Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050121706 A1
Publication typeApplication
Application numberUS 11/031,703
Publication dateJun 9, 2005
Filing dateJan 7, 2005
Priority dateFeb 20, 2003
Also published asUS6855606, US20040166642
Publication number031703, 11031703, US 2005/0121706 A1, US 2005/121706 A1, US 20050121706 A1, US 20050121706A1, US 2005121706 A1, US 2005121706A1, US-A1-20050121706, US-A1-2005121706, US2005/0121706A1, US2005/121706A1, US20050121706 A1, US20050121706A1, US2005121706 A1, US2005121706A1
InventorsHao-Yu Chen, Yee-Chia Yeo, Fu-Liang Yang, Chenming Hu
Original AssigneeHao-Yu Chen, Yee-Chia Yeo, Fu-Liang Yang, Chenming Hu
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Semiconductor nano-rod devices
US 20050121706 A1
Abstract
In a method of manufacturing a semiconductor device, a semiconductor layer is patterned to form a source region, a channel region, and a drain region in the semiconductor layer. The channel region extends between the source region and the drain region. Corners of the channel region are rounded by annealing the channel region to form a nano-rod structure. Part of the nano-rod structure is then used as a gate channel. Preferably, a gate dielectric and a gate electrode both wrap around the nano-rod structure, with the gate dielectric being between the nano-rod structure and the gate electrode, to form a transistor device.
Images(4)
Previous page
Next page
Claims(20)
1. A semiconductor device comprising:
an insulating layer over an underlying layer;
a layer of semiconductor material over the insulating layer, the semiconductor layer having a source region, a drain region, and an annealed nano-rod structure extending between the source and drain regions;
a gate dielectric formed on the surface of at least a segment of the nano-rod structure; and
a gate electrode formed on the surface of the gate dielectric at the segment.
2. The semiconductor device of claim 1, wherein the gate dielectric is formed completely around the nano-rod structure at the segment.
3. The semiconductor device of claim 2, wherein the gate electrode is formed completely around the nano-rod structure at the segment.
4. The semiconductor device of claim 1, wherein the semiconductor material is selected from a group consisting of silicon, germanium, silicon-germanium alloy, silicon-germanium-carbon alloy, indium phosphide compound, and gallium arsenide compound.
5. The semiconductor device of claim 1, wherein the insulating layer comprises a material selected from a group consisting of silicon dioxide, silicon nitride, and aluminum oxide.
6. The semiconductor device of claim 1, wherein the underlying layer is a silicon substrate.
7. The semiconductor device of claim 1, wherein the gate dielectric comprises a material selected from a group consisting of silicon dioxide, silicon oxynitride, HfO2, ZrO2, Al2O3, and La2O3.
8. The semiconductor device of claim 1, wherein the gate electrode comprises a material selected from a group consisting of a semiconducting material, a metal, and a metal nitride.
9. The semiconductor device of claim 1, wherein the nano-rod structure has a cross-section diameter less than about 65 nm.
10. The semiconductor device of claim 1, wherein the nano-rod structure has a substantially circular cross-section.
11. The semiconductor device of claim 1, wherein the nano-rod structure has rounded corners.
12. A semiconductor device comprising a plurality of transistors, wherein each of the plurality of transistors comprises:
an annealed semiconductor layer having a source region, a drain region, and a channel region formed therein, the channel region extending between the source region and the drain region, the channel region comprising a nano-rod structure with rounded corners;
a gate dielectric formed on the surface of at least a segment of the nano-rod structure; and
a gate electrode formed on the surface of the gate dielectric at the segment, the gate electrode having a gate contact region extending therefrom.
13. The semiconductor device of claim 12, wherein the gate dielectric is formed completely around the nano-rod structure at the segment.
14. The semiconductor device of claim 13, wherein the gate electrode is formed completely around the nano-rod structure at the segment.
15. The semiconductor device of claim 12, wherein the semiconductor material is selected from a group consisting of silicon, germanium, silicon-germanium alloy, silicon-germanium-carbon alloy, indium phosphide compound, and gallium arsenide compound.
16. The semiconductor device of claim 12, further comprising an insulating layer over an underlying layer, wherein the semiconductor layer is formed over the insulating layer.
17. The semiconductor device of claim 16, wherein the insulating layer comprises a material selected from a group consisting of silicon dioxide, silicon nitride, and aluminum oxide, and wherein the underlying layer is a silicon substrate.
18. The semiconductor device of claim 12, wherein the gate dielectric comprises a material selected from a group consisting of silicon dioxide, silicon oxynitride, HfO2, ZrO2, Al2O3, and La2O3, and wherein the gate electrode comprises a material selected from a group consisting of a semiconducting material, a metal, and a metal nitride.
19. The semiconductor device of claim 12, wherein the nano-rod structure has a cross-section diameter less than about 65 nm.
20. A semiconductor device comprising a plurality of transistors, wherein each of the plurality of transistors comprises:
an annealed semiconductor layer having a source region, a drain region, and a channel region formed therein, the channel region extending between the source region and the drain region, the channel region having a substantially circular cross-section shape,
a gate dielectric layer around a segment of the channel region, and
a gate electrode having a gate wrap region that wraps around the segment of the channel region and a gate contact region extending therefrom, wherein the gate dielectric layer is between the segment of the channel region and the gate wrap region of the gate electrode.
Description

This application is a divisional of patent application Ser. No. 10/370,792, entitled “Semiconductor Nano-Rod Devices,” filed on Feb. 20, 2003, which application is incorporated herein by reference.

TECHNICAL FIELD

The present invention relates generally to methods for manufacturing semiconductor devices. In one aspect, the present invention relates to a method of forming a nano-rod structure for a channel of a field effect transistor.

BACKGROUND

Metal-oxide-semiconductor field effect transistor (MOSFET) technology is currently the dominant semiconductor technology used for manufacturing ultra-large scale integrated (ULSI) circuits. As the gate length of the MOSFET is scaled down into the sub-30 nm regime for improved performance and density, the source and drain increasingly interact with the channel to sometimes gain influence on the channel potential. Hence, a transistor with a short gate length often suffers from problems related to the inability of the gate to substantially control the on/off states of the channel, which is often called short-channel effects.

Increased body doping concentration, reduced gate oxide thickness, and junction depths are some ways to suppress short-channel effects. However, for device scaling well into the sub-30 nm regime, the requirements for body-doping concentration, gate oxide thickness, and source/drain doping profiles become increasingly difficult to meet using conventional device structures based on bulk silicon substrates. Thus, alternative device structures that offer better control of short-channel effects are being considered to enable the continued scaling down of transistor sizes.

A highly scalable device structure that offers superior control of short-channel effects is a wrap-around gate structure for a transistor (a.k.a., surround-gate or gate-all-around transistor structure). A wrap-around gate structure typically has a gate that surrounds or wraps around a channel region. This structure effectively improves the capacitance coupling between the gate and the channel, as compared to conventional bulk silicon substrate transistor structures, double-gate transistor structures, and triple-gate transistor structures. With the wrap-around gate structure, the gate gains significant influence on the channel potential, and therefore improves suppression of short-channel effects. A wrap-around gate structure typically allows the gate length to be scaled down by about 50% more compared to a double-gate structure.

There are several different ways to implement a wrap-around gate transistor structure. For example, the transistor channel may be oriented vertically or horizontally. Many of the existing designs for horizontally oriented channels have a square or rectangular shaped cross-section. When the channel cross-section is rectangular or square, enhanced field effect at the corners of the rectangle may cause that part of the transistor to turn on earlier (i.e., having a lower threshold voltage) than parts of the transistor at the flat sides of the rectangular channel cross-section. This may result in a parasitic off-state leakage. Hence, a cylindrical channel cross-section is preferred over a rectangular channel cross-section.

Current attempts at obtaining a more circular channel cross-section are made by oxidizing the silicon beam forming the channel to round the corners of the rectangular channel cross-section. However, this method requires a large amount of oxidation, and hence a large amount of oxide formation, to convert the rectangular channel cross-section shape to a rounded or circular channel cross-section. Hence, there is a need for a way to manufacture a transistor channel having a rounded or circular cross-section shape without having to form excessive oxide about the channel.

SUMMARY

The problems and needs outlined above are addressed by embodiments of the present invention. In accordance with one aspect of the present invention, a method of manufacturing a semiconductor device is provided. This method includes the following steps. A semiconductor layer is patterned to form a source region, a channel region, and a drain region in the semiconductor layer. The channel region extends between the source region and the drain region. Corners of the channel region are rounded by annealing the channel region.

Next, some example annealing parameters that may be used are described. The annealing may occur in a reaction chamber having an environment therein including a gas of hydrogen, nitrogen, a mixed gas including hydrogen and argon, a mixed gas including hydrogen and nitrogen, or an inert gas. The annealing environment may be H2 gas at a pressure ranging from about 1.0×10−9 torr to about 800 torr. The annealing environment may be N2 gas at a pressure ranging from about 1.0×10−9 torr to about 800 torr. The annealing may occur in a reaction chamber having an evacuated environment. The annealing environment may be a vacuum environment at a pressure ranging from about 1.0×10−10 torr to about 1.0×10 −3 torr. The annealing may occur in a reaction chamber having a temperature ranging from about 600° C. to about 1200° C. therein. The annealing occurs at an anneal time ranging from about 1 second to about 2 hours. The annealing may be performed in a hydrogen gas (H2) environment at about 900° C. for about 2 minutes.

In accordance with another aspect of the present invention, a method of manufacturing a semiconductor device is provided. This method includes the following steps. A semiconductor layer is patterned to form a source region, a channel region, and a drain region in the semiconductor layer. The channel region extends between the source region and the drain region. Corners of the channel region are rounded by annealing the channel region. The insulating layer is etched using an etch chemistry selective against etching the semiconductor layer. The etching is performed long enough so that at least a segment of the rounded channel region is suspended above a proximate portion of the insulating layer. A gate dielectric material is formed on a surface of and about the rounded channel region. A gate electrode material is formed on the gate dielectric and about the rounded channel region. The gate electrode material is patterned to form a gate electrode. The gate electrode includes a gate wrap region that wraps around the rounded channel region and a gate contact region extending therefrom.

In accordance with yet another aspect of the present invention, a semiconductor device is provided, which includes an insulating layer, an underlying layer, a layer of semiconductor material, a gate dielectric, and a gate electrode. The insulating layer is over the underlying layer. The layer of semiconductor material is over the insulating layer. The semiconductor layer has a source region, a drain region, and an annealed nano-rod structure extending between the source and drain regions. The gate dielectric is formed on the surface of at least a segment of the nano-rod structure. The gate electrode is formed on the surface of the gate dielectric at the segment. Preferably, the gate dielectric and the gate electrode are both formed completely around the nano-rod structure at the segment. Preferably, the nano-rod structure has a cross-section diameter less than about 65 nm.

In accordance with still another aspect of the present invention, a semiconductor device including a plurality of transistors, is provided. Each of the plurality of transistors includes an annealed semiconductor layer, a gate dielectric surface layer, and a gate electrode. The annealed semiconductor layer has a source region, a drain region, and a channel region formed therein. The channel region extends between the source region and the drain region. The source region has a substantially flat source contact portion. The drain region has a substantially flat drain contact portion. The channel region has a substantially circular cross-section shape. The gate dielectric surface layer wraps around a segment of the channel region. The gate electrode has a gate wrap region that wraps around the segment of the channel region and a gate contact region extending therefrom. The gate dielectric layer is between the segment of the channel region and the gate wrap region of the gate electrode.

BRIEF DESCRIPTION

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

FIGS. 1A, 2A, 3A, 4A, 5A, and 6A show simplified perspective views of one transistor device being manufactured on a semiconductor device in accordance with a preferred embodiment of the present invention;

FIGS. 1B, 2B, 3B, 4B, 5B, and 6B are simplified cross-section views of FIGS. 1A, 2A, 3A, 4A, 5A, and 6A, respectively, as taken along lines 1B-1B, 2B-2B, 3B-3B, 4B-4B, 5B-5B, and 6B-6B, respectively; and

FIGS. 7A-7D show some possible variations of the nano-rod structure formed after an annealing processing in accordance with the present invention.

DETAILED DESCRIPTION

The use of presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.

Example embodiments of the present invention will be described herein in a specific context of making semiconductor devices, such as transistors. In other embodiments not shown, embodiments of the present invention also may include nano-wires or quantum-wires formed in accordance with the present invention. The present invention may also be applied, however, to other situations.

A preferred manufacturing process in accordance with the present invention may be used to make a transistor device. Some of the manufacturing steps of this preferred embodiment being used to make a transistor embodiment are illustrated in FIGS. 1A-6B. While describing the structure formation steps shown in FIGS. 1A-6B, process parameters and steps for the preferred embodiment will described, as well as some of the possible alternatives or variations of the process parameters and steps. However, the process parameters shown and/or described herein are merely examples to illustrate and describe the present invention. With the benefit of this disclosure, one of ordinary skill in the art will likely realize other variations and embodiments of the present invention within the scope and spirit of the appended patent claims.

FIGS. 1A, 2A, 3A, 4A, 5A, and 6A show simplified perspective views of one transistor device 20 being manufactured on a semiconductor device. Such a semiconductor device will often have millions of these transistors 20. However, for purposes of illustration and discussion, only one transistor device 20 is shown and the remainder of the semiconductor device is not shown. FIGS. 1B, 2B, 3B, 4B, 5B, and 6B are simplified cross-section views of FIGS. 1A, 2A, 3A, 4A, 5A, and 6A, respectively, as taken along lines 1B-1B, 2B-2B, 3B-3B, 4B-4B, 5B-5B, and 6B-6B, respectively.

Referring to FIGS. 1A and 1B, an intermediate structure is shown having an insulating layer 22 formed on an underlying layer 24. A semiconductor layer 26 is formed on the insulating layer 22. This type of structure is sometimes referred to as a silicon-on-insulator substrate and is commonly available as a starting material. A patterned active region mask 28 is formed on the semiconductor layer 26. The mask 28 may be formed from a pad silicon oxide layer 30 and a silicon nitride layer 32, for example. With the mask 28 in place having a pattern desired to be formed in the semiconductor layer 26, the semiconductor layer 26 is preferably anisotropically etched (e.g., dry plasma etching) to conform the semiconductor layer 26 to the pattern of the mask 28.

The underlying layer 24 will often be a silicon wafer, for example. However, the underlying layer 24 may be another type of layer, including but not limited to: an elemental semiconductor, such as germanium; an alloy semiconductor, such as silicon-germanium; or a compound semiconductor, such as gallium arsenide or indium phosphide, for example.

The insulating layer 22 in some embodiments may be referred to as a “buried oxide” layer. However, the insulating layer 22 may be composed of a material or a combination of materials from a large variety of materials, including but not limited to: silicon dioxide, silicon nitride, aluminum oxide, plastic, or polymer, for example. In a currently preferred embodiment, the insulating layer 22 is composed of silicon dioxide (SiO2).

The semiconductor layer 26 may be composed of a material or a combination of materials from a large variety of materials, including but not limited to: any semiconductor material, silicon, carbon, elemental semiconductor material (e.g., germanium), alloy semiconductor material (e.g., silicon-germanium, silicon-germanium-carbon), compound semiconductor material (e.g., indium phosphide, gallium arsenide), plastic, or polymer, for example. Such materials may be in crystalline or amorphous forms. In a currently preferred embodiment, the semiconductor layer 26 is composed of silicon. Hence, in the preferred embodiment shown in FIGS. 1A-6B, the semiconductor layer 26 is a silicon layer.

In FIGS. 2A and 2B the mask 28 has been removed and the patterned semiconductor layer 26 remains in the form of an H-shaped, thin silicon island. However, in other embodiments (not shown), the patterned semiconductor layer 26 may have other shapes (e.g., U-shaped, V-shaped, I-shaped, L-shaped, etc.). The thickness of the patterned silicon layer or island 26 may range from about two angstroms to about 1000 angstroms, for example. The patterned silicon layer 26 has a source region 40, a drain region 42, and a channel region 44. The channel region 44 extends between the source region 40 and the drain region 42. As shown in FIG. 2A, the channel region 44 has a width that is much narrower than the contact pad portions 50 and 52 of the source and drain regions 40 and 42, respectively.

Next, the silicon atoms in the patterned silicon layer 26 are re-arranged by annealing the silicon layer 26 at elevated temperatures. The re-arrangement is induced by surface migration of silicon atoms driven by a tendency to minimize surface tension. During the annealing, the re-arrangement of the atoms at the narrow channel region 44 causes the corners of the channel region 44 to be rounded, as shown in FIGS. 3A and 3B, to transform the channel region 44 into a nano-rod structure 60. If carried out long enough and/or under sufficient heat, the resulting nano-rod structure 60 may be completely rounded having a circular-shaped cross-section, as shown in FIG. 3B. The contact pad portions 50 and 52 of the source and drain regions 40 and 42 will also likely experience slight shape changes, such as rounding of at least some of their corners. But because the contact pad portions 50 and 52 are much wider than the channel region, these contact pad portions 50 and 52 will typically still be substantially flat in shape or with only a slight curvature. The contact pad portions of the source and drain regions serve to provide a portion onto which metallic or conductive materials form electrical connection with the source and drain regions. It is understood that the contact pad is an optional feature of this invention. If the contact pad portions of the source and drain regions are omitted, the patterned semiconductor layer may be I-shaped, for example. In this case, the electrical connection between the metallic or conductive material and the source and drain regions may be formed directly on the nano-rod structure.

Example parameters for the annealing process used to round the corners of the channel region 44 will be described next. The temperature for the annealing process may range from about 600° C. to about 1200° C. The anneal time may range from about 1 second to about 2 hours. The pressure in the reaction chamber (not shown) used for the annealing process may vary, depending in part upon the environment within the reaction chamber. The reaction chamber may be a chemical vapor deposition (CVD) epitaxial reactor, for example. The annealing process may occur in a reaction chamber having an environment of hydrogen gas (H2) at a partial pressure ranging from about 1.0×10 −9 torr to about 800 torr. In another embodiment, the annealing environment may be evacuated (i.e., a vacuum environment) at a pressure ranging from about 1.0×10−10 torr to about 1.0×10−3 torr. In still another embodiment, the annealing environment may be nitrogen gas (N2) at a pressure ranging from about 1.0×10−9 torr to about 800 torr. The annealing environment may also be one of the following environments (but not limited to): an environment of a mixed gas including hydrogen and argon; an environment of a mixed gas including hydrogen and nitrogen; an environment with other gases in addition to hydrogen to form a mixed gas ambient; or an environment of an inert gas, for example.

In a preferred embodiment, the annealing process is performed in a hydrogen gas (H2) ambient at about 900° C. for about 2 minutes. During testing, annealing a 28 nm thick silicon channel region 44 under such conditions did not reveal crystal defects.

After forming the nano-rod structure 60, the insulating layer 22 may be etched to expose the bottom surface of the nano-rod 60, as shown in FIGS. 4A and 4B. The nano-rod 60 is supported by the contact portions 50 and 52 of the source and drain regions 40 and 42. It is preferred to etch away the insulating layer 22 beneath the nano-rod 60 at least enough to allow the gate to wrap around the nano-rod 60 for optimum gate control performance. The use of the annealing process of the present invention to form a nano-rod structure 60 (described above) may also be applied to a non-wrap-around gate design (i.e., where the gate electrode only covers three sides of the gate channel, or where the gate electrode does not completely wrap around the gate channel).

Next, a gate dielectric material 62 is formed on the surface of and about the nano-rod structure 60 (as well as on the other exposed portions of the silicon layer 26), as shown in FIGS. 5A and 5B. As shown in FIG. 5B, because the nano-rod 60 is exposed on all sides after etching away part of the insulting layer 22, the gate dielectric material 62 may be formed completely around the nano-rod surface. The gate dielectric material 62 may be an oxide formed by thermal oxidation or atomic-layer CVD for uniform deposition, for example. Hence, the gate dielectric will likely form on all exposed areas, including the contact portions 50, 52 of the source and drain regions 40, 42. The gate dielectric material may take the form of a variety of compositions, including but not limited to: silicon dioxide (SiO2), silicon oxynitride (SiOxNy), HfO2, ZrO2, Al2O3, La2O3, or other high permittivity materials, for example.

A gate electrode material is then deposited, masked, and etched to form the gate electrode 64, as shown in FIGS. 6A and 6B. The gate electrode material may be selected from a variety of materials, including but not limited to: a semiconductor material (e.g., poly-silicon, poly-silicon-germanium); a metal material (e.g., molybdenum, tungsten, titanium); a metallic nitride (e.g., tantalum nitride, titanium nitride); or any combination thereof, for example. As shown in FIG. 6B, because the nano-rod 60 is elevated above the insulating layer 22 (at least where the channel will be formed), the gate electrode 64 may be formed completely around the nano-rod 60, as preferred. During or after the etching of the gate electrode material to form the patterned gate electrode 64, the gate dielectric material 62 may be removed from the source and drain regions, as shown in FIG. 6A.

Because the gate dielectric 62 is preferably aligned with the gate electrode 64 at the channel, the gate dielectric 62 can be self-aligned with the gate electrode 64 by simply etching the gate electrode material with an etch chemistry that will also etch away the gate dielectric material 62 while being selective against etching the silicon layer 26. Also, because the gate dielectric 62 at the gate channel is shielded by the gate electrode 64, the ion implantation processes for doping the silicon layer 26 outside of the channel (i.e., to form the source and drain of the transistor 20) may be self-aligning as well.

As shown in FIGS. 7A, 7B, 7C, and 7D, the resulting shape of the nano-rod 60 formed at the channel region 44 may vary, depending on the annealing parameters used. For example, the nano-rod portion 60 shown in FIG. 7A has a generally rectangular shaped cross-section with rounded corners (i.e., more than 4 crystal faces). The nano-rod portion 60 shown in FIG. 7B has a generally oval-shaped cross-section. In other embodiments, the nano-rod cross-section may have a rounded but arbitrarily shaped or somewhat arbitrarily shaped, as shown in FIG. 7C for example. However, as described above, the preferred shape of the nano-rod cross-section for a preferred transistor embodiment is circular, as shown in FIG. 7D. Preferably, the nano-rod 60 has a diameter no larger than about 65 nm. The diameter of the nano-rod cross-section may be in the order of nanometers (e.g., about 4 nm), and such nano-rods may be used for the channel of a field-effect transistor, for example.

In another manufacturing embodiment (not shown) of present invention, after FIG. 2A, part of the insulating layer 22 may be etched away before the annealing process for rounding the corners of the channel region 44. Also, after FIG. 5A, the gate dielectric material 62 may be patterned and etched (to leave a gate dielectric portion around the nano-rod 60 where the gate channel will be formed) before the deposition of the gate electrode material. In still another embodiment, after FIG. 5A, the gate electrode material may be etched using a first etch chemistry to form the gate electrode 64, and then the gate dielectric material 62 may be etched using a second etch chemistry after forming the gate electrode 64. In such case, the gate electrode 64 may act as a self-aligning mask for the etching of the gate dielectric material 62 to shield the gate dielectric between the gate electrode 64 and the nano-rod 60.

Although several embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the processes, machines, manufactures, compositions of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufactures, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function and/or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufactures, compositions of matter, means, methods, or steps.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7452778Apr 12, 2005Nov 18, 2008Taiwan Semiconductor Manufacturing Company, Ltd.Semiconductor nano-wire devices and methods of fabrication
US7482206Jun 7, 2006Jan 27, 2009Samsung Electronics Co., Ltd.Semiconductor devices having nano-line channels and methods of fabricating the same
US7485908 *Aug 18, 2005Feb 3, 2009United States Of America As Represented By The Secretary Of The Air ForceInsulated gate silicon nanowire transistor and method of manufacture
US7541227Oct 30, 2006Jun 2, 2009Hewlett-Packard Development Company, L.P.Thin film devices and methods for forming the same
US7642578 *Dec 16, 2005Jan 5, 2010Samsung Electronics Co., Ltd.Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
US7701008Jun 5, 2006Apr 20, 2010Taiwan Semiconductor Manufacturing Company, Ltd.Doping of semiconductor fin devices
US7781825 *Dec 21, 2007Aug 24, 2010Macronix International Co., Ltd.Semiconductor device and method for manufacturing the same
US7955932 *Oct 3, 2007Jun 7, 2011Samsung Electronics Co., Ltd.Single electron transistor and method of manufacturing the same
US8017481 *Jan 13, 2010Sep 13, 2011Micron Technology, Inc.Methods of forming nanoscale floating gate
US8022393 *Jul 29, 2008Sep 20, 2011Nokia CorporationLithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US8053839Mar 25, 2010Nov 8, 2011Taiwan Semiconductor Manufacturing Company, Ltd.Doping of semiconductor fin devices
US8097515Dec 4, 2009Jan 17, 2012International Business Machines CorporationSelf-aligned contacts for nanowire field effect transistors
US8101483 *Jul 22, 2010Jan 24, 2012Macronix International Co., Ltd.Semiconductor device and method for manufacturing the same
US8110471Nov 23, 2009Feb 7, 2012Samsung Electronics Co., Ltd.Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
US8119430 *Jun 30, 2009Feb 21, 2012Electronics And Telecommunications Research InstituteMethod of manufacturing semiconductor nanowire sensor device and semiconductor nanowire sensor device manufactured according to the method
US8124961 *Jun 3, 2011Feb 28, 2012Samsung Electronics Co., Ltd.Single electron transistor
US8129247 *Dec 4, 2009Mar 6, 2012International Business Machines CorporationOmega shaped nanowire field effect transistors
US8143113 *Dec 4, 2009Mar 27, 2012International Business Machines CorporationOmega shaped nanowire tunnel field effect transistors fabrication
US8173545 *May 3, 2007May 8, 2012Commissariat A L'energie AtomiqueMethod for the fabrication of a transistor gate using at least one electron beam
US8173993Dec 4, 2009May 8, 2012International Business Machines CorporationGate-all-around nanowire tunnel field effect transistors
US8309968 *Jul 30, 2010Nov 13, 2012National Tsing Hua UniversitySchottky diode with diamond rod and method for manufacturing the same
US8324030May 12, 2010Dec 4, 2012International Business Machines CorporationNanowire tunnel field effect transistors
US8324940Apr 13, 2010Dec 4, 2012International Business Machines CorporationNanowire circuits in matched devices
US8361907May 10, 2010Jan 29, 2013International Business Machines CorporationDirectionally etched nanowire field effect transistors
US8384065Dec 4, 2009Feb 26, 2013International Business Machines CorporationGate-all-around nanowire field effect transistors
US8395202Sep 13, 2011Mar 12, 2013Micron Technology, Inc.Nanoscale floating gate
US8455334Dec 4, 2009Jun 4, 2013International Business Machines CorporationPlanar and nanowire field effect transistors
US8507892Feb 14, 2012Aug 13, 2013International Business Machines CorporationOmega shaped nanowire tunnel field effect transistors
US8513068Aug 31, 2012Aug 20, 2013International Business Machines CorporationNanowire field effect transistors
US8520430Jul 20, 2012Aug 27, 2013International Business Machines CorporationNanowire circuits in matched devices
US8536563Sep 17, 2010Sep 17, 2013International Business Machines CorporationNanowire field effect transistors
US8586966Jul 18, 2012Nov 19, 2013International Business Machines CorporationContacts for nanowire field effect transistors
US8680510 *Jun 28, 2010Mar 25, 2014International Business Machines CorporationMethod of forming compound semiconductor
US8680589 *Feb 14, 2012Mar 25, 2014International Business Machines CorporationOmega shaped nanowire field effect transistors
US8722492Jan 8, 2010May 13, 2014International Business Machines CorporationNanowire pin tunnel field effect devices
US8723162Jul 3, 2012May 13, 2014International Business Machines CorporationNanowire tunnel field effect transistors
US8772755Jul 17, 2012Jul 8, 2014International Business Machines CorporationDirectionally etched nanowire field effect transistors
US8790970Jun 5, 2006Jul 29, 2014Taiwan Semiconductor Manufacturing Company, Ltd.Doping of semiconductor fin devices
US8835231Aug 16, 2010Sep 16, 2014International Business Machines CorporationMethods of forming contacts for nanowire field effect transistors
US20080272366 *Jan 30, 2008Nov 6, 2008Moon Chang-WookField effect transistor having germanium nanorod and method of manufacturing the same
US20090203203 *May 3, 2007Aug 13, 2009Commissariat A L'energie AtomiqueMethod for the fabrication of a transistor gate that includes the breakdown of a precursor material into at least one metallic material, using at least one
US20110003446 *Jul 22, 2010Jan 6, 2011Macronix International Co., Ltd.Semiconductor Device and Method for Manufacturing the Same
US20110018065 *Feb 17, 2009Jan 27, 2011Nxp B.V.Method for manufacturing semiconductor device and semiconductor device
US20110133161 *Dec 4, 2009Jun 9, 2011International Business Machines CorporationOmega Shaped Nanowire Tunnel Field Effect Transistors
US20110297962 *Jul 30, 2010Dec 8, 2011Jenn-Chang HwangSchottky diode with diamond rod and method for manufacturing the same
US20110315953 *Jun 28, 2010Dec 29, 2011International Business Machines CorporationMethod of forming compound semiconductor
US20120146000 *Feb 14, 2012Jun 14, 2012International Business Machines CorporationOmega Shaped Nanowire Field Effect Transistors
US20130207079 *Feb 9, 2012Aug 15, 2013International Business Machines CorporationTapered Nanowire Structure With Reduced Off Current
US20140217509 *Aug 19, 2013Aug 7, 2014International Business Machines CorporationDiode Structure and Method for Gate All Around Silicon Nanowire Technologies
Classifications
U.S. Classification257/288, 438/151, 257/E29.245, 257/347, 257/E21.411, 257/E29.137, 977/723
International ClassificationH01L29/775, H01L29/786, H01L21/336, H01L29/423
Cooperative ClassificationH01L29/66795, H01L29/42392, H01L29/0673, H01L29/7854, H01L29/775, H01L29/42384, B82Y10/00, H01L29/66742
European ClassificationB82Y10/00, H01L29/06C6W2, H01L29/66M6T6F16F, H01L29/66M6T6F15, H01L29/423D2B8G, H01L29/423D2B8, H01L29/78S4R