Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050151505 A1
Publication typeApplication
Application numberUS 11/074,125
Publication dateJul 14, 2005
Filing dateMar 7, 2005
Priority dateOct 7, 1992
Also published asUS5592069, US5694024, US5867006, US6018228, US6969970, US20020117993, US20030189417
Publication number074125, 11074125, US 2005/0151505 A1, US 2005/151505 A1, US 20050151505 A1, US 20050151505A1, US 2005151505 A1, US 2005151505A1, US-A1-20050151505, US-A1-2005151505, US2005/0151505A1, US2005/151505A1, US20050151505 A1, US20050151505A1, US2005151505 A1, US2005151505A1
InventorsDonald Dias, Robert Lee
Original AssigneeDallas Semiconductor Corp.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rechargeable battery device
US 20050151505 A1
Abstract
A battery charger obtains parameter values derived from communication from a battery pack being charged. The battery pack has at least one rechargeable cell, a semiconductor device that stores the charging parameters for the rechargeable cell and communication bus configured to communicate with a battery charger device. The battery pack may have an identification number. A lack of communication between the battery pack and a charger may invoke a default charging program or denial of access to the charger.
Images(7)
Previous page
Next page
Claims(7)
1. A rechargeable battery pack comprising:
at least on rechargeable batter cell;
at least one sensor selected from the group consisting of a temperature sensor, a current sensor and a voltage sensor, or combination thereof, capable of generating dynamic data concerning said rechargeable battery pack;
a semiconductor memory affixed to said rechargeable battery pack capable of storing a plurality of data bits indicative of at least one charging parameter of said rechargeable battery pack and a digital representation of said generated dynamic data concerning said rechargeable battery pack;
a communication bus configured to transmit at least some of the data bits concerning said rechargeable battery pack that are stored within the semiconductor memory.
2. The rechargeable battery pack of claim 1, wherein said semiconductor memory comprises at least on location holding a presorted serial number.
3. A rechargeable battery device comprising:
at least one rechargeable battery cell;
sensor means configured to monitor a physical attribute of said at least one rechargeable battery cell;
a digital memory comprising a battery pack ID, and charging parameter values; and
connections for said at least one rechargeable battery cell, said sensor means, and said digital memory to connect to another device.
4. The rechargeable battery device of claim 3, wherein said digital memory is part of a module.
5. The rechargeable battery device of claim 3, wherein said sensor means comprises a volt sensor.
6. A rechargeable battery pack, comprising:
a rechargeable battery cell;
a memory device configured to store charging parameters for said rechargeable battery cell;
connections for said rechargeable battery cell and said memory device to connect to another device.
7. The rechargeable battery pack of claim 6, wherein said another device is a battery charger device.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This U.S. patent application is a continuation of U.S. patent application Ser. No. 10/348,584, filed Jan. 21, 2003; which is a continuation of U.S. patent application Ser. No. 09/454,275, filed Dec, 26, 1998, abandoned; which is a continuation of Ser. No. 09/178,675, filed Oct. 26, 1998, issued Jan. 25, 2000 as U.S. Pat. No. 6,018,222; which is a continuation of Ser. No. 08/901,068, filed Jul. 28, 1997, issued Feb. 2, 1999 as U.S. Pat. No. 5,867,006; which is a continuation of Ser. No. 08/764,285, filed Dec. 12, 1996, issued Dec. 2, 1997 as U.S. Pat. No. 5,694,024; which is a continuation of Ser. No. 07/957,571, filed Oct. 7, 1992, issued Jan. 7, 1997 as U.S. Pat. No. 5,592,069.

PARTIAL WAIVER OF COPYRIGHT PURSUANT TO 1077 O.G. 22 (Mar. 20, 1987)

All of the material in this patent application is subject to copyright protection under the copyright laws of the United States and of other countries. As of the first effective filing date of the present application, this material is protected as unpublished material.

Portions of the material in the specification and drawings of this patent application are also subject to protection under the maskwork registration laws of the United States and of other countries.

However, permission to copy this material is hereby granted to the extent that the owner of the copyright and maskwork rights has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the United States Patent and Trademark Office patent file or records, but otherwise reserves all copyright and maskwork rights whatsoever.

BACKGROUND AND SUMMARY OF THE INVENTIONS

The present invention relates to electronic devices, and, more particularly, to devices useful for battery charging.

Battery Chargers

The widespread use of battery-powered portable computers (e.g., notebooks, laptops and palmtops) with high performance relies on efficient battery utilization. In particular, portable computers typically use rechargeable batteries (e.g., lithium, nickel-cadmium, or nickel metal hydride) which weight just a few pounds and deliver 4 to 12 volts. Such batteries provide roughly three hours of computing time, but require about three times as long to be recharged. Such slow recharging is a problem and typically demands that users have several batteries with some recharging while others are being used.

Known battery chargers apply a constant voltage across a discharged battery with the applied voltage determined by the maximum voltage acceptable by the battery. FIG. 1 a heuristically illustrates such a battery charger with VMAX the maximum voltage acceptable by the battery and IMAX the maximum current; the resistor R and VMAX are the adjustable values. FIG. 1 b is the load line for the battery charger of FIG. 1 a and shows the charging current I as a function of the battery voltage V. As the load line shows, the charging current begins at IMAX with a totally discharged battery as indicated by point A. The battery rapidly charges and its voltage increases and the charging current decreases with the operating point moving down the load line as shown by arrow B. Then as the battery voltage rises to near VMAX, the charging current falls to zero as indicated by point C. And the small charging current implies a large charging time. Indeed, most of the charging time will be during operation approaching point C.

Furthermore, the different chemistries of various battery types preferably use differing recharging voltages, and varying battery capacities (sizes) demand differing charging currents. However, known battery chargers cannot automatically adapt to such a variety charging conditions and remain simple to use.

Features

The present invention provides battery charging with charging parameter values selected by communication with imbedded information in a battery pack and then adjusted during charging. This permits adaptation to various battery chemistries and capacities, and, in particular, allows for approximately constant current charging at various current levels and for trickle charging.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with reference to the accompanying drawings, which are schematic for clarity.

FIGS. 1 a-b illustrate known battery chargers and their load lines;

FIG. 2 is schematic functional block diagram of a first preferred embodiment battery charger;

FIG. 3 is a state diagram for the first preferred embodiment;

FIG. 4 is a flow chart for communication by the first preferred embodiment;

FIGS. 5-7 show communication waveforms; and

FIG. 8 illustrates identification memory organization.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Functional Overview

FIG. 2 is a schematic functional block diagram of a first preferred embodiment battery charger, denoted generally by reference numeral 200, connected to charge battery pack 250 with communication module 252 which preferably follows a one-wire communication interface. Battery charger 200 includes power transistor 202, current sense resistor 204, voltage sense node 205, temperature sensor 206 affixed to battery pack 250, ambient temperature sensor 207, controller 210, operational amplifier 214, power transistor driver 218, one-wire communication bus 220, and three-wire bus 223. Referring to FIG. 2, controller 210 is coupled to battery pack 250 via communication terminal or bus 220. Portion 270 of battery charger 200 may be formed as a single integrated circuit and provide low cost and ruggedness.

Battery charger 200 can provide battery charging up to about 20 volts with 2.5 amp currents; this demands a separate power transistor 202 for cooling. Transistor 202 functions essentially as a current source and is coupled to controller 210 through driver 218. (More generally, power transistor 202 could be replaced by a DC-to-DC converter.) The current source also comprises a current level detector 215. Current level detector 215 comprises resistor 204 and difference amplifier 214 to detect the current level through resistor 204 and into battery pack 250 through output terminal 230 Controller 210 also comprises an analog-to-digital converter to convert the analog current value detected by current level detector 215, which is used to compute the present voltage of the batteries in battery pack 250 through Ohm's law (since the resistance is constant and known). The present voltage is compared to stored values of previous values of the voltages of the batteries in battery pack 250, which were computed using the same method. Battery pack 250 may have various numbers of cells and cells of various chemistries which require various charging programs. Controller 210 acquires information about battery pack 250 through inquiry over the one-wire communication bus 220. In particular, communication module 252 within battery pack 250 contains identification plus charging parameter values, such as maximum voltage VMAX and maximum current IMAX along with charge time and endpoint detection method. Controller 210 reads the identification and charging parameter values and configures itself accordingly. Note that the identification can be used for access control: battery charger 200 can refuse to charge a battery pack with an invalid identification. Controller 210 also has stored (in nonvolatile ROM) default charging parameter values. Thus when controller 210 is unable to read charging parameter values from battery pack 250, it may read from its own ROM for default parameter values. After acquisition of parameter values, battery charger 200 begins charging battery pack 250. Battery charger 200 may also communicate at high speed over a second communication terminal, which is preferably a three-wire bus 223 with a computer or other controller; this permits external analysis of the identification and charging parameter values read from communication module 252 plus external control of access and the charging parameter values.

Operation

FIG. 3 is a state diagram for battery charger 200 which describes its operation and the charging parameters used. Battery charger 200 begins in the upper righthand circle of FIG. 3 which represents the state of no power supply (PF=1). No power implies no charging current (I=0) because power transistor 202 cannot be turned on. Also, the charging timer within controller 210 will not be running (TMRRST=1). Controller 210 has an internal voltage regulator, so a 25 volt power supply may be used as illustrated to provide charging of multicell battery packs.

When power is supplied to charger 200 (PF=0), it first checks the inputs of temperature sensors 206 and 207; controller 210 converts the output of temperature sensors 206 and 207 to digital values, if necessary, using an analog-to-digital converter housed inside controller 210, so that a comparator, which is embedded inside controller 210 can compare the temperature values outputted from temperature sensors 206 and 207. These values are inputted into controller 210 through temperature sensor input terminal 209, first temperature input terminal 209 a and second temperature input terminal 209 b. Temperature along with voltage and current are considered to be measured values, since they are routinely measured by controller 210, and if the battery temperature (TB) is less than the upper temperature limit for trickle charge (T5) and if the ambient temperature TA) is greater than the lower temperature for trickle charge (TO), battery charger 200 moves to an initial trickle charge state of applying a trickle charge current (I3). The circle in the center of FIG. 3 represents this initial trickle charge state (I=I3). The trickle charge current level is maintained by feedback from operational amplifier 214 measuring the charging current and then driving power transistor 202. This initial trickle charge state does not have the charging timer running (TMRRST=1) but does immediately detect the presence or absence of a battery pack 250 by detecting a positive or zero voltage at the voltage sense node 205. If no battery pack 250 is connected (BDET=0) or if a power failure occurs (PF=1), then battery charger 200 reverts back to the no power state. Contrarily, if battery charger 200 detects the presence of a connected battery pack, then battery charger 200 moves to the one-wire communication state represented by the circle in the upper lefthand comer of FIG. 3. That is, the initial trickle charge state is just a transient state battery.

In the one-wire communication state charger 200 maintains the trickle charge current to the connected battery pack 250 (I=I3) and the charging timer remains off (TMRRST=1). Further, battery charger 200 sends a reset signal over the one-wire communication bus 220 to initiate a read (1 WIRE RD) of the identification and charging parameter values in communication module 252 of battery pack 250. Battery charger 200 either reads a recognizable identification to permit charging or not. When an acceptable identification is read but no charging parameter values, communication module 252 reads from its ROM default charging parameter values. Controller 210 loads the charging parameter values into registers to configure its various subcircuits for comparisons of measured charging parameters with the loaded values. If at any time during this one-wire communication power fails or battery pack 250 is disconnected or the ambient temperature falls below the trickle charge minimum or the battery temperature rises above the trickle charge maximum, battery charger 200 reverts to the no power state. Otherwise, after completing the one-wire communication (OWRCMPLT=1), battery charger 200 again checks the ambient and battery temperatures from sensors 206 and 207 and if the battery temperature is less than the upper temperature for rapid charge (T3) and if the ambient temperature is greater than the lower temperature for rapid charge (T2), then battery charger 200 switches to a state of rapid charge represented by the circle in the lefthand center of FIG. 3. However, if the temperatures do not satisfy the inequalities, battery charger 200 stays in the one-wire communication state and provides a trickle charge I3 to battery pack 250 until either a temperature changes, battery pack 250 is disconnected, or power failure occurs. Note that the rapid charge current level and temperature limits may be parameter values read from communication module 252.

In the rapid charge state controller 210 drives the charging current up to I1 and starts the charging timer (I=I1 and TMRRST=0). If there is a power failure or battery pack 250 is disconnected, then battery charger 200 again reverts to the no power state; otherwise, the rapid charge state persists and battery charger 200 supplies a charging current I1 to battery pack 250 until one of the following occurs: (1) the battery voltage parameter (VBAT) measured at voltage sense node 205 exceeds the parameter value (VBATLIM) read from communication module 252, (2) the parameter battery voltage delta (peak battery voltage sensed at voltage sense node 205 so far during the charging minus the battery voltage now sensed) (DELV) exceeds the parameter value (DELVLIM) read from communication module 252 and the charging timer has been running for more than 5 minutes, (3) the charging timer has been running longer than the time for rapid charge parameter value (t0LIM) read from battery module 252, (4) the ambient temperature is below parameter value T2, (5) the battery temperature is above parameter value T3, or (6) the battery temperature delta (equal to TB-TA) (DELT) exceeds the parameter value (DELTLIM) read from communication module 252. When one of these six events occurs, battery charger 200 moves to the standard charge state represented by the circle in the lower lefthand portion of FIG. 3. Note that the rapid charge termination events of significance depend upon battery cell chemistry; for example, nickel-cadmium cells have a voltage drop near maximum charge. This makes a positive battery voltage delta DELV a good indicator of full charge, with the size of a significant DELV varying with the number of cells in series in battery pack 250. Similarly, nickel-cadmium cells charge by an endothermic reaction and thus the battery temperature will not rise until full charge; this makes the battery temperature delta DELT another good indicator of full charge. Again, these parameter values such as DELTLIM, t0LIMIT, T2 may have been read from communication module 252 or could have been acquired over three-wire communication in the case of no communication module 252.

In the standard charge state controller 210 drives the charging current to I2 and restarts the charging timer (I=I2) and TMRRST=0). If there is a power failure or battery pack 250 is disconnected, then battery charger 200 again reverts to the no power state; otherwise, the standard charge state persists and battery charger 200 supplies a charging current I2 to battery pack 250 until one of the following events occurs: (1) the battery voltage (VBAT) sensed at voltage sense node 205 exceeds the maximum battery voltage during charge (VBATLIM), (2) the charging timer has been running longer than the maximum time for standard charge (t1LIM), (3) the ambient temperature is below the lower temperature limit for standard charge (T1), or (4) the battery temperature is above the upper temperature limit for standard charge (T4). When one of these four events occurs, battery charger 200 moves to the trickle charge state represented by the circle in the lower center of FIG. 3.

In the trickle charge state controller 210 drives the charging current back to I3 and stops the charging timer (I=I3 and TMRRST=1). If there is a power failure or battery pack 250 is disconnected or the battery voltage VBAT exceeds the maximum VBATLIM, then battery charger 200 once again reverts to the no power state; otherwise, the trickle charge state persists and battery charger 200 supplies a charging current I3 to battery pack 250 until either (1) the ambient temperature is below TO or (2) the battery temperature is above T5. When one of these two events occurs, battery charger 200 moves to the standby state represented by the circle in the lower righthand portion of FIG. 3.

In the standby state controller 210 turns off power transistor 202 and stops the charging timer (I=I3 and TMRRST=1). If there is a power failure or battery pack 250 is disconnected, then battery charger 200 once again reverts to the no power state; otherwise, the standby state persists with battery charger 200 not supply any charging current I3 to battery pack 250 until either (1) the ambient temperature is rises above TO or (2) the battery temperature falls below T5. When one of these two events occurs, battery charger 200 returns to the trickle charge state from whence it came and repeats itself.

One-Wire Communication

FIG. 4 is a flow chart of the communication by battery charger 200 with communication module 252 in battery pack 250, and FIGS. 5-7 illustrate signaling waveforms during one-wire communication. Controller 210 pulls the data line of communication bus 220 high (+5 volts) and this supplies the power to communication module 252 which includes an energy storage capacitor. The transient initial trickle charge state of battery charger 200 provides time for communication module 252 to store sufficient energy in its storage capacitor to power up its circuitry. Communication module 252 only responds to signals from controller 210, and thus only requires power when communicating. Thus communication module 252 can communicate with controller 210 even when battery pack 250 is fully discharged.

The flow shown of FIG. 4 begins with Battery Detect=1 which is the detection of battery pack 250 connected to voltage sense node 205; this corresponds to the movement from the initial trickle charge state to the communication state in FIG. 3. Controller 210 detects battery pack 250 by noting a positive voltage at voltage sense node 205 which derives from residual charge of battery pack 250 and initial charging by trickle charge being applied in the initial trickle charge state.

Once battery pack 250 has been detected, controller 210 applies a reset signal on the data line of one-wire communication bus 220 by driving the data line low (ground) for about 480 microseconds (μs) and then pulling the data line high (+5 volts) for about 480 μs. In response to the 480 μs low reset signal, communication module 252 signals its presence with a presence detect signal by pulling the data line low during the 480 μs high. The pulldown in communication module 252 overpowers the pullup of controller 210, so the data line goes low and controller 210 senses the low. Communication module 252 generates a nominal 120μs time period for the pulldown presence detect pulse and applies this pulldown beginning a nominal 30 μs after controller 210 has returned the data line high. However, this time period may vary by a factor of 2 amongst communication modules, so controller 210 samples the data line at 65-70 μs after it has returned the data line high. See FIG. 5 which shows the waveforms on the data line. Controller 210 may repeatedly apply reset signals on the data line in order to account for the delay in the connection of one-wire bus 220 to battery pack 250 after the connection to voltage sense node 205.

If the sampling of the data line by controller 210 does not reveal a presence detect signal (Reconfigurable=1 not true in FIG. 4), then controller 210 will use its default charging parameter values by reading them from its memory (Default Parameters Available and Load Configure RAM From EEPROM in FIG. 4). Conversely, if controller 210 senses the data line low (Reconfigurable=1), then it continues with one-wire communication and drives the data line low for 1+μs and then pulls the data line high again to allow the response of communication module 252 to control the data line. Communication module 252 responds to the high-to-low transition by reading the first bit in its memory onto the data line: when the first bit is a 0, then communication module 252 pulls down the data line for a nominal 30μs so in effect the data line remains low and controller 210 detects this by sampling after 15 μs. FIG. 6 shows the read 0 waveforms on the data line. Contrarily, when the first bit is a 1, then communication module 252 lets controller 210 pull up the data line; see FIG. 7. This process of a high-to-low by controller 210 followed by a pulldown or no pulldown response of communication module 252 proceeds through the memory of communication module 252 until all 320 bits (64 identification bits plus 256 charging parameter value bits) have been read. The total read time thus may be less than 50 milliseconds.

Communication module 252 has two memories: a 64-bit ROM for identification and a 256-bit EEPROM for charging parameter values. FIG. 8 illustrates the content of the 64 bits of ROM. In particular, the first eight bits indicate the family of communication modules to which communication module 252 belongs (Family Code=Charger in FIG. 4). If this family is for a battery pack with a manufacturer's identification (Use Manufacturer ID in FIG. 4), then the next sixteen bits read (B8-B23=Manufacturer ID) may be decoded to check identification of the manufacturer of communication module 252 and perhaps prevent charging by battery charger 200. Lastly, after 64 bits have been read from the ROM, controller 210 applies a Cyclic Redundancy Check (CRC) algorithm to the first 56 bits to compare to the last eight bits to verify that the communication was error free (Verify ROM CRC).

After reading the ROM of communication module 252, controller 210 then reads the 256 bits of EEPROM to get charging parameter values for operation (Read Config Data Into Charger Config RAM). The reading of the parameter values is also checked by a CRC byte (Verify RAM CRC). Once the EEPROM has been read, the one-wire communication is complete (One Wire Read Complete in FIG. 4 and OWRDMPLT=1 in FIG. 3). Battery charger 200 then switches into the rapid charge state using the charging parameter values read from communication module 252.

U.S. Pat. No. 5,045,675 contains a discussion of one-wire communication and serial memory reading and is hereby incorporated by reference.

Further Modifications and Variations

The preferred embodiments may be modified in many ways while retaining one of more of the features of a battery charger with charging parameter values selected by communication with a battery pack to be charged and using multiple constant charging currents with multiple endpoint determinants. For example, the memory in the battery pack could be all ROM or all EEPROM, or EPROM, a mixture of two memory types; the communication could be over full duplex or other than one-wire, and the memory may have its own power supply to be operative with a discharged battery pack; sensors for endpoint determinants other than temperature increment and voltage increment may be used; the power transistor could be a switching AC-DC converter or a switching DC-DC converter; the controller may have nonvolatile memory orjust registers for holding charging parameter values; and so forth.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3667026 *Dec 2, 1970May 30, 1972Motorola IncAutomatic temperature responsive battery charging circuit
US3816807 *Jul 18, 1973Jun 11, 1974Gen ElectricImpedance controlled battery charger and method of charging with monitoring of a.c. answer signal
US3872457 *Jul 31, 1972Mar 18, 1975Said Ray By Said KingBattery monitor
US3890556 *Sep 24, 1973Jun 17, 1975Westinghouse Brake & SignalBattery chargers
US3895284 *Jul 2, 1974Jul 15, 1975Vdo SchindlingApparatus for determining the state of charge of storage batteries
US3947743 *Apr 11, 1974Mar 30, 1976Mabuchi Motor Co. Ltd.Electric charger
US4006396 *Mar 5, 1975Feb 1, 1977Motorola, Inc.Universal battery charging apparatus
US4006397 *Nov 1, 1972Feb 1, 1977General Electric CompanyControlled battery charger system
US4091320 *Aug 18, 1976May 23, 1978Chloride Group LimitedAutomatic electric battery charging apparatus
US4153867 *Nov 14, 1977May 8, 1979Akkumulatoren-Fabrik Dr. Leopold JungferDevice for determining the charge condition for a secondary electric storage battery
US4207513 *Feb 10, 1978Jun 10, 1980Power Control CorporationAutomatic battery charger
US4209736 *Jul 27, 1978Jun 24, 1980General Electric CompanyCondition responsive battery charging circuit
US4315364 *Mar 5, 1980Feb 16, 1982General Electric CompanyMethod for fabricating a rechargeable electrical cell pack having over-current protection
US4320333 *Sep 19, 1979Mar 16, 1982Hase A MBattery charger and surveillance system
US4329406 *Mar 27, 1981May 11, 1982Dahl Ernest ASpecific gravity transducer and battery performance indicator
US4370606 *Oct 10, 1980Jan 25, 1983Matsushita Electric Works, Ltd.Charging apparatus
US4385269 *Jan 9, 1981May 24, 1983Redifon Telecommunications LimitedBattery charger
US4387334 *Jun 5, 1981Jun 7, 1983Rockwell International CorporationBattery monitor circuit
US4388582 *Jan 5, 1982Jun 14, 1983Black & Decker Inc.Apparatus and method for charging batteries
US4390841 *Oct 14, 1980Jun 28, 1983Purdue Research FoundationMonitoring apparatus and method for battery power supply
US4392101 *Jan 5, 1982Jul 5, 1983Black & Decker Inc.Method of charging batteries and apparatus therefor
US4433294 *Jun 5, 1981Feb 21, 1984Firing Circuits, Inc.Method and apparatus for testing a battery
US4455523 *Jun 7, 1982Jun 19, 1984Norand CorporationPortable battery powered system
US4525055 *Jul 16, 1984Jun 25, 1985Fuji Photo Film Co., Ltd.Photographic camera having battery remaining life indicating means
US4530034 *Sep 16, 1983Jul 16, 1985Olympus Optical Company Ltd.Battery containment apparatus for electronic flash
US4564798 *Oct 6, 1982Jan 14, 1986Escutcheon AssociatesBattery performance control
US4576880 *Apr 3, 1985Mar 18, 1986Black & Decker Inc.Battery pack
US4583034 *Jul 13, 1984Apr 15, 1986Martin Robert LComputer programmed battery charge control system
US4593409 *Apr 4, 1984Jun 3, 1986Motorola, Inc.Transceiver protection arrangement
US4598243 *Nov 23, 1984Jul 1, 1986Fuji Photo Film Co., Ltd.Direct-current power supply with alarm indicator
US4637965 *Nov 22, 1985Jan 20, 1987H. Milton KeathleyAnticorrosion battery terminal
US4638237 *Jan 3, 1985Jan 20, 1987Pulse Electronics, Inc.Battery condition indicator
US4639655 *Apr 19, 1984Jan 27, 1987Westhaver Lawrence AMethod and apparatus for battery charging
US4658199 *Nov 14, 1984Apr 14, 1987Solid State Charger Research And DevelopmentCurrent regulating circuit
US4659994 *Aug 12, 1985Apr 21, 1987The United States Of America As Represented By The Secretary Of The NavyBattery tester
US4670703 *May 6, 1985Jun 2, 1987General Electric CompanyBattery charger with three different charging rates
US4677363 *Feb 26, 1986Jun 30, 1987Udo KopmannMethod of and apparatus for monitoring the state of charge of a rechargeable battery
US4724528 *May 8, 1984Feb 9, 1988Hewlett-Packard CompanyBattery charge level monitor in a computer system
US4737420 *Aug 8, 1986Apr 12, 1988Nippon Kogaku K. K.Device for accommodating various sizes of dry cells therein
US4737702 *Dec 18, 1986Apr 12, 1988Norand CorporationBattery charging control system particularly for hand held device
US4745349 *Oct 16, 1986May 17, 1988Allied CorporationApparatus and method for charging and testing batteries
US4746852 *Sep 3, 1985May 24, 1988Christie Electric Corp.Controller for battery charger
US4746854 *Oct 29, 1986May 24, 1988Span, Inc.Battery charging system with microprocessor control of voltage and current monitoring and control operations
US4755733 *Feb 3, 1987Jul 5, 1988Irsst Institut De Recherche En Sante Et En Securite Du Travail Du QuebecBattery charging and cycling devices
US4806840 *Dec 15, 1986Feb 21, 1989Alexander Manufacturing CompanyMethod and apparatus for charging a nickel-cadmium battery
US4823086 *Jul 1, 1988Apr 18, 1989Whitmire Warren TBattery monitoring and condition indicator system for multi-battery pack
US4829225 *Oct 23, 1985May 9, 1989Electronic Power Devices, Corp.Rapid battery charger, discharger and conditioner
US4833459 *Jan 27, 1988May 23, 1989Wolfgang GeuerCircuit arrangement for continually monitoring the quality of a multicell battery
US4843299 *Jun 1, 1987Jun 27, 1989Power-Tech Systems CorporationUniversal battery charging system and a method
US4845419 *Oct 6, 1987Jul 4, 1989Norand CorporationAutomatic control means providing a low-power responsive signal, particularly for initiating data preservation operation
US4849682 *Oct 30, 1987Jul 18, 1989Anton/Bauer, Inc.Battery charging system
US4914393 *Aug 26, 1988Apr 3, 1990Nec CorporationAccurately indicating a status of consumption of a battery by which an electronic circuit is controllably put into operation
US4918368 *Feb 29, 1988Apr 17, 1990Span, Inc.System for charging batteries and measuring capacities and efficiencies thereof
US4929931 *Dec 22, 1988May 29, 1990Honeywell Inc.Battery monitor
US4937528 *Oct 14, 1988Jun 26, 1990Allied-Signal Inc.Method for monitoring automotive battery status
US4943498 *Aug 23, 1989Jul 24, 1990Hugh Steeper LimitedBattery and battery receptacle arrangement
US4945217 *May 15, 1989Jul 31, 1990Dallas Semiconductor CorporationHand-held wand for reading electronic tokens
US4982371 *May 15, 1989Jan 1, 1991Dallas Semiconductor CorporationCompact electronic module having a RAM device
US4983820 *Aug 14, 1990Jan 8, 1991Dallas Semiconductor CorporationInterface for receiving electronic tokens
US4995004 *May 15, 1989Feb 19, 1991Dallas Semiconductor CorporationRAM/ROM hybrid memory architecture
US4997731 *Feb 22, 1989Mar 5, 1991Sanyo Electric Co., Ltd.Packed battery and method of making the same
US4998057 *Jan 17, 1989Mar 5, 1991Hitachi Koki Co., Ltd.Method and apparatus for charging a battery
US5012176 *Apr 3, 1990Apr 30, 1991Baxter International, Inc.Apparatus and method for calorimetrically determining battery charge state
US5032825 *Mar 2, 1990Jul 16, 1991Motorola, Inc.Battery capacity indicator
US5111128 *Dec 17, 1990May 5, 1992Motorola, Inc.Battery identification apparatus
US5115182 *Apr 23, 1990May 19, 1992Motorola, Inc.Battery charging controller for a battery powered device and method for using the same
US5130659 *Dec 3, 1990Jul 14, 1992Sloan Jeffrey MBattery Monitor
US5183714 *Sep 19, 1991Feb 2, 1993Sony CorporationBattery casing
US5206097 *Jun 5, 1991Apr 27, 1993Motorola, Inc.Battery package having a communication window
US5208116 *Dec 31, 1991May 4, 1993Samsung Electronics Co., Ltd.Battery locking apparatus for portable personal computer
US5227262 *Jul 8, 1992Jul 13, 1993Yaacov OzerUniversal camcorder battery pack
US5229704 *May 5, 1988Jul 20, 1993Knepper Hans ReinhardCurrent supply arrangement
US5284719 *Jul 8, 1992Feb 8, 1994Benchmarq Microelectronics, Inc.Method and apparatus for monitoring battery capacity
US5298346 *Jul 27, 1992Mar 29, 1994Motorola, Inc.Battery identification system
US5315228 *Jan 24, 1992May 24, 1994Compaq Computer Corp.Battery charge monitor and fuel gauge
US5321627 *Mar 11, 1992Jun 14, 1994Globe-Union, Inc.Battery monitor and method for providing operating parameters
US5325041 *Jan 21, 1993Jun 28, 1994Briggs James BAutomatic rechargeable battery monitoring system
US5331268 *Aug 2, 1993Jul 19, 1994Motorola, Inc.Method and apparatus for dynamically charging a battery
US5332957 *Aug 31, 1992Jul 26, 1994Motorola, Inc.Battery module and charger
US5381096 *Oct 5, 1993Jan 10, 1995Hirzel; Edgar A.Method and apparatus for measuring the state-of-charge of a battery system
US5399446 *Jul 25, 1994Mar 21, 1995Sony CorporationBattery cartridge having a terminal for transferring information therefrom
US5411816 *Feb 10, 1994May 2, 1995Motorola, Inc.Method and apparatus for determining battery characteristics
US5420493 *Jun 30, 1992May 30, 1995Apple Computer, Inc.Power supply and battery charger
US5432429 *Oct 23, 1990Jul 11, 1995Benchmarq Microelectronics, Inc.System for charging/monitoring batteries for a microprocessor based system
US5434495 *Oct 26, 1989Jul 18, 1995Mitsubishi Denki Kabushiki KaishaCognition device for battery residual capacity
US5481730 *Jan 24, 1992Jan 2, 1996Compaq Computer Corp.Monitoring and control of power supply functions using a microcontroller
US5485073 *Mar 1, 1993Jan 16, 1996Kabushiki Kaisha ToshibaPersonal computer for performing charge and switching control of different types of battery packs
US5488284 *Sep 30, 1992Jan 30, 1996Dallas Semiconductor CorporationBattery charger systems and methods
US5495503 *May 1, 1995Feb 27, 1996Hobart Brothers CompanyStorage battery memory and communication device
US5510690 *Aug 31, 1993Apr 23, 1996Kabushiki Kaisha ToshibaBattery pack, battery discrimination control apparatus and method therefor
US5534765 *Jun 28, 1995Jul 9, 1996Motorola, Inc.Battery with memory for storing charge procedure
US5541489 *Dec 15, 1994Jul 30, 1996Intel CorporationSmart battery power availability feature based on battery-specific characteristics
US5600230 *Dec 15, 1994Feb 4, 1997Intel CorporationSmart battery providing programmable remaining capacity and run-time alarms based on battery-specific characteristics
US5600247 *Aug 17, 1994Feb 4, 1997Benchmarq MicroelectronicsDynamically balanced fully differential circuit for use with a battery monitoring circuit
US5627449 *Aug 17, 1994May 6, 1997Yaesu Musen Co., Ltd.Electronic device, battery pack and charger for the battery pack
US5767659 *Feb 18, 1997Jun 16, 1998Texas Instruments IncorporatedBatteries and battery systems
US5864222 *Nov 17, 1997Jan 26, 1999Canon Kabushiki KaishaCharging apparatus
US5867006 *Jul 28, 1997Feb 2, 1999Dallas Semiconductor CorporationBattery charger
US6057383 *Jun 18, 1997May 2, 2000Ivoclar AgDental material based on polymerizable waxes
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7594127Apr 4, 2005Sep 22, 2009Marvell World Trade Ltd.Low voltage logic operation using higher voltage supply levels
US7639927Mar 10, 2005Dec 29, 2009Marvell World Trade Ltd.Unified control and memory for a combined DVD/HDD system
US7788509 *Jul 12, 2005Aug 31, 2010Marvell World Trade Ltd.Low voltage logic operation using higher voltage supply levels
US7788510Jul 12, 2005Aug 31, 2010Marvell World Trade Ltd.Low voltage logic operation using higher voltage supply levels
US8183822 *May 1, 2009May 22, 2012Fujifilm CorporationDigital cassette charging apparatus, digital cassette charging system, and digital cassette charging method
US8188706 *Dec 10, 2007May 29, 2012Broadcom CorporationPower management unit with battery detection controller and switchable regulator block
US8928272 *Nov 8, 2010Jan 6, 2015Hyundai Motor CompanyMethod for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
US20110133694 *Jun 9, 2011Hyundai Motor CompanyMethod for controlling charging voltage of 12v auxiliary battery for hybrid vehicle
Classifications
U.S. Classification320/106
International ClassificationG06F19/00, G06F15/00, H01M10/44, G01K1/00, G01K5/24, G01R31/36, H01M10/46, H01M10/48, H01M10/42, H02J7/00
Cooperative ClassificationH01M10/425, H02J7/0004, H01M10/4257, G01K7/13, H01M10/48
European ClassificationG01K7/13, H02J7/00B1, H01M10/42S2, H01M10/42S, H01M10/48