US20050118296A1 - Honeycomb forming ferrule and jig for honeycomb forming ferrule using the ferrule - Google Patents

Honeycomb forming ferrule and jig for honeycomb forming ferrule using the ferrule Download PDF

Info

Publication number
US20050118296A1
US20050118296A1 US10/507,505 US50750504A US2005118296A1 US 20050118296 A1 US20050118296 A1 US 20050118296A1 US 50750504 A US50750504 A US 50750504A US 2005118296 A1 US2005118296 A1 US 2005118296A1
Authority
US
United States
Prior art keywords
die
forming
honeycomb body
jig
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/507,505
Inventor
Takahisa Kaneko
Masayuki Nate
Masayuki Hironaga
Yuji Deguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Assigned to NGK INSULATORS, LTD. reassignment NGK INSULATORS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEGUCHI, YUJI, HIRONAGA, MASAYUKI, KANEKO, TAKAHISA, NATE, MASAYUKI
Assigned to NGK INSULATORS, LTD. reassignment NGK INSULATORS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEGUCHI, YUJI, HIRONAGA, MASAYUKI, KANEKO, TAKAHISA, NATE, MASAYUKI
Publication of US20050118296A1 publication Critical patent/US20050118296A1/en
Priority to US12/000,764 priority Critical patent/US7858007B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • B29C48/3003Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2200/00Specific machining processes or workpieces
    • B23H2200/30Specific machining processes or workpieces for making honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb

Definitions

  • the present invention relates to a die for forming a honeycomb body and a jig for forming a honeycomb body using the die.
  • a honeycomb structure has been used in a filter for trapping particulate matter in exhaust gas from an internal combustion engine, boiler, and the like, particularly diesel particulate matter.
  • the die ( 10 ) for extruding a honeycomb body which is provided with groovy slits on the front face of a base metal made of stainless steel and iron, the groovy slits being formed by cell blocks, and provided with back holes, on a back face thereof, each communicatively connected with the slit.
  • a surface treatment is conducted to form a CVD or PVD layer, which is composed of at least one or two materials selected from a group composed of TiC, TiN, and TiCN on a front face of the nickel plated layer, or to form a composite plated layer, in which hard powder such as SiC, diamond, CBN, and the like is dispersed in a nickel plated film, on the front face of the nickel plated layer in order to adjust a slit width of the respective cell blocks as well as to enhance durability of the die.
  • CVD or PVD layer which is composed of at least one or two materials selected from a group composed of TiC, TiN, and TiCN on a front face of the nickel plated layer, or to form a composite plated layer, in which hard powder such as SiC, diamond, CBN, and the like is dispersed in a nickel plated film, on the front face of the nickel plated layer in order to adjust a slit width of the respective cell blocks as well as to enhance durability of the die.
  • the present invention is made in view of the above described problems heretofore, and aims to provide a die for forming a honeycomb body and a die jig for forming a honeycomb body using the same which can enhance wear resistance of the die or the die jig when a raw material containing a material having very high hardness such as SiC and the like is extruded as well as can overcome a configurational disadvantage of an extruded body due to wear of the die.
  • a die for forming a honeycomb body comprising a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes on a back face thereof, each hole being communicatively connected with the slit, characterized in that the die is made of cemented carbide having wear resistance, the cemented carbide being formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with a iron group metal binder having toughness, a connection area ratio of the back hole and the cell block being 35 to 65%.
  • a height of the cell blocks is preferably 2 to 5 mm.
  • a jig for forming a honeycomb body comprising a die having a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes on a back face thereof, each hole being communicatively connected with the slit; a holding plate fixing a profile and size of the honeycomb body; and a back holding plate controlling an amount of kneaded clay flowing into the back holes uniformly; characterized in that the die and the holding plate are made of cemented carbide having wear resistance.
  • a back holding plate is made of cemented carbide having high wear resistance.
  • a holding plate and the back holding plate are made of cemented carbide having high wear resistance, the portions being in contact with the kneaded clay.
  • the cemented carbide is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having high toughness.
  • FIG. 1 is a schematic sectional view showing an example of a die for forming a honeycomb body.
  • FIG. 2 is a view explaining a relation between cell blocks and back holes.
  • FIG. 3 is a configurational view showing an example of a jig for forming a honeycomb body.
  • FIG. 4 is an enlarged sectional view of a main portion of FIG. 3 .
  • FIG. 1 is a schematic sectional view showing an example of a die for forming a honeycomb body
  • FIG. 2 is a view explaining a relation between cell blocks and back holes FIG. 1 .
  • a die of the present invention is a die ( 10 ) for extruding a honeycomb body which has a structure provided with a groovy slits ( 2 ) on a front face thereof, formed by cell blocks ( 3 ), and provided with a back holes ( 4 ), on a back face thereof, each communicatively connected with the slit ( 2 ).
  • the feature of the present invention is that the die itself is formed by cemented carbide having wear resistance.
  • the cemented carbide has such a property that it is brittle although it is excellent in heat resistance and wear resistance.
  • a connection area ratio of a back hole 4 and a cell block 3 is preferably set to 35 to 65% (more preferably to 50 ⁇ 15% and further more preferably to 50 ⁇ 5%) and further a height ( 1 ) of a cell block 2 is preferably set to 2 to 5 mm to secure strength of the cell blocks without interfering the extrusion of the honeycomb structure for the purpose of preventing breakage of the cell blocks due to the brittleness of the cemented carbide.
  • the die jig of the present invention is a jig for forming a honeycomb body which includes a die 10 having a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes 4 on a back surface thereof, each hole being communicatively connected with the slit, a holding plate 12 fixing a profile and size of a honeycomb body, and a back holding plate 14 controlling an amount of kneaded clay uniformly flowing into the back holes 4 .
  • the die 10 , the holding plate 12 , and the back holding plate 14 are made of cemented carbide having wear resistance as shown in FIG. 4 .
  • the portions of the holding plate 12 and the back holding plate 14 be made of cemented carbide having wear resistance, the portions being in contact with kneaded clay, because brittleness of the portions can be reduced and they can be easily handled at work.
  • cemented carbide used in the present invention is not particularly restricted, it is preferably formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series, for example, WC, TiC, TaC, etc. with an iron group metal binder having toughness such as Co, Ni, etc.
  • WC—Co (composite body of tungsten carbide and cobalt) powder as cemented carbide was formed into a square plate of 100 mm on a side and 40 mm in thickness (100 ⁇ 100 ⁇ 40 t) by press work and the like, it was tentatively sintered at 500 to 700° C. Thereafter, back holes having a predetermined diameter and a predetermined depth were drilled with a predetermined pitch from one end face of the square plate, and then the square plate was subjected to final sintering at 1000 to 1300° C., thereby it was contracted up to a square plate of 24 mm in width and 70 mm on a side (70 ⁇ 70 ⁇ 24 t). Thereafter, a predetermined dimension of the square plate was accurately obtained by polishing the entire surface thereof.
  • a cemented carbide die was obtained by forming slits 2 of 310 ⁇ m in width (a) and 3.0 mm in depth ( 1 ) with a cell pitch (c) of 1.5 mm on the other face of the thus obtained square plate in a grid pattern at every other positions of the back holes (of 1.8 mm in diameter), which were previously formed on one face of the square plate, by wire cut electric-discharge machining, or creep feed grinding or plunge cut grinding with diamond abrasive grain (refer to FIGS. 1 to 2 ).
  • a high strength stainless steel plate material was machined into a square plate of 70 mm on a side and 23 mm in thickness, by using a grinding machine.
  • slits of 410 ⁇ m in width (a) and 3.0 mm in depth ( 1 ) were formed with a cell pitch (c) of 1.5 mm by wire cut electric discharge machining, or creep feed grinding or plunge cut grinding using grinder with CBN abrasive grain, in a grid pattern, on one end face of the square plate (see FIGS. 1 and 2 ).
  • back holes of 1.8 mm in diameter (d) and 3.0 mm in depth (m) were fabricated at the crossover positions of the slits ( 2 ) (at every other positions) with a pitch of 1.5 mm, from the other end face side of the square plate, by drilling to obtain a base metal made of stainless steel (see FIGS. 1 and 2 ).
  • a surface-treated (coated) stainless steel die was obtained by subjecting a front face of the base metal to a plating treatment or a chemical vapor deposition (CVD) treatment.
  • the die for forming a honeycomb body was set to a die jig shown in FIG. 3 , and a honeycomb structure was extruded using kneaded clay composed of a raw material of argillaceous Si—SiC.
  • the kneaded clay was obtained by kneading a raw material made of metal silicon (Me-Si) and SiC which were prepared at a ratio of 25:75 and to which water, an organic binder, and a hole forming material were added.
  • a raw material made of metal silicon (Me-Si) and SiC which were prepared at a ratio of 25:75 and to which water, an organic binder, and a hole forming material were added.
  • Honeycomb structures were extruded, respectively using a cemented carbide die shown in Table 1 (embodiment 1; a connection area ratio of back holes and cell blocks was 50% (refer to FIG. 2 ) and the cell blocks had the height ( 1 ) of 3 mm) and surface-treated stainless steel dies (comparative examples 1 to 2) shown in Table 1. The results are shown in Table 1.
  • wear resistance of the cemented carbide die is at least 100 times or more larger than that of the plated die (comparative example 1) as well as the wear resistance thereof is enhanced, thereby a change of configuration due to wear is greatly reduced.
  • Honeycomb bodies were extruded, respectively using cemented carbide dies (embodiments 2 to 4 and comparative example 3 to 4, in which cell blocks had a height ( 1 ) of 3 mm) in which a connection area ratio of cell blocks and back holes was set as shown in Table 2. The results are shown in Table 2.
  • honeycomb structures could be excellently extruded without breakage of the cell blocks in the dies in extrusion and with a less amount of change of configuration by setting the connection area ratio of the cell block and the back hole to 35 to 65% as shown in the embodiments 2 to 4.
  • connection area ratio of the cell blocks and the back holes exceeded 65%, the diameter of the back holes was made excessively small. Accordingly, no honeycomb structure could be extruded because extrusion pressure was increased by an increase in the flow path resistance of the back hole portion communicating with the slits. Further, the die was broken because the strength thereof could not be maintained due to the increase in the extrusion pressure.
  • Honeycomb bodies were extruded, respectively using cemented carbide dies (embodiments 5 to 7 and comparative examples 5 to 6) made such that a connection area ratio of cell blocks and back holes was set to 50% (refer to Table 2) and that the cell blocks had a height ( 1 ) as shown in Table 3, respectively.
  • the results are shown in Table 3. TABLE 3 Outside Height Presence/ appearance of of cell absence product Extrusion of block of broken (presence/absence honeycomb (mm) cell block of crack) structure Embodiment 5 2 Absent Absent ⁇ Embodiment 6 3 Absent Absent ⁇ Embodiment 7 5 Absent Absent ⁇ Comparative 1 Absent Present X example 5 Comparative 7 Present Absent X example 6
  • extruded honeycomb structures and products molded after the honeycomb structures were extrude had an excellent outside appearance in the embodiments 5 to 7 because the cell blocks of the dies were not broken in extrusion by setting a height of the cell blocks to 2 to 5 mm.
  • Honeycomb structures were extruded, respectively using a die 10 , a holding plate 12 , and a back holding plate 14 composed of wear resistant cemented carbide (embodiment 8) and using a die 10 , a holding plate 12 , and a back holding plate 14 composed of a high strength stainless steel material (comparative example 7, however, the die of the example 1 was used as the die 10 ) among the die jigs shown in FIG. 4 .
  • the results are shown in Table 4.
  • the embodiment 8 had not only a life at least 100 times or more longer than that of the comparative example 7 but also a stable accuracy of a configuration.
  • the die for forming a honeycomb body and the die jig for forming the honeycomb body using the same of the present invention can enhance wear resistance of the die or the die jig when the raw material containing the material having very high hardness such as SiC and the like is extruded as well as can overcome the defect in shape of the extruded body due to the wear of the die.

Abstract

There is disclosed a die (10) for forming a honeycomb body having a structure provided with groovy slits (2) on a front face thereof, the slits being formed by cell blocks (3) and back holes (4) on a back surface thereof, each hole being communicatively connected with the slit. The die (10) is made of cemented carbide having wear resistance. The cemented carbide is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having toughness. A connection area ratio of the back hole (4) and the cell block (3) is 35 to 65%. According to the die for forming a honeycomb body and the die jig for forming a honeycomb body using the same, wear resistance of the die or the die jig can be enhanced when the raw material containing the material having very high hardness such as SiC and the like is extruded as well as the defect in shape of an extruded body due to wear of the die can be overcome.

Description

    TECHNICAL FIELD
  • The present invention relates to a die for forming a honeycomb body and a jig for forming a honeycomb body using the die.
  • BACKGROUND ART
  • A honeycomb structure has been used in a filter for trapping particulate matter in exhaust gas from an internal combustion engine, boiler, and the like, particularly diesel particulate matter.
  • Heretofore, as a die for extruding a ceramic honeycomb body, there has been known the die (10) for extruding a honeycomb body, which is provided with groovy slits on the front face of a base metal made of stainless steel and iron, the groovy slits being formed by cell blocks, and provided with back holes, on a back face thereof, each communicatively connected with the slit.
  • In the die for forming a honeycomb body arranged as described above, after, for example, a nickel plated layer is formed on a front face of a cell block body, a surface treatment is conducted to form a CVD or PVD layer, which is composed of at least one or two materials selected from a group composed of TiC, TiN, and TiCN on a front face of the nickel plated layer, or to form a composite plated layer, in which hard powder such as SiC, diamond, CBN, and the like is dispersed in a nickel plated film, on the front face of the nickel plated layer in order to adjust a slit width of the respective cell blocks as well as to enhance durability of the die.
  • However, when a honeycomb structure containing SiC and the like is manufactured using the die, the die is greatly worn by a passing resistance which is caused when SiC contained in a raw material flows in the die. Accordingly, when kneaded clay is extruded in an amount of about 50 m, not only wear proceeds up to a base metal but also a configuration of an extruded honeycomb structure is made unstable, from which a problem arises in that a non-defective product ratio is greatly lowered.
  • The present invention is made in view of the above described problems heretofore, and aims to provide a die for forming a honeycomb body and a die jig for forming a honeycomb body using the same which can enhance wear resistance of the die or the die jig when a raw material containing a material having very high hardness such as SiC and the like is extruded as well as can overcome a configurational disadvantage of an extruded body due to wear of the die.
  • DISCLOSURE OF THE INVENTION
  • According to the present invention, there is provided a die for forming a honeycomb body, the die comprising a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes on a back face thereof, each hole being communicatively connected with the slit, characterized in that the die is made of cemented carbide having wear resistance, the cemented carbide being formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with a iron group metal binder having toughness, a connection area ratio of the back hole and the cell block being 35 to 65%. In this case, a height of the cell blocks is preferably 2 to 5 mm.
  • Also, according to the present invention, there is provided a jig for forming a honeycomb body, the jig comprising a die having a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes on a back face thereof, each hole being communicatively connected with the slit; a holding plate fixing a profile and size of the honeycomb body; and a back holding plate controlling an amount of kneaded clay flowing into the back holes uniformly; characterized in that the die and the holding plate are made of cemented carbide having wear resistance.
  • In the present invention, it is preferable that a back holding plate is made of cemented carbide having high wear resistance.
  • Further, in the present invention, it is preferable that only the portions of a holding plate and the back holding plate are made of cemented carbide having high wear resistance, the portions being in contact with the kneaded clay.
  • In the present invention, it is preferable that the cemented carbide is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having high toughness.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic sectional view showing an example of a die for forming a honeycomb body.
  • FIG. 2 is a view explaining a relation between cell blocks and back holes.
  • FIG. 3 is a configurational view showing an example of a jig for forming a honeycomb body.
  • FIG. 4 is an enlarged sectional view of a main portion of FIG. 3.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Detailed description will be made below on embodiments of the present invention on the basis of the drawings.
  • FIG. 1 is a schematic sectional view showing an example of a die for forming a honeycomb body, and FIG. 2 is a view explaining a relation between cell blocks and back holes FIG. 1.
  • For example, as shown in FIGS. 1 and 3, a die of the present invention is a die (10) for extruding a honeycomb body which has a structure provided with a groovy slits (2) on a front face thereof, formed by cell blocks (3), and provided with a back holes (4), on a back face thereof, each communicatively connected with the slit (2).
  • The feature of the present invention is that the die itself is formed by cemented carbide having wear resistance.
  • With the above arrangement, even if a raw material containing a material having very high hardness such as SiC and the like is extruded, wear resistance (life) of the die can be enhanced as well as a configurational disadvantage of an extruded body (a formed body) due to wear of the die can be overcome.
  • However, the cemented carbide has such a property that it is brittle although it is excellent in heat resistance and wear resistance.
  • In the die of the present invention, a connection area ratio of a back hole 4 and a cell block 3 is preferably set to 35 to 65% (more preferably to 50±15% and further more preferably to 50±5%) and further a height (1) of a cell block 2 is preferably set to 2 to 5 mm to secure strength of the cell blocks without interfering the extrusion of the honeycomb structure for the purpose of preventing breakage of the cell blocks due to the brittleness of the cemented carbide.
  • Note that the connection area ratio of the back hole and the cell block is calculated by the following expression (refer to FIG. 2).
    (connection area ratio of back hole and cell block)=100×(cell block area−area of back hole portion relating to cell block)/(cell block area)
  • Next, the die jig using the die of the present invention will be explained with reference to FIG. 3. As shown in FIG. 3, the die jig of the present invention is a jig for forming a honeycomb body which includes a die 10 having a structure provided with groovy slits on a front face thereof, the slits being formed by cell blocks, and provided with back holes 4 on a back surface thereof, each hole being communicatively connected with the slit, a holding plate 12 fixing a profile and size of a honeycomb body, and a back holding plate 14 controlling an amount of kneaded clay uniformly flowing into the back holes 4.
  • In the die jig of the present invention, it is preferable that at least the die 10, the holding plate 12, and the back holding plate 14 are made of cemented carbide having wear resistance as shown in FIG. 4.
  • With the above arrangement, even if a raw material containing a material having very high hardness such as SiC and the like is extruded, wear resistance (life) of the die jig can be enhanced as well as a configurational disadvantage of an extruded body due to wear of the die jig can be overcome.
  • Further, it is more preferable that only the portions of the holding plate 12 and the back holding plate 14 be made of cemented carbide having wear resistance, the portions being in contact with kneaded clay, because brittleness of the portions can be reduced and they can be easily handled at work.
  • Although the cemented carbide used in the present invention is not particularly restricted, it is preferably formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series, for example, WC, TiC, TaC, etc. with an iron group metal binder having toughness such as Co, Ni, etc.
  • The present invention will further be described hereinafter in detail based on examples, but the present invention is not limited to these examples.
  • (Method of Manufacturing Cemented Carbide Die)
  • After WC—Co (composite body of tungsten carbide and cobalt) powder as cemented carbide was formed into a square plate of 100 mm on a side and 40 mm in thickness (100×100×40 t) by press work and the like, it was tentatively sintered at 500 to 700° C. Thereafter, back holes having a predetermined diameter and a predetermined depth were drilled with a predetermined pitch from one end face of the square plate, and then the square plate was subjected to final sintering at 1000 to 1300° C., thereby it was contracted up to a square plate of 24 mm in width and 70 mm on a side (70×70×24 t). Thereafter, a predetermined dimension of the square plate was accurately obtained by polishing the entire surface thereof.
  • Next, a cemented carbide die was obtained by forming slits 2 of 310 μm in width (a) and 3.0 mm in depth (1) with a cell pitch (c) of 1.5 mm on the other face of the thus obtained square plate in a grid pattern at every other positions of the back holes (of 1.8 mm in diameter), which were previously formed on one face of the square plate, by wire cut electric-discharge machining, or creep feed grinding or plunge cut grinding with diamond abrasive grain (refer to FIGS. 1 to 2).
  • (Method of Manufacturing Surface-Treated Stainless Steel Die)
  • A high strength stainless steel plate material was machined into a square plate of 70 mm on a side and 23 mm in thickness, by using a grinding machine.
  • Additionally, slits of 410 μm in width (a) and 3.0 mm in depth (1) were formed with a cell pitch (c) of 1.5 mm by wire cut electric discharge machining, or creep feed grinding or plunge cut grinding using grinder with CBN abrasive grain, in a grid pattern, on one end face of the square plate (see FIGS. 1 and 2).
  • Furthermore, back holes of 1.8 mm in diameter (d) and 3.0 mm in depth (m) were fabricated at the crossover positions of the slits (2) (at every other positions) with a pitch of 1.5 mm, from the other end face side of the square plate, by drilling to obtain a base metal made of stainless steel (see FIGS. 1 and 2).
  • Further, a surface-treated (coated) stainless steel die was obtained by subjecting a front face of the base metal to a plating treatment or a chemical vapor deposition (CVD) treatment.
  • (Extrusion of the Honeycomb Body)
  • The die for forming a honeycomb body was set to a die jig shown in FIG. 3, and a honeycomb structure was extruded using kneaded clay composed of a raw material of argillaceous Si—SiC.
  • Note that the kneaded clay was obtained by kneading a raw material made of metal silicon (Me-Si) and SiC which were prepared at a ratio of 25:75 and to which water, an organic binder, and a hole forming material were added.
  • EXAMPLE 1 Comparative Examples 1 and 2
  • Honeycomb structures were extruded, respectively using a cemented carbide die shown in Table 1 (embodiment 1; a connection area ratio of back holes and cell blocks was 50% (refer to FIG. 2) and the cell blocks had the height (1) of 3 mm) and surface-treated stainless steel dies (comparative examples 1 to 2) shown in Table 1. The results are shown in Table 1.
    TABLE 1
    Dispersion of
    Type of die Wear resistance configuration s
    Base material Surface treatment (*1) (*2)
    Embodiment 1 Cemented carbide Absent 100< 0.02
    (WC-Co)
    Comparative Stainless steel Non electrolytic  1   0.80
    example 1 material (C-450) plating treatment
    thickness: 50 μm
    Comparative CVD film thickness:  5   0.50
    example 2 15 μm

    (*1) Wear resistance: when wear resistance of the comparative example was set to 1.

    (*2) Dispersion of configuration: a standard deviation of 100 diagonal line cross points was calculated.
  • From the results of Table 1, wear resistance of the cemented carbide die (embodiment 1) is at least 100 times or more larger than that of the plated die (comparative example 1) as well as the wear resistance thereof is enhanced, thereby a change of configuration due to wear is greatly reduced.
  • EXAMPLES 2 to 4 Comparative Examples 3 and 4
  • Honeycomb bodies were extruded, respectively using cemented carbide dies (embodiments 2 to 4 and comparative example 3 to 4, in which cell blocks had a height (1) of 3 mm) in which a connection area ratio of cell blocks and back holes was set as shown in Table 2. The results are shown in Table 2.
    TABLE 2
    Connection area
    ratio of cell
    block - kneaded Presence/absence Extrusion of
    clay introduction of broken cell Dispersion of honeycomb
    hole (%) block configuration (s) *2 structure
    Embodiment
    2 35 Absent 0.30
    Embodiment 3 50 Absent 0.02
    Embodiment 4 65 Absent 0.20
    Comparative 30 Present 0.50 Δ
    example 3
    Comparative 70 Present X
    example 4

    *2 Dispersion of configuration: a standard deviation of 100 diagonal line cross points was calculated.
  • From the results of Table 2, the honeycomb structures could be excellently extruded without breakage of the cell blocks in the dies in extrusion and with a less amount of change of configuration by setting the connection area ratio of the cell block and the back hole to 35 to 65% as shown in the embodiments 2 to 4.
  • Note that, in the comparative example 3, since the connection area ratio of the cell blocks and the back holes was less than 35%, the cell blocks were broken.
  • In contrast, in the comparative example 4, since the connection area ratio of the cell blocks and the back holes exceeded 65%, the diameter of the back holes was made excessively small. Accordingly, no honeycomb structure could be extruded because extrusion pressure was increased by an increase in the flow path resistance of the back hole portion communicating with the slits. Further, the die was broken because the strength thereof could not be maintained due to the increase in the extrusion pressure.
  • EXAMPLES 5 to 7 Comparative Examples 5 and 6
  • Honeycomb bodies were extruded, respectively using cemented carbide dies (embodiments 5 to 7 and comparative examples 5 to 6) made such that a connection area ratio of cell blocks and back holes was set to 50% (refer to Table 2) and that the cell blocks had a height (1) as shown in Table 3, respectively. The results are shown in Table 3.
    TABLE 3
    Outside
    Height Presence/ appearance of
    of cell absence product Extrusion of
    block of broken (presence/absence honeycomb
    (mm) cell block of crack) structure
    Embodiment 5 2 Absent Absent
    Embodiment 6 3 Absent Absent
    Embodiment 7 5 Absent Absent
    Comparative 1 Absent Present X
    example 5
    Comparative 7 Present Absent X
    example 6
  • From the results of Table 3, extruded honeycomb structures and products molded after the honeycomb structures were extrude had an excellent outside appearance in the embodiments 5 to 7 because the cell blocks of the dies were not broken in extrusion by setting a height of the cell blocks to 2 to 5 mm.
  • Note that, in the comparative example 5, since the height of the cell blocks was set to less than 2 mm, no cell block was broken. However, no honeycomb structure could be obtained because the cells of a honeycomb structure were insufficiently bonded under pressure in extrusion. This is because there was no staying time during which kneaded clay was bonded under pressure.
  • In contrast, in the comparative example 6, cell blocks were broken because they had a height exceeding 5 mm. This is because a flow path resistance of a slit portion was increased as well as a load on a connected portion was increased.
  • EXAMPLE 8 Comparative Example 7
  • Honeycomb structures were extruded, respectively using a die 10, a holding plate 12, and a back holding plate 14 composed of wear resistant cemented carbide (embodiment 8) and using a die 10, a holding plate 12, and a back holding plate 14 composed of a high strength stainless steel material (comparative example 7, however, the die of the example 1 was used as the die 10) among the die jigs shown in FIG. 4. The results are shown in Table 4.
    TABLE 4
    Material of Wear Dispersion of
    jig for die resistance *1 configuration (s) *2
    Embodiment 8 Cemented carbide 100< 0.02
    (WC-Co)
    Comparative Stainless steel  1   0.50
    example 7 material (C-450)

    *1 Wear resistance: when wear resistance of the comparative example was set to 1.

    *2 Dispersion of configuration: a standard deviation of 100 diagonal line cross points was calculated.
  • From the results of Table 4, it was confirmed that the embodiment 8 had not only a life at least 100 times or more longer than that of the comparative example 7 but also a stable accuracy of a configuration.
  • Industrial Applicability
  • The die for forming a honeycomb body and the die jig for forming the honeycomb body using the same of the present invention can enhance wear resistance of the die or the die jig when the raw material containing the material having very high hardness such as SiC and the like is extruded as well as can overcome the defect in shape of the extruded body due to the wear of the die.

Claims (11)

1-8. (canceled)
9. A die for forming a honeycomb body, the die comprising a plate having a predetermined size and provided with:
a plurality of cell blocks defined by a plurality of groovy slits on a front face thereof; and
a plurality of back holes on a back face thereof, each hole being communicatively connected with a predetermined slit,
wherein the plate is made of a cemented carbide material having wear resistance, the cemented carbide material being formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having toughness, a connection area ratio of the back hole and the cell block being 35 to 65% of the surface area of the plate.
10. A die for forming a honeycomb body according to claim 9, wherein a height of the die is 2 to 5 mm.
11. A jig for forming a honeycomb body, the jig comprising:
a die for forming a honeycomb body, the die comprising a plate having a predetermined size and provided with a plurality of cell blocks defined by a plurality of groovy slits on a front face side thereof and a plurality of back holes on a back face thereof, each hole being communicatively connected with the slit,
a holding plate fixing a profile and size of the honeycomb body extruded from the die for forming the honeycomb body; and
a back holding plate controlling an amount of kneaded clay flowing into the back holes uniformly,
wherein the die and the holding plate are made of a cemented carbide material obtained by being sintered at high temperature.
12. A jig for forming a honeycomb body according to claim 11, wherein the back holding plate is made of cemented carbide having wear resistance.
13. A jig for forming a honeycomb body according to claim 11, wherein only the portions, which are in contact with the kneaded clay, of the holding plate and the back holding plate are made of cemented carbide having wear resistance.
14. A jig for forming a honeycomb body according to claim 11, wherein the cemented carbide alloy is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having toughness.
15. A jig for forming a honeycomb body according to claim 12, wherein the cemented carbide alloy is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having toughness.
16. A jig for forming a honeycomb body according to claim 13, wherein the cemented carbide alloy is formed by compacting, followed by sintering at high temperature, metal carbide powder of transition metal element series with an iron group metal binder having toughness.
17. A jig for forming a honeycomb body according to claim 11, wherein the connection area ratio of the back hole and the cell block is 35 to 65% of a surface area of the plate.
18. A jig for forming a honeycomb body according to claim 11, wherein a height of the slits defining the cell blocks is 2 to 5 mm.
US10/507,505 2002-03-28 2003-01-31 Honeycomb forming ferrule and jig for honeycomb forming ferrule using the ferrule Abandoned US20050118296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/000,764 US7858007B2 (en) 2002-03-28 2007-12-17 Honeycomb forming die and jig for honeycomb forming die using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-091026 2002-03-28
JP2002091026A JP2003285308A (en) 2002-03-28 2002-03-28 Cap for molding honeycomb and cap fixture for molding honeycomb using the same
PCT/JP2003/001030 WO2003082538A1 (en) 2002-03-28 2003-01-31 Honeycomb forming ferrule and jig for honeycomb forming ferrule using the ferrule

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/000,764 Continuation US7858007B2 (en) 2002-03-28 2007-12-17 Honeycomb forming die and jig for honeycomb forming die using the same

Publications (1)

Publication Number Publication Date
US20050118296A1 true US20050118296A1 (en) 2005-06-02

Family

ID=28671672

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/507,505 Abandoned US20050118296A1 (en) 2002-03-28 2003-01-31 Honeycomb forming ferrule and jig for honeycomb forming ferrule using the ferrule
US12/000,764 Expired - Fee Related US7858007B2 (en) 2002-03-28 2007-12-17 Honeycomb forming die and jig for honeycomb forming die using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/000,764 Expired - Fee Related US7858007B2 (en) 2002-03-28 2007-12-17 Honeycomb forming die and jig for honeycomb forming die using the same

Country Status (8)

Country Link
US (2) US20050118296A1 (en)
EP (1) EP1500479B1 (en)
JP (1) JP2003285308A (en)
KR (1) KR100602472B1 (en)
AU (1) AU2003208092A1 (en)
DE (1) DE60330134D1 (en)
PL (1) PL203126B1 (en)
WO (1) WO2003082538A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264376A1 (en) * 2006-05-15 2007-11-15 Denso Corporation Jig for baking ceramic honeycomb moldings
US20080017520A1 (en) * 2005-03-17 2008-01-24 Ngk Insulators, Ltd. Method of manufacturing die for forming honeycomb structure and die for forming honeycomb structure
US20090061040A1 (en) * 2006-12-26 2009-03-05 Ngk Insulators, Ltd. Die for forming honeycomb structure
US20090232927A1 (en) * 2008-03-17 2009-09-17 Ngk Insulators, Ltd. Honeycomb structure-forming die and method for manufacturing the same
US20090230176A1 (en) * 2008-03-13 2009-09-17 Ngk Insulators, Ltd. Joining jig and method for manufacturing a bonded body of different members by using the jig
US20090295018A1 (en) * 2007-03-20 2009-12-03 Ngk Insulators, Ltd. Oil-removing jig and method for manufacturing formed body using the same
US20090311470A1 (en) * 2007-02-01 2009-12-17 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, method of forming honeycomb formed body, and honeycomb formed body
US20100143529A1 (en) * 2008-12-05 2010-06-10 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method of die for forming honeycomb structure
US20100209546A1 (en) * 2009-02-18 2010-08-19 Ngk Insulators, Ltd. Die for forming honeycomb structure
US20150017343A1 (en) * 2012-03-29 2015-01-15 Ibiden Co., Ltd. Die for extrusion molding, method of producing die for extrusion molding, extruder, and method of producing honeycomb structured body
US20150014902A1 (en) * 2012-03-29 2015-01-15 Ibiden Co., Ltd. Die for extrusion molding, method of producing die for extrusion molding, and method of producing honeycomb structured body
US20150083325A1 (en) * 2012-06-04 2015-03-26 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method therefor
US20170216747A1 (en) * 2014-09-30 2017-08-03 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method, and honeycomb-molding die
US20190295826A1 (en) * 2010-10-15 2019-09-26 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284092B2 (en) * 2003-03-27 2009-06-24 日本碍子株式会社 Method for forming back hole of die for forming honeycomb structure
JP4426400B2 (en) 2004-08-11 2010-03-03 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
JP4528185B2 (en) * 2005-03-31 2010-08-18 日本碍子株式会社 Honeycomb structure extrusion molding equipment
JPWO2007039991A1 (en) * 2005-10-05 2009-04-16 イビデン株式会社 Extrusion mold and method for producing porous ceramic member
WO2007114089A1 (en) 2006-03-31 2007-10-11 Ngk Insulators, Ltd. Die for forming honeycomb structure and method of manufacturing the same
JP5496205B2 (en) 2008-08-28 2014-05-21 コーニング インコーポレイテッド Abrasion resistant coating for tool dies
US20140060253A1 (en) * 2012-08-28 2014-03-06 Thomas William Brew Methods of manufacturing a die body
JP5904193B2 (en) * 2013-11-15 2016-04-13 株式会社デンソー Manufacturing method of honeycomb structure
CN108349110B (en) * 2015-11-20 2021-01-12 康宁股份有限公司 Extrusion die for honeycomb bodies

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1973428A (en) * 1932-11-08 1934-09-11 Firth Sterling Steel Co Cemented hard carbide material
US3790654A (en) * 1971-11-09 1974-02-05 Corning Glass Works Extrusion method for forming thinwalled honeycomb structures
US3905743A (en) * 1971-11-09 1975-09-16 Corning Glass Works Extrusion apparatus for forming thin-walled honeycomb structures
US4278412A (en) * 1977-02-24 1981-07-14 Ngk Insulators, Ltd. Extrusion die assembly for forming honeycomb structures
US4465652A (en) * 1983-03-11 1984-08-14 Corning Glass Works Laminated extrusion die blade support
US4687433A (en) * 1985-03-28 1987-08-18 Ngk Insulators, Ltd. Die for extruding ceramic honeycomb structural bodies
US4834640A (en) * 1987-02-27 1989-05-30 Ngk Industries, Ltd. Extrusion-forming jig
US5219509A (en) * 1990-11-30 1993-06-15 Corning Incorporated Method for forming a uniform skin on a cellular substrate
US5286323A (en) * 1993-02-23 1994-02-15 Corning Incorporated Dome shaped extrusion dies
US5308556A (en) * 1993-02-23 1994-05-03 Corning Incorporated Method of making extrusion dies from powders
US5308568A (en) * 1993-05-20 1994-05-03 Corning Incorporated Extrusion die and method
US5702659A (en) * 1995-11-30 1997-12-30 Corning Incorporated Honeycomb extrusion die and methods
US6193497B1 (en) * 1997-03-10 2001-02-27 Ngk Insulators, Ltd. Honeycomb extrusion die
US6302679B1 (en) * 1994-11-10 2001-10-16 Corning Incorporated Honeycomb extrusion die

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735730B2 (en) * 1987-03-31 1995-04-19 日本碍子株式会社 Exhaust gas driven ceramic rotor for pressure wave supercharger and its manufacturing method
DE4324347A1 (en) * 1992-07-23 1994-01-27 Noritake Co Ltd Mass produced monolithic ceramic filter - has honeycomb structure with partition wall section, useful for micro and ultra filtration and reverse osmosis
JP2925921B2 (en) * 1994-03-14 1999-07-28 日本碍子株式会社 Ceramic structure extrusion die
JP4332980B2 (en) * 1999-03-18 2009-09-16 株式会社デンソー Manufacturing method of mold for forming honeycomb structure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1973428A (en) * 1932-11-08 1934-09-11 Firth Sterling Steel Co Cemented hard carbide material
US3790654A (en) * 1971-11-09 1974-02-05 Corning Glass Works Extrusion method for forming thinwalled honeycomb structures
US3905743A (en) * 1971-11-09 1975-09-16 Corning Glass Works Extrusion apparatus for forming thin-walled honeycomb structures
US4278412A (en) * 1977-02-24 1981-07-14 Ngk Insulators, Ltd. Extrusion die assembly for forming honeycomb structures
US4465652A (en) * 1983-03-11 1984-08-14 Corning Glass Works Laminated extrusion die blade support
US4687433A (en) * 1985-03-28 1987-08-18 Ngk Insulators, Ltd. Die for extruding ceramic honeycomb structural bodies
US4834640A (en) * 1987-02-27 1989-05-30 Ngk Industries, Ltd. Extrusion-forming jig
US5219509A (en) * 1990-11-30 1993-06-15 Corning Incorporated Method for forming a uniform skin on a cellular substrate
US5286323A (en) * 1993-02-23 1994-02-15 Corning Incorporated Dome shaped extrusion dies
US5308556A (en) * 1993-02-23 1994-05-03 Corning Incorporated Method of making extrusion dies from powders
US5308568A (en) * 1993-05-20 1994-05-03 Corning Incorporated Extrusion die and method
US6302679B1 (en) * 1994-11-10 2001-10-16 Corning Incorporated Honeycomb extrusion die
US5702659A (en) * 1995-11-30 1997-12-30 Corning Incorporated Honeycomb extrusion die and methods
US6193497B1 (en) * 1997-03-10 2001-02-27 Ngk Insulators, Ltd. Honeycomb extrusion die

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982158B2 (en) 2005-03-17 2011-07-19 Ngk Insulators, Ltd. Method of manufacturing die for forming honeycomb structure and die for forming honeycomb structure
US20080017520A1 (en) * 2005-03-17 2008-01-24 Ngk Insulators, Ltd. Method of manufacturing die for forming honeycomb structure and die for forming honeycomb structure
US20070264376A1 (en) * 2006-05-15 2007-11-15 Denso Corporation Jig for baking ceramic honeycomb moldings
US20090061040A1 (en) * 2006-12-26 2009-03-05 Ngk Insulators, Ltd. Die for forming honeycomb structure
US8052411B2 (en) 2006-12-26 2011-11-08 Ngk Insulators, Ltd. Die for forming honeycomb structure
US8851877B2 (en) 2007-02-01 2014-10-07 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, and method of forming honeycomb formed body
US20090311470A1 (en) * 2007-02-01 2009-12-17 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, method of forming honeycomb formed body, and honeycomb formed body
US20090295018A1 (en) * 2007-03-20 2009-12-03 Ngk Insulators, Ltd. Oil-removing jig and method for manufacturing formed body using the same
US8225983B2 (en) 2008-03-13 2012-07-24 Ngk Insulators, Ltd. Joining jig and method for manufacturing a bonded body of different members by using the jig
US20090230176A1 (en) * 2008-03-13 2009-09-17 Ngk Insulators, Ltd. Joining jig and method for manufacturing a bonded body of different members by using the jig
US20090232927A1 (en) * 2008-03-17 2009-09-17 Ngk Insulators, Ltd. Honeycomb structure-forming die and method for manufacturing the same
US8235699B2 (en) 2008-03-17 2012-08-07 Ngk Insulators, Ltd. Honeycomb structure-forming die and method for manufacturing the same
US7997888B2 (en) 2008-12-05 2011-08-16 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method of die for forming honeycomb structure
US20100143529A1 (en) * 2008-12-05 2010-06-10 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method of die for forming honeycomb structure
US8398390B2 (en) 2009-02-18 2013-03-19 Ngk Insulators, Ltd. Die for forming honeycomb structure
US20100209546A1 (en) * 2009-02-18 2010-08-19 Ngk Insulators, Ltd. Die for forming honeycomb structure
US20190295826A1 (en) * 2010-10-15 2019-09-26 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
US11488812B2 (en) * 2010-10-15 2022-11-01 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
US20150014902A1 (en) * 2012-03-29 2015-01-15 Ibiden Co., Ltd. Die for extrusion molding, method of producing die for extrusion molding, and method of producing honeycomb structured body
US20150017343A1 (en) * 2012-03-29 2015-01-15 Ibiden Co., Ltd. Die for extrusion molding, method of producing die for extrusion molding, extruder, and method of producing honeycomb structured body
US9616637B2 (en) * 2012-06-04 2017-04-11 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method therefor
US20150083325A1 (en) * 2012-06-04 2015-03-26 Ngk Insulators, Ltd. Die for forming honeycomb structure and manufacturing method therefor
US20170216747A1 (en) * 2014-09-30 2017-08-03 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method, and honeycomb-molding die
US11007672B2 (en) * 2014-09-30 2021-05-18 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method, and honeycomb-molding die

Also Published As

Publication number Publication date
EP1500479B1 (en) 2009-11-18
EP1500479A1 (en) 2005-01-26
US7858007B2 (en) 2010-12-28
JP2003285308A (en) 2003-10-07
EP1500479A4 (en) 2005-11-23
PL373709A1 (en) 2005-09-05
AU2003208092A1 (en) 2003-10-13
KR100602472B1 (en) 2006-07-19
DE60330134D1 (en) 2009-12-31
WO2003082538A1 (en) 2003-10-09
PL203126B1 (en) 2009-08-31
US20080113858A1 (en) 2008-05-15
KR20040104554A (en) 2004-12-10

Similar Documents

Publication Publication Date Title
US7858007B2 (en) Honeycomb forming die and jig for honeycomb forming die using the same
JPH0645130B2 (en) Manufacturing method of ceramic honeycomb extrusion die
EP2098345B1 (en) Mouthpiece for moulding honeycomb structure
EP1864772B1 (en) Method of manufacturing ferrule for molding honeycomb structure and ferrule for molding honeycomb structure
EP2105272B1 (en) Honeycomb structure-forming die and method for manufacturing the same
EP2857164B1 (en) Spinneret for molding honeycomb structure and manufacturing method therefor
EP2221156B1 (en) Die for forming honeycomb structure
EP2857163B1 (en) Spinneret for molding honeycomb structure and manufacturing method therefor
US7311510B2 (en) Honeycomb forming die
EP1442859B1 (en) Die for extrusion molding of honeycomb
CN214418198U (en) Target material clamp
US20110233186A1 (en) Method for manufacturing honeycomb structure forming die
JP5313738B2 (en) Die for forming honeycomb structure
JP4220814B2 (en) Cutting tool and manufacturing method thereof
JP2019171627A (en) Manufacturing method of honeycomb structure forming die, honeycomb structure forming die, and manufacturing method of honeycomb structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: NGK INSULATORS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANEKO, TAKAHISA;NATE, MASAYUKI;HIRONAGA, MASAYUKI;AND OTHERS;REEL/FRAME:016246/0893

Effective date: 20040901

Owner name: NGK INSULATORS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANEKO, TAKAHISA;NATE, MASAYUKI;HIRONAGA, MASAYUKI;AND OTHERS;REEL/FRAME:016337/0342

Effective date: 20040901

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION