Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050143797 A1
Publication typeApplication
Application numberUS 10/894,369
Publication dateJun 30, 2005
Filing dateJul 19, 2004
Priority dateJul 18, 2003
Also published asDE602004032027D1, US8753383, US9180041, US20110077723, US20140228717, US20160030236, WO2005007060A2, WO2005007060A3
Publication number10894369, 894369, US 2005/0143797 A1, US 2005/143797 A1, US 20050143797 A1, US 20050143797A1, US 2005143797 A1, US 2005143797A1, US-A1-20050143797, US-A1-2005143797, US2005/0143797A1, US2005/143797A1, US20050143797 A1, US20050143797A1, US2005143797 A1, US2005143797A1
InventorsOverton Parish, Niran Balachandran, Tony Quisenberry
Original AssigneeThermotek, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Compression sequenced thermal therapy system
US 20050143797 A1
Abstract
A sequential compression and temperature therapy blanket with a plurality of air chambers is disclosed. The air chambers are filled and released by a valve assembly that may be separate from or integrated within the blanket. The temperature therapy blanket includes a fluid bladder for delivering hot and/or cold therapy to a patient. The temperature therapy blanket may also include an air bladder for providing compression. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Images(19)
Previous page
Next page
Claims(45)
1. A compression therapy blanket comprising:
a plurality of air chambers for receiving a gas to cause compression;
a valve assembly, internal to the compression therapy blanket, for delivering gas to each of the plurality of air chambers in a predetermined pattern;
an inlet port for delivering air from a control unit to the valve assembly; and
a plurality of connection for delivering air from the valve assembly to the plurality of air chambers.
2. The compression therapy blanket of claim 1, wherein the plurality of air chambers comprises four to seven air chambers.
3. The compression therapy blanket of claim 1, further comprising an electrical signal connection for transmitting data related to the predetermined pattern to the valve assembly.
4. The compression therapy blanket of claim 1, wherein the predetermined pattern comprises sequential inflation of the plurality of air chambers to produce movement peripherally toward a heart of a patient.
5. The compression therapy blanket of claim 1, wherein the predetermined pattern comprises inflating two of the plurality of air chambers simultaneously.
6. The compression therapy blanket of claim 1, further comprising:
a heat transfer fluid bladder for providing temperature therapy to a portion of a patient;
a fluid inlet port for delivering heat transfer fluid from the control unit to the heat transfer fluid bladder; and
a fluid outlet port for delivering heat transfer fluid from the heat transfer fluid bladder to the control unit.
7. The compression therapy blanket of claim 6, wherein the heat transfer fluid bladder delivers heat therapy to a patient.
8. The compression therapy blanket of claim 6, wherein the heat transfer fluid bladder delivers cold therapy to a patient.
9. The compression therapy blanket of claim 6, wherein the heat transfer fluid bladder delivers contrast therapy to a patient.
10. A temperature therapy blanket comprising:
a fluid bladder for housing heat transfer fluid, the fluid bladder having a top layer and a bottom layer;
a plurality of connections for dispersing the heat transfer fluid throughout the blanket, the plurality of connections connecting the top layer to the bottom layer;
at least one partition for directing the flow of the heat transfer fluid through the blanket; and
means for providing sequenced flows of alternating heat and cold in a high thermal contrast modality to a patient.
11. The temperature therapy blanket of claim 10, wherein the blanket provides heating therapy to a patient.
12. The temperature therapy blanket of claim 10, wherein the blanket provides cooling therapy to a patient.
13. The temperature therapy blanket of claim 10, wherein the blanket provides contrast therapy to a patient.
14. The temperature therapy blanket of claim 10, further comprising:
an inlet port for receiving the heat transfer fluid from a control unit; and
an outlet port for returning the heat transfer fluid to the control unit.
15. The temperature therapy blanket of claim 10, further comprising:
an air bladder for providing compression therapy, the air bladder having an upper layer and a lower layer; and
an air inlet for providing air from the control unit to the air bladder.
16. The temperature therapy blanket of claim 15, wherein the air bladder substantially overlaps the fluid bladder.
17. The temperature therapy blanket of claim 15, wherein the lower layer of the air bladder is the upper layer of the fluid bladder.
18. The temperature therapy blanket of claim 15, wherein edges of the air bladder are sealed to edges of the fluid bladder.
19. The temperature therapy blanket of claim 15, wherein the air bladder presses the fluid bladder against a portion of a patient.
20. A system for passing heat transfer fluid between a control unit and a blanket, the system comprising:
a reservoir for housing heat transfer fluid for utilization by the system;
a three-point junction having three branches, wherein a first branch receives heat transfer fluid from the reservoir, a second branch receives the heat transfer fluid returning from the blanket, and a third branch for delivering the heat transfer fluid to the blanket; and
a pump for creating a low pressure site at the third branch, wherein the low pressure site causes the heat transfer fluid from the second branch to be pulled into the third branch.
21. The system of claim 20, further comprising a heat transfer assembly for heating the heat transfer fluid of the third branch.
22. The system of claim 20, further comprising a heat transfer assembly for cooling the heat transfer fluid of the third branch.
23. The system of claim 20, further comprising a heat transfer assembly for heating and cooling the heat transfer fluid of the third branch.
24. The system of claim 20, wherein the three-point junction is configured as an inverted Y.
25. The system of claim 20, wherein, if additional heat transfer fluid is required by the system, the heat transfer fluid is pulled from the reservoir.
26. The system of claim 20, wherein, if less heat transfer fluid is required by the system, the heat transfer fluid from the second branch is delivered to the reservoir.
27. The system of claim 20, wherein the heat transfer fluid comprises distilled water and monopropylene glycol.
28. The system of claim 27, wherein the heat transfer fluid has a ratio of 15% monopropylene glycol to 85% distilled water.
29. The system of claim 27, wherein the distilled water is mixed with propylene glycol to reduce bacteria build-up.
30. A method for passing heat transfer fluid between a control unit and a blanket adapted for patient therapy, the method comprising the steps of:
housing, at a reservoir, heat transfer fluid for utilization by the system;
providing a fluid flow junction having at least three flow branches, wherein a first branch receives heat transfer fluid from the reservoir, a second branch receives the heat transfer fluid returning from the blanket, and a third branch for delivering the heat transfer fluid to the blanket;
creating a low pressure site at the third branch, wherein the low pressure site causes the heat transfer fluid from the second branch to be pulled into the third branch; and
cycling between heating and cooling the heat transfer fluid to provide contrast thermal therapy to a patient.
31. The method of claim 30, further comprising the step of providing a heat transfer assembly for heating and cooling the heat transfer fluid of the third branch.
32. The method of claim 31, wherein the step of providing a heat transfer assembly comprises the step of providing thermoelectric coolers.
33. The method of claim 31, wherein the thermoelectric coolers include a layer of gold between billets and ceramic of the thermoelectric coolers.
34. The method of claim 30, wherein the fluid flow junction is configured as an inverted Y.
35. The method of claim 30, further comprising the step of pulling the heat transfer fluid from the reservoir if additional heat transfer fluid is required by the system.
36. The method of claim 30, further comprising delivering the heat transfer fluid from the second branch to the reservoir if less heat transfer fluid is required by the system.
37. The method of claim 30, further comprising the step of forming the heat transfer fluid from distilled water and monopropylene glycol.
38. The method of claim 37, wherein the step of forming comprises the step of forming the heat transfer fluid in a ratio of 15% monopropylene glycol to 85% distilled water.
39. The method of claim 30, further comprising providing compression capabilities to the blanket.
40. The method of claim 39, wherein the step of providing compression capabilities comprises the steps of:
providing air from the control unit to the blanket; and
providing a plurality of air chambers within the blanket for receiving the air from the control unit.
41. The method of claim 40, further comprising the steps of:
providing a valve assembly for controlling sequencing of the plurality of air chambers; and
providing air from the control unit to the blanket via a single inlet hose.
42. The method of claim 41, further comprising the step of delivering sequencing instructions from the control unit to the valve assembly.
43. The method of claim 41, wherein the step of delivering sequencing instructions comprises the step of analyzing a patient profile to determine appropriate sequencing instructions.
44. The method of claim 30, wherein the step of cycling between heating and cooling comprises the step of analyzing a patient profile to determine appropriate heating and cooling instructions.
45. The method of claim 44, further comprising the step of delivering the heating and cooling instructions to a heat transfer assembly.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The present application claims priority from, and incorporate by reference for any purpose the entire disclosure of, U.S. Provisional Patent Application Ser. No. 60/488,709 filed Jul. 18, 2003; 60/550,658 filed Mar. 5, 2004; and [Attorney Docket No. 27889-00089USPL] Serial No. Not Yet Assigned, filed Jul. 16, 2004 entitled “CUSTOMIZED THERMAL THERAPY MODALITY IN A COMPRESSION SEQUENCED THERMAL THERAPY SYSTEM.” This application is also related to, and hereby incorporates by reference, commonly assigned U.S. Pat. Nos. 5,097,829, 5,989,285, and U.S. patent application Ser. No. 09/328,183 filed Jun. 8, 1998.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Technical Field
  • [0003]
    The present invention relates to thermal therapy systems in general, including therapeutic cooling, heating, and compression systems used in association therewith, and more particularly, but not by way of limitation, to a programmable, sequential compression system adapted for high thermal contrast modality, and incorporating multiple, independently controllable chambers in a thermal therapy blanket.
  • [0004]
    2. Description of the Related Art
  • [0005]
    Medical care providers have long recognized the need to provide warmth and cooling directly to patients as part of their treatment and therapy. Better recoveries have been reported using cold therapy for orthopedic patients. The benefits of warming patients undergoing surgery has been conclusively proven. It is also desirable to cool portions of a patient's anatomy in certain circumstances. Yet another advantageous therapy is the application of heat then cold to certain areas of injury.
  • [0006]
    Several devices have been developed that deliver temperature controlled fluids through pads or convective thermal blankets to achieve the above purpose. Typically these devices have a heating or a cooling element, a source for the fluid, a pump for forcing the fluid through the pad or blanket, and a thermal interface between the patient and the temperature controlled fluid. U.S. Pat. No. 4,884,304 to Elkins is directed to a mattress cover device which contains liquid flow channels which provide the selective heating or cooling by conduction.
  • [0007]
    Devices have also been developed for providing heat to a person in bed. Electric blankets containing electric heating elements have been used for years to warm a person in bed.
  • [0008]
    Cooling blankets, such as the blanket disclosed in U.S. Pat. No. 4,660,388 to Greene, have also been proposed. Greene discloses a cooling cover having an inflatable pad with plenum chambers at opposite ends thereof. Cool air is generated in a separate unit and directed to the pad and out a number of apertures on the underside of the pad and against the body of the person using the cover.
  • [0009]
    A disposable heating or cooling blanket is disclosed in U.S. Pat. No. 5,125,238 to Ragan, et al which has three layers of flexible sheeting. Two of the layers form an air chamber and the third includes a comfortable layer for contact with the patient. Conditioned air is directed toward the covered person through a multiplicity of orifices in the bottom layers of the blanket.
  • [0010]
    A temperature controlled blanket and bedding assembly is disclosed in commonly assigned U.S. Pat. No. 5,989,285 to DeVilbiss et al., the disclosure of which describes a temperature controlled blanket and temperature control bedding system which has the provision of both recirculating temperature controlled fluid and temperature controlled gas to enhance performance for convectively heating or cooling a patient. Counter-flow or co-flow heat exchanging principles between the temperature controlled liquid and the temperature controlled gas achieve temperature uniformity across different sections of the blanket and the bedding system. Drapes and the temperature controlled bedding system provided temperature controlled envelope around a person using the bedding system. In one embodiment of the bedding system, the air portion of the bedding system is provided for use with a patient that supplies the fluid portion of the overall bedding system. In another embodiment of the bedding system, the fluid portion of the bedding system is provided for use with a patient bed which supplies the air portion of the overall bedding system.
  • [0011]
    U.S. Pat. No. 5,097,829 to Quisenberry describes an improved temperature controlled fluid circulating system for automatically cooling a temperature controlled fluid in a thermal blanket with a thermoelectric cooling device having a cold side and a hot side when powered by electricity. The temperature controlled fluid is cooled by the cold side of the cooling device and pumped through, to, and from the blanket through first and second conduits.
  • BRIEF SUMMARY OF THE INVENTION
  • [0012]
    The present invention relates to a sequential compression blanket for use with heating or cooling therapy. In one aspect, an embodiment of the blanket comprises a plurality of air chambers and a valve assembly. The valve assembly controls the flow of air to each air chamber in order to provide sequential, pulsing, or constant compression to the patient.
  • [0013]
    In another aspect, one embodiment of the invention includes a compression therapy blanket comprising a plurality of gas, such as air, chambers for receiving a gas to cause compressions, a valve assembly, internal to the compression therapy blanket, for delivering gas to each of the plurality of air chambers in a predetermined pattern, an inlet port for delivering air from a control unit to the valve assemblies, and a plurality of connection for delivering gas from the valve assembly to the plurality of gas/air chambers. The plurality of gas/air chambers may comprise four to seven chambers and an electrical signal connection may be provided for transmitting data related to the predetermined pattern to the valve assembly. One embodiment includes the predetermined pattern comprises sequential inflation of the plurality of chambers to produce series of compression movements peripherally toward the heart of a patient, while another embodiment includes inflating two of the plurality of gas/air chambers simultaneously.
  • [0014]
    In yet another aspect, the above described compression therapy blanket further comprises a heat transfer fluid bladder for providing temperature therapy to a portion of a patient. The bladder includes a fluid inlet port for delivering heat transfer fluid from the control unit to the heat transfer fluid bladder and a fluid outlet port for delivering heat transfer fluid from the heat transfer fluid bladder to the control unit. The heat transfer fluid bladder delivers thermal therapy to a patient in the form of heat or cold or alternating heat and cold.
  • [0015]
    In yet another aspect, one embodiment of the invention includes a temperature therapy blanket comprising, a fluid bladder for housing heat transfer fluid, the fluid bladder having a top layer and a bottom layer, a plurality of connections for dispersing the heat transfer fluid throughout the blanket, the plurality of connections connecting the top layer to the bottom layer of the fluid bladder, at least one partition for directing the flow of the heat transfer fluid through the bladder; and means for providing sequenced flows of alternating heat and cold in a high thermal contrast modality to a patient.
  • [0016]
    In another embodiment of the invention, the above-described temperature therapy blanket further comprises an air bladder disposed outwardly of the fluid bladder in an overlapping relationship therewith for providing select compression therapy, the air bladder having an upper layer and a lower layer and an inlet port for providing air from the control unit to the air bladder.
  • [0017]
    Yet a further aspect includes one embodiment of the invention comprising a system for passing heat transfer fluid between a control unit and a blanket. The system comprises a reservoir for housing heat transfer fluid for utilization by the system, a flow network in flow communication with the reservoir and including a junction having at least three branches, wherein a first branch receives heat transfer fluid from the reservoir, a second branch receives the heat transfer fluid returning from the blanket, and a third branch for delivering the heat transfer fluid to the blanket, and a pump for creating a low pressure site at the third branch, wherein the low pressure site causes the heat transfer fluid from the second branch to be pulled into the third branch. In one embodiment of the invention, the three-point junction is generally configured as an inverted Y from a fluid flow standpoint.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
  • [0019]
    FIG. 1 is an illustration of the patient therapy system according to an embodiment of the present invention;
  • [0020]
    FIG. 2 is a block diagram illustrating the flow of heat transfer fluid according to an embodiment of the present invention;
  • [0021]
    FIG. 3 is a block diagram of the control circuitry according to an embodiment of the present invention;
  • [0022]
    FIGS. 4A-4C are block diagrams of thermoelectric device assemblies according to embodiments of the present invention;
  • [0023]
    FIGS. 5A-5B are illustrations of a cross-sectional view of the blanket portion of the patient therapy system according to an embodiment of the present invention;
  • [0024]
    FIG. 5C is an illustration of a bottom view of the blanket in accordance with an embodiment of the present invention;
  • [0025]
    FIG. 5D is an illustration of a cross-sectional view of the blanket of FIG. 5C in an inverted position relative to FIG. 5C;
  • [0026]
    FIG. 6A is an illustration of the valve assembly and sequential compression blanket in accordance with one embodiment of the present invention;
  • [0027]
    FIG. 6B is an illustration of the valve assembly and sequential compression blanket in accordance with an alternate embodiment of the present invention;
  • [0028]
    FIG. 6C is an illustration of the valve assembly of FIG. 6A according to an alternate embodiment of the present invention;
  • [0029]
    FIG. 6D is an illustration of the valve assembly of FIG. 6B according to an alternate embodiment of the present invention;
  • [0030]
    FIGS. 7A-7I are illustrations of several exemplary embodiments of the patient therapy system of the present invention; and
  • [0031]
    FIG. 8 is an illustration of a method of creating and packaging a heat transfer fluid utilized according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0032]
    Referring to FIG. 1, there is shown a patient therapy system 2 according to the principles of the present invention. The patient therapy system 2 comprises a control unit 4, a blanket 8, and a connector 10. The blanket 8 further comprises an emergency relief valve 9. In operation, a heat transfer fluid is deposited in the control unit 4 via an aperture 14. The heat transfer fluid is cooled or heated by the control unit 4 and pumped to the blanket 8 by connector tubes 6. The heat transfer fluid flows into the blanket 8 through an inlet port, and exits through an outlet port to the control unit 4 via the connector 10 and connector tubes 6. Similarly, a gas may be pumped by the control unit 4 to the blanket 8 through the connector tubes 6 and the connector 10 to provide compression therapy. In addition, additional connector tubes 6 may be present to allow for both heat transfer fluid and gas to be passed to the blanket for simultaneous temperature therapy and compression therapy.
  • [0033]
    The control unit 4 receives data and manipulates any one of a plurality of therapeutic characteristics of the blanket 8 based on the data. The blanket 8 is adapted for the administration of hot, cold, and/or compression therapies to a body portion of the patient. For example, the blanket 8 may extend from the fingertips to the shoulder, the toes to the hip, or various other configurations. Current thermal design requirements for temperature therapy in accordance with one embodiment of the present invention are as follows: 1) the system must be able to heat the fluid from around 49° F. to around 105° F. with the largest blanket attached to a typical man at an ambient of 77° F. within 10 minutes, 2) the system must be able to cool the fluid from 105° F. to 49° F. with the largest blanket attached to a typical man at an ambient of 77° F. within 20 minutes, and 3) the system must cool the fluid to 37° F. at an ambient of 77° F. within 90 minutes. These requirements should be with a minimum compression of 25 mm Hg. In addition, according to some embodiments, the blanket 8 may diffuse oxygen into the portion of the body. The connector 10 provides a fluid and/or gas connection between the control unit 4 and the blanket 8 for the transfer of gas and heat transfer fluid. The connector 10 may also allow for transfer of electrical sensor signals and/or data signals between the blanket 8 and the control unit 4. The emergency relief valve 9 is utilized to quickly decompress the blanket 8 if needed.
  • [0034]
    Referring now to FIG. 2, a block diagram of one embodiment of the flow of heat transfer fluid between the control unit 4 and the blanket 8 is illustrated. The control unit 4 includes a heat transfer fluid reservoir 200 and at least one heat transfer assembly (HTA) 202 for heating and/or cooling the heat transfer fluid. Before the blanket 8 is utilized for temperature therapy, the system is primed with the heat transfer fluid. When the system is primed, substantially no air exists in the tubes 204 between the reservoir 200, HTA 202, and blanket 8. The flow tubes in the control unit 4 between the reservoir 200, HTA 202, and blanket 8 form a three-point junction 204C. In the preferred embodiment, the three-point junction 204C is formed as an inverted Y, however, other shapes and orientations are possible. By utilizing a three-point junction 204C, the heat transfer fluid returning from the blanket 8 is recirculated to the HTA 202 without utilizing heat transfer fluid from the reservoir 200. The three-point junction 204C allows the HTA 202 to heat or cool the heat transfer fluid that has already been heated or cooled prior to entering the blanket 8. In the preferred embodiment, the HTA 202 does not heat or cool the entire contents of the reservoir 200, but merely the portion of the heat transfer fluid that is currently circulating through the blanket 8 and tubing 204. In essence, the reservoir is generally “bypassed” unless more fluid volume is needed. In the three-point junction 204C, heat transfer fluid returning from the blanket 8 may be pulled, via a pump, to the HTA 202. If more heat transfer fluid than that which is already circulating through the system is required, then the heat transfer fluid from the reservoir is introduced into the system.
  • [0035]
    Referring now to FIG. 3, and more specifically to the control unit 4, control circuitry 300 according to an embodiment of the present invention is illustrated. The control circuitry 300 is coupled to pre-cooling and pre-heating circuitry 302, thermal profile circuitry 304, patient profile circuitry 306, time duration circuitry 308, hot and cold indicator circuitry 310, and compression profile circuitry 312. The control circuitry 300 is further coupled to a memory 314, detection circuitry 316, warning circuitry 318, and a backup battery 320. A display 322 is provided for displaying the output of the control circuitry 300 and for the input of data to control various therapeutic values of the blanket 8. A dual water and gas reservoir 324 having water and gas reservoir circuitry 326 is further coupled to the control circuitry 300. Reservoir circuitry 326 is coupled both to the control circuitry 300 and to a plurality of thermal electric coolers 328. The thermal electric coolers 328 heat and/or cool the heat transfer fluid contained within the fluid/gas reservoir 324. Coupled to the thermal electric coolers 328, there is shown a phase plane heat removal system 330.
  • [0036]
    Coupled to the control circuitry 300 is the pre-cooling and pre-heating circuitry 302 which heats and/or cools the temperature of the heat transfer fluid prior to the application of the blanket 8 to the patient. Thermal profile circuitry 304, patient profile circuitry 306, and compression profile circuitry 312 allow the user of the patient therapy system 2 to apply compression and/or thermal therapy to a patient according to preset values which depend on the type of injury and physical attributes of the patient. Exemplary attributes of the patient, thermal, and/or compression profiles are illustrated in Table 1 below.
    TABLE 1
    Patient Record Bytes Type
    RTC Year 1 character
    RTC Month 1 character
    RTC Day 1 character
    RTC Hour 1 character
    RTC Minute 1 character
    Coolant Set Temp 2 signed integer
    Coolant Temp 2 signed integer
    Compression Set 1 unsigned character
    Compression Reading 2 unsigned integer
    Therapy Mode 1 bit
    Compression Switch Status 2 bits
    Control Mode 3 bits
    Alarms 1 bit
  • [0037]
    As illustrated in Table 1, a record of the actual use of the temperature therapy blanket may be recorded by the Year, Month, Day, Hour, and Minute attributes. The temperature therapy settings and compression settings may also be stored via the Coolant Set Temp and Compression Set attributes. The actual temperature and compression may be stored via the Coolant Temp and Compression Reading attributes. The particular therapy mode chosen is assigned to the Therapy Mode attribute. For example, the patient may wish to apply cooling therapy without compression, heat therapy without compression, contrast therapy without compression, cooling therapy with compression, heat therapy with compression, contrast therapy with compression, or compression without temperature therapy. The profiles and usage data may also be sent to a computer or printed for medical records, etc.
  • [0038]
    The detection circuitry 316 is coupled to the control circuitry 300 and to the connector 10 of FIG. 1 to alert the user of whether the connector 10 is properly or improperly connected to the blanket 8. A disconnect signal may be sent to the control circuitry 300 to warn the user of a problem with the connector 10. The battery backup 320 supplies power to the control unit 4 during periods when an AC current is not available. The control circuitry 300 may also forward data related to specifics of the temperature and compression therapy to the display 322. The display 322 may display indicators related to the data from the control circuitry 300 and/or other portions of the system 2.
  • [0039]
    The control circuitry 300, in conjunction with the memory 314, thermal profile circuitry 304, patient profile circuitry 306, time duration circuitry 308, and compression profile circuitry 312 provides cooling and heating therapy with a programmable set point between 37 and 66° F. and 90 and 105° F. The control circuitry 300 allows for contrast therapy programmable for alternating between cooling for a predetermined time interval and heating for a predetermined time interval, or constant therapy for only heating or only cooling for a predetermined time interval. The control circuitry 300 also allows for compression therapy separate from, or in conjunction with, the contrast or constant thermal therapy. Compression therapy enhances thermal contact for more efficient thermal transfer with the tissue under therapy. The compression therapy may also provide pulse compression by alternating between a plurality of chosen pressure levels to gently, but firmly pulse massage the tissue. Compression therapy that sequentially compresses a portion of the patient under therapy may also be initiated from the control circuitry 300. Further, the control circuitry 300, in conjunction with the memory 314, may provide optional electronic recording of therapy patient identification and chosen thermal, contrast, constant, compression, and/or oxygen treatment levels applied with time indicators and duration indicators of each treatment mode as noted above with respect to Table 1. The patient may optionally readout, print, and/or electronically retain the therapy patient record within the memory 50. Moreover, the control circuitry 300 may provide a bio-impedance measurement to estimate the total body water content to assess hydration conditions. Also, an exemplary embodiment of the patient therapy system 2 of FIG. 1 may provide electronic muscle stimulation to accelerate return of muscle condition to normal.
  • [0040]
    Referring now to FIG. 4A, there is shown a diagrammatic schematic of one embodiment of an improved thermoelectric device assembly in accordance with one embodiment of the principles of the present invention. The TEC of this particular embodiment incorporates a layer of gold that interfaces with the ceramic. This particular interface affords the necessary strength to connect the ceramic directly to the billets for a high thermal contrast modality in accordance with certain aspects of the present invention. With such a design, a much higher thermal contrast modality and thermal cycle capability is achieved. Moreover, it has been suggested by Applicants herein that with such an assembly, approximately 100,000 heating and cooling cycles may be possible in the high thermal contrast modality. The present embodiment affords an arrangement of the appropriate TEC interface materials with the heat exchanger to optimize the ability to accept high thermal contrast through thousands of cycles manifesting extreme expansion and contraction as is inherent in high contrast thermal systems. The utilization of thermal grease between the TEC and the heat sink and manifold is currently contemplated. It has further been recognized that the layer of gold appears to reduce the stress on the solder joints within the TEC. A more robust connection is thus afforded between the ceramic and the other elements inside the TEC. It has further been recognized that the use of thermal grease instead of plastics and the like is preferable in at least one embodiment of the present invention.
  • [0041]
    Referring now to FIG. 4B, a diagrammatic schematic illustrates thermal cycling with the TEC capable of withstanding the stresses of thermal cycling. The TEC is capable of withstanding the stresses of thermal cycling during normal operation at the following conditions: 150 PSI loading, ΔT in the cooling mode, cool side=15° C.; hot side=60° C. With such an embodiment, the following performance matrix may be realized: Thermal characteristics: Qmax≧52 Watts at 25° C.
  • [0042]
    Referring now to FIG. 4C, physical characteristics of one embodiment of the present invention are illustrated. The leads and perimeter of the TEC must be sealed with a sealant that will meet the following: AC Hipot of 1700 VAC for 1 minute with the TEC's sandwiched between two ground planes and a leakage requirement of ≦10 mA at 1700 VAC. It is preferable for the sealants used for the leads and the perimeter to be of similar materials.
  • [0043]
    Referring now to FIG. 5A, there is shown the connector 10 of FIG. 1 connected to the therapy blanket 8. A plurality of connections 15 extend throughout the interior of the fluid bladder of blanket 8 so as to avoid all concentration of fluid in one portion of the therapy blanket 8. Layer 18 is a layer of a gas/fluid impermeable material and layer 20 is a second layer of gas/fluid impermeable material. A first bladder, defined by layers 18 and 20, contains heat transfer fluid from the water/gas reservoir 324 (via tubes 500 and 502) while the second bladder, which is defined by layers 20 and 16, receives gas (via tube 504). A single connection 15 is formed by sealing layers 18 and 20 one to another. Layers 16, 18, and 20 are sealed one to another along their periphery.
  • [0044]
    In an exemplary embodiment shown in FIG. 5B, gas permeable layer 28 is coupled beneath the gas bladder and fluid bladder of FIG. 5A. Layer 28 may be sealed contiguous with the periphery of the gas bladder and fluid bladder of FIG. 5A. A tube 26 injects oxygen into the gas permeable layer 28 for diffusion along a surface of the patient via a series of diffusion holes 30 formed in layer 28. One method of providing oxygen to an injured portion of a patient is described in the aforementioned U.S. Pat. No. 5,989,285 to DeVilbiss et al.
  • [0045]
    Referring now to FIG. 5C, a temperature therapy blanket 8 having a pre-selected shape and compression capabilities is illustrated. The underside of the blanket 8 (shown) is placed directly against a portion of the patient. The fluid bladder is thus adjacent the patient. Heat transfer fluid flows into the blanket 8 from inlet hose 500 and heat transfer fluid flows out of the blanket via outlet hose 502. A gas, for compression, flows into the blanket 8 from air inlet hose 504. The air inlet hose 504 may also be utilized to provide oxygen for oxygenation purposes. Alternatively, oxygenation gas may be provided by a separate hose. Heat transfer fluid travels through the inlet hose 500, through fluid inlet port 506, and into the blanket 8. The connections 15 allow the heat transfer fluid to evenly disperse throughout the fluid bladder. Partitions 508 a, 508 b control the flow of heat transfer fluid throughout the fluid bladder. Partition 508 a prevents heat transfer fluid from entering the blanket 8 at the inlet port 506 and immediately exiting the blanket via outlet port 510. Partition 508 a forces the heat transfer fluid to travel towards the end of the blanket 8 remote from the inlet port 506. Partition 508 b, in conjunction with connections 15, causes the heat transfer fluid to travel across the width of the blanket 8. The edges of the fluid bladder are joined to the edges of the air bladder at seal 512. The heat transfer fluid may then exit the blanket 8 at the outlet port 510. The travel of the heat transfer fluid is indicated by arrows in FIGS. 5C and 5D.
  • [0046]
    Referring now to FIG. 5D, the blanket 8 is turned over relative to FIG. 5C and a cross-sectional view along line A-A of FIG. 5C is illustrated. As described above, the fluid bladder 514 (disposed against the patient) and air bladder 516 are joined together at seal 512. Connections 15 join the upper layer and lower layer of the fluid bladder 514 together. The partition 508 a segregates the heat transfer fluid from the inlet port 506, illustrated by the downward arrows, from the heat transfer fluid flowing to the outlet port, illustrated by the upward arrows. The air bladder 516 is oriented over the fluid bladder 514 to press the fluid bladder 514 against a portion of the patient (not shown in this view).
  • [0047]
    Referring now to FIG. 6A, a sequential compression blanket 8 in accordance with an embodiment of the present invention is illustrated. The sequential compression blanket 8 may also include temperature therapy as illustrated above, or the sequential compression blanket 8 may be a stand alone blanket that may be applied directly to a surface of a patient or over a temperature therapy blanket. The sequential compression blanket 8 includes a plurality of air chambers 602 with inlet lines 604 for each air chamber 602. In the preferred embodiment, the blanket 8 includes four to seven air chambers 602, although more or fewer air chambers 602 may be utilized in accordance with embodiments of the present invention. Tubing 606 connects the inlet lines 604 to a valve assembly 608 that is separate from both the blanket 8 and the control unit 4. Additional tubing 610 connects the valve assembly 608 to the control unit 4. The valve assembly 608 operates to control the flow of air to each chamber 602 via valves (not shown) that allow air flow to the tubing 606 for each air chamber 602. The valve assembly 608 may operate to provide sequential compression in a first direction by first filling and releasing air chamber 602 a, next filling and releasing air chamber 602 b, and lastly filling and releasing air chamber 602 c. The valve assembly 608 may operate to provide sequential compression in the opposite direction by first filling and releasing air chamber 604 c, next filling and releasing air chamber 604 b, and lastly filling and releasing air chamber 604 a. Alternatively, the valve assembly 608 may provide pulsing compression by substantially simultaneously filling the air chambers 602 and, a predetermined time interval later, releasing the air chambers 602. Although the above embodiment illustrates specific sequential and pulsing compression techniques, it will be understood by one skilled in the art that numerous compression techniques may be utilized without departing from aspects of the present invention. For example, multiple air chambers 602 may be filled simultaneously or compression could be applied by first filling air chamber 602 a, next filling air chamber 602 b, lastly filling air chamber 602 c, and releasing the air chambers 602 substantially simultaneously. In various embodiments, the air chambers 602 are sequenced to provide movement peripherally toward the heart.
  • [0048]
    The valve assembly 608 receives sequencing instructions from an electrical line 612 that connects to the control unit 4. The electrical line 612 may also provide for communication of other data, such as sensor data or oxygenation data, between the blanket 8 and the control unit 4. For example, the blanket 8 may include temperature sensors to determine the temperature of the heat transfer fluid within the blanket 8. The sensor data is then transmitted to the control unit 4, via the electrical line 612, so that the control unit 4 may adjust the cooling or heating of the heat transfer fluid as necessary.
  • [0049]
    Referring now to FIG. 6B, an alternate embodiment of the present invention is illustrated. This embodiment includes a valve assembly 608 that is internal to the sequential compression blanket 8 and four air chambers 602 within the sequential compression blanket 8, although the amount of air chambers may vary from blanket to blanket. The valve assembly 608 functions in a manner similar to the valve assembly 608 of FIG. 6A except that an additional valve is provided for the fourth air chamber 602 d and tubing 606 d. The valve assembly 608 and tubing 606 are internal to the sequential compression blanket 8. Therefore, the only item visible to a patient is the tubing 610 that exits the sequential compression blanket 8 and connects to the control unit 4. Although the sequential compression blanket 8 has been illustrated as a substantially rectangular blanket, it will be understood by one skilled in the art that the blanket 8 may be formed in any shape to conform to any portion of a patient's body, such as a shoulder, wrist, foot, neck, back, etc.
  • [0050]
    Referring now to FIGS. 6C-6D, alternate embodiments of the sequential compression blanket 8 is illustrated. The blanket as shown also includes a fluid bladder with an inlet fluid tube 614 and outlet fluid tube 616. The compression functions similarly to that described in FIGS. 6A and 6B except that the compression bladder presses the fluid bladder onto a portion of the patient. The fluid bladder may be similar to that illustrated in FIGS. 5A-5D, although other configurations of fluid bladders may be utilized in conjunction with the compression blanket of embodiments of the present invention.
  • [0051]
    Referring now to FIGS. 7A-7I, various configurations of the blanket 8 adaptable to various portions of a patient body are illustrated. Although the blankets 8 are illustrated with a specific configuration of tubing, connectors, fasteners, etc., it will be understood by one skilled in the art that other configurations may be utilized in accordance with embodiments of the present invention.
  • [0052]
    Referring now to FIG. 8, a method of creating and packaging a heat transfer fluid according to an embodiment of the present invention is illustrated. Although the heat transfer fluid described below may be utilized with the present invention, other heat transfer fluids may also be utilized in conjunction with the system of the present invention. In the preferred embodiment, the heat transfer fluid incorporates water with propylene glycol. A 15% solution of propylene glycol with distilled water is suggested to reduce the freezing set point within the heat transfer fluid and to eliminate the accumulation of bacteria. At step 800, distilled water is provided. At step 802, monopropylene glycol is provided and is mixed with the water at step 804. The distilled water and monopropylene glycol may be mixed in a ratio of about 15% monopropylene glycol and 85% distilled water. The mixture is packaged at step 806 and installed at step 808.
  • [0053]
    The previous description is of a preferred embodiment for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is instead defined by the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2110022 *Jul 15, 1935Mar 1, 1938Internat Engineering CorpCover
US2504308 *Feb 9, 1948Apr 18, 1950Jr Lucius B DonkleHeating and cooling cover
US3367319 *Nov 9, 1966Feb 6, 1968Firewel Company IncApparatus for heating a diver clothed in a suit and immersed in cold water
US3660849 *Jul 13, 1970May 9, 1972Minnesota Mining & MfgDeep submergence diving suit and insulative material therefor
US3736764 *Apr 25, 1972Jun 5, 1973NasaTemperature controller for a fluid cooled garment
US3738702 *Mar 15, 1972Jun 12, 1973Gen Motors CorpMeans for cooling and heating a seat structure
US3744053 *Feb 11, 1970Jul 10, 1973Sanders Nuclear CorpLiquid loop garments
US3862629 *May 2, 1973Jan 28, 1975Nicholas R RottaFluid pressure controlled means for producing peristaltic operation of series-connected inflatable chambers in therapeutic devices, pumps and the like
US3894213 *Aug 23, 1973Jul 8, 1975Everest & JenningsFluid circulating heating pad
US4006604 *Jan 23, 1976Feb 8, 1977Lawrence Peska Associates, Inc.Air conditioned pillow
US4013069 *Oct 28, 1975Mar 22, 1977The Kendall CompanySequential intermittent compression device
US4459822 *Jan 25, 1982Jul 17, 1984Dragerwerk A.G.Cooling suit system and heat exchanger construction
US4503484 *Oct 28, 1983Mar 5, 1985Stypher CorporationChassis for electronic circuitry
US4660388 *Sep 26, 1985Apr 28, 1987Greene Jr George JCooling cover
US4821354 *Mar 21, 1988Apr 18, 1989Little Donald EPortable cooling pool, beach or car seat mat
US4844072 *Dec 27, 1985Jul 4, 1989Seabrook Medical Systems, Inc.Liquid-circulating thermal therapy system
US4901200 *Oct 14, 1988Feb 13, 1990Schroff GmbhInsertable housing
US4911231 *Oct 14, 1988Mar 27, 1990Bicc Public Limited CompanyElectronic enclosure cooling system
US4996970 *Nov 3, 1989Mar 5, 1991Legare David JHeated sleeping bag ground pad
US5080089 *Sep 5, 1990Jan 14, 1992Breg, Inc.Therapeutic apparatus applying compression and a nonambient temperature fluid
US5092271 *Sep 26, 1990Mar 3, 1992Crystal Spring Colony Farms Ltd.Heating pad
US5097829 *Mar 19, 1990Mar 24, 1992Tony QuisenberryTemperature controlled cooling system
US5106373 *Aug 6, 1991Apr 21, 1992Augustine Medical, Inc.Convective warming of intravenously-administered fluids
US5112045 *Sep 5, 1990May 12, 1992Breg, Inc.Kinesthetic diagnostic and rehabilitation device
US5125238 *Apr 29, 1991Jun 30, 1992Progressive Dynamics, Inc.Patient warming or cooling blanket
US5179941 *Jun 6, 1989Jan 19, 1993Siems Otto SiemssenContractile sleeve element and compression sleeve made therefrom for the peristaltic treatment of extremities
US5184612 *May 28, 1992Feb 9, 1993Augustine Medical, Inc.Thermal blanket with transparent upper body drape
US5186698 *Jun 20, 1991Feb 16, 1993Breg, Inc.Ankle exercise system
US5232020 *Jul 1, 1992Aug 3, 1993Breg, Inc.Shutoff valve having a unitary valve body
US5285347 *Feb 6, 1992Feb 8, 1994Digital Equipment CorporationHybird cooling system for electronic components
US5300101 *Jul 12, 1991Apr 5, 1994Augustine Medical, Inc.Method and apparatus for treatment of pediatric hypothermia
US5300102 *May 19, 1992Apr 5, 1994Augustine Medical, Inc.Thermal blanket
US5300103 *Sep 24, 1992Apr 5, 1994Hollister IncorporatedThermal blanket and absorbent interfacing pad therefor
US5303716 *Nov 12, 1992Apr 19, 1994Breg, Inc.Portable device for rehabilitative exercise of the leg
US5316250 *Aug 31, 1992May 31, 1994Breg, Inc.Fluid container stand for therapeutic treatments
US5323847 *Jul 25, 1991Jun 28, 1994Hitachi, Ltd.Electronic apparatus and method of cooling the same
US5324319 *Jul 1, 1992Jun 28, 1994Breg, Inc.Gravity driven therapeutic fluid circulation device
US5324320 *May 20, 1991Jun 28, 1994Augustine Medical, Inc.Thermal blanket
US5330519 *Jul 30, 1993Jul 19, 1994Breg, Inc.Therapeutic nonambient temperature fluid circulation system
US5402542 *Apr 22, 1993Apr 4, 1995Ssi Medical Services, Inc.Fluidized patient support with improved temperature control
US5405370 *Dec 22, 1993Apr 11, 1995Irani; FeraidoonAir blanket
US5405371 *Jan 8, 1991Apr 11, 1995Augustine Medical, Inc.Thermal blanket
US5411494 *Sep 27, 1993May 2, 1995Rodriguez; Victorio C.Sponge bath machine and method for using
US5411541 *Aug 5, 1993May 2, 1995Oansh Designs Ltd.Portable fluid therapy device
US5417720 *Sep 2, 1994May 23, 1995Breg, Inc.Nonambient temperature pad conformable to a body for therapeutic treatment thereof
US5507792 *Jul 8, 1994Apr 16, 1996Breg, Inc.Therapeutic treatment device having a heat transfer element and a pump for circulating a treatment fluid therethrough
US5509894 *Apr 18, 1994Apr 23, 1996Breg, Inc.Leg suspension method for flexion and extension exercise of the knee or hip joint
US5528485 *Mar 10, 1995Jun 18, 1996Devilbiss; Roger S.Power control circuit for improved power application and control
US5591200 *Jun 17, 1994Jan 7, 1997World, Inc.Method and apparatus for applying pressure to a body limb for treating edema
US5648716 *Mar 19, 1996Jul 15, 1997Devilbiss; Roger S.Power control circuit for a battery charger
US5711155 *Dec 19, 1995Jan 27, 1998Thermotek, Inc.Temperature control system with thermal capacitor
US5731954 *Aug 22, 1996Mar 24, 1998Cheon; KioanCooling system for computer
US5755755 *Jan 28, 1997May 26, 1998Panyard; Albert A.Therapeutic structure and method
US5772618 *May 31, 1996Jun 30, 1998Breg, Inc.Hinge for an orthopedic brace
US5782780 *Jul 31, 1996Jul 21, 1998Breg, Inc.Method of forming a contoured orthotic member
US5890371 *Jul 11, 1997Apr 6, 1999Thermotek, Inc.Hybrid air conditioning system and a method therefor
US5901037 *Jun 18, 1997May 4, 1999Northrop Grumman CorporationClosed loop liquid cooling for semiconductor RF amplifier modules
US5923533 *Feb 17, 1998Jul 13, 1999Lockheed Martin CorporationMultiple tile scaleable cooling system for semiconductor components
US6055157 *Apr 6, 1998Apr 25, 2000Cray Research, Inc.Large area, multi-device heat pipe for stacked MCM-based systems
US6058010 *Nov 6, 1998May 2, 2000International Business Machines CorporationEnhanced test head liquid cooled cold plate
US6058712 *Jul 12, 1996May 9, 2000Thermotek, Inc.Hybrid air conditioning system and a method therefor
US6080120 *Mar 15, 1996Jun 27, 2000Beiersdorf-Jobst, Inc.Compression sleeve for use with a gradient sequential compression system
US6176869 *Feb 25, 1999Jan 23, 2001Breg, Inc.Fluid drive mechanism for a therapeutic treatment system
US6260890 *Aug 12, 1999Jul 17, 2001Breg, Inc.Tubing connector
US6358219 *Jun 27, 2000Mar 19, 2002Aci MedicalSystem and method of improving vascular blood flow
US6551264 *Sep 22, 2000Apr 22, 2003Breg, Inc.Orthosis for dynamically stabilizing the patello-femoral joint
US6695823 *Apr 7, 2000Feb 24, 2004Kci Licensing, Inc.Wound therapy device
US6719713 *Mar 14, 2002Apr 13, 2004Breg, Inc.Strap attachment assembly for an orthopedic brace
US6719728 *Aug 7, 2001Apr 13, 2004Breg, Inc.Patient-controlled medication delivery system with overmedication prevention
US6855158 *Sep 11, 2001Feb 15, 2005Hill-Rom Services, Inc.Thermo-regulating patient support structure
US6893414 *Aug 12, 2002May 17, 2005Breg, Inc.Integrated infusion and aspiration system and method
US7066949 *Feb 9, 2004Jun 27, 2006Adroit Medical Systems, Inc.Closed-loop heat therapy blanket
US7484552 *Dec 19, 2003Feb 3, 2009Amphenol CorporationModular rackmount chiller
US20030089486 *Dec 23, 2002May 15, 2003Thermotek, Inc.Cooling apparatus having low profile extrusion and method of manufacture therefor
US20030089487 *Dec 23, 2002May 15, 2003Thermotek, Inc.Cooling apparatus having low profile extrusion and method of manufacture therefor
US20030127215 *Dec 31, 2002Jul 10, 2003Thermotek, Inc.Cooling apparatus having low profile extrusion and method of manufacture therefor
US20040008483 *Sep 11, 2002Jan 15, 2004Kioan CheonWater cooling type cooling system for electronic device
US20040030281 *Aug 12, 2002Feb 12, 2004Breg, Inc.Integrated infusion and aspiration system and method
US20040054307 *Apr 22, 2003Mar 18, 2004Breg, Inc.Orthosis providing dynamic tracking of the patello-femoral joint
US20040068309 *Oct 8, 2002Apr 8, 2004Vital Wear, Inc.Contrast therapy system and method
US20040099407 *Jan 15, 2003May 27, 2004Thermotek, Inc.Stacked low profile cooling system and method for making same
US20050006061 *Apr 19, 2004Jan 13, 2005Tony QuisenberryToroidal low-profile extrusion cooling system and method thereof
US20050039887 *Aug 26, 2004Feb 24, 2005Parish Overton L.Stacked low profile cooling system and method for making same
US20050133214 *Dec 19, 2003Jun 23, 2005Teradyne, Inc.Modular rackmount chiller
US20060034053 *Aug 12, 2005Feb 16, 2006Thermotek, Inc.Thermal control system for rack mounting
US20060058714 *Sep 10, 2004Mar 16, 2006Rhoades Dean LOxygenating cosmetic instrument having various numbers of heads
US20060137181 *Jan 20, 2006Jun 29, 2006Thermotek, Inc.Cooling apparatus having low profile extrusion and method of manufacture therefor
US20070112401 *Oct 13, 2006May 17, 2007Niran BalachandranCritical care thermal therapy method and system
US20080058911 *Apr 10, 2007Mar 6, 2008Parish Overton LMethod and system for thermal and compression therapy relative to the prevention of deep vein thrombosis
US20080071330 *Oct 17, 2007Mar 20, 2008Tony QuisenberryWound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US20090069731 *Sep 19, 2008Mar 12, 2009Parish Overton LMethod and system for thermal and compression therapy relative to the prevention of deep vein thrombosis
US20090109622 *Jul 18, 2008Apr 30, 2009Parish Overton LThermal control system for rack mounting
USD345082 *Nov 14, 1991Mar 15, 1994Inn Crystal Glass Ges m.b.H.Stem and foot for a drinking glass
USD345609 *Mar 12, 1992Mar 29, 1994Breg, Inc.Therapeutic fluid circulation pad
USD345802 *Mar 12, 1992Apr 5, 1994Breg, Inc.Therapeutic fluid pump
USD345803 *Mar 12, 1992Apr 5, 1994Breg, Inc.Therapeutic fluid flow controller
USD348106 *Dec 7, 1992Jun 21, 1994Breg, Inc.Therapeutic fluid circulation pad for body joints
USD348518 *Dec 7, 1992Jul 5, 1994Breg, Inc.Therapeutic fluid circulation pad for the breasts
USD486870 *Nov 1, 2002Feb 17, 2004Breg, Inc.Continuous passive motion device for a shoulder or elbow
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7731244Sep 12, 2007Jun 8, 2010Coolsystems, Inc.Make-brake connector assembly with opposing latches
US7804686Jul 18, 2008Sep 28, 2010Thermotek, Inc.Thermal control system for rack mounting
US7837638Nov 23, 2010Coolsystems, Inc.Flexible joint wrap
US7896910Mar 1, 2011Coolsystems, Inc.Modular apparatus for therapy of an animate body
US7909861Oct 13, 2006Mar 22, 2011Thermotek, Inc.Critical care thermal therapy method and system
US7959657Jun 14, 2011Harsy Douglas RPortable thermal therapeutic apparatus and method
US8100956May 9, 2007Jan 24, 2012Thermotek, Inc.Method of and system for thermally augmented wound care oxygenation
US8128672 *Oct 17, 2007Mar 6, 2012Thermotek, Inc.Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US8142486Mar 27, 2012Thermotek, Inc.Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US8177828May 15, 2012Arizant Healthcare Inc.Underbody convective warming blanket constructions
US8236038Aug 7, 2012University Of Pittsburgh-Of The Commonwealth System Of Higher EducationMethod and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US8248798Aug 21, 2012Thermotek, Inc.Thermal control system for rack mounting
US8273114Nov 3, 2006Sep 25, 2012Vasper Systems LlcGrounded pressure cooling
US8425580 *May 13, 2011Apr 23, 2013Thermotek, Inc.Method of and system for thermally augmented wound care oxygenation
US8425583Feb 2, 2011Apr 23, 2013University of Pittsburgh—of the Commonwealth System of Higher EducationMethods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US8444581Jul 10, 2009May 21, 2013Gregory Brian Maxon-MaldonadoThermal compression therapy apparatus and system
US8460224Jun 11, 2013Michael L. WilfordTherapeutic compression apparatus
US8460354Jun 11, 2013Arizant Healthcare Inc.Inflatable convective pad for surgery
US8460355Jun 11, 2013Stryker CorporationNegative/positive pressure, thermal energy therapy device
US8485995Jul 10, 2009Jul 16, 2013Maldonado Medical LlcSystem and method for thermal compression therapy
US8574278Apr 26, 2012Nov 5, 2013Thermotek, Inc.Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US8597217Dec 30, 2010Dec 3, 2013Coolsystems, Inc.Reinforced therapeutic wrap and method
US8632576Jan 26, 2012Jan 21, 2014Thermotek, Inc.Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US8715330Oct 22, 2010May 6, 2014Coolsystems, Inc.Temperature and flow control methods in a thermal therapy device
US8753383Mar 23, 2010Jun 17, 2014Thermotek, Inc.Compression sequenced thermal therapy system
US8758419Feb 2, 2009Jun 24, 2014Thermotek, Inc.Contact cooler for skin cooling applications
US8778005Sep 19, 2008Jul 15, 2014Thermotek, Inc.Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis
US8827935May 8, 2013Sep 9, 2014Maldonado Medical LlcThermal compression therapy apparatus and system
US8834393May 8, 2013Sep 16, 2014Maldonado Medical LlcThermal compression therapy cover
US8882820May 2, 2013Nov 11, 20143M Innovative Properties CompanyInflatable convective pad for surgery
US8940034Aug 9, 2013Jan 27, 2015Thermotek, Inc.Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation
US8945027 *Jul 21, 2011Feb 3, 2015Munish K. BatraHeated compression therapy system and method
US8979915Apr 18, 2011Mar 17, 2015Pulsar Scientific, LLCSeparable system for applying compression and thermal treatment
US9072598Sep 5, 2014Jul 7, 20153M Innovative Properties CompanyInflatable convective pad for surgery
US9089400Apr 22, 2013Jul 28, 2015University of Pittsburgh—of the Commonwealth System of Higher EducationMethods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US9119705Apr 10, 2007Sep 1, 2015Thermotek, Inc.Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis
US9132057Jul 9, 2012Sep 15, 2015Michael L. WilfordTherapeutic wrap
US9211212Jul 25, 2014Dec 15, 2015Cerêve, Inc.Apparatus and method for modulating sleep
US20050256556 *May 17, 2004Nov 17, 2005Coolsystems, Inc.Modular apparatus for therapy of an animate body
US20070112401 *Oct 13, 2006May 17, 2007Niran BalachandranCritical care thermal therapy method and system
US20070268955 *May 17, 2006Nov 22, 2007Pohl Hermann KThermal fluid device with remote temperature indicator
US20080234788 *Nov 3, 2006Sep 25, 2008Wasowski Peter ZGrounded Pressure Cooling
US20080249593 *Apr 5, 2007Oct 9, 2008Cazzini Karl HNegative/positive pressure, thermal energy therapy device
US20090005841 *Sep 10, 2008Jan 1, 2009Tamara Lynn SchirrmacherModular apparatus for therapy of an animate body
US20090048649 *Aug 16, 2007Feb 19, 2009Gaymar Industries, Inc.Heat transfer device: seal and thermal energy contact units
US20090066079 *Sep 12, 2007Mar 12, 2009Coolsystems, Inc.Make-brake connector assembly with opposing latches
US20090109622 *Jul 18, 2008Apr 30, 2009Parish Overton LThermal control system for rack mounting
US20100210982 *Aug 19, 2010Niran BalachandranMethod And System For Providing Segmental Gradient Compression
US20110022134 *Jul 27, 2009Jan 27, 2011Arizant Healthcare Inc.Underbody convective warming blanket constructions
US20110098794 *Apr 28, 2011Arizant Healthcare Inc.Inflatable convective pad for surgery
US20110152983 *Jun 23, 2011Tamara Lynn SchirrmacherModular apparatus for therapy of an animate body
US20110275983 *Nov 10, 2011Tony QuisenberryMethod of and system for thermally augmented wound care oxygenation
US20120065561 *Sep 6, 2011Mar 15, 2012Epoch Medical Innovations, Inc.Device, system, and method for the treatment, prevention and diagnosis of chronic venous insufficiency, deep vein thrombosis, lymphedema and other circulatory conditions
US20120277641 *Apr 26, 2011Nov 1, 2012Wasowski Peter ZApparatus and Method for Enhanced HGH Generation in Humans
US20120283607 *Jul 21, 2011Nov 8, 2012Batra Munish KHeated Compression Therapy System and Method
US20120289873 *Jan 31, 2011Nov 15, 2012Shenzhen Breo Technology Co., Ltd.Method for controlling massage apparatus and massage apparatus
US20130131763 *May 23, 2013Gary ChiuMethod for mounting a wearable horse cooling device
US20130253383 *May 8, 2013Sep 26, 2013Maldonado Medical LlcGradient sequential thermal compression therapy apparatus and system
US20140336545 *Jul 1, 2014Nov 13, 2014P Tech, LlcAcoustic therapy device
USD662212Jun 19, 2012Thermotek, Inc.Butterfly wrap
USD662213Jun 19, 2012Thermotek, Inc.Knee wrap
USD662214Jun 19, 2012Thermotek, Inc.Circumferential leg wrap
USD664260Jul 24, 2012Thermotek, Inc.Calf wrap
USD679023Mar 26, 2013Thermotek, Inc.Foot wrap
USD683042May 21, 2013Thermotek, Inc.Calf wrap
EP1985268A1 *Apr 26, 2007Oct 29, 2008The Jenex CorporationTherapeutic treatment device for cold sores and the like
EP2016927A2 *Jul 3, 2008Jan 21, 2009Suministros Tecnicos Para La Belleza, S.L.Garment for thermotherapy, cryotherapy and pressotherapy treatments
EP2480183A2 *Nov 3, 2006Aug 1, 2012Vasper Systems LLCGrounded pressure cooling
WO2007056130A2Nov 3, 2006May 18, 2007Wasowski Peter ZGrounded pressure cooling
WO2007120639A3 *Apr 11, 2007Apr 24, 2008Thermotek IncMethod and system for thermal and compression therapy relative to the prevention of deep vein thrombosis
WO2008051417A3 *Oct 17, 2007Jun 26, 2008Niran BalachandranWound care method and system with one or both of vacuum-light therapy and thermally augmented oxygeration
WO2011014222A1 *Apr 16, 2010Feb 3, 2011Arizant Healthcare Inc.Underbody convective warming blanket constructions
Classifications
U.S. Classification607/104
International ClassificationA61H23/04, A61F7/00, A61F7/02, A61F5/34
Cooperative ClassificationA61F7/0097, A61F7/00, A61H1/008, A61H2201/0207, A61F2007/0296, A61F2007/0273, A61H2201/025, A61H2201/165, A61H2201/0264, A61F2007/0054, A61F5/34, A61F2007/0001, A61H2201/0285, A61H2201/0242, A61H2201/0214, A61F2007/0091, A61F2007/0076, A61H9/0078, A61F7/02
European ClassificationA61H9/00P6, A61F5/34, A61F7/02, A61F7/00U
Legal Events
DateCodeEventDescription
Mar 11, 2005ASAssignment
Owner name: THERMOTEK, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARISH, OVERTON L.;BALACHANDRAN, NIRAN;QUISENBERRY, TONY;REEL/FRAME:015889/0851
Effective date: 20050217
May 19, 2006ASAssignment
Owner name: THERMOTEK, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARISH, OVERTON L.;BALACHANDRAN, NIRAN;QUISENBERRY, TONY;AND OTHERS;REEL/FRAME:017657/0122;SIGNING DATES FROM 20050817 TO 20050824