US20050127000A1 - Inverted air box aerator and aeration method for immersed membranes - Google Patents

Inverted air box aerator and aeration method for immersed membranes Download PDF

Info

Publication number
US20050127000A1
US20050127000A1 US11/052,092 US5209205A US2005127000A1 US 20050127000 A1 US20050127000 A1 US 20050127000A1 US 5209205 A US5209205 A US 5209205A US 2005127000 A1 US2005127000 A1 US 2005127000A1
Authority
US
United States
Prior art keywords
air
aerator
flow
rate
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/052,092
Inventor
Pierre Cote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Zenon ULC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/061,108 external-priority patent/US20020134740A1/en
Application filed by Individual filed Critical Individual
Priority to US11/052,092 priority Critical patent/US20050127000A1/en
Publication of US20050127000A1 publication Critical patent/US20050127000A1/en
Assigned to ZENON ENVIRONMENTAL INC. reassignment ZENON ENVIRONMENTAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COTE, PIERRE LUCIEN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/02Forward flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/70Sewage aerators; diffusers

Definitions

  • This invention relates to an aerator, aerating method and filtration system for immersed membranes.
  • Aeration is used with immersed membranes to scour the membranes and to disperse areas of tank water having increased concentrations of rejected solids from near the membranes.
  • An ideal aeration system for immersed membranes would scour the entire assembly of membranes with minimum energy use, cost and maintenance required to keep the aerators from plugging.
  • a casing surrounds the air diffuser and the membrane cartridges, extending vertically from the bottom of the diffuser to the top of the membrane cartridges.
  • the diffuser is locater about 1 m below the membrane cartridges and the diffusers provide a small number of holes per square metre of horizontal cross-sectional area of the assembly of membrane cartridges. Air is supplied such that the air velocity and pressure in the holes of the diffusers is sufficient to prevent water or sludge from creeping into the holes of the diffuser.
  • the casing and location of the diffuser below the membrane cartridges encourages the bubbles to become evenly dispersed by the time that they reach the membrane cartridges.
  • the shroud and deep aerators increase both the equipment cost and the energy required to produce bubbles.
  • the method also relies on the membrane cartridges being arranged in parallel vertical plates for full effectiveness.
  • aerator having an aerator shell with openings for discharging bubbles from its upper surface and a shape capable of at least temporarily containing a variable volume of air in fluid communication with the openings for discharging bubbles.
  • the shell is open to tank water such that the tank water can act on the volume of contained air and so that substrate can be displaced from or enter into the aerator as the volume of trapped air changes.
  • the aerator shell is located so that discharged bubbles will rise through an assembly of filtering membranes.
  • the shell may be a separate structure, such as an inverted box, or may be wholly or partially made of parts, for example headers, of modules of the filtering membranes.
  • the aerator shell is fed with air varying between a higher rate of air flow and a lower rate of air flow, which is one half or less of the higher flow rate, in short repeated cycles of between about 10 seconds and 100 seconds in duration, or between about 10 seconds and 60 seconds in duration.
  • the lower rate of air flow may be an air off condition or be about 10% or less than the higher rate of air flow. Apparatus for providing such cycles are described in PCT Application PCT/CA99/00940, published as WO 00/21890. All of PCT/CA99/00490 is incorporated herein by this reference to it.
  • Air may be provided to the aerator shell at the higher flow rate during about 1 ⁇ 8 to 1 ⁇ 2 of each cycle.
  • the aerator traps a pocket of air which grows in volume and releases bubbles from its upper surface.
  • the aerator may continue to release bubbles from its upper surface and the volume of the air pocket decreases. Bubbles may be released during about 1 ⁇ 3 to 2 ⁇ 3 of the cycle duration.
  • the aerator may become partially or completely flooded during a later part of the lower air flow period to help remove accumulated solids. Alternately, bubbles may be produced throughout each cycle.
  • a filtration system which may be used to extract drinking water from a water to be filtered, has one or more immersed membranes assemblies, or modules, located in a tank open to the atmosphere with the membranes immersed in the substrate.
  • An inlet for adding substrate and an outlet for retentate are located so as to create a horizontal flow of substrate through the tank. Some or all of the retentate may be, but preferably is not, circulated to the inlet and a second outlet or other means for removing settled solids may be provided.
  • the membrane assemblies are located within the horizontal flow of substrate and may be spaced or oriented to encourage the horizontal flow to carry solids in the substrate to the outlet.
  • Aerators as described above are provided and operated as described above. The aerators may be comprised of parts of the membrane assemblies or located closely below the membrane assemblies since the horizontal flow of substrate reduces or eliminates the need for the tank water to circulate around the membrane assemblies.
  • FIG. 1 is a schematic view of the side of a membrane assembly, and a first embodiment of an aerator.
  • FIG. 2 is schematic top and side views of the aerator of FIG. 1 .
  • FIG. 3 is a schematic view of side and plan views of other embodiments of aerators partially or wholly made up of parts of membrane assemblies.
  • FIG. 4 is a schematic view of parts of a filtration system.
  • FIGS. 1 and 2 show a first aerator 10 having an aerator shell 12 in the shape of an inverted box which will be called an air box 2 .
  • the air box 2 is located below at least one membrane assembly 1 .
  • the first aerator 10 may also service a plurality of membrane assemblies 1 , for example four to sixteen, or more, membrane assemblies 1 .
  • a space between the membrane assembly 1 and the air box 2 optionally promotes liquid recirculation through and about the membrane assembly 1 . Alternately, the space may be reduced or eliminated to preserve space when the air box 2 is used with the filtration system described further below.
  • the air box 2 may be rectangular or other shapes capable of supporting holes 5 in desired locations in an upper surface, at least temporarily containing a variable volume of air in communication with the holes 5 and open to tank water so that tank water can be displaced from or enter into the air box 2 as the volume of contained air changes.
  • the air box 2 may have horizontal dimensions to generally match the footprint of the membrane assembly 1 above it.
  • the height of the side walls of the air box 2 are such that the air box 2 can contain a volume of air corresponding to the amount of air which is provided from an air distribution pipe 3 less the volume of air produced as bubbles through the holes 5 , and nipples 4 if used, as will be described further below.
  • the air distribution pipe 3 is located as close as possible to the air box 2 to limit the height of the water column (or pressure) which must be overcome to eject air and thereby minimize energy required.
  • the air distribution pipe may be located such that it discharges air directly inside the air box 2 .
  • the air box 2 may be attached to the membrane assembly 1 which facilitates inspection when the membrane assembly is pulled out.
  • the air box 2 may be attached to the air distribution pipe 3 or attached to its own mounting apparatus.
  • the air distribution pipe 3 has at least one large aeration hole located under each air box 2 .
  • the size of the aeration holes in the air distribution pipe 3 may be chosen to minimize fouling, for example, very large holes may foul less rapidly.
  • the air distribution pipe 3 may simultaneously supply air to several air boxes 2 .
  • the air box 2 upper surface has a series of air holes 5 arranged in a regular pattern.
  • the hole size is such that the holes 5 do not plug from debris in water and produce bubbles of an appropriate diameter for scouring the membrane assembly 1 , typically 5-15 mm.
  • the density of holes 5 depends on design of the membrane assembly 1 and aeration requirements and may be 25 to 160 holes per square metre.
  • the holes may be fitted with nipples 4 pointing downward to provide a residual air cushion in the air box 2 which promotes the rapid horizontal dispersion of air.
  • the rate of air flow in the air distribution pipe 3 varies in a repeated cycle having a total cycle length or duration of between about 10 and 100 seconds. In general, there is a period at a higher flow rate and a period at a lower flow rate. The lower flow rate is one half or less of the higher flow rate.
  • the lower flow rate may be 10% or less than the higher flow rate or the lower flow rate may an air off condition or have substantially no air flow.
  • the period of higher flow may be between about 1 ⁇ 8 and 1 ⁇ 2 of the total cycle duration. Most often, the period of higher flow and period of lower flow are each about 1 ⁇ 2 of the cycle duration.
  • the change between the higher flow rate and the lower flow rate is performed rapidly, i.e. in less than about 6 seconds or in less than about 3 seconds.
  • the air box 2 fills with air because the air flow from the air distribution pipe 3 is larger than the air flow from the air box 2 as bubbles which flow upwards to the membrane assembly 1 .
  • the air box continues to discharge air bubbles through the holes 5 to scour the membrane assembly 1 during the lower flow period.
  • the air box 2 may be sized in relation to the number and size of holes 5 and the flow rate and duration of air flow from the air distribution pipe 3 such that air flows through the holes 5 throughout each cycle. Alternately, the air box 2 may be sized to become empty of air during a part of the lower flow period which allows tank water to flow thorough the holes 5 or nipples 4 to wash away deposits left around the holes 5 or nipples 4 .
  • Air cycling meaning a flow of air that varies in rate as described above, may be provided to multiple, distinct groups of membrane assemblies 1 connected to 2 or more air distribution pipes 3 from a single air blower operated at a single rate. This is done by providing a plurality of air distribution pipes 3 which form or communicate with a plurality of distinct branches of an air distribution system.
  • a valve set communicates between an air supply and the distinct branches. The valve set is operated to split an initial air flow from the air supply such that at any time at least one distinct branch receives air at a higher flow rate and at least one other of the branches receives air at a lower rate.
  • the valve set switches which distinct branch or branches receives air at the higher flow rate and the lower flow rate in repeated cycles. This is described more fully in WO 00/21890 which is incorporated herein in its entirety by this reference.
  • bubbles are produced for a greater portion of the cycle than the higher flow period.
  • the higher flow period in each will be about 1 ⁇ 2 of the cycle duration but bubbles may be produced for between about 1 ⁇ 2 and 3 ⁇ 4 of the cycle duration.
  • 4 distinct branches might be fitted to a single blower and each receive air at the higher flow rate for about 1 ⁇ 4 of the cycle duration.
  • bubbles can be produced for about 1 ⁇ 3 to 1 ⁇ 2 of the cycle duration.
  • FIG. 3 Three further embodiments, A, B and C, are shown in FIG. 3 . These embodiments are like the first embodiment in many ways and the description of the first embodiment generally applies to them except for the differences noted below.
  • FIG. 3 shows second aerators 110 A, 110 B and 110 C.
  • Each has a second aerator shell 112 A,B,C with openings 114 for discharging bubbles from their upper surfaces.
  • the shape of the second aerator shells 112 A,B,C allows them to at least temporarily contain a variable volume of air in fluid communication with the openings 114 .
  • the second aerator shells 112 A,B,C are also downwardly open to allow tank water or substrate to act against any contained air.
  • the openings 114 are located so that discharged bubbles will rise through a membrane assembly 1 .
  • Parts of the membrane assemblies 1 for example headers 116 , form part of the second aerator shells 112 A,B,C.
  • the second aerator shells 112 A,B,C may be used with more membrane assemblies, ie. between four and sixteen, or more, membrane assemblies 1 .
  • Side walls 118 of the second aerator shells 112 A,B,C may also be made as parts of the membrane assemblies 1 .
  • Flanges 120 on the headers 116 are also part of the second aerator shell 112 B.
  • Hole forming strips 122 between the headers 116 are part of the third aerator shell 112 C. The hole forming strips may be made as part of the membrane assemblies 122 .
  • Air distribution pipes 3 are provided below the second aerators 110 as described above.
  • FIG. 4 shows a filtration system 130 having membrane assemblies 1 located in a tank 132 which is open to the atmosphere to immerse membranes 134 in a substrate 136 .
  • An inlet 138 for adding substrate 136 and an outlet 140 for retentate are located so as to create a horizontal flow of substrate 142 through the tank 132 .
  • Some or all of the retentate may be, but preferably is not, circulated to the inlet 138 and a second outlet 144 or other means for removing settled solids may be provided.
  • the membrane assemblies 1 are located within the horizontal flow of substrate 142 and may be spaced or oriented to encourage the horizontal flow of substrate 142 to carry solids in the substrate to the outlet 140 .
  • elongated membrane assemblies 1 may be oriented generally parallel with the horizontal flow of substrate 142 .
  • Second aerators 110 A are shown although first aerators 10 or second aerators 110 B,C may also be used.
  • the aerators 10 , 110 are operated as described above. If first aerators 10 are used, they may be located closely below the membrane assemblies 1 since the horizontal flow of substrate 142 reduces or eliminates the need for substrate 136 to circulate around the membrane assemblies 1 .
  • Air is supplied to the aerators 10 , 110 through air distribution pipes 3 connected to branches 146 of a cyclic aeration system 148 .

Abstract

An aerator for immersed filtering membranes has an aerator shell with openings for discharging bubbles from its upper surface and a shape capable of temporarily containing a volume of air in fluid communication with the openings. The shell is open to tank water below it and located so that discharged bubbles will rise through an assembly of the filtering membranes. The shell may be wholly or partially made of parts of the assemblies of filtering membranes. A supply of air is provided to the air space in the aerators alternating between a high flow rate and a low flow rate in short cycles of between about 10 seconds and 100 seconds. A filtration system has an inlet for adding substrate and an outlet for retentate are located so as to create a horizontal flow of substrate through the tank. Membrane assemblies are located within the horizontal flow of substrate. Aerators as described above are provided and operated as described above.

Description

  • This is a continuation of U.S. patent application Ser. No. 10/171,997 filed Jun. 17, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 10/061,108, filed Feb. 1, 2002, which is an application claiming the benefit under 35 USC 119(e) of U.S. Provisional Application Ser. No. 60/278,007 filed Mar. 23, 2001. U.S. application Ser. Nos. 10/171,997, 10/061,108 and U.S. 60/278,007 are incorporated herein, in their entirety, by this reference to them.
  • FIELD OF THE INVENTION
  • This invention relates to an aerator, aerating method and filtration system for immersed membranes.
  • BACKGROUND OF THE INVENTION
  • Aeration is used with immersed membranes to scour the membranes and to disperse areas of tank water having increased concentrations of rejected solids from near the membranes. An ideal aeration system for immersed membranes would scour the entire assembly of membranes with minimum energy use, cost and maintenance required to keep the aerators from plugging.
  • U.S. Pat. Nos. 5,192,456 and 5,482,625, issued on Mar. 9, 1993 and Jan. 9, 1996 to Kubota Corporation, describe an air diffuser disposed below a set of membrane cartridges. A casing surrounds the air diffuser and the membrane cartridges, extending vertically from the bottom of the diffuser to the top of the membrane cartridges. In commercial embodiments, the diffuser is locater about 1 m below the membrane cartridges and the diffusers provide a small number of holes per square metre of horizontal cross-sectional area of the assembly of membrane cartridges. Air is supplied such that the air velocity and pressure in the holes of the diffusers is sufficient to prevent water or sludge from creeping into the holes of the diffuser. The casing and location of the diffuser below the membrane cartridges encourages the bubbles to become evenly dispersed by the time that they reach the membrane cartridges. The shroud and deep aerators increase both the equipment cost and the energy required to produce bubbles. The method also relies on the membrane cartridges being arranged in parallel vertical plates for full effectiveness.
  • Another approach is described in U.S. Pat. No. 5,944,997, issued on Aug. 31, 1999 to Zenon Environmental Inc. In this patent, aerators are located directly below a set of membrane modules and no shroud is used but there are many more holes—about 130-160 holes per square metre of horizontal cross-sectional of the assembly of membrane modules. Although the large number of holes provides well distributed bubbles, the air flow per hole is not sufficient to prevent tank water or sludge from creeping into the aerators around the perimeter of the holes. To prevent this tank water from leaving deposits in the aerator, the aerators are periodically flushed. Although effective, this method involves an extensive grid of aerators to provide the large number of holes and additional equipment for flushing the aerators.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to improve on the prior art. Other objects of the invention include providing an aerator and aeration process for immersed filtering membranes and providing a membrane filtration system. The objects of the invention are met by the combination of features, steps or both described in the claims. The following summary may not describe all necessary features of the invention which may reside in a sub-combination of the following features or in a combination of some or all of the following features and features described in other parts of this document.
  • Various aspects of the invention are directed at an aerator having an aerator shell with openings for discharging bubbles from its upper surface and a shape capable of at least temporarily containing a variable volume of air in fluid communication with the openings for discharging bubbles. The shell is open to tank water such that the tank water can act on the volume of contained air and so that substrate can be displaced from or enter into the aerator as the volume of trapped air changes. The aerator shell is located so that discharged bubbles will rise through an assembly of filtering membranes. The shell may be a separate structure, such as an inverted box, or may be wholly or partially made of parts, for example headers, of modules of the filtering membranes. The aerator shell is fed with air varying between a higher rate of air flow and a lower rate of air flow, which is one half or less of the higher flow rate, in short repeated cycles of between about 10 seconds and 100 seconds in duration, or between about 10 seconds and 60 seconds in duration. The lower rate of air flow may be an air off condition or be about 10% or less than the higher rate of air flow. Apparatus for providing such cycles are described in PCT Application PCT/CA99/00940, published as WO 00/21890. All of PCT/CA99/00490 is incorporated herein by this reference to it.
  • Air may be provided to the aerator shell at the higher flow rate during about ⅛ to ½ of each cycle. When air is provided at a higher rate of air flow, the aerator traps a pocket of air which grows in volume and releases bubbles from its upper surface. When air is provided at the lower rate of air flow, the aerator may continue to release bubbles from its upper surface and the volume of the air pocket decreases. Bubbles may be released during about ⅓ to ⅔ of the cycle duration. The aerator may become partially or completely flooded during a later part of the lower air flow period to help remove accumulated solids. Alternately, bubbles may be produced throughout each cycle.
  • In other aspects of the invention, a filtration system, which may be used to extract drinking water from a water to be filtered, has one or more immersed membranes assemblies, or modules, located in a tank open to the atmosphere with the membranes immersed in the substrate. An inlet for adding substrate and an outlet for retentate are located so as to create a horizontal flow of substrate through the tank. Some or all of the retentate may be, but preferably is not, circulated to the inlet and a second outlet or other means for removing settled solids may be provided. The membrane assemblies are located within the horizontal flow of substrate and may be spaced or oriented to encourage the horizontal flow to carry solids in the substrate to the outlet. Aerators as described above are provided and operated as described above. The aerators may be comprised of parts of the membrane assemblies or located closely below the membrane assemblies since the horizontal flow of substrate reduces or eliminates the need for the tank water to circulate around the membrane assemblies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made by way of example to one or more embodiments illustrated in the following drawings in which:
  • FIG. 1 is a schematic view of the side of a membrane assembly, and a first embodiment of an aerator.
  • FIG. 2 is schematic top and side views of the aerator of FIG. 1.
  • FIG. 3 is a schematic view of side and plan views of other embodiments of aerators partially or wholly made up of parts of membrane assemblies.
  • FIG. 4 is a schematic view of parts of a filtration system.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1 and 2 show a first aerator 10 having an aerator shell 12 in the shape of an inverted box which will be called an air box 2. Referring to FIG. 1, the air box 2 is located below at least one membrane assembly 1. The first aerator 10 may also service a plurality of membrane assemblies 1, for example four to sixteen, or more, membrane assemblies 1. A space between the membrane assembly 1 and the air box 2 optionally promotes liquid recirculation through and about the membrane assembly 1. Alternately, the space may be reduced or eliminated to preserve space when the air box 2 is used with the filtration system described further below.
  • The air box 2 may be rectangular or other shapes capable of supporting holes 5 in desired locations in an upper surface, at least temporarily containing a variable volume of air in communication with the holes 5 and open to tank water so that tank water can be displaced from or enter into the air box 2 as the volume of contained air changes. The air box 2 may have horizontal dimensions to generally match the footprint of the membrane assembly 1 above it. The height of the side walls of the air box 2 are such that the air box 2 can contain a volume of air corresponding to the amount of air which is provided from an air distribution pipe 3 less the volume of air produced as bubbles through the holes 5, and nipples 4 if used, as will be described further below.
  • The air distribution pipe 3 is located as close as possible to the air box 2 to limit the height of the water column (or pressure) which must be overcome to eject air and thereby minimize energy required. The air distribution pipe may be located such that it discharges air directly inside the air box 2.
  • The air box 2 may be attached to the membrane assembly 1 which facilitates inspection when the membrane assembly is pulled out. Alternately, the air box 2 may be attached to the air distribution pipe 3 or attached to its own mounting apparatus.
  • The air distribution pipe 3 has at least one large aeration hole located under each air box 2. The size of the aeration holes in the air distribution pipe 3 may be chosen to minimize fouling, for example, very large holes may foul less rapidly. The air distribution pipe 3 may simultaneously supply air to several air boxes 2.
  • Referring to FIG. 2, the air box 2 upper surface has a series of air holes 5 arranged in a regular pattern. The hole size is such that the holes 5 do not plug from debris in water and produce bubbles of an appropriate diameter for scouring the membrane assembly 1, typically 5-15 mm. The density of holes 5 depends on design of the membrane assembly 1 and aeration requirements and may be 25 to 160 holes per square metre. The holes may be fitted with nipples 4 pointing downward to provide a residual air cushion in the air box 2 which promotes the rapid horizontal dispersion of air.
  • In operation, the rate of air flow in the air distribution pipe 3 varies in a repeated cycle having a total cycle length or duration of between about 10 and 100 seconds. In general, there is a period at a higher flow rate and a period at a lower flow rate. The lower flow rate is one half or less of the higher flow rate.
  • The lower flow rate may be 10% or less than the higher flow rate or the lower flow rate may an air off condition or have substantially no air flow. The period of higher flow may be between about ⅛ and ½ of the total cycle duration. Most often, the period of higher flow and period of lower flow are each about ½ of the cycle duration. The change between the higher flow rate and the lower flow rate is performed rapidly, i.e. in less than about 6 seconds or in less than about 3 seconds.
  • During the higher flow period, the air box 2 fills with air because the air flow from the air distribution pipe 3 is larger than the air flow from the air box 2 as bubbles which flow upwards to the membrane assembly 1.
  • The air box continues to discharge air bubbles through the holes 5 to scour the membrane assembly 1 during the lower flow period. The air box 2 may be sized in relation to the number and size of holes 5 and the flow rate and duration of air flow from the air distribution pipe 3 such that air flows through the holes 5 throughout each cycle. Alternately, the air box 2 may be sized to become empty of air during a part of the lower flow period which allows tank water to flow thorough the holes 5 or nipples 4 to wash away deposits left around the holes 5 or nipples 4.
  • Air cycling, meaning a flow of air that varies in rate as described above, may be provided to multiple, distinct groups of membrane assemblies 1 connected to 2 or more air distribution pipes 3 from a single air blower operated at a single rate. This is done by providing a plurality of air distribution pipes 3 which form or communicate with a plurality of distinct branches of an air distribution system. A valve set communicates between an air supply and the distinct branches. The valve set is operated to split an initial air flow from the air supply such that at any time at least one distinct branch receives air at a higher flow rate and at least one other of the branches receives air at a lower rate. The valve set switches which distinct branch or branches receives air at the higher flow rate and the lower flow rate in repeated cycles. This is described more fully in WO 00/21890 which is incorporated herein in its entirety by this reference.
  • Because of the volume of air temporarily contained in the air box 2 during the high flow period, bubbles are produced for a greater portion of the cycle than the higher flow period. For example, if two distinct branches are provided, the higher flow period in each will be about ½ of the cycle duration but bubbles may be produced for between about ½ and ¾ of the cycle duration. Alternately, 4 distinct branches might be fitted to a single blower and each receive air at the higher flow rate for about ¼ of the cycle duration. Yet, because of the volume of air temporarily trapped in the air box 2, bubbles can be produced for about ⅓ to ½ of the cycle duration.
  • Benefits of the first embodiment include:
  • 1. Avoid an aerator grid which requires a larger network of pipes.
  • 2. Reduce the need to flush aerators with permeate to wash away deposits left by tank water entering the aerator as described in U.S. Pat. No. 5,944,997 issued on Aug. 31, 1999 to Pedersen et al.
  • 3. Facilitates scale-up to aeration of a large set of membrane assemblies 1.
  • 4. Decreases maintenance requirements since the air box 2 is easily cleaned and is generally self cleaning when permitted to flood periodically.
  • Three further embodiments, A, B and C, are shown in FIG. 3. These embodiments are like the first embodiment in many ways and the description of the first embodiment generally applies to them except for the differences noted below.
  • FIG. 3 shows second aerators 110A, 110B and 110C. Each has a second aerator shell 112A,B,C with openings 114 for discharging bubbles from their upper surfaces. The shape of the second aerator shells 112A,B,C allows them to at least temporarily contain a variable volume of air in fluid communication with the openings 114. The second aerator shells 112A,B,C are also downwardly open to allow tank water or substrate to act against any contained air. The openings 114 are located so that discharged bubbles will rise through a membrane assembly 1. Parts of the membrane assemblies 1, for example headers 116, form part of the second aerator shells 112A,B,C. Four membrane assemblies 1 are shown, but the second aerator shells 112A,B,C may be used with more membrane assemblies, ie. between four and sixteen, or more, membrane assemblies 1. Side walls 118 of the second aerator shells 112A,B,C may also be made as parts of the membrane assemblies 1. Flanges 120 on the headers 116 are also part of the second aerator shell 112B. Hole forming strips 122 between the headers 116 are part of the third aerator shell 112C. The hole forming strips may be made as part of the membrane assemblies 122. Air distribution pipes 3 are provided below the second aerators 110 as described above.
  • FIG. 4 shows a filtration system 130 having membrane assemblies 1 located in a tank 132 which is open to the atmosphere to immerse membranes 134 in a substrate 136. An inlet 138 for adding substrate 136 and an outlet 140 for retentate are located so as to create a horizontal flow of substrate 142 through the tank 132. Some or all of the retentate may be, but preferably is not, circulated to the inlet 138 and a second outlet 144 or other means for removing settled solids may be provided. The membrane assemblies 1 are located within the horizontal flow of substrate 142 and may be spaced or oriented to encourage the horizontal flow of substrate 142 to carry solids in the substrate to the outlet 140. For example, elongated membrane assemblies 1 may be oriented generally parallel with the horizontal flow of substrate 142. Second aerators 110A are shown although first aerators 10 or second aerators 110B,C may also be used. The aerators 10,110 are operated as described above. If first aerators 10 are used, they may be located closely below the membrane assemblies 1 since the horizontal flow of substrate 142 reduces or eliminates the need for substrate 136 to circulate around the membrane assemblies 1. Air is supplied to the aerators 10, 110 through air distribution pipes 3 connected to branches 146 of a cyclic aeration system 148.
  • Other embodiments of the invention may be made in alternate configurations and operated according to alternate methods within the scope of the invention which is defined by the following claims:

Claims (10)

1. A process for aerating a membrane assembly comprising the steps of
a. providing
i. a membrane assembly having hollow fiber membranes held at their lower ends in a mass of potting material,
ii. side walls extending downwards from the mass of potting material; and,
iii. an aerator shell comprising the mass of potting material and the side walls and further comprising openings for discharging bubbles, the openings oriented vertically and adapted to transmit a gas through the aerator shell from below the mass of potting material to above the mass of potting material, the aerator shell adapted to contain a variable volume of the gas in fluid communication with the openings; and,
b. flowing a gas into the aerator shell at a rate that varies cyclically from a higher flow rate to a lower flow rate, the lower flow rate being in the range from no flow to one half of the higher flow rate, the cycles having a duration of 120 seconds or less.
2. The process of claim 1 wherein the rate of air flow during the period of low flow is 10% or less of the rate of air flow during the period of high flow.
3. The process of claim 2 wherein there is substantially no air flow during the period of low air flow.
4. The process of any of claim 1 wherein the period of high flow is between about ⅛ and ½ of the total cycle duration.
5. The process of any of claim 1 wherein the change between the high flow rate and low flow rate is performed in less than about 6 seconds.
6. The process of claim 5 wherein the change between the high flow rate and low flow rate is performed in less than about 3 seconds.
7. The process of any of claim 1 wherein the aerator is sized in relation to the duration and rate of air flow provided during a cycle such that air flows through the holes throughout each cycle.
8. The process of any of claim 1 wherein the aerator is sized in relation to the duration and rate of air flow provided during a cycle such that no air flows through the holes during at least part of the cycle such that liquid in the tank may flow into the holes.
9. The process of claim 8 wherein air flows through the holes of the aerator for between about ⅓ and ¾ of the cycle duration.
10. The process of claim 9 wherein air flows through the holes for about ½ of the cycle duration.
US11/052,092 2001-03-23 2005-02-08 Inverted air box aerator and aeration method for immersed membranes Abandoned US20050127000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/052,092 US20050127000A1 (en) 2001-03-23 2005-02-08 Inverted air box aerator and aeration method for immersed membranes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27800701P 2001-03-23 2001-03-23
US10/061,108 US20020134740A1 (en) 2001-03-23 2002-02-01 Inverted air box aerator and aeration method for immersed membrane
US10/171,997 US6863823B2 (en) 2001-03-23 2002-06-17 Inverted air box aerator and aeration method for immersed membrane
US11/052,092 US20050127000A1 (en) 2001-03-23 2005-02-08 Inverted air box aerator and aeration method for immersed membranes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/171,997 Continuation US6863823B2 (en) 1995-08-11 2002-06-17 Inverted air box aerator and aeration method for immersed membrane

Publications (1)

Publication Number Publication Date
US20050127000A1 true US20050127000A1 (en) 2005-06-16

Family

ID=34657820

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/171,997 Expired - Fee Related US6863823B2 (en) 1995-08-11 2002-06-17 Inverted air box aerator and aeration method for immersed membrane
US11/052,092 Abandoned US20050127000A1 (en) 2001-03-23 2005-02-08 Inverted air box aerator and aeration method for immersed membranes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/171,997 Expired - Fee Related US6863823B2 (en) 1995-08-11 2002-06-17 Inverted air box aerator and aeration method for immersed membrane

Country Status (1)

Country Link
US (2) US6863823B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071901A1 (en) * 2007-09-19 2009-03-19 Rabie Hamid R System and method for filtering liquids
WO2012148990A1 (en) * 2011-04-25 2012-11-01 Hydranautics Diffuser for gas scouring filtration membranes

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863823B2 (en) * 2001-03-23 2005-03-08 Zenon Environmental Inc. Inverted air box aerator and aeration method for immersed membrane
DE69633806T2 (en) * 1995-08-11 2005-05-12 Zenon Environmental Inc., Oakville Device for removing permeate from a liquid substrate with several components
CA2639642C (en) 1996-12-20 2013-01-15 Siemens Water Technologies Corp. Scouring method
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6706189B2 (en) * 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7014173B2 (en) * 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
CA2290053C (en) * 1999-11-18 2009-10-20 Zenon Environmental Inc. Immersed membrane module and process
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
AU2002950934A0 (en) * 2002-08-21 2002-09-12 U. S. Filter Wastewater Group, Inc. Aeration method
CA2501628C (en) 2002-10-10 2012-12-04 U.S. Filter Wastewater Group, Inc. A filtration and backwashing arrangement for membrane modules
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
AU2003297476A1 (en) * 2002-12-19 2004-07-14 Hydranautics Methods for cleaning and maintaining membrane surface during filtration
EP1599276B1 (en) * 2003-03-05 2008-05-14 Hydranautics Submergible membrane modular filtration device having replaceable membrane elements
EP1466658A1 (en) * 2003-04-11 2004-10-13 UTISOL Technologies AG Device and method for aeration of membrane filters
WO2005021140A1 (en) 2003-08-29 2005-03-10 U.S. Filter Wastewater Group, Inc. Backwash
CN100421772C (en) 2003-11-14 2008-10-01 西门子水技术公司 Improved module cleaning method
WO2005092799A1 (en) 2004-03-26 2005-10-06 U.S. Filter Wastewater Group, Inc. Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
AU2005240524C1 (en) 2004-04-22 2009-12-24 Evoqua Water Technologies Llc Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
EP1789164B1 (en) * 2004-08-20 2013-07-03 Siemens Industry, Inc. Square mbr manifolding system
JP4838248B2 (en) 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
CA2579857A1 (en) 2004-09-14 2006-03-23 Siemens Water Technologies Corp. Membrane filtration module and cleaning process
CA2579894A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
JP2008525167A (en) 2004-12-24 2008-07-17 シーメンス・ウォーター・テクノロジーズ・コーポレーション Simple gas cleaning method and apparatus in the technical field
JP2008526497A (en) * 2005-01-14 2008-07-24 シーメンス・ウォーター・テクノロジーズ・コーポレーション Filtration system
CA2605757A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
WO2007022576A1 (en) 2005-08-22 2007-03-01 Siemens Water Technologies Corp. An assembly for water filtration using a tube manifold to minimise backwash
US20070138090A1 (en) 2005-10-05 2007-06-21 Jordan Edward J Method and apparatus for treating wastewater
WO2008051546A2 (en) 2006-10-24 2008-05-02 Siemens Water Technologies Corp. Infiltration/inflow control for membrane bioreactor
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
CA3058737C (en) 2007-05-29 2022-04-26 Fufang Zha Membrane cleaning with pulsed airlift pump
KR101614520B1 (en) 2008-07-24 2016-04-21 에보쿠아 워터 테크놀로지스 엘엘씨 Frame system for membrane filtration modules
NZ591259A (en) 2008-08-20 2013-02-22 Siemens Industry Inc A hollow membrane filter backwash system using gas pressurised at at least two pressures feed from the down stream side to push water through the filter to clean it
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
DE102010019505B4 (en) * 2010-05-06 2016-09-29 Microdyn - Nadir Gmbh Filtration device with internal recirculation
WO2012040412A1 (en) 2010-09-24 2012-03-29 Siemens Industry, Inc. Fluid control manifold for membrane filtration system
US8910799B2 (en) 2011-08-01 2014-12-16 Enveera, Inc. Integrated membrane system for distributed water treatment
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
HUE058060T2 (en) 2011-09-30 2022-07-28 Rohm & Haas Electronic Mat Isolation valve
KR101964484B1 (en) 2011-09-30 2019-04-01 에보쿠아 워터 테크놀로지스 엘엘씨 Improved manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
WO2014052139A1 (en) 2012-09-27 2014-04-03 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
EP3052221B1 (en) 2013-10-02 2022-12-14 Rohm & Haas Electronic Materials Singapore Pte. Ltd Device for repairing a membrane filtration module
WO2017011068A1 (en) 2015-07-14 2017-01-19 Evoqua Water Technologies Llc Aeration device for filtration system
US10894731B2 (en) * 2016-10-25 2021-01-19 Ds Services Of America, Inc. Ozone generator for water purification system
CN112774444B (en) * 2020-12-18 2022-06-14 武汉艾科滤膜技术有限公司 Free floating ball type gas-liquid separation ultrafiltration membrane component

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995497A (en) * 1957-01-26 1961-08-08 Biochemical Processes Inc Method and means for treatment of a liquid with a gaseous medium, or viceversa
US4923614A (en) * 1986-06-12 1990-05-08 Wilke Engelbart Process and device for large surface-area fine-bubble gasification of liquids
US5133862A (en) * 1991-01-31 1992-07-28 Fmc Corporation Flexible membrane diffuser
US5151191A (en) * 1990-09-26 1992-09-29 Japan Organo Co., Ltd. Filtration process using hollow fiber membrane module
US5192456A (en) * 1991-03-07 1993-03-09 Kubota Corporation Apparatus for treating activated sludge and method of cleaning it
US5248424A (en) * 1990-08-17 1993-09-28 Zenon Environmental Inc. Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5480553A (en) * 1992-02-12 1996-01-02 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module
US5482625A (en) * 1994-01-07 1996-01-09 Kubota Corporation Filtration membrane module
US5639373A (en) * 1995-08-11 1997-06-17 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5716519A (en) * 1996-04-05 1998-02-10 Chicago Bridge & Iron Technical Services Company Apparatus for discharging fluid additives into a water treatment vessel
US5910250A (en) * 1995-08-11 1999-06-08 Zenon Environmental Inc. Baffle for conversion of fine bubbles to coarse while filtering with a vertical skein of hollow fibers
US5922201A (en) * 1992-02-12 1999-07-13 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module
US5944997A (en) * 1995-08-11 1999-08-31 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
US6156200A (en) * 1998-12-08 2000-12-05 Usf Filtration & Separations Group, Inc. Gas-scrubbed hollow fiber membrane module
US6193890B1 (en) * 1995-08-11 2001-02-27 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US6199835B1 (en) * 1997-10-21 2001-03-13 Exxon Research And Engineering Company Throat and cone gas injector and gas distribution grid for slurry reactor (LAW646)
US6245239B1 (en) * 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6280626B1 (en) * 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
US6284135B1 (en) * 1997-12-16 2001-09-04 Sumitomo Heavy Industries, Ltd. Membrane filter apparatus with gas discharge cleaning means
US20010027951A1 (en) * 1998-10-09 2001-10-11 Christian Gungerich Aerated immersed membrane system
US6319411B1 (en) * 1998-10-09 2001-11-20 Zenon Environmental Inc. Method of maintaining clean vertical skeins of hollow fiber membranes and system therefor
US6478964B1 (en) * 2001-05-18 2002-11-12 Midwest Water Management, Llp Floating fine-bubble aeration system
US6524481B2 (en) * 1998-09-25 2003-02-25 U.S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6550747B2 (en) * 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6658358B2 (en) * 2002-05-02 2003-12-02 Hewlett-Packard Development Company, L.P. Method and system for computing forces on data objects for physics-based visualization
US6706189B2 (en) * 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6863823B2 (en) * 2001-03-23 2005-03-08 Zenon Environmental Inc. Inverted air box aerator and aeration method for immersed membrane

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995497A (en) * 1957-01-26 1961-08-08 Biochemical Processes Inc Method and means for treatment of a liquid with a gaseous medium, or viceversa
US4923614A (en) * 1986-06-12 1990-05-08 Wilke Engelbart Process and device for large surface-area fine-bubble gasification of liquids
US5248424A (en) * 1990-08-17 1993-09-28 Zenon Environmental Inc. Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5151191A (en) * 1990-09-26 1992-09-29 Japan Organo Co., Ltd. Filtration process using hollow fiber membrane module
US5133862A (en) * 1991-01-31 1992-07-28 Fmc Corporation Flexible membrane diffuser
US5192456A (en) * 1991-03-07 1993-03-09 Kubota Corporation Apparatus for treating activated sludge and method of cleaning it
US5922201A (en) * 1992-02-12 1999-07-13 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module
US5480553A (en) * 1992-02-12 1996-01-02 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module
US5482625A (en) * 1994-01-07 1996-01-09 Kubota Corporation Filtration membrane module
USRE37549E1 (en) * 1995-08-11 2002-02-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US6620319B2 (en) * 1995-08-11 2003-09-16 Zenon Enviromental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US5910250A (en) * 1995-08-11 1999-06-08 Zenon Environmental Inc. Baffle for conversion of fine bubbles to coarse while filtering with a vertical skein of hollow fibers
US5639373A (en) * 1995-08-11 1997-06-17 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5944997A (en) * 1995-08-11 1999-08-31 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US5783083A (en) * 1995-08-11 1998-07-21 Zenon Environmental Inc. Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US6042677A (en) * 1995-08-11 2000-03-28 Zenon Environmental, Inc. Potted header for hollow fiber membranes and method for making it
US6193890B1 (en) * 1995-08-11 2001-02-27 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US5716519A (en) * 1996-04-05 1998-02-10 Chicago Bridge & Iron Technical Services Company Apparatus for discharging fluid additives into a water treatment vessel
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
US6199835B1 (en) * 1997-10-21 2001-03-13 Exxon Research And Engineering Company Throat and cone gas injector and gas distribution grid for slurry reactor (LAW646)
US6402955B2 (en) * 1997-12-16 2002-06-11 Sumitomo Heavy Industries, Ltd. Method for operating a membrane filter having a gas discharge cleaning means
US6284135B1 (en) * 1997-12-16 2001-09-04 Sumitomo Heavy Industries, Ltd. Membrane filter apparatus with gas discharge cleaning means
US6280626B1 (en) * 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6524481B2 (en) * 1998-09-25 2003-02-25 U.S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6550747B2 (en) * 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6319411B1 (en) * 1998-10-09 2001-11-20 Zenon Environmental Inc. Method of maintaining clean vertical skeins of hollow fiber membranes and system therefor
US20010027951A1 (en) * 1998-10-09 2001-10-11 Christian Gungerich Aerated immersed membrane system
US6245239B1 (en) * 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6706189B2 (en) * 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6156200A (en) * 1998-12-08 2000-12-05 Usf Filtration & Separations Group, Inc. Gas-scrubbed hollow fiber membrane module
US6863823B2 (en) * 2001-03-23 2005-03-08 Zenon Environmental Inc. Inverted air box aerator and aeration method for immersed membrane
US6478964B1 (en) * 2001-05-18 2002-11-12 Midwest Water Management, Llp Floating fine-bubble aeration system
US6658358B2 (en) * 2002-05-02 2003-12-02 Hewlett-Packard Development Company, L.P. Method and system for computing forces on data objects for physics-based visualization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071901A1 (en) * 2007-09-19 2009-03-19 Rabie Hamid R System and method for filtering liquids
WO2012148990A1 (en) * 2011-04-25 2012-11-01 Hydranautics Diffuser for gas scouring filtration membranes

Also Published As

Publication number Publication date
US6863823B2 (en) 2005-03-08
US20020153313A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
US6863823B2 (en) Inverted air box aerator and aeration method for immersed membrane
US7087173B2 (en) Inverted cavity aerator for membrane module
AU776211B2 (en) Immersed membrane filtration system and overflow process
US6893568B1 (en) Immersed membrane filtration system and overflow process
KR101625172B1 (en) Water treatment system
US6708957B2 (en) Moving aerator for immersed membranes
AU2008255640B2 (en) Membrane cleaning using an airlift pump
US20100237014A1 (en) Membrane module with multiple bottom headers and filtration process
US10828607B2 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
US9815027B2 (en) Gas scouring apparatus for immersed membranes
PL214717B1 (en) Cyclic aeration system for submerged membrane modules
US20020134740A1 (en) Inverted air box aerator and aeration method for immersed membrane
AU2013206181A1 (en) Membrane module with multiple bottom headers and filtration process

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENON ENVIRONMENTAL INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COTE, PIERRE LUCIEN;REEL/FRAME:016788/0185

Effective date: 20050406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION