne, Inc. Self retained pressure connection
US6396711B1 (en) * 2000-06-06 2002-05-28 Agere Systems Guardian Corp. Interconnecting micromechanical devices
US6427899B2 (en) * 1998-02-23 2002-08-06 Micron Technology, Inc. Utilize ultrasonic energy to reduce the initial contact forces in known-good-die or permanent contact systems
US6450839B1 (en) * 1998-03-03 2002-09-17 Samsung Electronics Co., Ltd. Socket, circuit board, and sub-circuit board for semiconductor integrated circuit device
US20020164893A1 (en) * 1999-12-28 2002-11-07 Gaetan L. Mathieu Interconnect for microelectronic structures with enhanced spring characteristics
US6492737B1 (en) * 2000-08-31 2002-12-10 Hitachi, Ltd. Electronic device and a method of manufacturing the same
US6493932B1 (en) * 1998-07-09 2002-12-17 Tessera, Inc. Lidless socket and method of making same
US6560861B2 (en) * 2001-07-11 2003-05-13 Xerox Corporation Microspring with conductive coating deposited on tip after release

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164893A (en) * 1875-06-22 Improvement in hame-fasteners
US3526867A (en) * 1967-07-17 1970-09-01 Keeler Brass Co Interlocking electrical connector
US3585569A (en) * 1969-09-02 1971-06-15 Gen Electric Electrical contact closure
US3825876A (en) * 1971-08-12 1974-07-23 Augat Inc Electrical component mounting
US4950173A (en) * 1983-06-15 1990-08-21 Hitachi, Ltd. Service temperature connector and packaging structure of semiconductor device employing the same
US4526429A (en) * 1983-07-26 1985-07-02 Augat Inc. Compliant pin for solderless termination to a printed wiring board
US4601526A (en) * 1983-10-28 1986-07-22 Honeywell Inc. Integrated circuit chip carrier
US4746300A (en) * 1985-06-10 1988-05-24 Gilles Thevenin Mounting panel for removable elements
US4657336A (en) * 1985-12-18 1987-04-14 Gte Products Corporation Socket receptacle including overstress protection means for mounting electrical devices on printed circuit boards
US5059130A (en) * 1988-06-23 1991-10-22 Ltv Aerospace And Defense Company Minimal space printed cicuit board and electrical connector system
US5046972A (en) * 1990-07-11 1991-09-10 Amp Incorporated Low insertion force connector and contact
US5110298A (en) * 1990-07-26 1992-05-05 Motorola, Inc. Solderless interconnect
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5634267A (en) * 1991-06-04 1997-06-03 Micron Technology, Inc. Method and apparatus for manufacturing known good semiconductor die
US5299939A (en) * 1992-03-05 1994-04-05 International Business Machines Corporation Spring array connector
US5411400A (en) * 1992-09-28 1995-05-02 Motorola, Inc. Interconnect system for a semiconductor chip and a substrate
US5771341A (en) * 1992-11-06 1998-06-23 Canon Kabushiki Kaisha Graphics apparatus and method for dividing parametric surface patches defining an object into polygons
US5457610A (en) * 1993-06-01 1995-10-10 Motorola, Inc. Low profile mechanical interconnect system having metalized loop and hoop area
US5479105A (en) * 1993-06-25 1995-12-26 Samsung Electronics Co., Ltd. Known-good die testing apparatus
US5439162A (en) * 1993-06-28 1995-08-08 Motorola, Inc. Direct chip attachment structure and method
US5772451A (en) * 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5677203A (en) * 1993-12-15 1997-10-14 Chip Supply, Inc. Method for providing known good bare semiconductor die
US5561594A (en) * 1994-01-11 1996-10-01 Sgs-Thomson Microelectronics Ltd. Circuit connection in an electrical assembly
US5665654A (en) * 1995-02-10 1997-09-09 Micron Display Technology, Inc. Method for forming an electrical connection to a semiconductor die using loose lead wire bonding
US5903059A (en) * 1995-11-21 1999-05-11 International Business Machines Corporation Microconnectors
US5746608A (en) * 1995-11-30 1998-05-05 Taylor; Attalee S. Surface mount socket for an electronic package, and contact for use therewith
US5774341A (en) * 1995-12-20 1998-06-30 Motorola, Inc. Solderless electrical interconnection including metallized hook and loop fasteners
US6247938B1 (en) * 1997-05-06 2001-06-19 Gryphics, Inc. Multi-mode compliance connector and replaceable chip module utilizing the same
US6093053A (en) * 1997-09-25 2000-07-25 Hokuriku Electric Industry Co., Ltd. Electric component with soldering-less terminal fitment
US6214642B1 (en) * 1997-11-21 2001-04-10 Institute Of Materials Research And Engineering Area array stud bump flip chip device and assembly process
US6200143B1 (en) * 1998-01-09 2001-03-13 Tessera, Inc. Low insertion force connector for microelectronic elements
US6427899B2 (en) * 1998-02-23 2002-08-06 Micron Technology, Inc. Utilize ultrasonic energy to reduce the initial contact forces in known-good-die or permanent contact systems
US6450839B1 (en) * 1998-03-03 2002-09-17 Samsung Electronics Co., Ltd. Socket, circuit board, and sub-circuit board for semiconductor integrated circuit device
US6166556A (en) * 1998-05-28 2000-12-26 Motorola, Inc. Method for testing a semiconductor device and semiconductor device tested thereby
US6493932B1 (en) * 1998-07-09 2002-12-17 Tessera, Inc. Lidless socket and method of making same
US6179625B1 (en) * 1999-03-25 2001-01-30 International Business Machines Corporation Removable interlockable first and second connectors having engaging flexible members and process of making same
US6345991B1 (en) * 1999-06-09 2002-02-12 Avaya Technology Corp. Printed wiring board for connecting to pins
US20020164893A1 (en) * 1999-12-28 2002-11-07 Gaetan L. Mathieu Interconnect for microelectronic structures with enhanced spring characteristics
US6396711B1 (en) * 2000-06-06 2002-05-28 Agere Systems Guardian Corp. Interconnecting micromechanical devices
US6352436B1 (en) * 2000-06-29 2002-03-05 Teradyne, Inc. Self retained pressure connection
US6492737B1 (en) * 2000-08-31 2002-12-10 Hitachi, Ltd. Electronic device and a method of manufacturing the same
US6560861B2 (en) * 2001-07-11 2003-05-13 Xerox Corporation Microspring with conductive coating deposited on tip after release

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057685A1 (en) * 2005-09-14 2007-03-15 Touchdown Technologies, Inc. Lateral interposer contact design and probe card assembly
WO2007033146A2 (en) * 2005-09-14 2007-03-22 Touchdown Technologies, Inc. Lateral interposer contact design and probe card assembly
WO2007033146A3 (en) * 2005-09-14 2007-07-12 Touchdown Technologies Inc Lateral interposer contact design and probe card assembly
US7695287B2 (en) 2006-07-06 2010-04-13 Harris Corporation Ball grid array (BGA) connection system and related method and ball socket
US20080007608A1 (en) * 2006-07-06 2008-01-10 Harris Corporation, Corporation Of The State Of Delaware Ball grid array (bga) connection system and related method and ball socket
WO2008005989A1 (en) * 2006-07-06 2008-01-10 Harris Corporation Ball grid array (bga) connection system and related method and ball socket
EP2117082A1 (en) * 2006-10-27 2009-11-11 Asahi Denka Kenkyusho Co., Ltd. Electrical connection structure
EP2117082A4 (en) * 2006-10-27 2012-05-16 Asahi Denka Kenkyusho Co Ltd Electrical connection structure
US20150360934A1 (en) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Microelectromechanical system and method for manufacturing a microelectromechanical system
US20190150311A1 (en) * 2017-11-13 2019-05-16 Te Connectivity Corporation Socket connector for an electronic package
US10348015B2 (en) * 2017-11-13 2019-07-09 Te Connectivity Corporation Socket connector for an electronic package
US10741951B2 (en) 2017-11-13 2020-08-11 Te Connectivity Corporation Socket connector assembly for an electronic package
US10879638B2 (en) * 2017-11-13 2020-12-29 Te Connectivity Corporation Socket connector for an electronic package
US10910748B2 (en) 2017-11-13 2021-02-02 Te Connectivity Corporation Cable socket connector assembly for an electronic

Also Published As

Publication number Publication date
WO2005034294A1 (en) 2005-04-14
US6881074B1 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
US6881074B1 (en) Electrical circuit assembly with micro-socket
KR100408948B1 (en) How to Mount Electronic Components on a Circuit Board
US6669489B1 (en) Interposer, socket and assembly for socketing an electronic component and method of making and using same
US6033935A (en) Sockets for "springed" semiconductor devices
JP4884485B2 (en) High performance electrical connector
US6023103A (en) Chip-scale carrier for semiconductor devices including mounted spring contacts
US6573458B1 (en) Printed circuit board
US6695623B2 (en) Enhanced electrical/mechanical connection for electronic devices
US5806181A (en) Contact carriers (tiles) for populating larger substrates with spring contacts
US8179692B2 (en) Board having connection terminal
US7004760B2 (en) Connector and an electronic apparatus having electronic parts connected to each other by the connector
EP0886894B1 (en) Contact carriers for populating substrates with spring contacts
US20080185705A1 (en) Microelectronic packages and methods therefor
KR20070057992A (en) Electroform spring built on mandrel transferable to other surface
JP2009508141A (en) Lateral interposer contact design and probe card assembly
US5928005A (en) Self-assembled low-insertion force connector assembly
EP1498948A2 (en) A reconnectable chip interface and chip package
US20140374912A1 (en) Micro-Spring Chip Attachment Using Solder-Based Interconnect Structures
US20060027899A1 (en) Structure with spherical contact pins
KR100299465B1 (en) How to mount the chip interconnect carrier and the spring contactor to the semiconductor device
EP0795200B1 (en) Mounting electronic components to a circuit board
EP0792519A1 (en) Interconnection elements for microelectronic components

Legal Events

Date Code Title Description
AS Assignment

Owner name: COOKSON ELECTRONICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCLENAGHAN, ALLEN JAMES;REEL/FRAME:014569/0662

Effective date: 20030915

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20090419