US20050158362A1 - Polymeric, fiber matrix delivery systems for bioactive compounds - Google Patents

Polymeric, fiber matrix delivery systems for bioactive compounds Download PDF

Info

Publication number
US20050158362A1
US20050158362A1 US10/312,189 US31218905A US2005158362A1 US 20050158362 A1 US20050158362 A1 US 20050158362A1 US 31218905 A US31218905 A US 31218905A US 2005158362 A1 US2005158362 A1 US 2005158362A1
Authority
US
United States
Prior art keywords
bioactive compound
polymeric
bioactive
fibers
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/312,189
Inventor
Margaret Wheatley
Frank Ko
Dalia El-Sherif
Nikhil Dhoot
Saravanan Kanakasabai
Meriem Benjelloun
Baohua Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drexel University
Original Assignee
Wheatley Margaret A.
Ko Frank K.
Dalia El-Sherif
Nikhil Dhoot
Saravanan Kanakasabai
Meriem Benjelloun
Baohua Han
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wheatley Margaret A., Ko Frank K., Dalia El-Sherif, Nikhil Dhoot, Saravanan Kanakasabai, Meriem Benjelloun, Baohua Han filed Critical Wheatley Margaret A.
Priority to US10/312,189 priority Critical patent/US20050158362A1/en
Publication of US20050158362A1 publication Critical patent/US20050158362A1/en
Assigned to DREXEL UNIVERSITY reassignment DREXEL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DHOOT, NIKHIL, HAN, BAOHUA, KANAKASABAI, SARAVANAN, KO, FRANK K., WHEATLEY, MARGARET A.
Assigned to DREXEL UNIVERSITY reassignment DREXEL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENJELLOUN, MERIEM, EL-SHERIF, DALIA
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2525Coating or impregnation functions biologically [e.g., insect repellent, antiseptic, insecticide, bactericide, etc.]

Definitions

  • the present invention relates to delivery systems comprising polymeric fiber matrices, film coatings or braided/woven structures for the controlled release of bioactive compounds.
  • the delivery systems of the present invention may be comprised of either biodegradable or nondegrading polymeric fibers. In one embodiment, these fibers have submicron and/or micron diameters.
  • Bioactive compounds are included in the delivery system either by suspending the compound particles or dissolving the compound in the polymer solution used to produce the fibers.
  • U.S. Pat. No. 3,991,766 describes a medicament repository consisting of a surgical element in the form of tubes, sheets, sponges, gauzes or prosthetic devices of polyglycolic acid having incorporated therein an effective amount of a medicament.
  • U.S. Pat. No. 4,655,777 describes a method for producing a biodegradable prothesis or implant by encasing an effective amount of fibers of calcium phosphate or calcium aluminate in a matrix of polymer selected from the group consisting of polyglycolide, poly(DL-lactide), poly(L-lactide), polycaprolactone, polydioxanone, polyesteramides, copolyoxalates, polycarbonates, poly(glutamic-co-leucine) and blends, copolymers and terpolymers thereof to form a composite.
  • polymer selected from the group consisting of polyglycolide, poly(DL-lactide), poly(L-lactide), polycaprolactone, polydioxanone, polyesteramides, copolyoxalates, polycarbonates, poly(glutamic-co-leucine) and blends, copolymers and terpolymers thereof to form a composite.
  • U.S. Pat. No. 4,818,542 discloses a method for preparing a spherical microporous polymeric network with interconnecting channels having a drug distributed within the channels.
  • U.S. Pat. No. 5,128,170 discloses a medical device and methods for manufacturing medical devices with a highly biocompatible surface wherein hydrophillic polymer is bonded onto the surface of the medical device covalently through a nitrogen atom.
  • U.S. Pat. No. 5,545,409 discloses a composition and method for controlled release of water-soluble proteins comprising a surface-eroding polymer matrix and water-soluble bioactive growth factors.
  • U.S. Pat. No. 5,769,830 discloses synthetic, biocompatible, biodegradable polymer fiber scaffolds for cell growth. Fibers are spaced apart by a distance of about 100 to 300 microns for diffusion and may comprise polyanhydrides, polyorthoesters, polyglycolic acid or polymethacrylate.
  • the scaffolds may be coated withe materials such as agar, agarons, gelatin, gum arabic, basement membrane material, collagen type I, II, III, IV or V, fibronectin, laminin, glycosaminoglycans, and mixtures thereof.
  • U.S. Pat. No. 5,898,040 discloses a polymeric article for use in drug delivery systems which comprises a polymeric substrate with a highly uniform microporous polymeric surface layer on at least part of the substrate.
  • WO 93/07861 discloses polymer microspheres of 50 to 100 microns comprising a compound contained in a fixed oil within the polymer microsphere.
  • U.S. Pat. No. 5,969,020 discloses a foam precursor comprising a crystalline thermoplastic polymer and solid crystalline additive for use in preparation of drug delivery systems.
  • WO 99/18893 describes a method for preparing nanofibrils from both nondegrading and biodegradable polymers for use as tissue engineering scaffolds.
  • the present invention relates to delivery systems for the controlled release of bioactive compounds which comprise polymeric fibers and the bioactive compound.
  • An object of the present invention is to provide a system for delivery of bioactive compounds comprising a bioactive compound incorporated within or between a polymeric fiber matrix or linear assembly, film coating or braided/woven structure.
  • Another object of the present invention is to provide a method for delivering a bioactive compound to a patient for controlled release of the bioactive compound in the patient.
  • the bioactive compound is incorporated into a polymeric fiber matrix or linear assembly or a braided or woven structure and implanted into the patient.
  • the bioactive compound is incorporated into a polymeric fiber film used to coat implants, tissue engineering scaffolds and other devices such as pumps and pacemakers which are then implanted into the patient.
  • the bioactive compound is incorporated into a polymeric fiber film used to wrap organs, tissues or vessels in a patient.
  • Another object of the present invention is to provide methods for modulating the rate of release of a bioactive compound from a delivery system for bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers. These methods include modulating loading of the bioactive compound incorporated with or between polymeric fiber, selecting polymers to produce the polymeric fibers which degrade at varying rates, varying polymeric concentration of the polymeric fibers and varying polymeric fiber diameter.
  • Electrospinning is a simple and low cost electrostatic self-assembly method capable of fabricating a large variety of long, meter-length, organic polymer fibers with micron or submicron diameters, in linear, 2-D and 3-D architecture. Electrospinning techniques have been available since the 1930's (U.S. Pat. No. 1,975,504). In the electrospinning process, a high voltage electric field is generated between oppositely charged polymer fluid contained in a glass syringe with a capillary tip and a metallic collection screen. As the voltage is increased, the charged polymer solution is attracted to the screen.
  • the charge overcomes the surface tension of the suspended polymer cone formed on the capillary tip of the syringe and a jet of ultrafine fibers is produced.
  • the solvent quickly evaporates and the fibers are accumulated randomly on the surface of the collection screen. This results in a nonwoven mesh of nano and micron scale fibers.
  • Varying the charge density (applied voltage), polymer solution concentration, solvent used, and the duration of electrospinning can control the fiber diameter and mesh thickness.
  • Other electrospinning parameters which may be varied routinely to effect the fiber matrix properties include distance between the needle and collection plate, the angle of syringe with respect to the collection plate, and the applied voltage.
  • electrospinning is used to produce polymeric fiber matrices with the capability of releasing bioactive compounds in a controlled manner over a selected period of time.
  • the delivery system of the present invention is used to maintain delivery of a steady concentration of bioactive compound.
  • the delivery system is used in pulsed delivery of the bioactive compound wherein the compound is released in multiple phases in accordance with either rapid or slow degradation of the polymer fibers or diffusion of the bioactive compound from the polymer fibers.
  • the delivery system is used to obtain a delayed release of a bioactive compound.
  • the bioactive compound-containing fiber polymer matrix can be coated with a layer of nonwoven polymer fiber matrix with no bioactive compound. In this embodiment, different polymers with different degradation times can be used to obtain the desired time delays.
  • the delivery systems of the present invention can be used to deliver a single bioactive compound, more than one Ibioactive compound at the same time, or more than one bioactive compound in sequence.
  • a bioactive compound and “the bioactive compound”, are meant to be inclusive of one or more bioactive compounds.
  • fiber it is meant to include fibrils ranging in diameter from submicron, i.e. approximately 1 to 100 nanometers (10 ⁇ 9 to 10 ⁇ 7 meters) to micron, i.e. approximately 1-1000 micrometers.
  • the bioactive compound is incorporated within the polymeric fibers either by suspension of compound particles or dissolution of the compound in the solvent used to dissolve the polymer prior to electrospinning of the polymeric fibers.
  • incorporated within it is meant to include embodiments wherein the bioactive compound is inside the fiber as well as embodiments wherein the bioactive compound is dispersed between the fibers.
  • the polymeric fibers comprising the bioactive compound can be arranged as matrices, linear assemblies, or braided or woven structures.
  • the fibers which release a bioactive compound can serve as film coatings for devices such as implants, tissue engineering scaffolds, pumps, pacemakers and other composites.
  • These fiber assemblies can be spun from any polymer which can be dissolved in a solvent.
  • the solvent can be either organic or aqueous depending upon the selected polymer.
  • polymers which can be used in production of the polymeric fibers of the present invention include, but are not limited to, nondegradable polymers such as polyethylenes, polyurethanes, and EVA, and biodegradable polymers such as poly(lactic acid-glycolic acid), poly(lactic acid), poly(glycolic acid), poly(glaxanone), poly(orthoesters), poly(pyrolic acid) and poly(phosphazenes).
  • bioactive compound is to reside within or inside the polymer fiber, selection of the polymer should be based upon the solubility of the bioactive compound within the polymer solution.
  • Water soluble polymers such as polyethylene oxide can be used if the bioactive compound also dissolves in water.
  • hydrophobic bioactive compounds which are soluble in organic solvent such as steroids can be dissolved in an organic solvent together with a hydrophobic polymer such as polylactic glycolic acid (PLAGA).
  • bioactive compound is to reside between the polymer fibers, dissolution of the bioactive compound in the polymer solution is not required. Instead, the bioactive compound can be suspended in the polymer solution prior to electrospinning of the fibers.
  • the bioactive compound-containing fibers can be splayed directly onto devices such as implants, tissue engineering scaffolds, pumps and pacemakers as a film coating.
  • devices such as implants, tissue engineering scaffolds, pumps and pacemakers as a film coating.
  • preferred bioactive compounds include tissue growth factors and angiogenesis factors.
  • the bioactive compound may comprise an anti-clotting factor. The coated device is then implanted into a patient wherein the bioactive compound or compounds are released upon degradation of or by diffusion from, or combinations thereof, the polymeric fiber film.
  • a matrix or linear assembly of the bioactive compound-containing fibers is prepared.
  • the matrix or linear assembly of bioactive compound-containing fibers can be sandwiched between layers of polymer which contain no bioactive compound to decrease any burst effect and/or to obtain a delayed release.
  • the matrix may comprise layers of fibers containing different bioactive compounds.
  • the matrix or linear assembly is then implanted into a patient for controlled release of the bioactive compound as the polymeric fibers degrade or as the bioactive compound diffuses from the polymeric fibers.
  • the time delay can be controlled by varying the choice of polymer used in the fibers, the concentration of polymer used in the fiber, the diameter of the polymeric fibers, and/or the amount of bioactive compound loaded in the fiber.
  • the delivery systems of the present invention may be placed on the wound of a patient to enhance healing via release of the bioactive compound. Delivery systems may also be placed on the surface or wrapped around an organ, tissue or vessel for delivery of the bioactive compound to the organ tissue or vessel.
  • a braided, knitted or woven structure of bioactive compound-containing fibers is prepared. These structures are prepared using an extension of the traditional 2-dimensional braiding technology in which fabric is constructed by the intertwining or orthogonal interlacing of yarns to form an integral structure through position displacement.
  • a wide range of 3-dimensional structures comprising the bioactive compound-containing fibers can be fabricated in a circular or rectangular loom.
  • the structure may comprise only bioactive compound-containing fibers, bioactive compound-containing fibers sandwiched between polymeric fibers which contain no bioactive compound, or a mixtures of fibers containing different bioactive compounds.
  • this structure can be implanted into a patient for controlled release of the bioactive compound or compounds as the polymeric fibers degrade or as the bioactive compound diffuses from the polymeric fibers.
  • delivery rate of the bioactive compound can be controlled by varying the choice of polymer used in the fibers, the concentration of polymer used in the fiber, the diameter of the polymeric fibers, and/or the amount of bioactive compound loaded in the fiber.
  • the present invention also relates to methods for modulating the rate of release of a bioactive compound from a delivery system for bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers.
  • modulate or “modulating”, it is meant that the rate or release of the bioactive compound incorporated within of between the polymeric fibers of the delivery system is increased or decreased.
  • Methods for modulating the rate of release include increasing or decreasing loading of the bioactive compound incorporated within or between the polymeric fibers, selecting polymers to produce the polymeric fibers which degrade at varying rates, varying polymeric concentration of the polymeric fibers and/or varying diameter of the polymeric fibers varying one or more of these parameters can be performed routinely by those of skill in the art based upon teachings provided herein.
  • FITC-BSA fluorescently labeled bovine serum albumin
  • the charge overcomes the surface tension of the deformed polymer drop at the needle tip, producing an ultrafine jet.
  • the similarly charged fibers are splayed and during their passage to the screen, the solvent quickly evaporates so that dry fibers accumulate randomly on the screen forming a mesh matrix.
  • a 25% (w/v) solution of polylactic glycolic acid was prepared in a 50:50 mixture of dimethylformamide and tetrahydrofuran.
  • a mixture of FITC-BSA and BSA in the ratio of 1:5 was added to the solution in order to obtain 2% protein loading.
  • a syringe containing 5 ml of the polymer plus bioactive compound mixture was placed at an angle of 45°.
  • the syringe was fitted with a 16G needle with the tip of the needle at a distance of 24 cm from the metallic collection screen.
  • a piece of nonwoven mat was placed on the metallic screen.
  • a voltage of 20 kV was applied between the collection screen and the needle tip which resulted in fibers being sprayed into a nonwoven matrix on the metallic screen. The spraying was complete in about 4 hours.
  • phosphate buffered saline was measured. Pre-weighed pieces from different regions of the mat were placed into scintillation vials and 10 ml of phosphate buffered saline were added and the capped vials were placed on a rotary shaker at 37° C. The buffer was exchanged at different points in time in order to mimic infinite sink conditions. The amount of protein released was measured in the form of fluorescence of the FITC-BSA on a spectrophotofluorometer at an excitation wavelength of 495 nm and an emission wavelength of 513 nm.

Abstract

Multifunctional systems for delivery of bioactive compounds incorporated within or between polymeric fibers in a matrix are provided. Also provided are methods of delivering bioactive compounds via implementation, coating and/or wrapping of these systems and methods for modulating the rate of release of bioactive compounds from these delivery systems.

Description

    FIELD OF THE INVENTION
  • The present invention relates to delivery systems comprising polymeric fiber matrices, film coatings or braided/woven structures for the controlled release of bioactive compounds. The delivery systems of the present invention may be comprised of either biodegradable or nondegrading polymeric fibers. In one embodiment, these fibers have submicron and/or micron diameters. Bioactive compounds are included in the delivery system either by suspending the compound particles or dissolving the compound in the polymer solution used to produce the fibers.
  • BACKGROUND OF THE INVENTION
  • A number of polymer matrices for use in the controlled release and/or delivery of bioactive compounds, and for particular drugs, have been described.
  • U.S. Pat. No. 3,991,766 describes a medicament repository consisting of a surgical element in the form of tubes, sheets, sponges, gauzes or prosthetic devices of polyglycolic acid having incorporated therein an effective amount of a medicament.
  • U.S. Pat. No. 4,655,777 describes a method for producing a biodegradable prothesis or implant by encasing an effective amount of fibers of calcium phosphate or calcium aluminate in a matrix of polymer selected from the group consisting of polyglycolide, poly(DL-lactide), poly(L-lactide), polycaprolactone, polydioxanone, polyesteramides, copolyoxalates, polycarbonates, poly(glutamic-co-leucine) and blends, copolymers and terpolymers thereof to form a composite.
  • U.S. Pat. No. 4,818,542 discloses a method for preparing a spherical microporous polymeric network with interconnecting channels having a drug distributed within the channels.
  • U.S. Pat. No. 5,128,170 discloses a medical device and methods for manufacturing medical devices with a highly biocompatible surface wherein hydrophillic polymer is bonded onto the surface of the medical device covalently through a nitrogen atom.
  • U.S. Pat. No. 5,545,409 discloses a composition and method for controlled release of water-soluble proteins comprising a surface-eroding polymer matrix and water-soluble bioactive growth factors.
  • U.S. Pat. No. 5,769,830 discloses synthetic, biocompatible, biodegradable polymer fiber scaffolds for cell growth. Fibers are spaced apart by a distance of about 100 to 300 microns for diffusion and may comprise polyanhydrides, polyorthoesters, polyglycolic acid or polymethacrylate. The scaffolds may be coated withe materials such as agar, agarons, gelatin, gum arabic, basement membrane material, collagen type I, II, III, IV or V, fibronectin, laminin, glycosaminoglycans, and mixtures thereof.
  • U.S. Pat. No. 5,898,040 discloses a polymeric article for use in drug delivery systems which comprises a polymeric substrate with a highly uniform microporous polymeric surface layer on at least part of the substrate.
  • Encapsulation of a bioactive compound within a polymer matrix has also been described. For example, WO 93/07861 discloses polymer microspheres of 50 to 100 microns comprising a compound contained in a fixed oil within the polymer microsphere. U.S. Pat. No. 5,969,020 discloses a foam precursor comprising a crystalline thermoplastic polymer and solid crystalline additive for use in preparation of drug delivery systems.
  • Recently, it has been shown that polymer fibers of nanometer diameter can be electrospun from sulfuric acid into a coagulation bath (Reneker, D. H. and Chun, I. Nanotechnology 1996 7:216). In these studies more than 20 polymers including polyethylene oxide, nylon, polyimide, DNA, polyaramide and polyaniline were electrospun into electrically charged fibers which were then collected in sheets or other useful geometrical forms. Electrospinning techniques have also been applied to the production of high performance filters (Doshi, J. and Reneker, D. H. Journal of Electrostatics 1995 35:151; Gibson et al. AIChE Journal 1999 45:190) and for scaffolds in tissue engineering (Doshi, J. and Reneker, D. H. Journal of Electrostatics 1995 35:151; Ko et al. “The Dynamics of Cell-Fiber Architecture Interaction,” Proceedings, Annual Meeting, Biomaterials Research Society, San Diego, Calif., April 1998; and WO 99/18893). WO 99/18893 describes a method for preparing nanofibrils from both nondegrading and biodegradable polymers for use as tissue engineering scaffolds.
  • The present invention relates to delivery systems for the controlled release of bioactive compounds which comprise polymeric fibers and the bioactive compound.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a system for delivery of bioactive compounds comprising a bioactive compound incorporated within or between a polymeric fiber matrix or linear assembly, film coating or braided/woven structure.
  • Another object of the present invention is to provide a method for delivering a bioactive compound to a patient for controlled release of the bioactive compound in the patient. In one embodiment of this method of the present invention, the bioactive compound is incorporated into a polymeric fiber matrix or linear assembly or a braided or woven structure and implanted into the patient. In another embodiment, the bioactive compound is incorporated into a polymeric fiber film used to coat implants, tissue engineering scaffolds and other devices such as pumps and pacemakers which are then implanted into the patient. In yet another embodiment, the bioactive compound is incorporated into a polymeric fiber film used to wrap organs, tissues or vessels in a patient.
  • Another object of the present invention is to provide methods for modulating the rate of release of a bioactive compound from a delivery system for bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers. These methods include modulating loading of the bioactive compound incorporated with or between polymeric fiber, selecting polymers to produce the polymeric fibers which degrade at varying rates, varying polymeric concentration of the polymeric fibers and varying polymeric fiber diameter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Electrospinning is a simple and low cost electrostatic self-assembly method capable of fabricating a large variety of long, meter-length, organic polymer fibers with micron or submicron diameters, in linear, 2-D and 3-D architecture. Electrospinning techniques have been available since the 1930's (U.S. Pat. No. 1,975,504). In the electrospinning process, a high voltage electric field is generated between oppositely charged polymer fluid contained in a glass syringe with a capillary tip and a metallic collection screen. As the voltage is increased, the charged polymer solution is attracted to the screen. Once the voltage reaches a critical value, the charge overcomes the surface tension of the suspended polymer cone formed on the capillary tip of the syringe and a jet of ultrafine fibers is produced. As the charged fibers are splayed, the solvent quickly evaporates and the fibers are accumulated randomly on the surface of the collection screen. This results in a nonwoven mesh of nano and micron scale fibers. Varying the charge density (applied voltage), polymer solution concentration, solvent used, and the duration of electrospinning can control the fiber diameter and mesh thickness. Other electrospinning parameters which may be varied routinely to effect the fiber matrix properties include distance between the needle and collection plate, the angle of syringe with respect to the collection plate, and the applied voltage.
  • In the present invention, electrospinning is used to produce polymeric fiber matrices with the capability of releasing bioactive compounds in a controlled manner over a selected period of time. In one embodiment, the delivery system of the present invention is used to maintain delivery of a steady concentration of bioactive compound. In another embodiment, the delivery system is used in pulsed delivery of the bioactive compound wherein the compound is released in multiple phases in accordance with either rapid or slow degradation of the polymer fibers or diffusion of the bioactive compound from the polymer fibers. In yet another embodiment, the delivery system is used to obtain a delayed release of a bioactive compound. For example, the bioactive compound-containing fiber polymer matrix can be coated with a layer of nonwoven polymer fiber matrix with no bioactive compound. In this embodiment, different polymers with different degradation times can be used to obtain the desired time delays.
  • The delivery systems of the present invention can be used to deliver a single bioactive compound, more than one Ibioactive compound at the same time, or more than one bioactive compound in sequence. Thus, as used herein, the phrases “a bioactive compound” and “the bioactive compound”, are meant to be inclusive of one or more bioactive compounds.
  • For purposes of the present invention by “fiber” it is meant to include fibrils ranging in diameter from submicron, i.e. approximately 1 to 100 nanometers (10−9 to 10−7 meters) to micron, i.e. approximately 1-1000 micrometers. The bioactive compound is incorporated within the polymeric fibers either by suspension of compound particles or dissolution of the compound in the solvent used to dissolve the polymer prior to electrospinning of the polymeric fibers. For purposes of the present invention, by “incorporated within” it is meant to include embodiments wherein the bioactive compound is inside the fiber as well as embodiments wherein the bioactive compound is dispersed between the fibers. The polymeric fibers comprising the bioactive compound can be arranged as matrices, linear assemblies, or braided or woven structures. In addition, the fibers which release a bioactive compound can serve as film coatings for devices such as implants, tissue engineering scaffolds, pumps, pacemakers and other composites.
  • These fiber assemblies can be spun from any polymer which can be dissolved in a solvent. The solvent can be either organic or aqueous depending upon the selected polymer. Examples of polymers which can be used in production of the polymeric fibers of the present invention include, but are not limited to, nondegradable polymers such as polyethylenes, polyurethanes, and EVA, and biodegradable polymers such as poly(lactic acid-glycolic acid), poly(lactic acid), poly(glycolic acid), poly(glaxanone), poly(orthoesters), poly(pyrolic acid) and poly(phosphazenes).
  • Examples of bioactive compounds which can be incorporated into the polymeric fibers include any drug for which controlled release in a patient is desired. Some examples include, but are not limited to, steroids, antifungal agents, and anticancer agents. Other bioactive compounds of particular use in the present invention include tissue growth factors, angiogenesis factors, and anti-clotting factors.
  • If the bioactive compound is to reside within or inside the polymer fiber, selection of the polymer should be based upon the solubility of the bioactive compound within the polymer solution. Water soluble polymers such as polyethylene oxide can be used if the bioactive compound also dissolves in water. Alternatively, hydrophobic bioactive compounds which are soluble in organic solvent such as steroids can be dissolved in an organic solvent together with a hydrophobic polymer such as polylactic glycolic acid (PLAGA).
  • If the bioactive compound is to reside between the polymer fibers, dissolution of the bioactive compound in the polymer solution is not required. Instead, the bioactive compound can be suspended in the polymer solution prior to electrospinning of the fibers.
  • In one embodiment of the present invention, the bioactive compound-containing fibers can be splayed directly onto devices such as implants, tissue engineering scaffolds, pumps and pacemakers as a film coating. For implants and tissue engineering scaffolds, examples of preferred bioactive compounds include tissue growth factors and angiogenesis factors. For pumps or pacemakers, the bioactive compound may comprise an anti-clotting factor. The coated device is then implanted into a patient wherein the bioactive compound or compounds are released upon degradation of or by diffusion from, or combinations thereof, the polymeric fiber film.
  • In another embodiment, a matrix or linear assembly of the bioactive compound-containing fibers is prepared. In this embodiment, the matrix or linear assembly of bioactive compound-containing fibers can be sandwiched between layers of polymer which contain no bioactive compound to decrease any burst effect and/or to obtain a delayed release. Alternatively, the matrix may comprise layers of fibers containing different bioactive compounds. The matrix or linear assembly is then implanted into a patient for controlled release of the bioactive compound as the polymeric fibers degrade or as the bioactive compound diffuses from the polymeric fibers. The time delay can be controlled by varying the choice of polymer used in the fibers, the concentration of polymer used in the fiber, the diameter of the polymeric fibers, and/or the amount of bioactive compound loaded in the fiber.
  • For purposes of the present invention, by “implanting” or “implanted” as used herein, it is meant to be inclusive of placement of the delivery systems of the present invention into a patient to achieve systemic delivery of the bioactive compound, as well as placement of the delivery system into a patient to achieve local delivery. For example, the delivery systems of the present invention may be placed on the wound of a patient to enhance healing via release of the bioactive compound. Delivery systems may also be placed on the surface or wrapped around an organ, tissue or vessel for delivery of the bioactive compound to the organ tissue or vessel.
  • In another embodiment of the present invention, a braided, knitted or woven structure of bioactive compound-containing fibers is prepared. These structures are prepared using an extension of the traditional 2-dimensional braiding technology in which fabric is constructed by the intertwining or orthogonal interlacing of yarns to form an integral structure through position displacement. A wide range of 3-dimensional structures comprising the bioactive compound-containing fibers can be fabricated in a circular or rectangular loom. In this embodiment, the structure may comprise only bioactive compound-containing fibers, bioactive compound-containing fibers sandwiched between polymeric fibers which contain no bioactive compound, or a mixtures of fibers containing different bioactive compounds. Like the matrix or linear assembly, this structure can be implanted into a patient for controlled release of the bioactive compound or compounds as the polymeric fibers degrade or as the bioactive compound diffuses from the polymeric fibers. Again, delivery rate of the bioactive compound can be controlled by varying the choice of polymer used in the fibers, the concentration of polymer used in the fiber, the diameter of the polymeric fibers, and/or the amount of bioactive compound loaded in the fiber.
  • Accordingly, the present invention also relates to methods for modulating the rate of release of a bioactive compound from a delivery system for bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers. By “modulate” or “modulating”, it is meant that the rate or release of the bioactive compound incorporated within of between the polymeric fibers of the delivery system is increased or decreased. Methods for modulating the rate of release include increasing or decreasing loading of the bioactive compound incorporated within or between the polymeric fibers, selecting polymers to produce the polymeric fibers which degrade at varying rates, varying polymeric concentration of the polymeric fibers and/or varying diameter of the polymeric fibers varying one or more of these parameters can be performed routinely by those of skill in the art based upon teachings provided herein.
  • The ability of systems of the present invention to release a bioactive compound in a controlled manner was demonstrated using polymeric fiber matrices containing fluorescently labeled bovine serum albumin (FITC-BSA) dispersed between the fibers of the matrix. To construct the bioactive compound-loaded matrices, various concentrations of finely ground FITC-BSA were suspended in biodegradable polymer polylactic glycolic acid in 50:50 dimethyl formamide:tetrahydrofuran. Suspensions contained in a glass syringe with a capillary tip were electrospun into approximately 500 nm diameter fibers via an electrostatic based self-assembly process in which a high voltage electric field was generated between the oppositely charged polymer and a metallic collection screen. At a critical voltage the charge overcomes the surface tension of the deformed polymer drop at the needle tip, producing an ultrafine jet. The similarly charged fibers are splayed and during their passage to the screen, the solvent quickly evaporates so that dry fibers accumulate randomly on the screen forming a mesh matrix.
  • The material properties of this mesh matrix of bioactive compound-containing fibers were examined via standard electron microscopy and tensile testing. It was found that tensile strength and the release profiles were a function of protein loading.
  • In vitro release of the FITC-BSA into an infinite sink of 37° C. phosphate buffered saline was also measured. This sink mimics in vivo conditions. While release in the first 24 hours after initiation was dominant, release to over 120 hours was observed with an increase in release at the point where the fibers started to breakdown.
  • The following nonlimiting examples are provided to further illustrate the present invention.
  • EXAMPLES Example 1 Preparation of Fiber Matrix Containing BSA-FITC
  • A 25% (w/v) solution of polylactic glycolic acid was prepared in a 50:50 mixture of dimethylformamide and tetrahydrofuran. A mixture of FITC-BSA and BSA in the ratio of 1:5 was added to the solution in order to obtain 2% protein loading. A syringe containing 5 ml of the polymer plus bioactive compound mixture was placed at an angle of 45°. The syringe was fitted with a 16G needle with the tip of the needle at a distance of 24 cm from the metallic collection screen. A piece of nonwoven mat was placed on the metallic screen. A voltage of 20 kV was applied between the collection screen and the needle tip which resulted in fibers being sprayed into a nonwoven matrix on the metallic screen. The spraying was complete in about 4 hours.
  • It was found that with this specific polymer solvent system, polymer concentrations lower than 25% resulted in fibers with beads of polymers. These beads were eliminated when the polymer concentration was increased to 25% or greater. However, as will be understood by the skilled artisan upon reading this disclosure, this concentration will vary for different polymer/solvent systems and different bioactive compounds.
  • Example 2 In Vitro Release of Protein
  • In vitro release of the FITC-BSA into an infinite sink of 37° C. phosphate buffered saline was measured. Pre-weighed pieces from different regions of the mat were placed into scintillation vials and 10 ml of phosphate buffered saline were added and the capped vials were placed on a rotary shaker at 37° C. The buffer was exchanged at different points in time in order to mimic infinite sink conditions. The amount of protein released was measured in the form of fluorescence of the FITC-BSA on a spectrophotofluorometer at an excitation wavelength of 495 nm and an emission wavelength of 513 nm.

Claims (14)

1. A system for delivery of bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers.
2. The system of claim 1 which is biodegradable.
3. The system of claim 1 which is nondegradable.
4. The system of claim 1 wherein the fibers are arranged as a matrix or linear assembly, a film coating on a device, or a braided or woven structure.
5. The system of claim 1 wherein particles of the bioactive compound are suspended in a polymer solution prior to electrospinning of the polymeric fibers so that the bioactive compound is incorporated between the polymeric fibers.
6. The system of claim 1 wherein the bioactive compound is dissolved into a polymer solution prior to electrospinning of the polymeric fibers so that the bioactive compound is incorporated within the polymeric fibers.
7. The system of claim 1 comprising more than one bioactive compound incorporated into a single or multiple layers of polymeric fibers for delivery of the bioactive compounds sequentially or in concert.
8. A method for delivering bioactive compounds to a patient comprising incorporating a bioactive compound into a polymeric fiber matrix or linear assembly or a braided or woven structure and implanting the polymer fiber matrix or linear assembly or braided or woven structure into the patient.
9. The method of claim 8 further comprising coating a device with the polymeric fiber matrix or linear assembly or braided or nonwoven structure and implanting the coated device into the patient for delivery of the bioactive compounds.
10. The method of claim 9 wherein the device comprises a tissue engineering device and the bioactive compound enhances cell attachment and growth to the device.
11. The method of claim 8 wherein the polymeric fiber matrix or linear assembly or a braided or woven structure is implanted directly on a wound of the patient to deliver the bioactive compound to the wound of the patient.
12. The method of claim 8 wherein the polymeric fiber matrix or linear assembly or a braided or woven structure is implanted on the surface of an organ, tissue or vessel of the patient to deliver the bioactive compound to the organ, tissue or vessel of the patient.
13. The method of claim 12 wherein the polymeric fiber matrix or linear assembly or a braided or woven structure is wrapped around the surface of an organ, tissue or vessel of the patient.
14. A method for modulating rate of release of a bioactive compound from a delivery system for bioactive compounds comprising a bioactive compound incorporated within or between polymeric fibers, said method comprising modulating loading of the bioactive compound incorporated with or between polymeric fiber, selecting polymers to produce polymeric fibers which degrade at varying rates, varying diameter of the polymeric fibers, or varying polymeric concentration of the polymeric fibers.
US10/312,189 2000-06-23 2001-06-25 Polymeric, fiber matrix delivery systems for bioactive compounds Abandoned US20050158362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/312,189 US20050158362A1 (en) 2000-06-23 2001-06-25 Polymeric, fiber matrix delivery systems for bioactive compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21403400P 2000-06-23 2000-06-23
US10/312,189 US20050158362A1 (en) 2000-06-23 2001-06-25 Polymeric, fiber matrix delivery systems for bioactive compounds
PCT/US2001/041133 WO2002000149A1 (en) 2000-06-23 2001-06-25 Polymeric, fiber matrix delivery systems for bioactive compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/128,036 Continuation US7016883B2 (en) 2002-04-23 2002-04-23 Reverse caching for residential end-users to reduce usage of access links to a core communication network

Publications (1)

Publication Number Publication Date
US20050158362A1 true US20050158362A1 (en) 2005-07-21

Family

ID=22797516

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/312,189 Abandoned US20050158362A1 (en) 2000-06-23 2001-06-25 Polymeric, fiber matrix delivery systems for bioactive compounds
US09/895,674 Expired - Fee Related US6753311B2 (en) 2000-06-23 2001-06-28 Collagen or collagen-like peptide containing polymeric matrices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/895,674 Expired - Fee Related US6753311B2 (en) 2000-06-23 2001-06-28 Collagen or collagen-like peptide containing polymeric matrices

Country Status (3)

Country Link
US (2) US20050158362A1 (en)
AU (1) AU2001273632A1 (en)
WO (1) WO2002000149A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060200232A1 (en) * 2005-03-04 2006-09-07 Phaneuf Matthew D Nanofibrous materials as drug, protein, or genetic release vehicles
DE102006061539A1 (en) * 2006-12-27 2008-07-03 Paul Hartmann Ag Layer of flat material contacting wound, includes fibrous material bonded with particles having core and casing, containing healing substance released in contact with moisture
US20090192609A1 (en) * 2008-01-29 2009-07-30 Zimmer, Inc. Implant device for use in an implant system
US20100008994A1 (en) * 2006-05-09 2010-01-14 The University Of Akron Electrospun structures and methods for forming and using same
EP2644191A1 (en) * 2012-03-30 2013-10-02 Universitat Politécnica De Catalunya Nonwoven membrane as a drug delivery system
WO2013165604A1 (en) * 2012-05-02 2013-11-07 Massachusetts Institute Of Technology Electroprocessing of active pharmaceutical ingredients
US8771582B2 (en) 2005-03-04 2014-07-08 BioScurfaces, Inc. Electrospinning process for making a textile suitable for use as a medical article
US9205089B2 (en) 2011-04-29 2015-12-08 Massachusetts Institute Of Technology Layer processing for pharmaceuticals
US20160106878A1 (en) * 2013-05-22 2016-04-21 The Penn State Research Foundation Wound Dressings and Applications Thereof
US10213960B2 (en) 2014-05-20 2019-02-26 Massachusetts Institute Of Technology Plasticity induced bonding
US10328032B2 (en) 2005-03-04 2019-06-25 Biosurfaces, Inc. Nanofibrous materials as drug, protein, or genetic release vehicles
JP7389105B2 (en) 2018-08-03 2023-11-29 セビオテックス,エス.エル. Beaded nonwoven membranes as drug delivery systems

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081732A1 (en) 2000-10-18 2002-06-27 Bowlin Gary L. Electroprocessing in drug delivery and cell encapsulation
US6821479B1 (en) * 2001-06-12 2004-11-23 The University Of Akron Preservation of biological materials using fiber-forming techniques
US7105124B2 (en) * 2001-06-19 2006-09-12 Aaf-Mcquay, Inc. Method, apparatus and product for manufacturing nanofiber media
DE10157124A1 (en) * 2001-11-21 2003-05-28 Lohmann Therapie Syst Lts Controlled release device useful for e.g. oral or transdermal administration of pharmaceuticals comprises a microfiber including releasable active material
US20030180268A1 (en) * 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
US20040115771A1 (en) * 2002-09-27 2004-06-17 Thomas Jefferson University Recombinant collagen-like proteins
CA2838369A1 (en) * 2003-04-23 2004-11-04 The University Of Akron Sequestered reactive materials
FI20045260A (en) * 2003-11-18 2005-05-19 Teknillinen Korkeakoulu Process for manufacturing a fiber structure
US7879440B2 (en) 2003-11-25 2011-02-01 Asahi Kasei Life & Living Corporation Matte film
WO2006044832A2 (en) * 2004-10-15 2006-04-27 The Cleveland Clinic Foundation Device for tissue engineering
SG123727A1 (en) * 2004-12-15 2006-07-26 Univ Singapore Nanofiber construct and method of preparing thereof
US20060204445A1 (en) * 2005-03-11 2006-09-14 Anthony Atala Cell scaffold matrices with image contrast agents
WO2006099332A2 (en) 2005-03-11 2006-09-21 Wake Forest University Health Sciences Production of tissue engineered digits and limbs
US7531503B2 (en) * 2005-03-11 2009-05-12 Wake Forest University Health Sciences Cell scaffold matrices with incorporated therapeutic agents
CA2602029C (en) 2005-03-11 2014-07-15 Wake Forest University Health Sciences Tissue engineered blood vessels
US20060204539A1 (en) * 2005-03-11 2006-09-14 Anthony Atala Electrospun cell matrices
WO2006099334A2 (en) 2005-03-11 2006-09-21 Wake Forest University Health Sciences Production of tissue engineered heart valves
US8048446B2 (en) * 2005-05-10 2011-11-01 Drexel University Electrospun blends of natural and synthetic polymer fibers as tissue engineering scaffolds
US7704347B2 (en) * 2005-05-27 2010-04-27 Prairie Packaging, Inc. Reinforced plastic foam cup, method of and apparatus for manufacturing same
CA2621652A1 (en) * 2005-06-07 2006-12-14 The University Of Akron Nanofiber structures for supporting biological materials
CN101500606B (en) * 2005-06-24 2013-12-04 杜克大学 A direct drug delivery system based on thermally responsive biopolymers
AU2006292224B2 (en) 2005-09-19 2013-08-01 Histogenics Corporation Cell-support matrix and a method for preparation thereof
KR100751547B1 (en) 2005-11-21 2007-08-23 재단법인서울대학교산학협력재단 Scaffold and method of manufacturing scaffold, and electrospinning device of manufacturing scaffold
CN101384272B (en) 2005-12-20 2013-05-01 杜克大学 Methods and compositions for delivering active agents with enhanced pharmacological properties
US8070810B2 (en) * 2006-01-12 2011-12-06 Histogenics Corporation Method for repair and reconstruction of ruptured ligaments or tendons and for treatment of ligament and tendon injuries
US20080220042A1 (en) * 2006-01-27 2008-09-11 The Regents Of The University Of California Biomolecule-linked biomimetic scaffolds
EP2599858A3 (en) * 2006-01-27 2013-09-18 The Regents of The University of California Biomimetic scaffolds
RU2009100654A (en) * 2006-06-09 2010-07-20 Те Риджентс Оф Те Юниверсити Оф Калифорния (Us) BIOMIMETIC FRAMES WITH ATTACHED BIOMOLECULES
WO2008093342A2 (en) 2007-02-01 2008-08-07 Technion Research & Development Foundation Ltd. Albumin fibers and fabrics and methods of generating and using same
US20080260794A1 (en) * 2007-02-12 2008-10-23 Lauritzen Nels J Collagen products and methods for producing collagen products
US9056151B2 (en) * 2007-02-12 2015-06-16 Warsaw Orthopedic, Inc. Methods for collagen processing and products using processed collagen
US20100018641A1 (en) * 2007-06-08 2010-01-28 Kimberly-Clark Worldwide, Inc. Methods of Applying Skin Wellness Agents to a Nonwoven Web Through Electrospinning Nanofibers
US20100070020A1 (en) 2008-06-11 2010-03-18 Nanovasc, Inc. Implantable Medical Device
WO2008154608A1 (en) * 2007-06-11 2008-12-18 Nanovasc, Inc. Stents
US8293531B1 (en) 2007-08-31 2012-10-23 Clemson University Research Foundation Three-dimensional ex vivo system
US7799261B2 (en) * 2007-11-30 2010-09-21 Cook Incorporated Needle-to-needle electrospinning
US8795577B2 (en) 2007-11-30 2014-08-05 Cook Medical Technologies Llc Needle-to-needle electrospinning
US20100249924A1 (en) * 2009-03-27 2010-09-30 Allergan, Inc. Bioerodible matrix for tissue involvement
HUE032703T2 (en) 2009-08-14 2017-10-30 Phasebio Pharmaceuticals Inc Modified vasoactive intestinal peptides
US8637109B2 (en) * 2009-12-03 2014-01-28 Cook Medical Technologies Llc Manufacturing methods for covering endoluminal prostheses
US8460691B2 (en) 2010-04-23 2013-06-11 Warsaw Orthopedic, Inc. Fenestrated wound repair scaffold
US8790699B2 (en) 2010-04-23 2014-07-29 Warsaw Orthpedic, Inc. Foam-formed collagen strand
SG186379A1 (en) 2010-06-17 2013-01-30 Univ Washington Biomedical patches with aligned fibers
EP2717902B1 (en) 2011-06-06 2018-01-24 Phasebio Pharmaceuticals, Inc. Use of modified vasoactive intestinal peptides in the treatment of hypertension
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
US20140017263A1 (en) 2012-06-28 2014-01-16 Clemson University Delivery Agents for Targeted Treatment of Elastin Degradation
JP6295258B2 (en) 2012-09-21 2018-03-14 ワシントン・ユニバーシティWashington University Medical patch with spatially arranged fibers
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
CN103599090A (en) * 2013-07-30 2014-02-26 江南大学 Multi-layer drug sustain-release nano fiber membrane and preparation method thereof
US9795573B2 (en) 2013-09-24 2017-10-24 Clemson University Multi-step connective tissue stabilization method and stabilized tissue formed thereby
US10092679B2 (en) 2013-10-18 2018-10-09 Wake Forest University Health Sciences Laminous vascular constructs combining cell sheet engineering and electrospinning technologies
CN113144269A (en) * 2014-08-04 2021-07-23 圣胡安德申医院 System for immediate release of active agents
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
KR101810080B1 (en) * 2015-06-01 2017-12-19 주식회사 아모라이프사이언스 Membrane for dental
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
CN105908363B (en) * 2016-05-12 2018-07-06 华南农业大学 A kind of electrostatic spraying laminated film and preparation method and application
DK3533458T3 (en) * 2018-03-02 2023-06-26 Upm Kymmene Corp A medical product comprising a bioactive molecule immobilized to nanofibrillar cellulose, and a method for preparing thereof
CN114053249B (en) * 2020-08-10 2023-06-02 山东百多安医疗器械股份有限公司 Degradable medicine carrying film capable of treating systemic osteoporosis and preparation process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5545409A (en) * 1989-02-22 1996-08-13 Massachusetts Institute Of Technology Delivery system for controlled release of bioactive factors
US6753454B1 (en) * 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR707191A (en) 1929-12-07 1931-07-03 Ver Fur Chemische Ind Ag Process for making artificial threads
US3991766A (en) 1973-05-31 1976-11-16 American Cyanamid Company Controlled release of medicaments using polymers from glycolic acid
US4818542A (en) 1983-11-14 1989-04-04 The University Of Kentucky Research Foundation Porous microspheres for drug delivery and methods for making same
US5759830A (en) * 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
DE69018691T2 (en) 1989-05-11 1995-08-17 Kanegafuchi Chemical Ind Medical arrangement with a highly biocompatible surface and method for its production.
US5769830A (en) 1991-06-28 1998-06-23 Cook Incorporated Soft tip guiding catheter
WO1995005083A1 (en) 1993-08-13 1995-02-23 Smith & Nephew Richards Inc Microporous polymeric foams and microtextured surfaces
AU1075699A (en) * 1997-10-10 1999-05-03 Allegheny Health, Education And Research Foundation Hybrid nanofibril matrices for use as tissue engineering devices
JP2002527191A (en) * 1998-10-20 2002-08-27 ティーイーアイ バイオサイエンシス インク Cardiovascular component for transplantation and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US5545409A (en) * 1989-02-22 1996-08-13 Massachusetts Institute Of Technology Delivery system for controlled release of bioactive factors
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US6753454B1 (en) * 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060200232A1 (en) * 2005-03-04 2006-09-07 Phaneuf Matthew D Nanofibrous materials as drug, protein, or genetic release vehicles
US10441550B2 (en) 2005-03-04 2019-10-15 Biosurfaces, Inc. Nanofibrous materials as drug, protein, or genetic release vehicles
US10328032B2 (en) 2005-03-04 2019-06-25 Biosurfaces, Inc. Nanofibrous materials as drug, protein, or genetic release vehicles
US8771582B2 (en) 2005-03-04 2014-07-08 BioScurfaces, Inc. Electrospinning process for making a textile suitable for use as a medical article
US20100008994A1 (en) * 2006-05-09 2010-01-14 The University Of Akron Electrospun structures and methods for forming and using same
US8574315B2 (en) * 2006-05-09 2013-11-05 The University Of Akron Electrospun structures and methods for forming and using same
DE102006061539A1 (en) * 2006-12-27 2008-07-03 Paul Hartmann Ag Layer of flat material contacting wound, includes fibrous material bonded with particles having core and casing, containing healing substance released in contact with moisture
US20090192609A1 (en) * 2008-01-29 2009-07-30 Zimmer, Inc. Implant device for use in an implant system
US9205089B2 (en) 2011-04-29 2015-12-08 Massachusetts Institute Of Technology Layer processing for pharmaceuticals
US20150072008A1 (en) * 2012-03-30 2015-03-12 Universitat Politecnica De Catalunya Nonwoven membrane as a drug delivery system
CN108992432A (en) * 2012-03-30 2018-12-14 加泰罗尼亚理工大学 Non-woven membrane as drug delivery system
EP2644191A1 (en) * 2012-03-30 2013-10-02 Universitat Politécnica De Catalunya Nonwoven membrane as a drug delivery system
WO2013144206A1 (en) 2012-03-30 2013-10-03 Universitat Politecnica De Catalunya Nonwoven membrane as a drug delivery system
EP3108881A1 (en) * 2012-03-30 2016-12-28 Universitat Politècnica De Catalunya Nonwoven membrane as a drug delivery system
US9561190B2 (en) * 2012-03-30 2017-02-07 Universitat Politecnica De Catalunya Nonwoven membrane as a drug delivery system
CN104321051B (en) * 2012-03-30 2018-09-18 加泰罗尼亚理工大学 Non-woven membrane as drug delivery system
CN104321051A (en) * 2012-03-30 2015-01-28 加泰罗尼亚理工大学 Nonwoven membrane as a drug delivery system
WO2013165604A1 (en) * 2012-05-02 2013-11-07 Massachusetts Institute Of Technology Electroprocessing of active pharmaceutical ingredients
US20160106878A1 (en) * 2013-05-22 2016-04-21 The Penn State Research Foundation Wound Dressings and Applications Thereof
US11173227B2 (en) * 2013-05-22 2021-11-16 The Penn State Research Foundation Wound dressings and applications thereof
US10213960B2 (en) 2014-05-20 2019-02-26 Massachusetts Institute Of Technology Plasticity induced bonding
US10703048B2 (en) 2014-05-20 2020-07-07 Massachusetts Institute Of Technology Plasticity induced bonding
JP7389105B2 (en) 2018-08-03 2023-11-29 セビオテックス,エス.エル. Beaded nonwoven membranes as drug delivery systems

Also Published As

Publication number Publication date
US20030021821A1 (en) 2003-01-30
US6753311B2 (en) 2004-06-22
AU2001273632A1 (en) 2002-01-08
WO2002000149A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
US20050158362A1 (en) Polymeric, fiber matrix delivery systems for bioactive compounds
CN104321051B (en) Non-woven membrane as drug delivery system
US7879093B2 (en) Electrospun apatite/polymer nano-composite scaffolds
Pillay et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications
Elahi et al. Core-shell fibers for biomedical applications-a review
EP2968669B1 (en) Ultrafine electrospun fibers of poly-4-hydroxybutyrate and copolymers thereof
Kumbar et al. Recent patents on electrospun biomedical nanostructures: an overview
EP1395303B1 (en) Implantable biodegradable devices for musculoskeletal repair or regeneration
Maleki et al. Drug release behavior of electrospun twisted yarns as implantable medical devices
Su et al. Encapsulation and controlled release of heparin from electrospun poly (l-lactide-co-ε-caprolactone) nanofibers
US20190071796A1 (en) Process and apparatus for making aligned or twisted electrospun fibers and devices
US20060154063A1 (en) Nanofiber construct and method of preparing thereof
US20080112998A1 (en) Innovative bottom-up cell assembly approach to three-dimensional tissue formation using nano-or micro-fibers
AU2002231017A1 (en) Implantable biodegradable devices for musculoskeletal repair or regeneration
KR20190128261A (en) Biomedical patches with spatially arranged fibers
JP2017507001A (en) Time-dependent synthetic biological barrier materials
Chiu et al. Electrospun nanofibrous scaffolds for biomedical applications
Bai et al. Electrospun PCL-PIBMD/SF blend scaffolds with plasmid complexes for endothelial cell proliferation
CN1874799A (en) Medical device with electrospun nanofibers
CN111214708B (en) Composite film carrying biological active factor PLA/PLGA/CS and preparation method thereof
Laurencin et al. Recent patents on electrospun biomedical nanostructures: an overview
US11891727B2 (en) Thermally and dimensionally stabilized electrospun compositions and methods of making same
Kataphinan Electrospinning and potential applications
Adpekar et al. Electrospun nanofibres and their biomedical applications
US20230002935A1 (en) Electrospinning collector for the production of three-dimensional electrospun constructs

Legal Events

Date Code Title Description
AS Assignment

Owner name: DREXEL UNIVERSITY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHEATLEY, MARGARET A.;KO, FRANK K.;DHOOT, NIKHIL;AND OTHERS;REEL/FRAME:017530/0535

Effective date: 20050823

AS Assignment

Owner name: DREXEL UNIVERSITY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EL-SHERIF, DALIA;BENJELLOUN, MERIEM;REEL/FRAME:018979/0274;SIGNING DATES FROM 20070220 TO 20070223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION