US20050100769A1 - Integrated heat management of electronics and fuel cell power system - Google Patents

Integrated heat management of electronics and fuel cell power system Download PDF

Info

Publication number
US20050100769A1
US20050100769A1 US11/018,341 US1834104A US2005100769A1 US 20050100769 A1 US20050100769 A1 US 20050100769A1 US 1834104 A US1834104 A US 1834104A US 2005100769 A1 US2005100769 A1 US 2005100769A1
Authority
US
United States
Prior art keywords
fuel cell
heat
conduit
oxygen
direct oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/018,341
Inventor
William Acker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/018,341 priority Critical patent/US20050100769A1/en
Publication of US20050100769A1 publication Critical patent/US20050100769A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates generally to the field of fuel cells and, more specifically, to a thermal management system that integrates a direct methanol fuel cell (DMFC) system and a device, in which the device is powered at least in part by the DMFC.
  • DMFC direct methanol fuel cell
  • Fuel cells are devices in which an electrochemical reaction is used to generate electricity.
  • a variety of materials may be suited for use as a fuel depending upon the materials chosen for the components of the cell.
  • Organic materials such as methanol or natural gas, are attractive choices for fuel due to their high specific energy.
  • Direct oxidation fuel cell systems may be better suited for a number of applications in smaller mobile devices (e.g., mobile phones, handheld and laptop computers), as well as in some larger applications.
  • a carbonaceous liquid fuel in an aqueous solution typically aqueous methanol
  • MEA membrane electrode assembly
  • the MEA contains a protonically conductive, but electronically non-conductive membrane (PCM).
  • PCM protonically conductive, but electronically non-conductive membrane
  • a catalyst which enables direct oxidation of the fuel on the anode is disposed on the surface of the PCM (or is otherwise present in the anode chamber of the fuel cell).
  • Diffusion layers are typically in contact with at least one of the catalyzed anode and cathode faces of the PCM to facilitate the introduction of reactants and removal of products of the reaction from the PCM, and also serve to conduct electrons.
  • Protons from hydrogen found in the fuel and water molecules involved in the anodic reaction
  • the protons migrate through the PCM, which is impermeable to the electrons.
  • the electrons thus seek a different path to reunite with the protons and oxygen molecules involved in the cathodic reaction and travel through a load, providing electrical power.
  • a direct oxidation fuel cell system is a direct methanol fuel cell system or DMFC system.
  • a DMFC system methanol in an aqueous solution is used as fuel (the “fuel mixture”), and oxygen, preferably from ambient air, is used as the oxidizing agent.
  • fuel the “fuel mixture”
  • oxygen preferably from ambient air
  • the oxidizing agent the oxidizing agent.
  • the overall reaction may be limited by the failure of either of these reactions to proceed to completion at an acceptable rate (more specifically, failure to oxidize the fuel mixture will limit the cathodic generation of water, and vice versa).
  • Typical DMFC systems include a fuel source, fluid and effluent management systems, and a direct methanol fuel cell (“fuel cell”).
  • the fuel cell typically consists of a housing, and a membrane electrode assembly (“MEA”) disposed within the housing.
  • MEA membrane electrode assembly
  • a typical MEA includes a centrally disposed protonically conductive, electronically non-conductive membrane (“PCM”) such as Nafion®, a registered trademark of E.I. Dupont de Nours and Company, which is a cation exchange membrane comprised of perfluoro sulfonic acid, in a variety of thicknesses and equivalent weights.
  • PCM protonically conductive, electronically non-conductive membrane
  • the PCM is typically coated on each face with an electrocatalyst such as platinum, or platinum/ruthenium mixtures or alloy particles.
  • the MEA typically includes a diffusion layer.
  • the diffusion layers function to evenly distribute the liquid and gaseous reactants to, and transport the liquid and gaseous products of the reactions from the catalyzed anode face of the PCM, or the gaseous oxygen from air or other source across the catalyzed cathode face of the PCM.
  • the diffusion layers also facilitate the collection of electrons and conduction to the device being powered.
  • flow field plates may be placed on the aspect of each diffusion layer that is not in contact with the catalyst-coated PCM to provide mass transport of the reactants and by products of the electrochemical reactions and also have a current collection functionality to collect and conduct electrons through the load.
  • DMFCs are efficient at dissipating heat that is generated within the system, due to the fact that there are several fluids present in the system, and due to the fact that air is exchanged within the fuel cell system, allowing for a more natural heat exchange.
  • the direct oxidation fuel cell systems and DMFCs demonstrate increased current generation (at a given voltage) at higher temperatures due to the increased kinetics of the reactions. Thus, if additional heat is applied to the reaction, the DMFCs can become an even more suitable power source.
  • the present invention provides a thermal management system that integrates a direct methanol fuel cell system and a device which is powered at least in part by the DMFC system.
  • the invention provides the ability to transfer heat from the device to the DMFC system, which results in at least two benefits: the operating temperature of the device is regulated, and the DMFC's performance is enhanced.
  • the DMFC or some of its components are placed in contact with the device, allowing for the conduction of heat from the device to the DMFC. This is preferably achieved by placing at least one aspect of the housing of the DMFC system in direct contact with the device or by passing reactants close to the device before the reactants are reacted within the DMFC. A similar approach based on heat transfer via a small fluid gap, wherein heat is transferred through air or a “thermal grease” is also contemplated.
  • thermally conductive components are preferably integrated into the device to transfer heat from the device to the DMFC system, allowing better heat transfer.
  • air may be directed over the device before introduction to the cathode face of the DMFC, depending on the desired heat or humidity characteristics. If air is directed over the device before introduction to the cathode face, it will remove heat from the heat generating electronics and increase the operating temperature of the DMFC, and tend to improve the kinetics of the reaction and the fuel cell system.
  • a pump in the DMFC is preferably used to circulate a dedicated coolant (i.e. not one of the reactants) through the device.
  • the coolant removes heat produced by the device and transfers it to the DMFC where the heat is applied to the reactants.
  • a heat pump is used to transfer heat from the device, which heat is used in turn to vaporize the reactants.
  • the vaporized reactants are condensed within the DMFC system prior to being reacted, thereby transferring heat to the DMFC.
  • FIG. 1 is a block diagram of a direct methanol fuel cell system known in the prior art
  • FIG. 2A is a schematic representation of fluid flow within the device powered by a fuel cell system
  • FIG. 2B is a block diagram of a direct methanol fuel cell system, constructed in accordance with a preferred embodiment of the present invention, in which heat generated by an device is regulated in accordance with the invention;
  • FIG. 3A is a perspective diagram of a device in which both the direct methanol fuel cell system powering the device and a heat-generating portion of said device are enclosed by a common housing;
  • FIG. 3B is a perspective diagram of a device in which the direct methanol fuel cell system powering the device and a heat-generating portion of said device are enclosed by discrete housings;
  • FIG. 4 is a block diagram of a direct fuel cell system in which a thermally conductive material is used to manage heat generated by a device;
  • FIG. 5A is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to fuel circulated in proximity to the device;
  • FIG. 5B is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to a dedicated coolant circulated in proximity to the device;
  • FIG. 6 is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to air circulated through device;
  • FIG. 7 is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running over the processor, carrying reactants to the direct methanol fuel cell or a pump, or a dedicated coolant to the pump;
  • FIG. 8A is a perspective drawing of a circuit board in which heat is managed by conduction in which a conduit carries reactants to the direct methanol fuel cell or a pump, or a dedicated coolant to the pump;
  • FIG. 8B is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running under a processor mounted on the circuit board;
  • FIG. 9 is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running around the sides of the processor;
  • FIG. 10 is a block diagram of a direct methanol fuel cell system in which heat is managed by a heat pump/valve.
  • the fuel cell system 20 includes a direct oxidation fuel cell, which may be a direct methanol fuel cell 21 (“DMFC”), for example.
  • DMFC direct methanol fuel cell 21
  • DMFC 21 direct methanol fuel cell 21
  • the fuel substance being methanol or an aqueous methanol solution.
  • other carbonaceous fuels such as ethanol, or combinations of carbonaceous fuels and aqueous solutions thereof may be used.
  • the invention is applicable to any fuel cell system where it is preferable to introduce a liquid fuel or component thereof to the anode aspect 26 of the membrane electrode assembly (MEA) 25 and not simply the embodiments described in FIG. 1 .
  • the system 20 including the DMFC 21 , has a fuel delivery system to deliver fuel from fuel source 22 .
  • the DMFC 21 includes a housing 23 that encloses a MEA 24 .
  • MEA 24 incorporates protonically conductive, electronically non-conductive, membrane (PCM) 25 , and typically includes at least one diffusion layer in contact with one or both aspects of the PCM 25 .
  • PCM 25 has an anode face 26 and cathode face 27 , each of which may be coated with a catalyst, including but not limited to platinum, or a blend of platinum and ruthenium.
  • Diffusion layers are usually fabricated from carbon cloth or carbon paper that are treated with a mixture of Teflon® and high surface area carbon particles, are typically provided and in intimate contact with the catalyzed faces of each of the anode 26 and cathode 27 aspects of the PCM 25 , though the invention is not limited to systems that require diffusion layers.
  • the portion of DMFC 21 defined by the housing 23 and the anode face 26 of the PCM 25 is referred to herein as the anode chamber 28 .
  • the portion of DMFC 21 defined by the housing 23 and the cathode face 27 of the PCM 25 is referred to herein as the cathode chamber 29 .
  • the anode chamber 28 and cathode chamber 29 may further contain a flow field plate or plates (not shown) in contact with the diffusion layer, in order to manage the mass transport of reactants and products of the reaction.
  • the catalyst may be applied to the PCM 25 by applying a suspension containing the catalyst to PCM 25 .
  • the terms “anode face” and “cathode face” may refer to the catalyzed faces of the PCM 25 , and shall include any residual catalyst materials that may remain on the surface of the PCM 25 as the result of such application.
  • electricity-generating reactions occur when a carbonaceous fuel mixture, including, but not limited to methanol or an aqueous methanol solution is introduced to the anode face 26 , and oxygen, usually from ambient air, is introduced to the cathode face 27 . More specifically, a carbonaceous fuel mixture from fuel source 22 is delivered by pump 30 to the anode chamber 28 of the DMFC 21 . The fuel mixture passes through channels in the flow field plate (or is present in the anode chamber 28 ), and/or a diffusion layer, and is ultimately presented to the anode face 26 of the PCM 25 .
  • a carbonaceous fuel mixture including, but not limited to methanol or an aqueous methanol solution
  • oxygen usually from ambient air
  • Catalysts on the membrane surface enable the anodic oxidation of the carbonaceous fuel on the anode face 26 , separating hydrogen protons and electrons from the fuel and water molecules of the fuel mixture.
  • protons pass through PCM 25 , which is impermeable to the electrons.
  • the electrons thus seek a different path to reunite with the protons, and travel through a load 31 of an external circuit, thus providing electrical power to the load 31 . So long as the reactions continue, a current is maintained through the external circuit.
  • Direct oxidation fuel cells produce water (H 2 O) and carbon dioxide (CO 2 ) as products of the reaction, which must be directed away from the catalyzed anode and cathode membrane surfaces 26 , 27 .
  • the gas separator 32 separates the excess air and water vapor from the water. This water can be later directed to the pump 30 via a flow path 33 .
  • the gas separator 32 may be incorporated into an existing component within the DMFC 21 or the DMFC system 20 .
  • FIG. 2A shows a more general schematic representation of the flow of the reactant from the fuel source 22 over the heat-generating portion 46 of the device, prior to delivering the reactant to the DMFC 21 .
  • FIG. 2B shows an electronic device 40 which is powered at least in part by a direct methanol fuel cell system 62 placed in contact with or proximity to heat generating portion 46 of the device 40 , thus enabling the conduction of heat from portion 46 to the DMFC 42 or related components.
  • the DMFC system 62 may also include a battery, capacitor or other power storage device (not shown).
  • Electronic device 40 may represent, for example, a wireless phone, notebook computer or any of a variety of other devices, which may be powered by a fuel cell.
  • a housing 52 of the DMFC 42 , a gas separator 44 , and conduits 47 - 50 and 53 that direct both the flow of reactants to the DMFC 42 and the flow of products from the DMFC 42 are preferably placed in direct contact with or in proximity to the portion 46 .
  • the conduits 47 - 50 and 53 may conduct heat from portion 46 , thereby heating the reactants flowing through the conduits.
  • a similar approach based on convection may be used as well, as heat may be transferred from portion 46 to the DMFC 42 or related components indirectly.
  • FIGS. 3A and 3B show different configurations of a device powered at least in part by a DMFC system 62 .
  • a single housing 64 contains both the DMFC system 62 powering the device 64 and the heat-generating portion 46 of said device 64 , as well as other components which provide functionality.
  • the DMFC system 62 is not enclosed in the same housing that encloses the device 68 . These are just two of many possible configurations recognizable to those skilled in the art. These figures are lustration and not intended to limit or proscribe any possible couplings of the heat generating portion of a device to the DMFC system.
  • FIG. 4 shows a second embodiment of the present invention in which a thermally conductive material 61 , preferably made of a polymer but other materials such as metal could be used as well, is positioned between DMFC 42 (and possibly related components) and heat-generating portion 46 , allowing for the transfer of heat from the portion 46 to DMFC 42 .
  • a thermally conductive material 61 may be placed in contact with some or all of other components (pump 43 , gas separator 44 , various conduits) in order to achieve a desired heat transfer rate, packaging requirements or other requirements of a particular application.
  • the DMFC system 62 and the heat-generating portion 46 are shown as being in contact on a single plane, those skilled in the art will recognize that the interface may take place on more than one aspect between the heat generating portion 46 and the fuel cell system 62 .
  • the heat conducting material 61 may simply be comprised of an air gap and/or a “thermal grease”.
  • FIG. 5A shows a third embodiment in which a conduit 71 between the fuel source 41 and the pump 43 is routed in proximity to heat-generating portion 46 .
  • Conduit 71 is preferably arranged in an elongated, serpentine configuration such that it presents a large surface area for heat transfer between heat generating portion 46 and the fuel in the conduit 71 . The transferred heat increases the temperature of the fuel flowing in conduit 71 , thus effectively transferring heat to DMFC 45 .
  • Conduit 71 may alternatively be placed in direct contact with portion 46 , similar to FIG. 2 .
  • Conduit 71 is in substantially the same plane as the portion 46 , though there may be instances where the conduit 71 extends along more than one aspect of the portion 46 .
  • conduits containing water or other reactants in a substantially similar fashion.
  • Other variations include, but are not limited to, eliminating the gas separator 44 , or anode fuel and recirculation components (conduits 50 and 53 ) so that the heat is conducted to the fuel after it leaves the fuel source 41 but before it enters the fuel cell 42 .
  • FIG. 5B shows an alternative embodiment in which fuel is delivered directly to a pump 82 which circulates a fluid through the heat-generating portion 46 in conduit 81 .
  • the fluid may be either; 1) a reactant; or 2) a dedicated coolant utilizing a separate, closed loop system (not shown) and may be used to absorb heat from the heat generating portion 46 and transmit it to the DMFC 42 after passing through conduit 81 .
  • the fluid is eventually returned to the pump 82 where heat may be transferred to the reactants that pass into the DMFC 42 , or if the fluid is a reactant, it may be delivered to the DMFC 42 .
  • FIG. 6 illustrates a fourth embodiment in which air passes through a conduit 91 in proximity to heat-generating portion 46 , allowing heat to be transferred to the air before it is introduced to the DMFC 42 .
  • a serpentine configuration of conduit 91 is preferable as this increases the surface area available for heat transfer, though other configurations are also within the scope of the invention.
  • This embodiment may require a component to assist in air induction, such as a fan (not shown) to increase the volume of air that passes through the cathode chamber of the fuel cell 42 .
  • a fan not shown
  • FIGS. 7, 8A , 8 B and 9 show different arrangements of conduits 102 , 110 , 111 or 112 passing in proximity to heat-generating components.
  • conduit 102 passes over a processor 104 , which is connected to a printed circuit board 106 by leads 108 . Heat produced by the processor 104 is transferred to the conduit 102 , which in turn transfers heat to the fluid flowing through the conduit 102 en route to or from the DMFC (not shown).
  • conduit 110 passes under processor 104 .
  • FIG. 8A conduit 110 passes under processor 104 .
  • conduit 111 passes under processor 104 in a channel or saddle 107 in the printed circuit board 105 .
  • conduit 112 passes around the sides of processor 104 .
  • reactants may be routed though conduits 102 , 110 , 111 and 112 before being routed to the pump (not shown) or to the DMFC (not shown).
  • a dedicated coolant may be routed through conduits 102 , 110 , 111 and 112 .
  • FIG. 10 shows a fifth embodiment in which a simple heat pump/valve 122 is used to assist is pumping vaporized reactants to DMFC 121 .
  • Heat is transferred from the heat-generating portion 46 to the heat pump/valve 122 , which in turn transfers heat to the reactants entering the heat pump/valve 122 via conduit 123 . This may result in the reactants being vaporized, after which they are routed to the DMFC 121 via conduit 124 .
  • the vaporized reactants then condense, or are reacted in vapor phase, within the DMFC 121 prior to being reacted, thereby transferring heat to the DMFC 121 .

Abstract

A method and apparatus for managing heat generated by a device that is powered at least in part by a direct oxidation fuel cell. Additional heat tends to improve the reaction in the direct oxidation fuel cell, such that heat produced by a powered device can be harnessed to increase the temperature of the reaction in the direct oxidation fuel cell. By doing so, the performance of the fuel cell can be enhanced and the temperature of the heat-generating portion of the device maintained.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a divisional of commonly assigned copending U.S. patent application Ser. No. 10/213,987, which was filed on Aug. 7, 2002, by Willaim P. Acker for INTEGRATED HEAT MANAGEMENT OF ELECTRONICS AND FUEL CELL POWER SYSTEM, and is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to the field of fuel cells and, more specifically, to a thermal management system that integrates a direct methanol fuel cell (DMFC) system and a device, in which the device is powered at least in part by the DMFC.
  • 2. Background Information
  • Fuel cells are devices in which an electrochemical reaction is used to generate electricity. A variety of materials may be suited for use as a fuel depending upon the materials chosen for the components of the cell. Organic materials, such as methanol or natural gas, are attractive choices for fuel due to their high specific energy.
  • Direct oxidation fuel cell systems may be better suited for a number of applications in smaller mobile devices (e.g., mobile phones, handheld and laptop computers), as well as in some larger applications. Typically, in direct oxidation fuel cells, a carbonaceous liquid fuel in an aqueous solution (typically aqueous methanol) is introduced to the anode face of a membrane electrode assembly (MEA). The MEA contains a protonically conductive, but electronically non-conductive membrane (PCM). Typically, a catalyst which enables direct oxidation of the fuel on the anode is disposed on the surface of the PCM (or is otherwise present in the anode chamber of the fuel cell). Diffusion layers are typically in contact with at least one of the catalyzed anode and cathode faces of the PCM to facilitate the introduction of reactants and removal of products of the reaction from the PCM, and also serve to conduct electrons. Protons (from hydrogen found in the fuel and water molecules involved in the anodic reaction) are separated from the electrons. The protons migrate through the PCM, which is impermeable to the electrons. The electrons thus seek a different path to reunite with the protons and oxygen molecules involved in the cathodic reaction and travel through a load, providing electrical power.
  • One example of a direct oxidation fuel cell system is a direct methanol fuel cell system or DMFC system. In a DMFC system, methanol in an aqueous solution is used as fuel (the “fuel mixture”), and oxygen, preferably from ambient air, is used as the oxidizing agent. There are two fundamental half reactions that occur in a DMFC which allow a DMFC system to provide electricity to power consuming devices: the anodic disassociation of the methanol and water fuel mixture into CO2, protons, and electrons; and the cathodic combination of protons, electrons and oxygen into water. The overall reaction may be limited by the failure of either of these reactions to proceed to completion at an acceptable rate (more specifically, failure to oxidize the fuel mixture will limit the cathodic generation of water, and vice versa).
  • Typical DMFC systems include a fuel source, fluid and effluent management systems, and a direct methanol fuel cell (“fuel cell”). The fuel cell typically consists of a housing, and a membrane electrode assembly (“MEA”) disposed within the housing. A typical MEA includes a centrally disposed protonically conductive, electronically non-conductive membrane (“PCM”) such as Nafion®, a registered trademark of E.I. Dupont de Nours and Company, which is a cation exchange membrane comprised of perfluoro sulfonic acid, in a variety of thicknesses and equivalent weights. The PCM is typically coated on each face with an electrocatalyst such as platinum, or platinum/ruthenium mixtures or alloy particles. On either face of the catalyst coated PCM, the MEA typically includes a diffusion layer. The diffusion layers function to evenly distribute the liquid and gaseous reactants to, and transport the liquid and gaseous products of the reactions from the catalyzed anode face of the PCM, or the gaseous oxygen from air or other source across the catalyzed cathode face of the PCM. The diffusion layers also facilitate the collection of electrons and conduction to the device being powered. In addition, flow field plates may be placed on the aspect of each diffusion layer that is not in contact with the catalyst-coated PCM to provide mass transport of the reactants and by products of the electrochemical reactions and also have a current collection functionality to collect and conduct electrons through the load.
  • One problem with electronic systems and components, including those which may be powered by DMFC systems, is that electronic components and subsystems can become overheated, and their performance compromised. This problem is especially difficult to effectively address in small mobile devices where electronic components are packed tightly together and space, weight, and volume are critical design criteria. In such devices, it is desirable to minimize the number of components dedicated to cooling the system. Also, as mobile devices become more powerful and require more power, mobile device components produce increasing amounts of heat. Accordingly, it is increasingly important to remove heat from the electronic components and systems.
  • DMFCs are efficient at dissipating heat that is generated within the system, due to the fact that there are several fluids present in the system, and due to the fact that air is exchanged within the fuel cell system, allowing for a more natural heat exchange. In addition, the direct oxidation fuel cell systems and DMFCs demonstrate increased current generation (at a given voltage) at higher temperatures due to the increased kinetics of the reactions. Thus, if additional heat is applied to the reaction, the DMFCs can become an even more suitable power source.
  • It is thus an object of the invention to provide a thermal management system that provides temperature regulation of a device powered at least in part by a DMFC system, in which excess heat produced by the device is transferred to the DMFC. As a result of this heat transfer, the temperature of the device is kept within a desired range and the operation of the DMFC is improved.
  • SUMMARY OF THE INVENTION
  • In brief summary, the present invention provides a thermal management system that integrates a direct methanol fuel cell system and a device which is powered at least in part by the DMFC system. The invention provides the ability to transfer heat from the device to the DMFC system, which results in at least two benefits: the operating temperature of the device is regulated, and the DMFC's performance is enhanced.
  • In a first embodiment, the DMFC or some of its components are placed in contact with the device, allowing for the conduction of heat from the device to the DMFC. This is preferably achieved by placing at least one aspect of the housing of the DMFC system in direct contact with the device or by passing reactants close to the device before the reactants are reacted within the DMFC. A similar approach based on heat transfer via a small fluid gap, wherein heat is transferred through air or a “thermal grease” is also contemplated. In a second embodiment, thermally conductive components are preferably integrated into the device to transfer heat from the device to the DMFC system, allowing better heat transfer.
  • In a third embodiment, air may be directed over the device before introduction to the cathode face of the DMFC, depending on the desired heat or humidity characteristics. If air is directed over the device before introduction to the cathode face, it will remove heat from the heat generating electronics and increase the operating temperature of the DMFC, and tend to improve the kinetics of the reaction and the fuel cell system.
  • In a fourth embodiment, a pump in the DMFC is preferably used to circulate a dedicated coolant (i.e. not one of the reactants) through the device. The coolant removes heat produced by the device and transfers it to the DMFC where the heat is applied to the reactants.
  • In a fifth embodiment, a heat pump is used to transfer heat from the device, which heat is used in turn to vaporize the reactants. The vaporized reactants are condensed within the DMFC system prior to being reacted, thereby transferring heat to the DMFC.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention description below refers to the accompanying drawings, of which:
  • FIG. 1 is a block diagram of a direct methanol fuel cell system known in the prior art;
  • FIG. 2A is a schematic representation of fluid flow within the device powered by a fuel cell system;
  • FIG. 2B is a block diagram of a direct methanol fuel cell system, constructed in accordance with a preferred embodiment of the present invention, in which heat generated by an device is regulated in accordance with the invention;
  • FIG. 3A is a perspective diagram of a device in which both the direct methanol fuel cell system powering the device and a heat-generating portion of said device are enclosed by a common housing;
  • FIG. 3B is a perspective diagram of a device in which the direct methanol fuel cell system powering the device and a heat-generating portion of said device are enclosed by discrete housings;
  • FIG. 4 is a block diagram of a direct fuel cell system in which a thermally conductive material is used to manage heat generated by a device;
  • FIG. 5A is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to fuel circulated in proximity to the device;
  • FIG. 5B is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to a dedicated coolant circulated in proximity to the device;
  • FIG. 6 is a block diagram of a direct methanol fuel cell system in which heat generated by a device is managed by transferring heat to air circulated through device;
  • FIG. 7 is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running over the processor, carrying reactants to the direct methanol fuel cell or a pump, or a dedicated coolant to the pump;
  • FIG. 8A is a perspective drawing of a circuit board in which heat is managed by conduction in which a conduit carries reactants to the direct methanol fuel cell or a pump, or a dedicated coolant to the pump;
  • FIG. 8B is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running under a processor mounted on the circuit board;
  • FIG. 9 is a perspective drawing of a circuit board in which heat is managed by conduction through a conduit running around the sides of the processor;
  • FIG. 10 is a block diagram of a direct methanol fuel cell system in which heat is managed by a heat pump/valve.
  • DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT
  • An example of a direct oxidation fuel system 20 is schematically illustrated in FIG. 1. The fuel cell system 20 includes a direct oxidation fuel cell, which may be a direct methanol fuel cell 21 (“DMFC”), for example. For purposes of illustration, and not by way of limitation, we herein describe an illustrative embodiment of the invention with DMFC 21, or DMFC system with the fuel substance being methanol or an aqueous methanol solution. However, it is within the scope of the present invention that other carbonaceous fuels such as ethanol, or combinations of carbonaceous fuels and aqueous solutions thereof may be used. It should be further understood that the invention is applicable to any fuel cell system where it is preferable to introduce a liquid fuel or component thereof to the anode aspect 26 of the membrane electrode assembly (MEA) 25 and not simply the embodiments described in FIG. 1.
  • The system 20, including the DMFC 21, has a fuel delivery system to deliver fuel from fuel source 22. The DMFC 21 includes a housing 23 that encloses a MEA 24. MEA 24 incorporates protonically conductive, electronically non-conductive, membrane (PCM) 25, and typically includes at least one diffusion layer in contact with one or both aspects of the PCM 25. PCM 25 has an anode face 26 and cathode face 27, each of which may be coated with a catalyst, including but not limited to platinum, or a blend of platinum and ruthenium. Diffusion layers are usually fabricated from carbon cloth or carbon paper that are treated with a mixture of Teflon® and high surface area carbon particles, are typically provided and in intimate contact with the catalyzed faces of each of the anode 26 and cathode 27 aspects of the PCM 25, though the invention is not limited to systems that require diffusion layers. The portion of DMFC 21 defined by the housing 23 and the anode face 26 of the PCM 25 is referred to herein as the anode chamber 28. The portion of DMFC 21 defined by the housing 23 and the cathode face 27 of the PCM 25 is referred to herein as the cathode chamber 29. The anode chamber 28 and cathode chamber 29 may further contain a flow field plate or plates (not shown) in contact with the diffusion layer, in order to manage the mass transport of reactants and products of the reaction. Those skilled in the art will recognize that the catalyst may be applied to the PCM 25 by applying a suspension containing the catalyst to PCM 25. As used herein the terms “anode face” and “cathode face” may refer to the catalyzed faces of the PCM 25, and shall include any residual catalyst materials that may remain on the surface of the PCM 25 as the result of such application.
  • As will be understood by those skilled in the art, electricity-generating reactions occur when a carbonaceous fuel mixture, including, but not limited to methanol or an aqueous methanol solution is introduced to the anode face 26, and oxygen, usually from ambient air, is introduced to the cathode face 27. More specifically, a carbonaceous fuel mixture from fuel source 22 is delivered by pump 30 to the anode chamber 28 of the DMFC 21. The fuel mixture passes through channels in the flow field plate (or is present in the anode chamber 28), and/or a diffusion layer, and is ultimately presented to the anode face 26 of the PCM 25. Catalysts on the membrane surface (or which are otherwise present within the MEA 24) enable the anodic oxidation of the carbonaceous fuel on the anode face 26, separating hydrogen protons and electrons from the fuel and water molecules of the fuel mixture. Upon the closing of a circuit, protons pass through PCM 25, which is impermeable to the electrons. The electrons thus seek a different path to reunite with the protons, and travel through a load 31 of an external circuit, thus providing electrical power to the load 31. So long as the reactions continue, a current is maintained through the external circuit. Direct oxidation fuel cells produce water (H2O) and carbon dioxide (CO2 ) as products of the reaction, which must be directed away from the catalyzed anode and cathode membrane surfaces 26, 27. The gas separator 32 separates the excess air and water vapor from the water. This water can be later directed to the pump 30 via a flow path 33. Those skilled in the art will recognize that the gas separator 32 may be incorporated into an existing component within the DMFC 21 or the DMFC system 20.
  • FIG. 2A shows a more general schematic representation of the flow of the reactant from the fuel source 22 over the heat-generating portion 46 of the device, prior to delivering the reactant to the DMFC 21.
  • FIG. 2B shows an electronic device 40 which is powered at least in part by a direct methanol fuel cell system 62 placed in contact with or proximity to heat generating portion 46 of the device 40, thus enabling the conduction of heat from portion 46 to the DMFC 42 or related components. The DMFC system 62 may also include a battery, capacitor or other power storage device (not shown). Electronic device 40 may represent, for example, a wireless phone, notebook computer or any of a variety of other devices, which may be powered by a fuel cell. In this illustrative embodiment, some or all of a housing 52 of the DMFC 42, a gas separator 44, and conduits 47-50 and 53 that direct both the flow of reactants to the DMFC 42 and the flow of products from the DMFC 42 are preferably placed in direct contact with or in proximity to the portion 46. By placing conduits 47-50 and 53 in contact with or in proximity to portion 46, the conduits may conduct heat from portion 46, thereby heating the reactants flowing through the conduits. A similar approach based on convection may be used as well, as heat may be transferred from portion 46 to the DMFC 42 or related components indirectly.
  • FIGS. 3A and 3B show different configurations of a device powered at least in part by a DMFC system 62. In FIG. 3A, a single housing 64 contains both the DMFC system 62 powering the device 64 and the heat-generating portion 46 of said device 64, as well as other components which provide functionality. In FIG. 3B, the DMFC system 62 is not enclosed in the same housing that encloses the device 68. These are just two of many possible configurations recognizable to those skilled in the art. These figures are lustration and not intended to limit or proscribe any possible couplings of the heat generating portion of a device to the DMFC system.
  • FIG. 4 shows a second embodiment of the present invention in which a thermally conductive material 61, preferably made of a polymer but other materials such as metal could be used as well, is positioned between DMFC 42 (and possibly related components) and heat-generating portion 46, allowing for the transfer of heat from the portion 46 to DMFC 42. Those skilled in the art will appreciate that conductive material 61 may be placed in contact with some or all of other components (pump 43, gas separator 44, various conduits) in order to achieve a desired heat transfer rate, packaging requirements or other requirements of a particular application. Though the DMFC system 62 and the heat-generating portion 46 are shown as being in contact on a single plane, those skilled in the art will recognize that the interface may take place on more than one aspect between the heat generating portion 46 and the fuel cell system 62. Those skilled in the art will further recognize that the heat conducting material 61 may simply be comprised of an air gap and/or a “thermal grease”.
  • FIG. 5A shows a third embodiment in which a conduit 71 between the fuel source 41 and the pump 43 is routed in proximity to heat-generating portion 46. Conduit 71 is preferably arranged in an elongated, serpentine configuration such that it presents a large surface area for heat transfer between heat generating portion 46 and the fuel in the conduit 71. The transferred heat increases the temperature of the fuel flowing in conduit 71, thus effectively transferring heat to DMFC 45. Conduit 71 may alternatively be placed in direct contact with portion 46, similar to FIG. 2. Conduit 71 is in substantially the same plane as the portion 46, though there may be instances where the conduit 71 extends along more than one aspect of the portion 46. Those skilled in the art will recognize that it is possible to implement conduits containing water or other reactants in a substantially similar fashion. Other variations include, but are not limited to, eliminating the gas separator 44, or anode fuel and recirculation components (conduits 50 and 53) so that the heat is conducted to the fuel after it leaves the fuel source 41 but before it enters the fuel cell 42. FIG. 5B shows an alternative embodiment in which fuel is delivered directly to a pump 82 which circulates a fluid through the heat-generating portion 46 in conduit 81. The fluid may be either; 1) a reactant; or 2) a dedicated coolant utilizing a separate, closed loop system (not shown) and may be used to absorb heat from the heat generating portion 46 and transmit it to the DMFC 42 after passing through conduit 81. The fluid is eventually returned to the pump 82 where heat may be transferred to the reactants that pass into the DMFC 42, or if the fluid is a reactant, it may be delivered to the DMFC 42.
  • FIG. 6 illustrates a fourth embodiment in which air passes through a conduit 91 in proximity to heat-generating portion 46, allowing heat to be transferred to the air before it is introduced to the DMFC 42. Like in the embodiment of FIG. 5A, a serpentine configuration of conduit 91 is preferable as this increases the surface area available for heat transfer, though other configurations are also within the scope of the invention. This embodiment may require a component to assist in air induction, such as a fan (not shown) to increase the volume of air that passes through the cathode chamber of the fuel cell 42. By introducing warmer air into the cathode of the DMFC 42, the kinetics of the cathodic reaction is enhanced, and performance of the DMFC 42 is increased.
  • It is further possible to integrate the fluidic components with the heat-generating portion 46 of the device, if the DMFC system and the portion are mechanically integrated. FIGS. 7, 8A, 8B and 9 show different arrangements of conduits 102, 110, 111 or 112 passing in proximity to heat-generating components. In FIG. 7, conduit 102 passes over a processor 104, which is connected to a printed circuit board 106 by leads 108. Heat produced by the processor 104 is transferred to the conduit 102, which in turn transfers heat to the fluid flowing through the conduit 102 en route to or from the DMFC (not shown). In FIG. 8A, conduit 110 passes under processor 104. In FIG. 8B, conduit 111 passes under processor 104 in a channel or saddle 107 in the printed circuit board 105. In FIG. 9, conduit 112 passes around the sides of processor 104. In FIGS. 7-9 reactants may be routed though conduits 102, 110, 111 and 112 before being routed to the pump (not shown) or to the DMFC (not shown). Alternatively, a dedicated coolant may be routed through conduits 102, 110, 111 and 112.
  • FIG. 10 shows a fifth embodiment in which a simple heat pump/valve 122 is used to assist is pumping vaporized reactants to DMFC 121. Heat is transferred from the heat-generating portion 46 to the heat pump/valve 122, which in turn transfers heat to the reactants entering the heat pump/valve 122 via conduit 123. This may result in the reactants being vaporized, after which they are routed to the DMFC 121 via conduit 124. The vaporized reactants then condense, or are reacted in vapor phase, within the DMFC 121 prior to being reacted, thereby transferring heat to the DMFC 121.

Claims (25)

1. An apparatus for managing heat generated by a device that is powered at least in part by a direct oxidation fuel cell, comprising:
a direct oxidation fuel cell coupled to provide power to said device;
an oxygen source; and
a conduit coupling said oxygen source to said fuel cell and arranged so as to transfer at least some heat produced by a heat generating portion of said device to the oxygen flowing in the conduit, whereby an operating temperature of said device is regulated and an operating temperature of said fuel cell is raised.
2. The apparatus as defined in claim 1 wherein heat is transferred to the oxygen flowing in the conduit prior to introduction to the fuel cell.
3. The apparatus as defined in claim 1 wherein heat is transferred to the oxygen flowing in the conduit following introduction to the fuel cell.
4. The apparatus as defined in claim 1 wherein said heat transfer is substantially conductive.
5. The apparatus as defined in claim 1 wherein said heat transfer is substantially convective.
6. The apparatus as defined in claim 1 wherein said conduit is arranged to transport said heated oxygen to a cathode face of said fuel cell.
7. The apparatus as defined in claim 1 wherein said conduit is arranged to increase the transfer of heat to the oxygen.
8. The apparatus as defined in claim 1 wherein said conduit is arranged in a serpentine pattern.
9. The apparatus as defined in claim 1 further comprising a fan for driving oxygen through said conduit.
10. A method for managing heat generated by a device that is powered at least in part by a direct oxidation fuel cell system, comprising:
providing a device that is powered at least in part by a direct oxidation fuel cell system, said fuel cell system including a conduit coupling an oxygen source to said system;
transferring at least a portion of the heat generated by said device to the oxygen flowing in said conduit, whereby an operating temperature of said device is regulated and an operating temperature of said fuel cell is raised.
11. The method as defined in claim 10 wherein heat is transferred to the oxygen flowing in the conduit prior to introduction to the fuel cell.
12. The method as defined in claim 10 wherein heat is transferred to the oxygen flowing in the conduit following introduction to the fuel cell.
13. The method as defined in claim 10 wherein said heat transfer is substantially conductive.
14. The method as defined in claim 10 wherein said heat transfer is substantially convective.
15. The method as defined in claim 10 wherein said conduit is arranged to transport said heated oxygen to a cathode face of said fuel cell.
16. The method as defined in claim 10 wherein said conduit is arranged to increase the transfer of heat to the oxygen.
17. The method as defined in claim 10 wherein said conduit is arranged in a serpentine pattern.
18. The method as defined in claim 10 wherein a fan is used to drive oxygen through said conduit.
19. An apparatus for managing heat generated by a device that is powered at least in part by a direct oxidation fuel cell comprises:
a direct oxidation fuel cell coupled to provide power to said device; and
means for managing heat generated by said device by transferring at least some of said heat to oxygen flowing in a conduit coupled between a source of oxygen and said fuel cell, whereby an operating temperature of said device is regulated and an operating temperature of said fuel cell is raised.
20. The apparatus as defined in claim 19 wherein heat is transferred to the oxygen flowing in the conduit prior to introduction to the fuel cell.
21. The apparatus as defined in claim 19 wherein heat is transferred to the oxygen flowing in the conduit following introduction to the fuel cell.
22. A thermal management system, comprising:
a direct oxidation fuel cell system;
an application device which is powered at least in part by said direct oxidation fuel cell system;
an oxygen source coupled to said direct oxidation fuel cell system; and
a heat management component coupled between said direct oxidation fuel cell system and said application device, said heat management component being arranged such that at least a portion of the heat generated by the device is transferred to the oxygen, whereby an operating temperature of said application device is regulated and an operating temperature of said fuel cell is raised.
23. The thermal management system as defined in claim 22 wherein said heat management component includes a conduit disposed between said oxygen source and said fuel cell.
24. A method of regulating the temperature of a fuel cell system including the steps of providing an application device that is powered at least in part by a direct oxidation fuel cell system;
providing an associated oxygen source; and
integrating with said fuel cell system and said application device, a heat management component which transfers at least a portion of the heat generated by said device or said fuel cell system to said oxygen, whereby an operating temperature of said fuel is regulated.
25. The method as defined in claim 24 including the further step of
providing as said heat management component a conduit coupled between said oxygen source and said fuel cell system.
US11/018,341 2002-08-07 2004-12-21 Integrated heat management of electronics and fuel cell power system Abandoned US20050100769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/018,341 US20050100769A1 (en) 2002-08-07 2004-12-21 Integrated heat management of electronics and fuel cell power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/213,987 US7235316B2 (en) 2002-08-07 2002-08-07 Integrated heat management of electronics and fuel cell power system
US11/018,341 US20050100769A1 (en) 2002-08-07 2004-12-21 Integrated heat management of electronics and fuel cell power system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/213,987 Division US7235316B2 (en) 2002-08-07 2002-08-07 Integrated heat management of electronics and fuel cell power system

Publications (1)

Publication Number Publication Date
US20050100769A1 true US20050100769A1 (en) 2005-05-12

Family

ID=31494581

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/213,987 Expired - Fee Related US7235316B2 (en) 2002-08-07 2002-08-07 Integrated heat management of electronics and fuel cell power system
US10/870,567 Abandoned US20040224194A1 (en) 2002-08-07 2004-06-17 Integrated heat management of electronics and fuel cell power system
US11/018,341 Abandoned US20050100769A1 (en) 2002-08-07 2004-12-21 Integrated heat management of electronics and fuel cell power system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/213,987 Expired - Fee Related US7235316B2 (en) 2002-08-07 2002-08-07 Integrated heat management of electronics and fuel cell power system
US10/870,567 Abandoned US20040224194A1 (en) 2002-08-07 2004-06-17 Integrated heat management of electronics and fuel cell power system

Country Status (1)

Country Link
US (3) US7235316B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082239A1 (en) * 2005-10-07 2007-04-12 Shiroma Iris L Thermal management system for regenerative fuel cells and method thereof
US20070087243A1 (en) * 2005-10-17 2007-04-19 Samsung Electro-Mechanics Co., Ltd. Electronic apparatus having fuel cell
US20090214911A1 (en) * 2008-02-26 2009-08-27 Fujikura Ltd. Direct alcohol fuel cell

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235316B2 (en) * 2002-08-07 2007-06-26 Mti Microfuel Cells Inc. Integrated heat management of electronics and fuel cell power system
US20040219397A1 (en) * 2003-04-29 2004-11-04 Lyon Geoff M. Electrically isolated fuel cell powered server
US7799474B2 (en) * 2003-04-29 2010-09-21 Hewlett-Packard Development Company, L.P. System and method for managing electrically isolated fuel cell powered devices within an equipment rack
US7378165B2 (en) * 2003-04-29 2008-05-27 Hewlett-Packard Development Company, L.P. System and method for providing electrical power to an equipment rack using a fuel cell
US20050186455A1 (en) * 2003-06-27 2005-08-25 Ultracell Corporation, A California Corporation Micro fuel cell system start up and shut down systems and methods
US20040265662A1 (en) * 2003-06-30 2004-12-30 Cyril Brignone System and method for heat exchange using fuel cell fluids
JP3989471B2 (en) * 2003-09-12 2007-10-10 三洋電機株式会社 Fuel cell device
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control
US20080090107A1 (en) * 2006-10-13 2008-04-17 John Perry Scartozzi Integrated thermal management of a fuel cell and a fuel cell powered device
US8735012B2 (en) * 2008-11-20 2014-05-27 Mti Microfuel Cells Inc. Direct oxidation fuel cell system with uniform vapor delivery of fuel
US20100124683A1 (en) * 2008-11-20 2010-05-20 Mti Microfuel Cells Inc. Heat spreader assembly for use with a direct oxidation fuel cell
US20100167096A1 (en) * 2008-12-30 2010-07-01 Gateway Inc. System for managing heat transfer in an electronic device to enhance operation of a fuel cell device
US8492042B2 (en) * 2009-12-02 2013-07-23 Idatech, Llc Fuel cell systems and methods for providing power and cooling to an energy-consuming device
GB2496635A (en) 2011-11-17 2013-05-22 Intelligent Energy Ltd Fan mounting in fuel cell stack assemblies
US20150268682A1 (en) * 2014-03-24 2015-09-24 Elwha Llc Systems and methods for managing power supply systems
CN108390080B (en) * 2018-03-19 2020-06-19 苏州奥加华新能源有限公司 Thermal management system and method suitable for direct methanol fuel cell

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673624A (en) * 1984-02-08 1987-06-16 Hockaday Robert G Fuel cell
US4810597A (en) * 1984-03-07 1989-03-07 Hitachi, Ltd. Fuel cell comprising a device for detecting the concentration of methanol
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
US5573866A (en) * 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5631099A (en) * 1995-09-21 1997-05-20 Hockaday; Robert G. Surface replica fuel cell
US5723228A (en) * 1995-12-06 1998-03-03 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
US5759712A (en) * 1997-01-06 1998-06-02 Hockaday; Robert G. Surface replica fuel cell for micro fuel cell electrical power pack
US5766786A (en) * 1994-07-20 1998-06-16 Daimler-Benz Aktiengesellschaft Method and system for metered supply of methanol and/or water to a fuel-cell system
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5795668A (en) * 1994-11-10 1998-08-18 E. I. Du Pont De Nemours And Company Fuel cell incorporating a reinforced membrane
US5916699A (en) * 1997-05-13 1999-06-29 Motorola, Inc. Hybrid energy storage system
US5945231A (en) * 1996-03-26 1999-08-31 California Institute Of Technology Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
US5992008A (en) * 1998-02-10 1999-11-30 California Institute Of Technology Direct methanol feed fuel cell with reduced catalyst loading
US6323097B1 (en) * 2000-06-09 2001-11-27 Taiwan Semiconductor Manufacturing Company Electrical overlay/spacing monitor method using a ladder resistor
US7122262B2 (en) * 2002-03-05 2006-10-17 Guan-Wu Wang Miniature fuel cell system having integrated fuel processor and electronic devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943490A (en) * 1997-05-30 1999-08-24 Quickturn Design Systems, Inc. Distributed logic analyzer for use in a hardware logic emulation system
US6790554B2 (en) * 1998-10-08 2004-09-14 Imperial Chemical Industries Plc Fuel cells and fuel cell plates
US6326097B1 (en) * 1998-12-10 2001-12-04 Manhattan Scientifics, Inc. Micro-fuel cell power devices
US6821658B2 (en) * 2001-03-02 2004-11-23 Mti Microfuel Cells Inc. Cold start and temperature control method and apparatus for fuel cell system
US6924054B2 (en) * 2001-10-29 2005-08-02 Hewlett-Packard Development Company L.P. Fuel supply for a fuel cell
US7235316B2 (en) * 2002-08-07 2007-06-26 Mti Microfuel Cells Inc. Integrated heat management of electronics and fuel cell power system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673624A (en) * 1984-02-08 1987-06-16 Hockaday Robert G Fuel cell
US4810597A (en) * 1984-03-07 1989-03-07 Hitachi, Ltd. Fuel cell comprising a device for detecting the concentration of methanol
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5766786A (en) * 1994-07-20 1998-06-16 Daimler-Benz Aktiengesellschaft Method and system for metered supply of methanol and/or water to a fuel-cell system
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
US5795668A (en) * 1994-11-10 1998-08-18 E. I. Du Pont De Nemours And Company Fuel cell incorporating a reinforced membrane
US5573866A (en) * 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system
US5631099A (en) * 1995-09-21 1997-05-20 Hockaday; Robert G. Surface replica fuel cell
US5723228A (en) * 1995-12-06 1998-03-03 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
US5945231A (en) * 1996-03-26 1999-08-31 California Institute Of Technology Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
US5759712A (en) * 1997-01-06 1998-06-02 Hockaday; Robert G. Surface replica fuel cell for micro fuel cell electrical power pack
US5916699A (en) * 1997-05-13 1999-06-29 Motorola, Inc. Hybrid energy storage system
US5992008A (en) * 1998-02-10 1999-11-30 California Institute Of Technology Direct methanol feed fuel cell with reduced catalyst loading
US6323097B1 (en) * 2000-06-09 2001-11-27 Taiwan Semiconductor Manufacturing Company Electrical overlay/spacing monitor method using a ladder resistor
US7122262B2 (en) * 2002-03-05 2006-10-17 Guan-Wu Wang Miniature fuel cell system having integrated fuel processor and electronic devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082239A1 (en) * 2005-10-07 2007-04-12 Shiroma Iris L Thermal management system for regenerative fuel cells and method thereof
US7981556B2 (en) 2005-10-07 2011-07-19 Proton Energy Systems, Inc. Thermal management system for regenerative fuel cells and method thereof
US20070087243A1 (en) * 2005-10-17 2007-04-19 Samsung Electro-Mechanics Co., Ltd. Electronic apparatus having fuel cell
US8043756B2 (en) * 2005-10-17 2011-10-25 Samsung Electro-Mechanics Co., Ltd. Electronic apparatus having fuel cell
US20090214911A1 (en) * 2008-02-26 2009-08-27 Fujikura Ltd. Direct alcohol fuel cell

Also Published As

Publication number Publication date
US7235316B2 (en) 2007-06-26
US20040224194A1 (en) 2004-11-11
US20040028961A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US7235316B2 (en) Integrated heat management of electronics and fuel cell power system
US7638215B2 (en) Method of controlling delivery of fuel to a direct oxidation fuel cell
US7807313B2 (en) Compact fuel cell package
US20080171255A1 (en) Fuel cell for use in a portable fuel cell system
KR100609270B1 (en) Fuel battery, electric device, portable computer, and fuel battery drive method
Faghri et al. Recent advances in passive and semi-passive direct methanol fuel cells
US7875400B2 (en) Method and apparatus for internal hydration of a fuel cell system
US20100233572A1 (en) Fuel cell
US20090017353A1 (en) Fuel cell
WO2005024983A1 (en) Method and system for improving efficiency of fuel cell in portable devices
US6207309B1 (en) Environmental compensation method and apparatus for a fuel cell assembly
Neofytidis et al. Efficient high temperature PEMFC metallic stack with innovative two-phase liquid cooling
JP2007200726A (en) Activating device and manufacturing method of fuel cell
US20090023025A1 (en) Passive Coolant Recirculation in Fuel Cells
KR20050077447A (en) Fuel cell system
KR100536201B1 (en) Cooling apparatus for stack and fuel cell system having thereof
JP2002231290A (en) Fuel cell system
JP2006202611A (en) Fuel cell system, and vehicle and electronic apparatus mounting it
JPH1092456A (en) Fuel cell device to be mounted on equipment
JP2011113912A (en) Fuel cell
US7736784B2 (en) Injection nozzle assembly and fuel cell system having the same
JP2014049345A (en) Fuel cell system
JP2004363002A (en) Fuel cell with transmission film heating means
JP2010135235A (en) Fuel cell

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION