Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050182523 A1
Publication typeApplication
Application numberUS 11/109,766
Publication dateAug 18, 2005
Filing dateApr 19, 2005
Priority dateApr 7, 2003
Also published asUS6881142, US20050075065
Publication number109766, 11109766, US 2005/0182523 A1, US 2005/182523 A1, US 20050182523 A1, US 20050182523A1, US 2005182523 A1, US 2005182523A1, US-A1-20050182523, US-A1-2005182523, US2005/0182523A1, US2005/182523A1, US20050182523 A1, US20050182523A1, US2005182523 A1, US2005182523A1
InventorsRajesh Nair
Original AssigneeDegree C.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms
US 20050182523 A1
Abstract
A technique to provide well-balanced airflow in a computer data center that uses fan assisted tiles coupled to a host computer through a network. In an example embodiment, this is accomplished by disposing the fan tiles, including temperature and airflow sensors and a programmable switch to provide a Network address, in multiple locations in raised floor and ceiling of the computer data center. Further, the example embodiment includes coupling the fan tiles to the host computer through the network to control the fan tiles based on the feedback received from the temperature and airflow sensors to provide adaptive airflow balancing and thermal management in the computer data center.
Images(4)
Previous page
Next page
Claims(21)
1. A system for providing adaptive airflow balancing in a room having heat generating components, the system comprising:
means for moving air into the room;
means for moving air out of the room; and
means for controlling the means for moving air into and out of the room to provide adaptive airflow in the room.
2. The system of claim 1, wherein the room comprises a computer data center.
3. The system of claim 1, wherein the means for moving air into and out of the room comprises fan assisted tiles.
4. The system of claim 3 wherein the fan assisted tiles comprise a first array of fan assisted tiles disposed in a floor of the room to bring cool air into the room.
5. The system of claim 4 wherein the first array of tiles includes air flow sensors for sensing the amount of air flowing in through different fan assisted tiles in the first array.
6. The system of claim 3 wherein the fan assisted tiles comprise a second array of fan assisted tiles disposed in a ceiling of the room to remove air from the room.
7. The system of claim 6 wherein the second array of tiles includes temperature sensors for sensing the temperature of air flowing in through different fan assisted tiles in the second array.
8. The system of claim 3 wherein the fan assisted tiles comprise:
a first array of fan assisted tiles disposed in a floor of the room to bring cool air into the room, the first array of tiles including air flow sensors for sensing the amount of air flowing in through different fan assisted tiles in the first array; and
a second array of fan assisted tiles disposed in a ceiling of the room to remove air from the room, the second array of tiles including temperature sensors for sensing the temperature of air flowing in through different fan assisted tiles in the second array.
9. The system of claim 1, further comprising:
a means to indicate a failed fan assisted tile assembly.
10. A method for providing adaptive thermal management of a room having heat generating components, comprising:
providing an adaptive airflow balancing in the room by using an array of fan assisted tiles that are controlled by a remote server based on sensed environmental characteristics in the room.
11. The method of claim 10, wherein the sensed environmental characteristics comprises:
sensing environmental characteristics of air coming into and out of the room.
12. The method of claim 11, wherein the sensing environmental characteristics comprises:
sensing environmental characteristics selected from the group consisting of airflow, temperature, humidity, and particle density.
13. A system for controlling airflow in a room having heat generating components, the system comprising:
a plurality of fan assisted tiles disposed in a floor of the room;
a plurality of fan assisted tiles disposed in a ceiling of the room;
a plurality of airflow sensors for sensing airflow through the fan assisted tiles disposed in the floor of the room; and
a plurality of temperature sensors for sensing temperature of air flowing through the fan assisted tiles disposed in the ceiling of the room.
14. The system of claim 13 and further comprising a controller for controlling airflow through the plurality of fan assisted tiles disposed in the floor of the room, and a network coupling the controller to the fan assisted tiles.
15. The system of claim 14 wherein the controller comprises a distributed controller.
16. The system of claim 14 wherein the controller comprises a central controller.
17. The system of claim 14 wherein the controller varies the speed of a fan in the fan assisted tiles as a function of sensed temperature and flow rates.
18. The system of claim 17 wherein the controller adaptively controls airflow in response to varying thermal load distributions within the room.
19. The system of claim 17 wherein the controller adaptively controls airflow to accommodate heat generating component modifications, blocked air passages and failed fans.
20. The system of claim 14 wherein the network is a hardwired network.
21. The system of claim 13 wherein each fan assisted tile comprises a plurality of passage ways for airflow.
Description
    RELATED APPLICATIONS
  • [0001]
    This application is a divisional of U.S. patent application Ser. No. 10/660,943, filed Sep. 12, 2003, which issued as U.S. Pat. No. 6,881,142, issue date Apr. 19, 2005, which claims priority from U.S. Provisional Patent Application Ser. No. 60/461,253, filed Apr. 7, 2003, which applications are incorporated herein by reference.
  • TECHNICAL FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to thermal management of thermally sensitive rooms, and more particularly to thermal management of a computer data center.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The computer data centers typically, consist thousands of racks each with multiple computing units. The computing units can include multiple microprocessors, each dissipating approximately 250 W of power. The heat dissipation from a rack containing such computing units can exceed 10 KW. Today's computer data center, with about 1000 racks and occupying over 30,000 square feet can require about 10 MW of power for the computing infrastructure. A 100,000 square foot computer data center of tomorrow can require 50 MW of power for the computing infrastructure. Energy required to dissipate this heat can be an additional 20 MW. A hundred thousand square foot planetary scale computer data center, with five thousand 10 KW racks, can cost about 44 million dollars per year (at $100/MWh) just to power the servers and about 18 million dollars per year to power the cooling infrastructure for the computer data center.
  • [0004]
    Cooling design consideration by virtue of proper layout of racks and fans can yield substantial savings in energy. Generally, cooling design in a high power density computer data center is quite complex. Today's intuitive distribution of air does not suffice in providing a well-balanced airflow in a computer data center such that every location in the computer data center receives a uniform airflow to improve operating efficiency and cooling performance.
  • [0005]
    In addition, many of the computer data centers are hastily planned and implemented as the needed equipment must be quickly installed on a rush schedule. The typical result is a somewhat haphazard layout on the raised floor that can have disastrous consequences due to environmental temperature disparities. Unfortunately, the dangers of this lack of planning are, is not apparent until after serious reliability problems have already occurred. Further, any changes in a computer data center due to traffic patterns, equipment changes and additions, blocked filters, failed fans, and so on can affect thermal load distribution, which in turn can affect the well-balanced airflow in a computer data center.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention provides a technique for providing a well-balanced airflow in a room having many heat generating elements, such as a computer data center. In one example embodiment, the technique provides dynamic airflow balancing and thermal management for the computer data center. This is accomplished by disposing multiple fan tiles at various locations in a raised floor and ceiling of a computer data center that are connected to a host computer through a data network. Each of the disposed networked fan tiles in the raised floor and the ceiling is controlled by the host computer based on sensing incoming airflow and outgoing air temperature, respectively, to achieve well-balanced airflow in the computer data center.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0007]
    FIG. 1 is a schematic diagram of a side elevational view of one example embodiment of a computer data center including multiple fan assisted tiles according to the present subject matter.
  • [0008]
    FIG. 2 is a block diagram of a fan assisted tile shown in FIG. 1 according to the present subject matter.
  • [0009]
    FIG. 3 is a flowchart illustrating a method of providing adaptive airflow balancing in a room, in accordance with one embodiment of the present subject matter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0010]
    The present subject matter provides a technique for providing a well-balanced airflow in a room. The technique further provides a dynamic airflow balancing and thermal management for a computer data center.
  • [0011]
    In the following detailed description of the embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims. The terms “thermal server”, “host computer”, “remote server”, and “remote computer” are used interchangeably throughout the document. In addition, the terms “power controller” and “micro-controller” are also used interchangeably throughout the document and refer to a means used to vary the speed of the one or more fans in the fan tile assembly.
  • [0012]
    Referring now to FIG. 1, there is illustrated an example embodiment of a thermal management system 100 according to the present subject matter. The thermal management system 100 includes a first array 110 of fan assisted tiles 130, disposed in the raised floor 140 of a room 105, and a second array 120 of fan assisted tiles 130, disposed in the ceiling 150 of the room 105. The room 105 can be a computer data center including heat generating components 195.
  • [0013]
    As shown in FIG. 1, each fan assisted tile 130 includes a plurality of passageways 162 for the air to enter and exhaust from the room 105. Further as shown in FIG. 1, each fan assisted tile 130 can be attached to a fan tile 135 that is adaptable to be disposed on the ceiling 150 and/or the raised floor 140 of the room 105. In some embodiments, the fan tile 135 is made of sheet metal tile. In these embodiments, the sheet metal tile has a front side 165 and a back side 178. One or more fans 172 are attached to the back side 178 of the sheet metal tile. The front side 165 of the sheet metal tile is adapted to be disposed on the raised floor 140 and/or ceiling 150 in the room 105.
  • [0014]
    Also shown in FIG. 1, the thermal management system 100 includes a power source 175, a data network 180, and a remote thermal server 190. The thermal server 190 can be a host computer, a remote server, a remote computer, a remote server, a processor, and other such processors that can facilitate in the thermal management of the room 105. The thermal server 190 can be a remote program capable of communicating over a data network 180. As shown in FIG. 1, each of the fan assisted tiles 130 includes the one or more fans 172, a power controller 186, and an interface 170. In the example embodiment shown in FIG. 1, each of the power controllers 186 is connected to the power source 175 through the interface 170. In addition, as shown in FIG. 1, each of the fan assisted tiles 130 is connected to the thermal server 190 through the interface 170 and via the data network 180. The interface 170 can be a network interface, such as a serial communication interface.
  • [0015]
    In these embodiments, the first array 110 of fan assisted tiles 130 is disposed on the raised floor 140 such that the air is directed into the room 105 as indicated by directional arrows 152. The second array 120 of fan assisted tiles 130 is disposed in the ceiling 150 such that the air is directed out of the room 105 as indicated by directional arrows 157. In operation, the thermal management system 100 moves the air in the room 105 through the passageways 162 as indicated by directional arrows 152, 155, and 157 to provide adaptive airflow balancing in the room 105.
  • [0016]
    Also shown in FIG. 1, an airflow sensor 184 is coupled to each of the power controllers 186 in the first array 110 of fan assisted tiles 130. Further, FIG. 1 shows a temperature sensor 182 coupled to each of the power controllers 186 in the second array 120 of fan assisted tiles 130.
  • [0017]
    FIG. 1 illustrates an example centralized control system for the adaptive control of the environment, such as the room 105. The centralized control in this example embodiment is achieved through the thermal server 190, which communicates with the fan assisted tiles 130 via the network 180. In this example embodiment, the thermal server 190 receives the sensor information, such as airflow and temperature and computes necessary operating parameters, such as fan speed and other commands necessary to operate the fan assisted tiles 130. The computed operating parameters are then sent over the network 180 to each of the fan assisted tiles 130 to provide an adaptive control in the room 105.
  • [0018]
    Referring now to FIG. 2, there is illustrated an example embodiment of a fan assisted tile 130 shown in FIG. 1. For example, as shown in FIG. 2, the fan assisted tile 130 includes a fan controller 210 coupled to one or more fans 172. The one or more fans 172 can be one or more axial and/or radial fans.
  • [0019]
    As shown in FIG. 2, the fan controller 210 includes a processor 220, the power controller 186, DIP switch 230, sensor 240, and in and out interfaces 270 and 280 for daisy chaining with other fan assisted tiles 130. Further, as shown in FIG. 1, the sensor 240 can be the temperature sensor 182, the airflow sensor 184 or any other sensor that is suitable for sensing environmental characteristics and can facilitate in adaptive airflow balancing and thermal management of the room 105. In some embodiments, sensor 240 can be a humidity sensor to sense humidity of air coming into and out of the room 105.
  • [0020]
    The DIP switch 230 facilitates in setting a Network address, such as an IP address that is unique to each of the fan assisted tiles 130. The DIP switch 230 can be an 8 bit or higher DIP switch. The DIP switch 230 can also be a programmable switch or the like that is suitable for setting a Network address or a unique identifier. As shown in FIG. 2, the fan assisted tile 130 is coupled with other fan assisted tiles by daisy chaining the power and network connections using the interfaces 270 and 280. For example, in FIG. 2, power line 250 and network line 260 are shown isolated. The network line 260 can be an RS485 8 bit addressable connection or a serial communication interface.
  • [0021]
    In operation, in one example embodiment, each of the temperature sensors 182 and the airflow sensors 184 sense the outgoing air temperature and the incoming airflow, respectively, and the processor 220 outputs a first control signal along with an associated Network address based on the sensed temperature and airflow. The first control signal can be temperature data, airflow data, and/or any other data that facilitates in adaptive airflow balancing or thermal management of the room 105.
  • [0022]
    In some embodiments, each of the temperature sensors 182 senses the outgoing temperature in the room 105 and the processor 220 outputs a first control signal, and each of the airflow sensors 184 senses the incoming airflow and outputs a second control signal. In these embodiments, the thermal server 190 outputs third and fourth control signals based on the outputted first and second control signals, respectively. Also in these embodiments, each of the fan controllers 210 varies the fan speed of one or more fans 172, in each of the associated fan assisted tiles 130 in the first and second arrays 110 and 120, based on the third and fourth control signals received from the thermal server 190 through the data network 180.
  • [0023]
    The thermal server 190 receives the outputted first control signal along with the associated Network address from each of the temperature and airflow sensors 182 and 184 through the data network 180, and outputs a second control signal along with the associated Network address based on the received first control signal and the associated Network address from each of the temperature and airflow sensors 182 and 184.
  • [0024]
    The thermal server 190 sends each of the outputted second control signals along with associated Network addresses through the data network 180 to an associated fan controller 210 of a fan assisted tile 130 based on the received Network address. The fan controller 210 of each fan assisted tile 130 controls the one or more fans 172 based on the received control signal from the thermal server 190 through the data network 180.
  • [0025]
    In some embodiments, the second control signal is revolutions-per-minute (rpm) data or other such data that can aid in controlling the speed of one or more fans 172. In some embodiments, the microcontroller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the first array 110, based on the received associated first control signal, which can be based on the airflow data received from the associated airflow sensor 184. Also in these embodiments, the fan controller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the second array 120, based on the received associated second control signal, which can be the temperature data received from the associated temperature sensor 182, to provide adaptive airflow balancing and/or thermal management in the room 105.
  • [0026]
    Further, FIG. 1 shows an indicator 192 disposed in the room 105, in the ceiling 150 and/or the raised floor 140, to indicate a failed condition of each of the fan assisted tiles 130 should the fan assisted tiles fail during operation. The indicator 192 can be a light and/or an alarm. The light comes on and/or the alarm goes on when any of the associated fan assisted tiles 130 fails during operation. The indicator 192 can be coupled to the fan controller 210, which in turn can be coupled to the thermal server 190 through the data network 180. The fan controller 210 can also include a sensor (not shown) to monitor the status of each of the fan assisted tiles 130 disposed in the first and second arrays 110 and 120. In operation, the sensor can send a fifth control signal to the thermal server 190. The thermal server 190 can monitor the sent fifth control signal and output a sixth control signal to the fan controller 210. The fan controller 210 indicates the failed condition of a fan assisted tile 130 in the first and second arrays 110 and 120, respectively, based on the received sixth control signal.
  • [0027]
    It can be envisioned that the above-described techniques can also be used in a decentralized control environment, where the controller, such as the thermal server 190 leaves most of the operating decisions to the remote devices, such as the fan assisted tiles 130 and other devices coupled through the data network 130. In these embodiments, the thermal server 190 sends commands to each fan assisted tile 130 to operate at a level to achieve a given airflow or temperature. The decision regarding operating parameters, such as fan speed and other commands are made locally by each of the fan assisted tiles 130. In these embodiments, part of the control functions performed by the thermal server 190 is switched to each of the fan assisted tiles 130 to achieve an adaptive control in the room 105.
  • [0028]
    In addition, it can also be envisioned that the above-described techniques can be run in a distributed control environment, where each of the fan assisted tiles 130 or any other device can communicate with other fan assisted tiles 130 or devices coupled through the data network 180. Also in these embodiments, each of the fan assisted tiles 130 can compute their own operating parameters to control their fan speeds to achieve an adaptive control in the room 105. In these embodiments, the thermal server 190 would be basically used to monitor, the fan assisted tiles and other such devices connected through the network 180, for proper functioning and to report the status of each of these devices to a facilitator and/or an operator. The advantage of either of the above described architectures, i.e., the decentralized control system and the distributed control system, is that they can considerably reduce the communication traffic sent over the data network 180 to enhance system performance.
  • [0029]
    Referring now to FIG. 3, there is illustrated an embodiment of a method 300 according to the present invention. At 310, the method 300 in this example embodiment senses incoming airflow into a room. At 320, the method 300 further senses outgoing air temperature. In this embodiment, the incoming airflow from a first array of fan assisted tiles and the outgoing air temperature from a second array of fan assisted tiles is sensed.
  • [0030]
    At 330 a first control signal is outputted based on the sensed airflow and temperature. In some embodiments, at 330 a Network address associated with each fan assisted tile along with the first control signal is outputted at 330. At 340 a second control signal is outputted based on the first control signal. In some embodiments, at 340 the second control signal is outputted along with the Network address associated with the fan assisted tile to be controlled.
  • [0031]
    At 350 fan speed of the one or more fans 172 in each fan assisted tile in the first and second arrays is controlled based on the second control signal to provide adaptive airflow balancing in the room. In some embodiments, the method 300 can include sensing the condition of each fan assisted tile and indicating a failed condition based on sensing the condition of each fan assisted tile. In these embodiments, the failed condition of a fan assisted tile can be indicated by sending an alarm or by lighting an indicator associated with the failed fan assisted tile.
  • [0032]
    The above method, blocks 310-350, repeats itself to maintain adaptive airflow balancing and provide thermal management in the room by varying the speed of fans to accommodate changes in traffic patterns, component changes and additions, blocked filters, failed fans and so on in the room. The room can be a computer data center including heat generating components.
  • [0033]
    Although the method 300 includes blocks 310-350 that are arranged serially in the exemplary embodiments, other embodiments of the subject matter may execute two or more blocks in parallel, using multiple processors or a single processor organized two or more virtual machines or sub-processors. Moreover, still other embodiments may implement the blocks as two or more specific interconnected hardware modules with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the exemplary process flow diagrams are applicable to software, firmware, and/or hardware implementations.
  • [0034]
    The various embodiments of the fan assemblies, systems, and methods described herein are applicable generically to achieve adaptive airflow balancing and thermal management in a computer data center. In addition, the above-described technique provides uniform airflow in every location in a computer data center, thus helping to improve operating efficiency and cooling performance of the computer data center. Further, the above-described technique provides adaptive air flow balancing in a computer data center under varying thermal load distributions. Furthermore, the above-described technique, after achieving an operational thermal balance, continues to monitor the steady state situation and compensates for thermal variability due to time dependent variations in traffic patterns, blocked filters, failed fans, and other such variations to provide a well-balanced airflow.
  • [0035]
    The above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those skilled in the art. The scope of the invention should therefore be determined by the appended claims, along with the full scope of equivalents to which such claims are entitled.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4874127 *Nov 12, 1987Oct 17, 1989Collier William RClimate control apparatus
US5345779 *Apr 23, 1993Sep 13, 1994Liebert CorporationModular floor sub-structure for the operational support of computer systems
US5718628 *Apr 26, 1996Feb 17, 1998Nit Power And Building Facilities, Inc.Air conditioning method in machine room having forced air-cooling equipment housed therein
US5910045 *Sep 6, 1996Jun 8, 1999Daikin Industries, Ltd.Air discharge unit for underfloor air conditioning and underfloor air conditioning system using same
US6238699 *Aug 15, 2000May 29, 2001Alan A. RubinPharmaceutical formulations containing a combination of carbidopa and levidopa
US6283380 *Mar 20, 2000Sep 4, 2001International Business Machines CorporationAir conditioning system and air conditioning method
US6319114 *Nov 11, 1999Nov 20, 2001Degree Controls, Inc.Thermal management system
US6350470 *Apr 29, 1999Feb 26, 2002Cima Labs Inc.Effervescent drug delivery system for oral administration
US6557624 *Aug 9, 2000May 6, 2003Liebert CorporationConfigurable system and method for cooling a room
US6627223 *Feb 7, 2001Sep 30, 2003Eurand Pharmaceuticals Ltd.Timed pulsatile drug delivery systems
US6832489 *Oct 31, 2003Dec 21, 2004Hewlett-Packard Development Company, LpCooling of data centers
US6834512 *Oct 31, 2003Dec 28, 2004Hewlett-Packard Development Company, L.P.Cooling of data centers
US6834811 *Apr 1, 2003Dec 28, 2004Hewlett-Packard Development Company, L.P.Market-based temperature control system and method
US20030118648 *Nov 30, 2001Jun 26, 2003Jane HirshPharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7251547 *Oct 8, 2004Jul 31, 2007Hewlett-Packard Development Company, L.P.Correlation of vent tile settings and rack temperatures
US7313924 *Oct 8, 2004Jan 1, 2008Hewlett-Packard Development Company, L.P.Correlation of vent tiles and racks
US7493193 *Aug 4, 2005Feb 17, 2009International Business Machines CorporationMonitoring and real-time heat load control based upon server and environmental parameters
US7640760 *Jan 5, 2010Hewlett-Packard Development Company, L.P.Temperature control using a sensor network
US7676280Mar 9, 2010Hewlett-Packard Development Company, L.P.Dynamic environmental management
US8321182Nov 27, 2012International Business Machines CorporationSystem and method for positioning and controlling air conditioning tiles for optimal cooling using Voronoi diagrams
US8639651Oct 30, 2009Jan 28, 2014Hewlett-Packard Development Company, L. P.Manipulating environmental conditions in an infrastructure
US8744631Jan 28, 2011Jun 3, 2014Hewlett-Packard Development Company, L.P.Manipulating environmental conditions in an infrastructure
US8755182 *Sep 26, 2011Jun 17, 2014Yahoo! Inc.Cold row encapsulation for server farm cooling system
US8882572 *Jun 8, 2009Nov 11, 2014Hewlett-Packard Development Company, L.P.Vent tile with an integrated thermal imaging sensor and controller
US9115916Nov 16, 2012Aug 25, 2015Schneider Electric It CorporationMethod of operating a cooling system having one or more cooling units
US9363929Dec 12, 2014Jun 7, 2016Yahoo! Inc.Cold row encapsulation for server farm cooling system
US9370125 *Jul 16, 2013Jun 14, 2016Globalfoundries Inc.Hive of smart data center tiles
US20060075764 *Oct 8, 2004Apr 13, 2006Bash Cullen ECorrelation of vent tiles and racks
US20060080001 *Oct 8, 2004Apr 13, 2006Bash Cullen ECorrelation of vent tile settings and rack temperatures
US20060214014 *Mar 25, 2005Sep 28, 2006Bash Cullen ETemperature control using a sensor network
US20070032908 *Aug 4, 2005Feb 8, 2007International Business Machines CorporationMethod, apparatus and computer program product for monitoring and real-time heat load control based upon server and environmental parameters
US20080155441 *Sep 27, 2007Jun 26, 2008Long Bruce TMethod for performing a data center hardware upgrade readiness assessment
US20090259343 *Jun 24, 2009Oct 15, 2009American Power Conversion CorporationCooling system and method
US20100058685 *Sep 8, 2008Mar 11, 2010International Business Machines CorporationFloor tile and air handling system using tile
US20100311317 *Dec 9, 2010Mcreynolds Alan AVent tile with an integrated thermal imaging sensor and controller
US20110106314 *May 5, 2011Abdlmonem BeitelmalManipulating environmental conditions in an infrastructure
US20110218773 *Mar 3, 2010Sep 8, 2011International Business Machines CorporationSystem and method for positioning and controlling air conditioning tiles for optimal cooling using voronoi diagrams
US20120012278 *Jan 19, 2012Yahoo! Inc., A Delaware CorporationCold row encapsulation for server farm cooling system
US20120073783 *Sep 27, 2011Mar 29, 2012Degree Controls, Inc.Heat exchanger for data center
US20140185219 *Mar 4, 2014Jul 3, 2014Apple Inc.Cooling electronic devices using flow sensors
US20150025690 *Jul 16, 2013Jan 22, 2015International Business Machines CorporationHive of smart data center tiles
EP2570744A1 *Sep 15, 2011Mar 20, 2013TROX GmbHMethod for altering the parts of components of an air conditioning and ventilation assembly system
WO2014022593A1 *Jul 31, 2013Feb 6, 2014Synapsense CorporationApparatus and method for controlling computer room air conditioning units (cracs) in data centers
Classifications
U.S. Classification700/276, 454/186
International ClassificationH05K7/20, F24F11/00
Cooperative ClassificationH05K7/20836, F24F2221/40, F24F2011/0067, Y02B30/746, F24F11/0001, F24F11/0009, F24F2011/0038, F24F11/0012, H05K7/20745, F24F11/0079
European ClassificationH05K7/20S10D, H05K7/20S90, F24F11/00C, F24F11/00R