US20050183642A1 - Temperature-controlled incinerator dryer grates - Google Patents

Temperature-controlled incinerator dryer grates Download PDF

Info

Publication number
US20050183642A1
US20050183642A1 US11/022,573 US2257304A US2005183642A1 US 20050183642 A1 US20050183642 A1 US 20050183642A1 US 2257304 A US2257304 A US 2257304A US 2005183642 A1 US2005183642 A1 US 2005183642A1
Authority
US
United States
Prior art keywords
chamber
grate
refuse
combustion
inlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/022,573
Inventor
John Basic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2003/018701 external-priority patent/WO2004001289A2/en
Application filed by Individual filed Critical Individual
Priority to US11/022,573 priority Critical patent/US20050183642A1/en
Publication of US20050183642A1 publication Critical patent/US20050183642A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H3/00Grates with hollow bars
    • F23H3/02Grates with hollow bars internally cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/028Heating arrangements using combustion heating using solid fuel; burning the dried product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/08Parts thereof
    • F26B25/10Floors, roofs, or bottoms; False bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/04Garbage

Definitions

  • the patents show improvements for this component of an incinerator system as well. These improvements include, first, a stepped hearth floor with the individual steps extending laterally in the direction that the refuse moves through the chamber and air nozzles located in the vertical faces, or risers, of the steps.
  • the incinerator combustion chamber receives an approximately stoichiometric amount of oxygen for the chamber's burning contents, and the chamber's floor and volume bear general respective relationships to the heat content of the burning refuse.
  • the air moving through the combustion chamber has an upper limit to its volume to avoid lifting unburned particles of refuse.
  • various dimensions of the chamber's wall bear specific relationships to each other for improved incineration.
  • Mr. Basic showed how to convey material sitting on a floor, most likely a hearth floor in a main incinerator chamber.
  • the patents disclose nonsinusoidal motion of the hearth or floor that actually pulses the material forward.
  • the motion of the floor actually resembles the activity of shoveling snow or other material.
  • the pulsing motion accelerates and decelerates and thus also jostles the mass of refuse vigorously to increase the burning rate and effectiveness.
  • Mr. Basic The first four patents of Mr. Basic discussed above established an entirely new regiment for the incineration of refuse. They gave the essential conditions for the incineration of the waste themselves and showed how to move bulk refuse through the main combustion chamber to facilitate the process. With these parameters established, Mr. Basic then set to work to refine and improve the system that he had developed. In the process, he increased the sophistication of his incinerator system by an order of magnitude and its ability to reliably handle different types of refuse from those even contemplated previously. The issuance of the last three patents above justly rewarded his subsequent efforts.
  • Mr. Basic sets forth various incinerator improvements. Amongst these is the concept of splitting the reburn tunnel into two parallel reburn sections, each capable of performing the same functions on fumes emanating from a source such as the main combustion chamber.
  • the control provided by two smaller reburn sections dramatically increases the control over the three T's of combustion.
  • the patent places an “excitor” in the reburn tunnel.
  • the excitor actually reduces the cross-sectional area in the center of the tunnel where the mass flow of the flue gas is located and forces the flume gasses to pass around it.
  • the shortened distance between the gas molecules and a wall, be it the outer or excitor wall, and the concomitant reradiation of heat give dramatically improved control over the three T's.
  • the excitor may, in addition, provide nozzles introducing air to the tunnel for temperature and time control as well as assuring sufficient oxygen for complete combustion.
  • the combustion chamber may include a grate located adjacent to the inlet door and above the hearth.
  • This grate will hold waste having either a high moisture or a high B.T.U. content.
  • the material dries while on the grate.
  • some of the volatile hydrocarbons burn or are driven off to prevent overheating and possible slagging on the hearth floor.
  • the fixed hydrocarbon refuse falls through the grate to undergo thorough combustion on the hearth below. The refuse may do so while it still contains over half of its combustible hydrocarbons.
  • the grate may have openings of a particular size to accomplish the stated objectives. Moving the grate can jostle its contents to permit the desired burning and encourage dried or partially burned refuse to fall through to the hearth underneath.
  • a fluid passing through the grate such as air or steam, may serve to cool the supporting metal structure of the grate, and a refractory may serve to further protect it.
  • the gas may then directly enter the combustion chamber to enhance the combustion efficiency.
  • the air passing through the grate may actually possess two separate and distinct purposes. First, it cools the internal structure of the grate to prevent destruction by the combustion within the main chamber. Second, it may provide oxygen to the combustion fire itself.
  • the main combustion chamber should generally receive stoichiomentric amounts of oxygen for the material undergoing burning there. This includes the underfire, overfire, and grate air.
  • the portion specifically permitted for the grate may not suffice to adequately cool it to prevent harming it; alternately, adequately cooling through the grate may require an amount of air passing through it that would prove more than the optimal.
  • introducing air to both cool the grate and provide combustion air through its jets may overachieve its objective and decrease the temperature of the environs of the grate area to an unacceptably low point. This can happen even when the oxygen-containing air picks up some heat by passing through plenums surrounding various incinerator components. Also, the drying of wet refuse on the grate may actually require more heat than oxygen. This can prove particularly difficult to control.
  • a further and serious problem involving the use of the combustion air to control the temperature in the grate results from any possible disruption of the air supply itself.
  • the deleterious disruption in the air supply to the grate may occur as a result of the failure of the blower fan supplying the air.
  • the installation may experience an electrical failure which, again, stops the supply of cooling air to the grate.
  • the operator, during shut-down may simply turn off the air blower before the grate has a chance to adequately cool.
  • the loss of cooling air to the grate may result in its destruction.
  • the grate sits in the extreme heat conditions of the incinerator chamber. It typically uses steel as its structural material, with a possible coating of refractory. At about 700 to 900 degrees Fahrenheit, steel loses 90 percent of its strength. Thus, the unexpected loss of adequate cooling air for whatever reason will likely lead to the severe misshapening and destruction of the grate itself.
  • placing the refuse on the grate may serve two purposes. First, it allows moisture in the refuse to vaporize from the refuse. Only when the refuse moisture content falls to around 50 percent can it actually ignite. Excessive air and its concomitant cooling effect upon the refuse may actually interfere with the removal of moisture from the material.
  • placing refuse upon the grate may serve to drive off volatile hydrocarbons contained in it. This keeps the volatile HC's from falling onto the hearth floor below where they can flash into a “bloom” of fire, create localized overheating, and result in slagging due to the excessive heat.
  • providing a large amount of air through the grate, possibly considered necessary to cool it may allow the volatile HC's to actually burn on or near the grate itself. This can actually cause slagging on the grate due to the heat generated by the blooming fire of the volatilizing HC's. Controlling the cooling and the amount of air supplied to the volatilizing HC's also constitutes a very tricky and not always soluble task.
  • an incinerator system for bulk refuse and hydrocarbon-containing liquids may include a substantially enclosed chamber and a fire-resistant floor means within the chamber for holding and burning material on it.
  • An inlet opening to the chamber allows for the introduction of solid bulk refuse and an outlet opening permits the egress of the gaseous products of combustion from the chamber.
  • a grate means having openings through it and located within the chamber, adjacent to the inlet opening and above the floor, holds refuse newly introduced through the inlet opening above the floor for a limited period of time. It then allows the refuse to drop through to the floor while burning.
  • An oxygenating means couples to the grate means and introduces an oxygen-containing gas into the chamber through the grate means.
  • a significant improvement to the system includes regulating means coupled to the grate means.
  • the regulating means controls the temperature of the grate means separate from the oxygenating means, the oxygen-containing gas, and the gaseous products of combustion.
  • an improved incinerator system may comprise temperature-controlling means, coupled to the grate means.
  • the temperature-controlling means passes a fluid, other than the oxygen-containing gas and of a temperature within a predetermined range, through the grate means and separate from the oxygen-containing gas.
  • the fluid may take the form of a two-phase fluid of a temperature within a predetermined range. Because of its known characteristics, the steam-water combination represents a good selection for the two-phase system, although others may find use in particular circumstances. The steam-water two-phase flow in particular will continue to circulate without the need of electrical power. Thus, a loss of electricity will not destroy the steam-water combination's ability to protect the grate structure.
  • the fluid passes through the grate means separate from the oxygenating-containing gas, it may beneficially circulate through a closed system. This permits the treatment of the fluid for its temperature-controlling or other purposes and its subsequent return to the grate means.
  • the incinerator system may include a boiler coupled to the outlet opening.
  • the boiler captures heat contained in the gaseous products of combustion passing through the outlet opening and transfers it to a separate fluid.
  • this fluid takes the form of two-phase steam.
  • the temperature-controlling means couples to the boiler and the grate means and passes the two-phase fluid between the boiler and the grate means while still keeping it separate from the oxygen-containing gas. This accomplishes two separate though interrelated purposes. First, it permits the cooling fluid to rid itself of excess heat that it may have acquired during its passage through the grate means. Second, it permits the capture of the heat acquired by the fluid for economically beneficial use elsewhere.
  • the temperature-controlling fluid when used, passes through the grate means separate from the oxygenating-containing gas.
  • An advanced structure for accomplishing the passage of the fluid without mixing with the oxygen-containing gas assumes the form of a “membrane tube wall”.
  • the membrane tube wall constitutes part of the grate means and is formed into a conduit from relatively thin sections, or plates, of substantially heat conducting material.
  • the wall then has at least two spaced-apart, substantially fluid-tight tubules formed from substantially heat conducting material and in thermal contact with the thin plate, or fin, sections of metal.
  • the temperature-controlling fluid passes through the tubules and effects a substantial degree of control over their temperature. This controlled temperature then passes to the other parts of the wall because of its construction from a substantially-heat conducting material.
  • the thin sections and the tubules are welded to each other to form an integral whole.
  • two of the tubules are in fluid-tight, fluid communication with each other.
  • the wall will typically have an even number of tubules. This allows for their connections to each other in units of two tubules each. In each pair, one tubule takes the fluid entering the grate means. The fluid then passes from the first tubule to the second in the pair from which it ultimately leaves the grate means.
  • a particularly useful form of the membrane tube wall has the shape of a conduit.
  • the membrane tube wall may curve around into a circular cross section to form an enclosed cylindrical tube.
  • the tubules run parallel to the axis of the tube.
  • the oxygen-containing gas then passes through the tube wall's interior and exits through openings, for example nozzles, through the tube.
  • the control of the tube's temperature permits the use of very hot oxygen-containing gasses.
  • gasses may be or include flue gasses from the incinerator chamber which will still have a content of some oxygen.
  • the grate means may take the form of a plurality of grate arms, with each of the arms comprising an enclosed membrane tube wall in the form of a conduit.
  • the oxygenating means introduces the oxygen-containing gas through a plenum formed from the membrane tube wall.
  • the temperature controlling feature of the grate means obviates the necessity for materials that can themselves withstand the heat generated by the combustion. It also dispenses with heat-protective materials that themselves have difficulty living in the combustion temperatures. As a consequence, materials such as steel that lose their strength at such high temperatures may find use even without additional protection, such as refractory coatings, from the temperatures encountered.
  • the grate means may comprises at least one passageway through which the oxygen-containing gas passes prior to being introduced into the chamber. The passageway may then have a composition of steel, and at least a portion of the steel passageway is directly exposed to the combustion occurring within the chamber. The remainder of the passageway may still have a refractory or other coating to protect it from abrasion damage from the refuse or other material placed upon it or contacting it in other fashions.
  • the flue gas from an incinerator represents a source of heat.
  • the products of combusting refuse often contain one or more severely corrosive components, especially chlorine at higher temperatures or hydrochloric acid at lower temperatures. Either of these could well have a destructive effect upon metal components of the blower used to handle the movement of the flue gas. This would appear to limit the flue gas' potential for subsequent use as a heat source in the incinerator itself and especially in the grate means.
  • the flue gas may have several properties that make it particularly desirable for use as part or all of the oxygen-containing gas passing through the grate means into the combustion chamber and specifically into the refuse on the grate means itself.
  • the flue gas has a substantial moisture content as a result of the combustion process. The water molecules impart a high specific heat to the gas. This, in turn, allows the flue gas to impart more heat rapidly to the refuse sitting on the grate means.
  • the flue gas because it has already experienced use in combustion, has a lower oxygen content than, for example, air. As a result, it has less ability to support combustion in the refuse sitting on the grate. This proves particularly beneficial where the refuse contains substantial amounts of volatile hydrocarbons.
  • the low oxygen content of the flue gas limits the burning of the volatilizing HC's. As a result, they may well not bloom into flame on the grate means which would cause extreme localized overheating, slagging, and possibly some damage to the grate itself.
  • the use of flue gas for air-grate purposes has not proved generally feasible in the past.
  • an improved incinerator system will have the oxygenating means for the grate means coupled to the outlet opening of the substantially enclosed combustion chamber.
  • the oxygenating means then introduces at least a portion of the gaseous products of combustion that it had obtained from the outlet opening back into the chamber through the grate means as all or at least a part of the oxygen-containing gas.
  • the oxygenating means may go further to assist the combustion process occurring upon the grate means. To do so, the oxygenating means will also establish the temperature of the oxygen-containing flue gas to within a predetermined range prior to the oxygen-containing flue gas entering the grate means.
  • the temperature typically will range about 350 to 800 degrees and more desirably 400 to 750 degrees F. Below this range, hydrochloric acid could damage parts of the blower used to move the flue gas. Using acid-resistant blower parts may permit the use of temperatures below this range. Above the upper end, chlorine gas, for example, can attack the blower.
  • the oxygenating means establishes the temperature of the oxygen-containing flue gas is to combine with the gaseous products of combustion a separate oxygen-containing gas having a temperature lower than the gaseous products of combustion taken from the chamber's outlet opening.
  • air represents a convenient low-temperature gas. Combining the appropriate amount of it with the flue gas will bring it into the desired temperature range where it sill support combustion without damaging the system.
  • the temperature limits due to the chlorine and acid gas corrosion discussed above lack relevance especially on high-temperature blowers used to convey the flue gasses.
  • the flue-gas temperature then need only remain below the temperature design limit of the blower, typically 2000 degrees F. for high-temperature parts.
  • the flue gas could well attack the components of the blower used to move the flue gas into the grate system.
  • the conduits may have protective coatings of refractory, and the grate means will benefit from protective temperature control.
  • the grate means will benefit from protective temperature control.
  • the oxygenating means includes a conduit in fluid communication with the outlet opening and the grate means.
  • a blower means coupled to this conduit, introduces air from outside the chamber under pressure into the conduit to make a mixture of the products of combustion and the air.
  • the blower accomplishes this task while remaining entirely out of contact with the gaseous products of combustion and the resulting mixture of flue gases and air.
  • the oxygenating means then introduces at least a portion of this mixture of the products of combustion and air into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • the oxygenating means includes a conduit in fluid communication with the outlet opening and the grate means.
  • An inlet means couples to this conduit between the outlet opening and the grate means and provides a pathway for the introduction of air into the gaseous products of combustion.
  • a blower means couples to the conduit between the inlet means and the grate means. The blower means draws air under a partial negative pressure from the inlet means and places it into the gaseous products of combustion to form a mixture of the air and the gaseous products of combustion prior to the products of combustion reaching the blower means. Since the mixture is created before the gasses reach the blower means, the blower means only sees gasses within the desired temperature range. The blower means then introduces the mixture of air and the gaseous products of combustion under pressure through the conduit and into the combustion chamber through the grate means as at least a part of the oxygen-containing gas.
  • an improved incinerator system especially useful for particulate or shredded material has a is a first grate means and generally defines a first upper geometric surface. This is typically the only grate means in the incinerator chambers discussed above.
  • a second grate means is located within the combustion chamber and generally defines a second geometric upper surface, with the second upper surface generally lying below the first upper surface and below the first grate means.
  • the second grate means may be removable from the combustion chamber.
  • the improvements discussed above where the oxygenating means passes an oxygen-containing gas through the first grate means will also be realized where the oxygenating means also passes the oxygen-containing gas through the second grate means.
  • all of the temperature-controlling features can apply to the second grate means as well as the first.
  • the temperature-controlling means of the prior discussion can couple to both the first and second grate means and pass a first and second fluid, respectively, other than the oxygen-containing gas and of a temperature within a predetermined range, through the first and second grate means and separate from the oxygen-containing gas.
  • the temperature-controlling fluids for the two grate means will be the same, typically two-phase water-steam under pressure.
  • the first and second grate means may each have openings through it and comprises, respectively, a first and second plurality of elongated arms attached to the chamber with the first grate means near and extending away from the inlet opening.
  • the first and second plurality of elongated arms lie generally parallel to each other.
  • the tops of the first and second plurality of arms generally define, respectively, a first and a second upper surface with the second upper surface generally lying below the first upper surface.
  • the arms of the first plurality lie generally parallel to but staggered from the horizontal location of the arms of the second plurality. Accordingly, the small pieces of material may rapidly pass through the first grate means. But, they fall onto the second grate means and undergo further reaction there.
  • the oxygenating means may pass an oxygen-containing gas through the second grate means as well as the first and for the same reasons.
  • a temperature-controlling means may couple to both the first and second grate means. As expected, it passes a first and second fluid, respectively, (usually the same) other than the oxygen-containing gas and of a temperature within a predetermined range, through the first and second grate means and separate from the oxygen-containing gas. This serves to control the temperatures of both grate means and prevent damage to either.
  • the second plurality of arms may permit its removal from the chamber. Closing off any openings that passed oxygen-containing gas or temperature-controlling fluid to this second grate means changes the incinerator to the usual structure described above.
  • one end of each of the arms of the first and second plurality of arms attaches to and cantilevers from the chamber. This allows for the expansion of the grate means under the influence of the heat in the incinerator. Connecting the ends of the arms to the sidewalls could result in damaging either or both since they heat, expand, cool and shrink at different rates. Further, cantilevered arms allow metal objects, such as tire wires or even bicycles to slide off the end without holding up the remainder of the burning refuse.
  • the refuse upon its entry into the incinerator chamber, enters the inlet opening and sits upon the grate means for a period of time. During this time, its water content should fall below 50 percent, and its volatile HC's should enter the gas phase. Placing an excessively large pile of refuse, specifically an excessively tall stack of material, may well limit if not defeat many of the beneficial purposes of the grate means discussed above and in Mr. Basic's patents. Avoiding the height of the pile of refuse above the grate means will lead to a more efficient treatment of the material. Accordingly, an improved Incinerator system results with the use of a loader means coupled to the chamber in proximity to the inlet opening.
  • the loader means first must move refuse into the chamber through the inlet opening and onto the grate means.
  • the loader means might also limit the height of the refuse above the top of the grate means. The loader means thus can aid in preventing an excessively thick layer of refuse upon the grate means.
  • each feature will benefit a system that can burn any type of material.
  • a system comprises a chamber with a fire-resistant floor means within the chamber, for holding burning material on it.
  • a grate means having openings through it is located within the chamber. It holds the material above the floor means for a limited period of time and then allows it to drop through to the floor means.
  • an oxygenating means couples to the grate means and introduces an oxygen-containing gas into the chamber through the grate means.
  • One incinerator system for carrying such burning includes a substantially enclosed chamber. This enclosure then has a fire-resistant floor means within the chamber for holding and burning material on it, an inlet opening for the introduction of solid bulk refuse, and an outlet opening for the egress of the gaseous products of combustion from the chamber.
  • a grate means having openings through it sits within the chamber and adjacent to the inlet opening and above the floor means. The grate means holds refuse newly introduced through the inlet opening above the floor means for a limited period of time and then allows the refuse to drop through to the floor means while burning.
  • a significant step forward in regulating the temperature of the system involves controlling the temperature of the grate means, but doing so independently of the temperatures of both the oxygen-containing gas introduced through the grate means and, if present, the gaseous products of combustion.
  • This method of independently controlling the temperature of the grate means permits the separate optimization of the temperatures of the grate means, the oxygen-containing gas introduced through the grate means, and, where appropriate, the gaseous products of combustion.
  • One convenient method of separately controlling the temperature of the oxygen-containing gas through the grate means involves passing a fluid other than the oxygen-containing gas and of a temperature within a predetermined range, through the grate means. Keeping this fluid separate from the oxygen-containing gas allows the former to control the temperature of the latter without mixing with it. This, in turn, permits the use of two entirely separate fluids for the different purposes.
  • a very useful material for passing through the grate means for controlling its temperature takes the form of a two-phase fluid of a temperature within a predetermined range.
  • the water-steam combination readily accomplishers this task, especially since its temperature under various pressure has long been established.
  • the fact that it is passed separately through the grate means permits its facile handling in another manner.
  • the fluid may be retained in a closed system and treated elsewhere. Accordingly, after the fluid has passed through the grate means, it then passes along a closed system and back through the grate means.
  • Two particular advantages of the water-steam system results from the fact that it needs no outside source of power to assure its circulation. Thus, even with an electrical failure, the water-steam mixture will continue to circulate to provide its temperature protecting function. Further, the continued circulation of this two-phase system avoids localized hot spots that could otherwise develop and effect harm in various locations of the system.
  • the gaseous products of combustion contain heat that can find economic use elsewhere.
  • the combustion gasses typically pass through a heat exchanger, usually a boiler.
  • the method of recovery involves transferring the heat in the gaseous products of combustion to a two-phase fluid such as water-steam.
  • the fluid after receiving the heat from the combustion gasses, may then find use in controlling the temperature in the grate means.
  • the two-phase fluid is then passed through the grate means separate from the oxygen-containing gas.
  • the oxygen-containing gas may be introduced into the combustion chamber through a conduit formed in a membrane tube wall from sections of relatively thin, substantially heat conducting material.
  • the membrane tube wall should constitute at least part of the grate means and have at least two spaced-apart, substantially fluid-tight tubules formed from substantially heat-conducting material and in thermal contact with the sections through which the oxygen-containing gas passes.
  • the fluid other than the oxygen-containing gas passes through the substantially fluid-tight tubules to control the temperature of the grate means.
  • the grate means may comprise at least one passageway having a composition of steel through which the oxygen-containing gas passes prior to being introduced into the combustion chamber.
  • the steel has the benefits of strength (below specific temperatures) and economy.
  • refuse may undergo combustion in the chamber. At least a portion of the steel passageway may be directly exposed to this combustion occurring within the chamber without any harmful effect of the heat upon the steel.
  • first and second grate means each having openings through them.
  • the first grate means has a general location within the chamber adjacent to the inlet opening and above the floor means.
  • the first and second grate means generally define, respectively, first and second geometric upper surfaces.
  • the second upper surface of the second grate means generally lies below the first upper surface and thus below the first grate means.
  • the process for assisting combustion within an incinerator system of this sort generally involves passing an oxygenating-containing gas through the first grate means and into the chamber. Refuse is introduced through the inlet opening and placed upon the first upper surface from where it is allowed to drop through the first grate means. The refuse is then placed upon the second upper surface and then allowed to drop through the second grate means as well. Lastly, the refuse is then placed upon the floor means while burning. The time involved in the refuse sitting on and passing through the two grate means may accomplish its incineration in the controlled manner discussed above.
  • the first and second grate means may generally comprise, respectively, first and second pluralities of elongated arms attached to the chamber with the first plurality extending away from the inlet opening.
  • the second plurality of elongated arms lies generally parallel to the first plurality.
  • the tops of the first and second pluralities of arms generally define, respectively, first and second upper surfaces.
  • the second upper surface generally lies below the first upper surface with the arms of the first plurality lying generally parallel to but staggered from the horizontal location of the arms of the second plurality.
  • the process will include passing an oxygen-containing gas through the first grate means and into the chamber accompanied by placing refuse newly introduced through the inlet opening and upon the first upper surface. The refuse is then allowed to drop through the first plurality of arms and is then placed upon the second upper surface. From there, it is allowed to drop through the second plurality of arms and is then placed upon the floor means while still burning.
  • the oxygen-containing gas does not bear the burden of controlling the temperature of the grate, gasses other than air may more readily find use in this process.
  • the flue gasses hold significant potential for advancing the incinerating methods.
  • at least a portion of the gaseous products of combustion from the chamber's outlet opening may be introducing into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • the flue gas still contains an amount, albeit lower than air, of oxygen.
  • temperature-controlled gasses involves first introducing at least a portion of the gaseous products of combustion into the chamber through the grate means as at least a part of the oxygen-containing gas. The temperature of the oxygen-containing gas may be established to within a predetermined range prior to the oxygen-containing gas entering the grate means.
  • any component with steel, especially a blower, exposed to the gasses may suffer unacceptable harm if exposed to the flue gasses outside the temperature range of 350 to 800 degrees F., or more particularly and safely, 400 to 750 degrees F.
  • One method of preventing such harm is to keep the blower and other steel components out of contact with the flue gasses.
  • the blower may sit outside of the gas stream and introduce air under sufficient pressure to create a Venturi, or vectored, effect and force the air and the flue gasses into the grate means.
  • this process involves first introducing air from outside the chamber under pressure into the gaseous products of combustion through the use of blower means to form a mixture of air and such products. At least a portion of the mixture of air and the gaseous products of combustion is introduced into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • the blower means is, of course, kept out of contact with the gaseous products of combustion and the mixture.
  • the blower may suck air into the flue gasses and reduce their temperature to an acceptable level before the latter can reach the blower itself.
  • Taking advantage of this concept involves introducing under a partial negative pressure, provided by a blower means, air from outside of the chamber into the gaseous products of combustion. A mixture of the air and the gaseous products of combustion is formed prior to the products of combustion reaching the blower means. Finally, the mixture of air and the gaseous products of combustion is introduced under positive pressure into the grate means and into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • the temperature of the grate means may still need or desire additional temperature control.
  • This process involves introducing the gaseous products of combustion from the outlet opening of the chamber into the chamber through the grate means as at least part of the oxygen-containing gas.
  • a fluid other than the oxygen-containing gas and of a temperature within a predetermined range, is passed through the grate means and separate from the oxygen-containing (flue) gas.
  • the oxygen-containing gas from the grate means has the functions described with regards to the refuse sitting there. Allowing the oxygen-containing gas to pass through the mass of refuse will allow it to accomplish its objective. An excessively large and tall mass may prevent the gas from penetrating it and prevent or minimize the desirable functions of the gas. A method to avoid this first involves moving refuse into the chamber through the inlet opening onto the grate means. The height of the refuse above the top of the grate means may then be limited to permit the gas to penetrate the mass of material.
  • the structures and methods described above can also serve to merely dry refuse or other material for any purposes and not just in aid of incinerating the material.
  • the gas introduced through the grate means need not contain oxygen since it may not even support combustion.
  • the gas from the grate means may supply none of the requisite oxygen.
  • the drying may also benefit from the use of the generally hot gaseous products of combustion even though no burning takes place in the drying chamber.
  • the drying may utilize the gaseous products of combustion taking place elsewhere for other purposes, for example for power generation from fossil fuels. The exhaust gasses from such a generator could well find use for this drying purpose.
  • a drying chamber for this purpose will have a grate means.
  • a gas then passes through the grate means and into the drying material.
  • the material to be dried sits upon the grate means.
  • all of the structures and methods described above will find use, individually or in combination to benefit the drying equipment and methods.
  • the same components and methods may serve, under the proper conditions, to force volatile hydrocarbons from the material.
  • FIG. 1 gives a side elevational diagram of a water-wall incinerator system having two stages of reburn.
  • FIG. 2 provides a diagram of a main incinerator chamber with three pulsing hearths and a newly introduced load of refuse sitting on a dryer grate.
  • FIG. 3 shows the same chamber as FIG. 2 but with the load of refuse spread upon the dryer grate.
  • FIG. 4 gives a diagrammatic, isometric view of a dryer grate in the vicinity of the loader opening to the main incinerator chamber.
  • FIG. 5 shows a cross-sectional view along the line 5 - 5 of the dryer grate of FIG. 4 .
  • FIG. 6 provides an isometric view of an alternate dryer grate near the loader opening of the main chamber which has sloping walls.
  • FIG. 7 gives a cross-sectional view along the line 7 - 7 of FIG. 6 of a single arm of a dryer grate.
  • FIG. 8 provides an end view along the line 8 - 8 of FIG. 6 of a single arm of a dryer grate.
  • FIG. 9 gives a side-elevational view, partly in cross section, of a single arm of a dryer grate having three continuous membrane tubes for the circulation of heat-controlling fluid.
  • FIG. 10 has a cross-sectional view, along the line 10 - 10 , of a single arm of the temperature-controlled grate of FIG. 9 .
  • FIG. 11 provides an enlarged view of a portion of the arm of the membrane dryer grate of FIG. 10 .
  • FIG. 12 shows, in cross-sectional view, the end connection between two tubes in the dryer grate arm of FIGS. 9 to 12 .
  • FIG. 113 gives an alternative end connection, in cross-sectional view, between two tubes in a dryer grate arm.
  • FIG. 14 provides a top-plan view of an air-grate system having three arms.
  • FIG. 15 shows a side-elevational view, partly in cross section along the line 15 - 15 , of the dryer-grate system of FIG. 14 .
  • FIG. 16 gives a cross-sectional view along the line 16 - 16 , of the dryer grate system of FIG. 14 .
  • FIG. 17 provides a partial, enlarged, side-elevational view, along the line 17 - 17 , of an arm of the dryer grate of FIGS. 16 and 18 .
  • FIG. 18 has a cross-sectional view along the line 18 - 18 of the dryer grate arm of FIG. 17 .
  • FIG. 19 illustrates, in a top-plan view, a dryer grate system very similar to that of FIGS. 14 to 18 but where each grate arm has five pairs of tubes for the circulation of temperature-controlling fluid rather than the three pairs of the prior figures.
  • FIG. 20 provides a side-elevational view, partly in cross section along the line 20 - 20 , of the dryer-grate system of FIG. 19 .
  • FIG. 21 gives a cross-sectional view along the line 21 - 21 of the dryer grate system of FIG. 19 .
  • FIG. 22 shows a dryer grate arm with a generally trapezoidal cross section as an alternative to the rectangular shape of FIG. 21 .
  • FIG. 23 illustrates a dryer grate arm having a trapezoidal cross section similar to that of FIG. 22 but with less protective refractory.
  • FIG. 24 also has a trapezoidal dryer grate arm similar to that of FIG. 23 but with additional nozzles for the introduction of the oxygen-containing gas.
  • FIG. 25 shows a dryer grate system utilizing the trapezoidal arm of FIG. 24 and a plenum for the introduction of the oxygen-containing gas into the grates.
  • FIG. 26 gives a bottom plan view, partially in section, along the line 26 - 26 of the dryer grate system of FIG. 25 .
  • FIG. 27 has a cross-sectional view, along the line 27 - 27 , of the dryer grate system of FIGS. 25 and 26 showing the plenum introducing the oxygen-containing gas into the arms themselves:
  • FIG. 28 provides a cross-sectional view, along the line 27 - 27 , of the dryer grate system of FIGS. 25 and 26 showing the plenum with the arms forming a membrane, gas-tight wall.
  • FIG. 29 diagrams the route for introducing flue gas from the incinerator's later stages into the dryer grate system.
  • FIG. 30 provides a side elevational view of a recirculatory system that provides flue gas from incinerator combustion directly into an air-grate system.
  • FIG. 31 gives a top plan view the flue-gas recirculating system of FIG. 30 .
  • FIG. 32 is a side elevational view of the conduits which, in the vicinity of the dryer grate, provide recirculated flue gas directly to the grate arms.
  • FIG. 33 provides a view of the connection of the conduit providing the recirculated flue gas in FIG. 32 to a dryer grate.
  • FIG. 34 shows an end elevational view of a recirculation system for flue gas in which a blower, introducing ambient air, remains out of contact with the flue gas.
  • FIG. 35 gives an isometric view, partially in section, of a damper control for limiting the amount of flue gas recirculated to a dryer grate system.
  • FIG. 36 shows a mostly cross-sectional view along the line 36 - 36 of the flue-gas controlling damper of FIG. 35 .
  • FIG. 37 shows, in an isometric view, the damper door and support for the damper of FIGS. 35 and 36 .
  • FIG. 38 gives a top plan view of the recirculation system of FIG. 34 showing the bleeding of flue gas from the incinerator system and the introduction of air into it.
  • FIG. 39 portrays an alternate structure for the gas mixing and blower system of FIG. 38 .
  • FIG. 40 provides a side elevational view of the recirculating system of FIGS. 34 and 38 showing the passage of the flue gas to the dryer grate.
  • FIG. 41 gives an end elevational view of the flue-gas recirculating system of FIGS. 37 to 39 showing the system's connection to the dryer grate arms.
  • FIG. 42 diagrams a system utilizing two dryer grates for particulate, small, and shredded refuse in which one grate may readily undergo removal.
  • FIG. 1 shows generally at 75 a modern incinerator system employing the two pulse hearths 76 and 77 and the two stages of heat recovery composed of the water wall 78 and the boiler 79 .
  • solid bulk refuse enters the hopper 82 .
  • the ram loader 83 pushes it into the main combustion chamber indicated generally at 84 .
  • the refuse falls onto the first pulsed hearth 76 where it burns with the assistance, if necessary, of additional heat from the burner 85 .
  • the first pulsed hearth 76 moves the burning refuse across its surface and away from the entrance to the main chamber 84 in the fashion of the Basic U.S. Pat. No. 4,475,469 discussed above.
  • the burning refuse falls onto the second pulsed hearth 77 where incineration continues.
  • the blowers 86 and 87 provide air for the combustion process.
  • the refuse after completing its burning, falls from the second pulsed hearth 77 into the ash pit 89 which contains water.
  • the scoop 90 pulled by the cable 91 attached to the motor 92 , travels along the track 93 . It then dumps the ashes into the hopper 94 , and from there it falls into the bin 95 .
  • the gaseous products of combustion pass from the main incinerator chamber 84 into the passageway 102 . There, they join gasses from the raw refuse in the hopper 82 , which under the action of the blower 103 travel along the conduit 104 . This removes and will serve to destroy the foul aroma of the raw refuse.
  • the gasses from the passageway 102 then enter the first reburn stage 108 . There, with the controlled assistance of the auxiliary fuel burner 109 , if necessary, and the air fan 110 , they continue to burn at an elevated temperature to destroy combustible moieties in the gas stream. As the incineration of the gaseous products of combustion proceeds, the gasses pass to the second reburn section 111 where they continue to burn. While doing so, they receive controlled amounts of additional air from the blower 112 .
  • the gasses could, if a problem existed in the system, escape through the safety relief stack 117 .
  • the damper 118 keeps the stack 117 closed, and the gasses travel to stage 4 of the system 121 . There they receive the addition of cooled gasses from the conduit 122 .
  • the cooling of the combustion gas stream thus effected lowers its temperature below the point where various ingredients in the gasses, such as zinc oxide, can exist in the vapor state. These components thus precipitate out in the cooling process and, accordingly, do not condense on the tubes of the boiler convection 79 when the combustion stream enters it. As the somewhat cooled gasses travel through the boiler 79 , the give up additional heat for further useful purposes.
  • the first and second reburn stages 108 and 111 intervene between the water wall 78 and the boiler 79 . This permits sufficient heat to remain in the gasses in the two reburn stages 108 and 111 to achieve full burning of the combustible elements of the gas stream.
  • the gas stream After exiting the boiler 79 , the gas stream enters the economizer 123 . There, it preheats feed water that will find use in the boiler system of the water wall 78 and the boiler 79 . Accordingly, the economizer saves further heat energy from the combustion process and feeds it back into the water that will pass through the system. This saved heat adds to the steam and electrical generation of the incinerator system 75 .
  • the remainder of the gas stream from the economizer 123 passes along the conduit 132 to the heat exchanger 133 .
  • the blower 134 passes outside air through the exchanger 133 to further cool the gas stream.
  • the gasses have given up a substantial portion of their heat in the boiler 79 and in the economizer 123 .
  • the temperature of the gas stream may still remain above the vaporization temperature, or the dew point, of acids contained in it.
  • the heat exchanger 133 reduces the temperature to a point, generally below about 250° F. where the acids in the gas stream actually condense into the liquid state. This allows their neutralization by combining with a base and their removal in subsequent treatment, as discussed immediately below.
  • the exhaust gasses then receive dry lime and activated carbon along the conduit 135 to neutralize the condensed acids and remove pollutants, respectively.
  • the gas stream with these added materials then enters the baghouse filter and dry acid gas scrubber 138 which separates the gas from the particulate matter.
  • the solid matter falls into the bin 141 where it awaits removal.
  • the gasses in the conduit 142 are pulled by the induced-draft fan 148 , and they escape into the atmosphere through the main exhaust stack 149 .
  • the continuous emissions monitor system 150 permits the evaluation of the discharge gasses for various combustion products possibly contained in the gasses exiting the stack 149 . These could include the particulates, the carbon compounds, the nitrous oxides, the sulfur emissions, as well as others. The exact task of the monitor system 150 depends upon the particular case involved including such factors as the refuse undergoing incineration, the siting of the incinerator, and others.
  • the incinerator 75 uses a fuel such as natural gas, propane, butane, or oil in its burners 85 and 109 to heat it to its operating temperature where it can start receiving actual refuse.
  • a fuel such as natural gas, propane, butane, or oil in its burners 85 and 109 to heat it to its operating temperature where it can start receiving actual refuse.
  • the exhaust gas stream contains virtually no components that the baghouse 138 need remove.
  • the damper 145 may fully open and allow exhaust gasses to bypass the baghouse 138 and pass through the conduit 143 directly to the conduit 142 and the exhaust stack 149 .
  • the damper 145 closes, and the exhaust gas stream enters the baghouse 138 as described above.
  • FIGS. 2 and 3 show the main incinerator chamber generally at 155 with the three hearths 156 to 158 . These hearths actually take the form of pulsed hearths as shown in Mr. Basic's patents U.S. Pat. Nos. 4,475,469 and 4,706,578 referenced previously.
  • the chamber 155 disposes of its gasses of combustion through the outlet opening 162 . The ashes remaining after the refuse burns fall into the pit 163 .
  • the inlet opening 164 allows for the entry of the bulk refuse 168 into the interior 169 of the combustion chamber 155 .
  • the inlet door 170 sits in its upward, or open, configuration in the figures to permit the entry of the refuse 168 . To close, the door 170 would rotate in a counterclockwise direction about the arc 171 shown in dashed lines to block the opening 164 .
  • the refuse 168 starts its journey into the incinerator chamber 155 by being placed into the hopper 175 .
  • the plug loader 176 would have to move to the left of the hopper 175 and provide a space within the hopper 175 for the material.
  • the plug loader would then move to the right under the force of a motor.
  • the loader 176 would reach the position shown in FIG. 2 with its front end 179 just inside the inlet opening 164 .
  • the loader 176 With the loader 176 in the position shown in FIG. 2 , the refuse 168 sits in a large pile partially upon the shelf 180 and partially upon the grate 181 .
  • the loader 176 has moved further to the right and into the incinerator chamber 155 . As it moved to the right, it spread the refuse 168 into a relatively thin layer upon the grate 181 . This allows the oxygen-containing gas introduced through nozzles in the grate 181 to seep and percolate through the entire mass of refuse, drying it and boosting off the volatile hydrocarbons. Typically, a layer of two to six and possibly eight inches in depth will permit the gasses from the grate 181 to achieve their desired objectives.
  • the movement of the plug loader 176 into the chamber 155 has a beneficial effect in addition to spreading out the refuse 168 on the grate 181 .
  • the loader 176 moves into the chamber, it pushes this noncombustible metal debris along the grate 181 .
  • Moving the loader sufficiently far into the chamber that its front end 179 reaches the end of the grate 181 will force these metal pieces to fall off the grate and onto the floor 156 .
  • the floors 156 to 158 will move the metal refuse to the pit 163 .
  • the depth to which the loader 176 moves into the incinerator chamber 155 varies for different circumstances.
  • the loader may travel far enough for its front end 179 to reach or almost reach the end of the grate 181 .
  • the loader 176 may extend almost as far as seen in FIG. 3 .
  • the loader may only enter a small or medium distance into the chamber 155 .
  • the motor moving the loader should have controls, whether manual or automatic, to permit the different movements of the loader 176 depending upon the circumstances.
  • the loader 176 As the loader 176 enters the chamber 155 , it experiences the heat generated by the combustion occurring there. Accordingly, it should typically have some protection from the high temperatures found there. This protection may take one or more forms. Thus, the loader may first have a refractory covering. Further, air may circulate within the loader itself to effectuate its cooling. Whatever cooling finds use, it should desirably have the ability to protect the loader if it should happen to become stuck inside of the chamber 155 .
  • FIG. 4 diagrams the air-grate, shelf, and loader interrelationship.
  • the loader 176 pushes the refuse onto the shelf 180 , described below especially with regards to FIG. 5 .
  • the shelf 180 may actually take the form of a plenum having the interior 186 .
  • This interior 186 receives cooling air from the conduit forced there by the blower 190 .
  • the cool air passes through the interior 186 , around the three arms 193 to 195 of the grate 181 , and out the passageway 197 .
  • the plenum 180 has an interior skin 198 of metal, typically steel, and a refractory coating 199 to protect it from the heat and possibly chemicals in the combustion chamber and from abrasion caused by refuse moving across it.
  • the three grate arms 193 to 195 extend through the plenum 186 and to the outside 201 of the incinerator chamber.
  • the ends 203 of the grate arms that protrude from the chamber permit the passage of the oxygen-containing gas and the cooling fluid into the arms themselves.
  • FIGS. 6 to 8 give a more realistic view of an incinerator chamber in the general area 206 of its inlet opening or throat 207 but without the loader. Again refuse enters the opening 207 in the wall 208 and sits or, more accurately, moves along upon the shelf 209 . It can then come to rest on the two identical grate arms 213 and 214 .
  • the shelf 209 forms the top of the plenum 215 whose side 216 permits the entry of cooling air.
  • the incinerator also includes the two side walls 217 and 218 .
  • Each includes the membrane-tube wall, 219 and 220 , respectively, to permit heat recovery and removal from the incinerator chamber as seen in Mr. Basic's patents listed above.
  • the walls 219 and 218 include the sloping side shelves 223 and 224 , respectively. The shelves cause the refuse to slide from the side walls 217 to 218 so that it will come to the grate arms 213 and 214 .
  • the structure of the grate arm 214 appears in the cross-sectional view of FIG. 7 . However, because of their identical structure, the same comments also hold true for the other grate arm 213 .
  • the grate arm 214 has the six metal tubules 231 to 236 sitting at the corners of a hexagon. Each of the sheet metal fins 241 to 246 sits between two of the tubules 231 to 236 and, by welds, connect them intimately together. The net result is an integral whole that takes the general form of a hollow, cylindrical membrane tube wall.
  • the hollow interior 249 permits the passage of the oxygen-containing gas used in the processes occurring in the refuse on top of the arm 214 .
  • the oxygen-containing gas escapes the arm 214 through the openings, or nozzles or jets, 251 and 252 placed in the metal fins 241 and 244 , respectively.
  • the oxygen-containing gas can take various alternatives of which air represents the most common and expedient. Flue gas, as discussed both above and below, portends significant benefits as the oxygen-containing gas.
  • it has a significant amount of heat that can find use in drying the refuse, if needed. Also, its heat can assist in driving off the volatile hydrocarbons.
  • a fluid having a generally known temperature passes through the tubules 231 to 236 .
  • the tubules 231 to 236 have a composition of a heat conducting material such as steel, the fluid's temperature will pass to the tubules' metal.
  • the benefit of the temperature-controlling fluid passes further than the tubules 231 to 236 themselves.
  • the tubules 231 to 236 have a heat-conducting connection to the metal fins 241 to 246 . Welding or other integral connections will work well for this purpose. Accordingly, the temperature of the tubules 231 to 236 will pass from the tubules and onto the fins 241 to 246 . In other words, excess heat from the fins 241 to 246 will pass to the tubules 231 to 236 from where the fluid inside will carry it off to another location. Naturally, the width of the fins 241 to 246 should not exceed that beyond which their heat can pass in a timely fashion to the tubules 231 to 236 with their fluid.
  • Two-phase steam represents a desirable fluid to pass through the tubules 231 to 236 .
  • it will maintain a known temperature.
  • heating it anywhere will induce circulation of the fluid, thus avoiding the build-up of temperature at a location that could cause a hot-spot with concomitant localized structural deterioration or destruction of the arm 213 or 214 .
  • Other potential fluids can include oil and water, either most likely under forced circulation.
  • the two-phase steam may move through the tubules under its own impetus or under forced circulation.
  • saturated steam at 40 bars of pressure has a temperature of about 500 degrees F. Any steam system that will maintain the temperature of the grate arms below the temperature at which they will start to suffer damage will clearly suffice.
  • FIG. 8 shows, in effect, how the tubules 231 to 236 pass the fluid in them through and out of the incinerator chamber.
  • the tubules 231 to 236 connect to each other in pairs.
  • the end of the tubule 233 connects to the end of the tubule 236 through the sealed end connection 255 .
  • the tubule 232 connects to the tubule 231 through the end connection 256
  • the tubule 234 connects to the tubule 235 through the end connection 257 .
  • fluid introduced into the tubules 232 to 234 passes out of the chamber through the tubules 231 , 236 , and 235 , respectively.
  • the tubules 231 to 236 with their end connections 255 to 257 constitute a completely closed, sealed system for the passage of the temperature-controlling fluid. That fluid never leaves the sealed tubule system and in particular never contacts the oxygen-containing gas passing through the interior 249 of the arms 213 and 214 .
  • the temperature-controlling fluid thus enters the arms 213 and 214 , passes through the tubules 232 to 234 , and enters the end connections 256 , 255 , and 257 , respectively.
  • the fluid controls the temperature first of the tubules themselves and then the metal fins 241 to 246 . This temperature control prevents the heat destruction of the arms themselves, thus preserving the grate for its purposes discussed above.
  • FIGS. 6 and 8 show the interconnecting metal fins 241 and 246 cut away to show the underlying tubules 233 and 234 .
  • the fins 241 to 246 extend all the way and weld to the end connections 255 to 257 and completely seal off the interiors 149 at the ends of the arms 213 .
  • air from the air-grate arm interior 249 can depart the dryer grate arm and enter the combustion chamber only through the nozzles 251 and 252 .
  • FIGS. 6 to 8 show the steel components of the arms 213 and 214 completely unprotected from heat.
  • the fluid in the tubules 231 to 236 (as well as the end connections 255 to 257 ) adequately cools the arms 213 and 214 so that the high temperatures generally encountered in the combustion chamber do not have a deleterious effect upon them.
  • the steel components of the arms 213 and 214 because of the fluid in the tubule components 231 to 236 and 255 to 257 , remain at a sufficiently low temperature that they require no heat protection such as that offered by a refractory coating.
  • the oxygen-containing gas such as air
  • the oxygen-containing gas can fail to appear in the interiors 249 of the arms 213 and 214 . This can result from such simple causes as the failure of electricity for the blower pushing the oxygen-containing gas. Or, the blower itself may fail.
  • the loss of the oxygen-containing gas in the arm interiors 249 will not result in the loss of structural integrity in steel of the arms 213 and 214 .
  • the fluid in the tubules 231 to 236 and 255 to 257 will still protect the grate arms 213 and 214 from the high heat encountered in the combustion chamber. Further, the temperature-controlling fluid avoids the need for the air or other oxygen-containing gas to cool the grate arms 213 and 214 .
  • Removing all or part of the refractory coating on the steel grate arms 213 and 214 thus becomes feasible due to the temperature-controlling effect of the fluid in the tubules 231 to 236 and 255 to 257 .
  • Dispensing of any amount of refractory has several potential benefits. This results from the necessity of supporting the weight of any refractory used or, alternately, the benefit of not having to carry the weight of refractory not used. Since the arms 213 and 214 use no refractory (and other structures described below have only partial refractory coverings) these structures may support other weight that can benefit the process. This allows grate arms of greater length with the same supporting structure. Or, the grate arms can receive and support greater loads of refuse. Or, without the necessity for the same amount of refractory, a lighter supporting structure may suffice where heavier supports were required in the past.
  • FIGS. 9 to 11 show a grate arm generally at 261 largely surrounded by a refractory coating.
  • the grate arm 261 includes the six fluid tubules 265 to 270 , with the tubules 265 and 266 interconnecting through the end connector 275 , the tubules 267 and 270 connecting through the end tubule 276 , and the tubules 268 and 268 similarly interconnected at their ends.
  • the fins 279 weld to the tubules 265 to 270 to make a membrane tube wall conduit with the interior 280 as discussed previously.
  • the interior 280 provides a channel for the passage of the oxygen-containing gas which enters the combustion chamber through the jets 283 .
  • the sections 286 of refractory or ceramic material or even metal adhere to the fins 279 to provide abrasion resistance. In the case of metal sections 286 , the fluid in the tubules 265 to 270 also provide them protection against heat damage.
  • the arm 261 has the refractory sections 286 almost completely encircling it. Only the outside portions of the tubules 265 to 270 show through the refractory. In FIGS. 6 to 8 , in comparison, the arms 213 and 214 carried no refractory over the metal of the tubules or the interconnecting fins.
  • the figures that follow show other arrangements of refractory. In some cases, all of the metal of the arm has a refractory covering. In others, only the top portions of the arms have the covering which serves the purpose specifically of protecting them from abrasion damage as the refuse sits and moves upon them.
  • FIG. 12 provides an enlarged view of the end interconnection 275 between the two side tubules 265 and 266 .
  • the joining of these three components leaves a smooth, uninterrupted interior channel 291 for the temperature-controlling fluid to pass through on its way from its inlet, through the chamber, and on to its outlet.
  • FIG. 13 An alternative end connection between the two tubules 295 and 296 appears in FIG. 13 .
  • the fluid-tight, box-type connector 297 connects to the tubules 295 and 296 .
  • the fluid may freely flow between the tubules 295 and 296 through the connector 297 .
  • the box connector 297 has the two openings 299 and 300 in its end. This allows direct access to the two tubules 295 and 296 for cleaning purposes, for example.
  • some scale may deposit on the tubules unless boiler water has been used. In this case, the openings permit the removal of such scale.
  • Suitable plugs inserted in the openings 299 and 300 close them when the tubules find actual use during incineration.
  • a complete, three-arm, air-grate system appears generally at 311 in FIGS. 14 to 18 .
  • the actual components for introducing the temperature-controlling fluid receive discussion below with regards to FIGS. 29 to 40 .
  • the dryer grate 311 includes the three cantilevered arms 313 to 315 . These arms appear almost identical to the arms 213 , 214 , and 261 of the prior figures. However, the arms 313 to 315 have the refractory sections 318 which completely encase all of the steel of their tubules 319 and 320 . Anchors, such as the bolts 323 , keep the refractory sections 318 in place.
  • the refractory end caps 324 protect the ends of the tubules 319 and 320 .
  • the tubules 319 and 320 on their respective ways into and out of the incinerator chamber, pass through the plenum 331 seen in FIGS. 14 and 15 .
  • the plenum has the steel casing 332 with the protective refractory covering 333 .
  • the top 334 of the plenum 331 forms the shelf over which the refuse passes as it enters the combustion chamber.
  • an air supply through the plenum 331 protects it from heat damage.
  • the inlet tubules 319 connect to the lower header 339 to receive their supply of temperature-controlling fluid.
  • the outlet tubules connect to the upper header 340 .
  • the temperature-controlling fluid from whatever source, enters the lower header 339 through its coupling 341 . It then passes through the lower tubules 319 , which themselves travel through the plenum 331 , until it reaches the ends of the arms 313 to 315 . It then returns along the upper tubules 320 , again through the plenum 331 , and out to the upper header 340 . The fluid leaves the header 340 through its coupling 342 for further processing, after which it may then again engage in the same journey.
  • oxygen-containing gas enters the interiors 345 of the membrane tube wall conduits of the arms 313 to 315 , seen in FIGS. 16 and 18 . It then passes through the jets 346 into the refuse, if any, sitting on the arms 313 to 315 , and then into the combustion chamber.
  • the air-grate system generally at 351 of FIGS. 19 to 21 appears very similar to that of the prior five figures. It has the three arms 353 to 355 with each including the inlet tubules 357 and the outlet tubules 358 . Both sets of tubules 357 and 358 pass through the plenum 361 which has the refractory covering 362 . The inlet tubules connect to the lower header 365 where the temperature-controlling fluid arrives through the coupling 366 . Similarly, the outlet tubules 358 pass through the plenum 361 and connect to the outlet header 367 which attaches to its coupling 368 .
  • the arms 353 to 355 each incorporates five inlet tubules 357 and the same number of outlet tubules 358 , which compares to the total number of six tubules of the prior five figures.
  • the arrangement of the tubules in FIG. 21 gives the arms 353 a generally rectangular cross section. Nonetheless, the refractory sections 371 , held in place by the anchor bolts 372 , cover the tubules 357 and 358 entirely.
  • the oxygen-containing gas passes from the interior 375 through the jets 376 .
  • the larger number of tubules 357 and 358 in comparison to the prior systems permits arms 353 to 355 with the large interiors 375 .
  • the interiors 375 can then pass greater amounts of gas through them and the jets 376 and into the refuse and the combustion chamber.
  • the air-grate arm seen generally at 381 appears virtually identical to the arms 353 to 355 in FIG. 21 . Accordingly, the same numbers have found use in this figure for the same parts.
  • the bottom 382 of the arm 381 has a smaller width than the top 383 .
  • the sides 387 slope inward as they go from the top 383 to the bottom 382 .
  • the benefit of this configuration becomes clear when several of the arms 381 , typically three, line up next to each other in a combustion chamber. There, the spaces between each pair of adjacent arms increases in descending from the tops 383 to the bottoms 382 . This results from the evident fact that the arm bottoms 382 are narrower than the tops 383 .
  • the grate arm generally at 389 in FIG. 23 has a trapezoidal shape similar to that of the arm 381 of the prior figure and for the same reason: to avoid refuse falling off the top of the arm becoming wedged against the arm as it travels to the floor underneath.
  • the arm 389 includes the inlet tubules 390 and the outlet tubules 391 .
  • the inlet tubules 390 and the outlet tubules 391 pair up with each other to provide continuous paths for the temperature-controlling fluid.
  • the fins 393 interconnect the tubules 390 and 391 to create the membrane-tube-wall conduit. Further, oxygen-containing gas in the interior 394 of the arm's membrane-tube wall exits through the jets 395 to enter the combustion chamber 396 .
  • the structure of the arm 389 displays substantial differences from those in the prior figures.
  • the refractory 401 only covers the top 402 and a small portion of the sides 403 of the arm 389 .
  • the fluid flowing through the tubules 390 and 391 provide heat protection to the metal components of the tubules 390 and 391 themselves as well as the fins 393 .
  • the refractory 402 need not guard the metal components against the heat in the incinerator chamber. Rather, the refractory 410 imparts abrasion resistance to the arm's top 402 . This protects the top 402 from damage that refuse of different types could otherwise effect upon the grate arm 389 .
  • the Y-anchors 406 hold the refractory 401 in place on the top 402 of the arm 389 .
  • the use of the alloy Y-anchors 406 indicates that the refractory 401 was cast in place on the top 402 of the arm 389 . Further, this occurred after the attachment of the anchors 406 to the fins 393 .
  • the refractory 401 when cast, extends across the entire width of the arm 389 .
  • the refractory 401 may be cast in sections along the length of the arm. This makes construction noticeably simpler and may allow for expansion and contraction of the components.
  • the refractory 402 only serves to protect the top of the metal structure of the tubules 391 and 392 and the interconnecting fins 393 from abrasion.
  • the fluid passing through the tubules 391 and 392 protect it from heat. Accordingly, having a chunk of the refractory 402 in FIG. 23 or of the material of the prior figures fall off does not spell doom. In fact, this rather common occurrence will likely have very little or no effect upon the operation of the structure. It can simply wait until the next maintenance shutdown of the incinerator for the appropriate repairs.
  • a metal plate affixed to the top of the metal structure may well provide such protection.
  • the metal, attached to the metal-tubule structure may also receive some heat protection from fluid passing through the tubules. However, this has less importance than the heat protection of the tubule-and-fin membrane construction since the latter supports the grate-arm structure and allows it to carry its own weight and the weight of the refuse placed on top of it.
  • the grate arm 413 in FIG. 24 has a structure almost identical to the arm 389 of the prior figure.
  • the essential difference lies in the second set of jets 415 for introducing the drying, oxygen-containing air into the combustion chamber.
  • These additional jets 415 passing through the refractory 416 , allow for the introduction of greater amounts of gas from the arm's interior 394 into the refuse sitting on top. Having additional jets, rather than the same number of larger-diameter jets, permits the entry of more gas without the loss of gas velocity passing through them.
  • the arm with these additional jets may find use in particular with very wet refuse such as food.
  • the additional gas passing through the jets can help dry the refuse so that it can ignite and burn. This in particular can allow drying of very wet refuse such as food which can have up to 80 percent moisture and can contain such items as celery and watermelon.
  • FIGS. 25 to 28 show the use of a plenum to introduce the oxygen-containing gas into the membrane-tube-wall conduits for passage into the combustion chamber.
  • the discussion below with regards to FIGS. 36 to 40 illustrates the direct entry of the gas into the interiors of the membrane tube wall conduits.
  • the air-grate system generally at 427 in FIGS. 25 and 26 show the use of the three grate arms 413 described with regards to the prior figure.
  • the structure described there extends to the shelf plenum 428 through which a cooling gas passes from its inlet 429 to its outlet 430 .
  • the top 435 of the plenum 428 constitutes the shelf over which the refuse passes as it enters the combustion chamber 436 , as discussed with reference to FIGS. 4 to 6 above.
  • the space 437 to the left of the plenum 428 sits outside of the combustion chamber.
  • the inlet tubules 390 connect with the inlet header 439
  • the outlet tubules 391 connect to the outlet header 440 .
  • the temperature-controlling fluid passes from the inlet header 439 , through the inlet tubules 390 and the outlet tubules 391 , and into the outlet header 440 for treatment elsewhere.
  • the dryer-grate system 427 has the oxygen plenum 444 to the left in FIGS. 25 and 26 . It also appears in the cross-sectional views of FIGS. 27 and 28 . As seen in FIGS. 25 and 27 , the oxygen-containing gas enters the oxygen plenum 444 from the inlet 447 situated under the tubules 390 and 391 at the left end of the grate system. Once inside the plenum 444 as seen in, FIG. 27 , the gas enters under pressure into the spaces 448 between the tubules 390 and 391 where there are no fins 393 .
  • the oxygen plenum has the top 449 formed from some of the fins 393 and the refractory-coated metal strips 450 .
  • the remainder of the enclosure for the plenum is formed from the fins 393 on the left and right sides in FIG. 27 , the three fins 393 in the lower right and left corners, and the refractory-coated strips 451 .
  • the construction has created the membrane-tube-wall conduits 394 that will carry the oxygen-containing gas into the combustion chamber where it will escape through the jets 395 and 415 .
  • the pressurized oxygen-containing gas can only leave the plenum through the conduits 394 and travel along them to the combustion chamber and the jets 394 and 415 .
  • FIG. 29 diagrams the obtention of the oxygen-containing gas and its routing into the dryer-grate system.
  • refuse is placed into the hopper 458 from where the loader 459 can push it into the combustion chamber. There it sits on the grate 461 . Eventually, the refuse falls onto the floor 462 .
  • the combustion occurring within the chamber 460 produces gasses which depart through the chamber's outlet opening 465 .
  • the gasses then enter the first reburn tunnel 467 and then the second reburn tunnel 468 for further burning. From this point, the gasses could go out the emergency relief stack 469 or onto the fourth stage 470 of the system.
  • the conduit 475 takes gasses from the third stage 468 and provides it to the blower 476 where it can combine with air from the air conduit 477 .
  • Suitable controls allow proportioning the gasses used from all air, or all combustion gas, or any desired combination of the two.
  • the blower 476 then impels the desired oxygen-containing gas along the conduit 478 into the grate 461 for use in the drying, volatilizing, and combustion processes as discussed above.
  • the actual flue gas used in the grate system may actually emanate from any of several different locations in the incinerator system 75 itself.
  • the end 481 of the reburn tunnels 111 may provide flue gas which may have a temperature here of at least about 1400 to 2100 to even 2700 degrees F. and generally at least about 1800 degrees F.
  • the second location 482 after stage four 121 but before the boiler 79 can provide flue gas with an approximate temperature of 1200 to 1400 degrees F.
  • the third location 483 after the economizer 123 provides a flue gas at around 400 to 450 degrees F.
  • flue gas with a temperature of about 250 to 300 degrees F. becomes available at the fourth location 484 .
  • the flue gas could come from almost any location where it passes. Its temperature would have to be taken into consideration when blending it with air to reach the final combination.
  • FIGS. 31 to 33 show the incinerator generally at 487 which takes flue gas from the end 488 of the reburn tunnels 489 . (This corresponds to the first location 481 at the end of the reburn tunnel 111 in FIG. 1 .)
  • a small amount of the total flue gas in the tunnel section 488 leaves and passes into the conduit 492 .
  • the flue gas encounters the damper 492 , which has a refractory coating to protect it from the heat and possible corrosiveness of the gas itself.
  • the damper 493 changes its position from fully open to fully closed or in between in order to control the amount of flue gas that passes back to the dryer grate as discussed below.
  • the flue gas enters the conduit 494 . There, it meets and mixes with air sucked in through the inlet 497 . However, after entering the inlet, the air must pass its own damper 498 .
  • the air damper 498 like the flue-gas damper 493 , may be controlled from the fully open to the fully closed position as well as intermediate configurations. The air and flue gas, to the extent that their respective dampers 498 and 493 admit them, then pass through the remainder of the conduit 494 to the blower 501 operated by the motor 502 .
  • the blower 501 then puts the gas passing through it into the conduit 505 for introduction into the incineration chamber 506 by way of the dryer grate 507 , as discussed below.
  • the two dampers 493 and 498 serve several purposes. First, their relative settings, or openings, determine the relative amounts of air and flue gas passing through the blower 501 and then fed into the grate 507 . For example, opening the air damper 498 further relative to the flue-gas damper 493 will increase the proportion of air relative to the flue gas in the gas stream passing to the blower 501 and then to the dryer grate 507 . Equivalently, closing the flue-gas damper 493 relative to the air damper 498 will achieve the same result of increasing the proportion of air in the subsequent gas stream.
  • the control of temperature has particular importance for the blower 501 if the refuse burning in the in the chamber 506 has chlorine.
  • the flue gases will have corrosive chlorine gas at temperatures above about 800 to 850 degrees F. and can damage the blower 501 .
  • the flue gas will have hydrochloric acid that can also attack the blower 501 .
  • the gas entering the blower 501 should typically have its temperature in the range of 400 to 700 or 750 degrees F.
  • the blower 501 provides the important function of creating an induced draft that pulls in the flue gas and the air through their respective inlets 492 and 497 and feeds the resulting gas mixture into the conduit 505 and then the dryer grate 507 . Its destruction would have a deleterious effect upon the operation of the dryer grate and perhaps the entire incinerator. Combining the cold air with the hot flue gas prior to either reaching the blower 501 permits the control of the temperature so that it falls in the range given above where the gas should not damage it.
  • the blower 501 does not carry a refractory covering. Accordingly, protecting it from chlorine attack involves controlling the temperature of the gas stream passing through it. As clearly seen from FIGS. 30 and 31 , the air mixes with and effectuates the control of the temperature of the flue gas in the conduit 494 before either can reach the blower 501 itself. Thus, although the blower 501 provides the negative draft that sucks in the flue gas from the reburn tunnel 488 , it remains out of contact with the flue gas until after the air has mixed with it and brought its temperature down to within the safe ranges given above.
  • the gas stream passes through the center of the membrane tube wall forming the conduits passing through the grate arms as discussed with reference to the prior drawings. While there, it clearly contacts the steel that composes the membrane tube wall itself. However, the fluid passing through the tubules in the membrane tube wall controls the temperature of the gas stream and keeps it out of the realm where the gas could damage the membrane tube wall itself.
  • the two dampers 493 and 498 also permit the control of the total amount of air-flue gas mixture fed into the grate 507 without changing the relative proportions of the two gasses constituting the mixture. Accordingly, opening both dampers 493 and 498 (by the appropriate amounts) will increase the total amount of gas introduced into the incinerator chamber through the direr grate without changing the relative proportions of the two components in the mixture. Thus, the final mixture will remain at the desired temperature where it avoids damaging the blower 501 . Yet, its total volume entering the chamber 506 can increase when necessary for greater amounts of refuse on the grate or where that refuse has excessive amount of moisture that must dry before it will support incineration.
  • gas from the conduit 505 passes through the right-angle conduit 509 and into the coupling 510 .
  • the coupling 510 takes the gas stream from the conduit 509 with a circular cross section and passes it horizontally to the conduit 511 with a rectangular cross section, as seen in FIG. 33 .
  • the conduit 511 then passes the gas through the opening 512 in the end plate 513 and into the interior 514 of a dryer-grate arm discussed previously. There, it will pass through jets in the dryer-grate arm and meet refuse introduced into the incinerator chamber 506 by the loader 517 . After the gas has dried the refuse and driven off its volatile hydrocarbons, the remaining fixed hydrocarbons fall onto the pulsed hearth 518 for further burning.
  • FIGS. 32 and 33 also show that the temperature controlling fluid enters the lower heading 521 through the coupling 522 . From there it enters the inlet tubules 525 through the flanged couplings 526 . Staggering the flanges 526 permits their location within the cramped space next to the gas conduit 511 . After passing through the incinerator in the grate arm, the temperature-controlling fluid passes out of the incinerator chamber through the outlet tubules 531 , pass the flanged couplings 532 in FIG. 32 , into the upper header 533 , and out through the coupling 534 .
  • the arrangement of the upper header 533 , the outlet tubules 531 and the outlet flanges 532 generally constitutes a mirror image through a horizontal plane of the corresponding components for the similar inlet components.
  • the foregoing description combines the passage of the oxygen-containing gas stream into the same grate arm as, but separate from, the flow of the temperature-controlling fluid such as two-phase steam.
  • FIGS. 34 to 41 show an incinerator system that also accomplishes the same objectives of taking flue gas, combining it with air, and introducing it through the dryer grate into the incinerator chamber while keeping it separate from the temperature-controlling fluid. However, it uses several different components to accomplish the same results.
  • some of the combustion gasses may depart the cross reburn tunnel into the side conduit 554 . It then travels past the flange ring 555 which holds the side conduit 554 to the damper housing conduit 556 . From there, the gas passes from the damper conduit 556 into the damper housing 559 through the opening 560 .
  • the damper 565 in both figures covers the opening 560 and prevents the passage of gas from the conduit 556 into the damper housing 559 .
  • moving the damper 565 in the counterclockwise direction of the arrow 566 in the figures moves it off of the opening 560 . This permits the passage of flue gas into the housing 559 .
  • the amount of gas admitted into the housing naturally depends upon the degree of CCW rotation of the damper 560 in the housing 559 .
  • a small rotation allows a minimal amount of gas to enter. Greater rotations admit correspondingly larger amounts of gas.
  • a 90-degree rotation places the damper 560 in the horizontal position shown in phantom in FIGS. 35 and 36 .
  • any gas that enters the housing 559 may depart through the exit opening 570 .
  • the gas departing the damper housing 559 will reenter the combustion chamber through the dryer grate.
  • the damper housing has the main portion 571 and the upper portion 572 .
  • the flanges 573 hold the two portions 571 and 572 together. Removal of the upper housing portion 572 allows access to the interior of the damper housing 559 . It also permits placement of the damper 560 within the housing 559 .
  • the upper and lower housing portions 571 and 572 both have the steel housing 579 and the refractory covering 580 .
  • the refractory 580 protects the steel 579 from corrosion and heat damage because of the flue gasses passing through the housing 559 .
  • the conduits 554 and 556 have the refractory covering 581 for the same reason.
  • the damper conduit 556 has the refractory seat 584 against which the damper 565 seats when closed as seen in FIG. 36 .
  • the damper 565 includes the hollow steel body 587 covered by the refractory and insulation layers 588 .
  • the steel body 587 attaches to the hollow steel tube 589 which in turn has its own protective refractory and insulation covering 590 (seen in FIGS. 35 and 36 ).
  • the coverings 588 and 590 protect the steel components 587 and 589 from the destructive effects of the flue gasses passing through the damper housing 559 and keep the heat inside.
  • the ends 595 and 596 extend beyond their respective sides of the damper housing 559 . This serves two purposes. First, the ends 595 and 596 sit in cut out portions of the housing wall and support the damper 565 in the housing 559 . The support form the tube ends 595 and 596 , as implied above, allows the rotation of the damper 565 between its closed and various open configurations.
  • the hollow tube 589 permits the flow of air through the interior of the damper 565 to help protect it from the heat it sees in the flue gasses.
  • air under pressure may enter the opening 601 in the end 595 of the hollow tube 589 . There, it travels along until it meets the cutout 602 in the tube 589 . This allows air from the tube 589 to enter the hollow interior of the damper 565 . The air then travels along its circuitous route in the damper 565 as directed by the baffles 603 . The air may then depart the damper through the cutout 606 and travel through the hollow tube 589 and exit through the end 596 .
  • the baffles 603 prevent the passage of the air from the inlet cutout 602 directly to the outlet cutout 606 .
  • the tube 589 has the disc 607 blocking the direct passage air from the inlet end 595 to the outlet end 596 . Rather, it forces the air to pass through the inlet opening 602 and then through the interior of the damper 565 as described above. Placing the disc 607 in the interior of the tube 589 typically involves cutting the tube into two pieces. The disc 607 is then welded in place followed by welding the two tube sections back together to form the tube 589 .
  • the damper 565 includes the counterweight 611 welded to the arm 612 which is affixed to the sleeve 613 .
  • the bolts 618 keep the sleeve 613 and thus the counterweight 611 in place on the tube 589 .
  • the damper 565 because of the refractory 588 in addition to its steel structure 587 , has a very substantial weight.
  • the counterweight 611 rigidly affixed to the tube 589 , serves to prevent this unwanted motion. If necessary, the tube 589 could have a counterweight at each end 595 and 596 to accomplish this objective.
  • the counterweight 611 must have clearance relative to the reburn section 551 ′, the conduit sections 554 and 556 , and the flange 555 to rotate to the desired positions.
  • the mixing section 617 receives air under pressure from the blower 618 powered by the motor 619 . Specifically, the blower places air under pressure into the plenum 620 that lies on the inside surface of the mixer 617 . The air in the plenum 620 then passes through the jets 621 in the interior wall 622 . The air from the jets 622 then combines with the flue gas in the interior 623 of the mixer 617 .
  • the blower 618 provides a substantial force to the air streaming through the jets 621 into the flue gas in the interior 623 of the mixer 617 .
  • This accomplishes two tasks. First, it assures proper mixing of the air with the flue gas.
  • the jets 621 point in the direction that the gasses should flow, or toward the mixer outlet 626 .
  • the air moving forcefully through the jets 621 creates a Venturi-like vectored effect to pull the gasses from the damper into the mixer 617 and push them out of the mixer 617 through its outlet 623 .
  • the mixer section 617 with the aid of the blower 618 , creates an induced draft for the flue gas from the reburn section 551 . It also impels the gas out of its exit 626 and into the connecting conduit 630 .
  • the blower 618 never makes contact with the flue gasses passing through the mixer section 617 .
  • the only gas that the blower 618 actually directly sees is air.
  • the blower 618 places this air into the plenum 620 and from there it travels by itself through the jets 621 in the interior wall 622 .
  • the flue gas cannot come back through the wall to ever see the blower 618 .
  • any corrosive elements in the flue gas cannot ever contact or effect any damage to the blower 619 .
  • air combines with flue gas before the mixture reaches the blower 501 there.
  • the air combining with the flue gas brings the latter to a temperature range (preferably 400 to 750 degrees F.) where any chlorine corrosiveness in the latter could not affect the components of the blower 501 .
  • the flue gas never contacts the blower 618 . Accordingly, any corrosive components in the flue gas simply cannot attack the metal components of the blower 619 .
  • the system for providing flue gas to the dryer grate should control two entirely separate variables in the supplied gas.
  • the former represents the case where the refuse that will sit on the grate has virtually no moisture that must evaporate prior to combustion.
  • the latter situation of using solely flue gas may find use where the refuse contains virtually no chlorine that can adversely affect the blower.
  • Other conditions may influence the relative proportions of air to flue gas. For example, various governments may require that the final gas expelled into the atmosphere contain a certain percentage of oxygen. This requirement provides assurance that the hydrocarbon material in the gas has undergone complete combustion.
  • the total amount of the gas mixture admitted to the dryer grate must also submit to control. This permits the system to adjust the amount of gas dependent upon the amount of refuse introduced into the incinerator as well as the nature of that refuse.
  • FIGS. 34 to 41 permits control over the same two variables. Opening and closing the damper 565 provides the first control of the amount of flue gas permitted to pass to the dryer grate.
  • the force of the blower 618 controls the amount of air introduced into the mixture and the amount of mixture introduced into the channel 630 that will pass to the dryer grate as discussed below. Balancing the two variables of the opening of the damper 565 and the speed and thus force the blower 618 of will permit the selection of the amount and nature of the gas introduced into and through the dryer grate.
  • the blower 618 introduces air into the gas stream headed to the direr grate in order to provide the necessary induced draft through the Venturi effect in the mixing chamber 617 .
  • the amount of air thus introduced may not be necessary or desirable for the refuse on the grate.
  • a very high moisture content would suggest an oxygen-containing gas with less oxygen but a much higher heat content.
  • it may require a substantial volume of such gas to effectuate the desired drying in a reasonable amount of time.
  • the modified structure seen in FIG. 39 provides greater flexibility in the composition of the oxygen-containing gas supplied to the dryer grate.
  • the blower 618 receives its input gas stream from the bypass conduit 635 which has the refractory lining 636 .
  • the blower 618 in FIG. 38 received its input directly from the environment which thus simply constituted air.
  • the input of the blower 618 provides a negative partial pressure along the bypass conduit 635 to draw gas from its two sources.
  • the first source to the bypass conduit 635 comes from the side outlet of the mixing chamber 617 .
  • the side outlet 637 receives flue gas directly from the damper-housing outlet 570 .
  • the side outlet 637 which the flange coupling 63 connects directly to the bypass outlet 636 , supplies the latter with flue gas taken directly from the reburn tunnel 551 .
  • Another source of gas for the bypass conduit 635 appears at the opening 641 to the conduit section 642 which feeds directly into the bypass conduit 635 .
  • the opening 641 supplies only air to the conduit 635 .
  • the amount of air reaching the bypass conduit from the opening 641 falls under the control of the air damper 643 .
  • the air damper 643 thus determines the relative amounts of flue gas and air in the bypass conduit 635 reaching the blower 618 .
  • the blower 618 forces this mixture into the plenum 622 and through the jets 621 into the interior 623 of the mixer 617 . There, it combines with flue gas drawn directly from the outlet 570 of the damper housing 559 .
  • the mixer interior 623 combines flue gas from the damper outlet 570 with the air-flue gas mixture (as determined by the air damper 643 ) from the bypass conduit 635 . This again compares with the mixer 617 of FIG. 38 which only combines air with flue gas.
  • FIG. 39 provides a wide latitude in selecting the gas placed into the connecting conduit 630 .
  • Closing the control damper 643 completely blocks the passage of air into the blower 618 and thus the mixer 617 and subsequently the conduit 630 .
  • the connecting conduit will supply only flue gas to the dryer grate (by the path discussed below).
  • this flue-gas introduced into the dryer grate might well find use for very wet, especially low B.T.U. refuse.
  • This particular use benefits from the fact that the blower 618 provides the induced draft necessary to provide the flue gas from the reburn tunnel to the dryer grate.
  • the mixture of flue-gas and air passes through the connecting conduit 630 to the feed conduit 652 along the bottom on the side of the combustion chamber 542 .
  • the oxygen-containing gas travels upward through the channels 653 into the grate arms 654 .
  • the gas passes through jets in the grate arms 654 into the combustion chamber 542 as described above.
  • the refuse on the grate arms 654 dries and loses its volatile HC's. Eventually, it drops through the grate arms 654 and falls onto the first hearth 657 , the second hearth 658 , and the succeeding hearths.
  • FIG. 42 shows a dryer grate system generally at 661 that proves particularly useful for refuse containing small pieces or particulate material or may have undergone prior shredding or communitization.
  • material may include rice hulls, refuse derived fuel (“'RDF”), and discarded rolls for tape that failed to meet their specifications.
  • 'RDF refuse derived fuel
  • the problem arises that such material may fall through the grates previously described too readily to accomplish the desired objectives of drying and driving off volatile HC's.
  • the material may then land on the floor below, engage in localized overheating, for example, and cause slagging. If wet, the material may simply douse the fire underneath.
  • the air-grate system 661 includes the upper layer 662 of the grate arms 663 to 665 and the lower layer 668 of the grate arms 669 and 670 .
  • Each of the grate arms 663 to 665 , 669 , and 670 sit in and attach to an incinerator chamber and may have the structure of any of the grates previously shown and described. Thus, they may pass an oxygen-containing gas down their interiors and out into the combustion chamber through jets. Further, a temperature-controlling fluid may generally keep the grate arms at a desired temperature.
  • the use of the previously elucidated structure of a membrane-tube wall for the grate arms in both layers 662 and 668 will again serve well in this role.
  • the arms may have a refractory covering that is complete or partial. Or, they may have none. They may also cantilever from the chamber wall.
  • grate structures different from those shown above may well suffice for this multi-layered purpose, especially those shown in Mr. Basic's prior patents previously listed.
  • the grate structure may not take the form of arms, have an oxygen-containing gas passing through, or have a cooling fluid inside.
  • the grate arms described here would appear to have especial benefit for this application as for the others related previously.
  • the particulate material 675 would fall first on the upper layer 675 of grate arms 663 to 665 . Because of the relatively small size of the material 675 , the particles may not remain there for a sufficient period of time to accomplish the desired objectives of drying and volatilization. As they drop from the first layer 662 , they fall onto the second layer 668 of grate arms 669 and 670 . The additional delay caused by resting on the second layer 668 may provide the requisite time to accomplish the treatments related above.
  • the lower layer 668 of grate arms 669 and 670 should typically have a staggered configuration relative to the grate arms 663 to 665 of the first layer 662 .
  • the lower grate arm 669 should lie under the space 676 between the upper arms 663 and 664 . This will cause material falling through the space 676 to rest upon the lower arm 669 .
  • the lower arm 670 underlies the space 677 between the upper arms 664 and 665 .
  • Adjusting the widths of the arms 663 to 665 , 669 , and 667 relative to the size of the small pieces of matter 675 and relative to the spaces 676 and 677 may also permit control of the amount of time until matter falls through the two layers.
  • a good starting point will have the width of the arms 669 and 670 in the lower layer 668 about equaling the spaces 676 and 677 between the arms 663 to 665 of the upper layer 662 .
  • using flat top surfaces on the grate arms 663 to 665 , 669 and 670 may also retard the progress of the particles of matter 675 through the grate structure and allow drying and volatilization of HC's.
  • the plural layers 662 and 668 of grate arms may prove undesirable for normal, bulk refuse.
  • the removal of one of the layers may become particularly desirable.
  • the grate arms 669 and 670 of the lower layer 668 may simply telescope into channels set into the combustion chamber wall. These channels will have connections for both the oxygen-containing gas and the temperature-controlling fluid. Inserting the arms 669 and 670 into these channels will allow the connections to provide the gas and the fluid to the arms in the usual fashion.
  • Removing the grate arms 669 and 670 will allow the use of the combustion chamber with the remaining three arms 663 to 665 of the upper layer to operate in the normal fashion for bulk refuse or large-particle material.
  • the connections for the oxygen-containing gas and the temperature-controlling fluid in the lower arms 669 and 670 should be covered to prevent their escape into the combustion chamber.

Abstract

Incinerator dryer grates with temperature control provided by two-phase steam. Very wet bulk refuse entering an incinerator sits on a grate before falling onto a hearth floor below. This drives off volatile hydrocarbons and allows drying. The grate may also provide combustion air. The drying process causes the moisture content of the refuse to fall below 50 percent where combustion may occur. Two-phase steam passes through separate channels in the grate to control its temperature. The oxygen-containing gas emanating from the grate into the combustion chamber may contain gaseous products of combustion, or flue gas, with or without air to make use of the former's heat and moisture content. When the flue gas contains chlorine, its temperature should, through the addition of cool air, fall within the range of 400° to 750° F. To avoid chlorine corrosion, blowers propelling the flue gas must either remain out of the gas stream entirely or should only contact the flue gas after cooled to this temperature range. For particulate or shredded refuse, a second grate staggered below the first achieves sufficient dwell time for the material to dry and lose its volatile hydrocarbons. A loader enters the incinerator to push the refuse onto the grate and limit the refuse thickness so that the grate's gas can penetrate it.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • The present application claims the priority of the PCT application PCT/03/18701 filed on Jun. 12, 2003, which, in turn, claimed the priority of the filing of the U.S. provisional patent application 60/391,052 filed on Jun. 24, 2002, of which the present application also claims the priority.
  • BACKGROUND
  • John N. Basic, Sr., in his U.S. Pat. Nos. 4,438,705, 4,475,469, 4,516,510, 4,706,578, 5,007,353, 5,209,169, and 5,413,715, (all of which are incorporated here as well as Mr. Basic's U.S. provisional patent application Ser. No. 60/353,850, filed Jan. 31, 2002) has significantly advanced the science of refuse incineration and showed how to appropriately control the “three T's” of combustion, viz., time, temperature, and turbulence. In the first and third of these patents, Mr. Basic has disclosed methods and equipment for incinerating that have achieved significant improvements in the efficiency for different types of refuse with the optional recovery of heat for further economic use. These two references establish three zones of combustion, make temperature measurements at significant locations, and alter the conditions of combustion to achieve the desired efficiency and environmental acceptability. Further, the patents accomplish their objectives while using bulk refuse, which simply means that it requires no processing before its introduction into the main combustion chamber. The system displays such versatility that it can adjust to remarkably different types and heat capacities of refuse and yet achieve environmentally sound incineration.
  • The principles related in these patents have such wide applicability that they do not even require refuse or even hydrocarbon liquids as a fuel. The discoveries find use in effectuating the combustion of hydrocarbon-containing fumes emanating from a generalized, undefined source. The patents specifically cover the use of the system for such fumes and without a main incinerator chamber.
  • Where a main chamber finds use, however, the patents show improvements for this component of an incinerator system as well. These improvements include, first, a stepped hearth floor with the individual steps extending laterally in the direction that the refuse moves through the chamber and air nozzles located in the vertical faces, or risers, of the steps. As a separate consideration, the incinerator combustion chamber receives an approximately stoichiometric amount of oxygen for the chamber's burning contents, and the chamber's floor and volume bear general respective relationships to the heat content of the burning refuse. Separately, the air moving through the combustion chamber has an upper limit to its volume to avoid lifting unburned particles of refuse. Alternately, various dimensions of the chamber's wall bear specific relationships to each other for improved incineration.
  • In the second and fourth patents listed above, Mr. Basic showed how to convey material sitting on a floor, most likely a hearth floor in a main incinerator chamber. The patents disclose nonsinusoidal motion of the hearth or floor that actually pulses the material forward. The motion of the floor actually resembles the activity of shoveling snow or other material. In addition to imparting a general progression of the material, especially burning refuse, the pulsing motion accelerates and decelerates and thus also jostles the mass of refuse vigorously to increase the burning rate and effectiveness.
  • The first four patents of Mr. Basic discussed above established an entirely new regiment for the incineration of refuse. They gave the essential conditions for the incineration of the waste themselves and showed how to move bulk refuse through the main combustion chamber to facilitate the process. With these parameters established, Mr. Basic then set to work to refine and improve the system that he had developed. In the process, he increased the sophistication of his incinerator system by an order of magnitude and its ability to reliably handle different types of refuse from those even contemplated previously. The issuance of the last three patents above justly rewarded his subsequent efforts.
  • In the earliest of these, Mr. Basic sets forth various incinerator improvements. Amongst these is the concept of splitting the reburn tunnel into two parallel reburn sections, each capable of performing the same functions on fumes emanating from a source such as the main combustion chamber. The control provided by two smaller reburn sections dramatically increases the control over the three T's of combustion.
  • As a separate aspect, the patent places an “excitor” in the reburn tunnel. The excitor actually reduces the cross-sectional area in the center of the tunnel where the mass flow of the flue gas is located and forces the flume gasses to pass around it. The shortened distance between the gas molecules and a wall, be it the outer or excitor wall, and the concomitant reradiation of heat give dramatically improved control over the three T's. The excitor may, in addition, provide nozzles introducing air to the tunnel for temperature and time control as well as assuring sufficient oxygen for complete combustion. Other aspects of the excitor include providing the air through the excitor's supports in the reburn tunnel and assuring that the excitor exterior has a low thermal conductivity to retain the generated heat. Additionally, the patent has shown that placing a damper at the outlet of the reburn tunnel gives even further control over the time of the combustion.
  • The next patent, U.S. Pat. No. 5,209,169, covers an entirely new feature placed into the combustion chamber having a hearth floor. Specifically, the combustion chamber may include a grate located adjacent to the inlet door and above the hearth. This grate will hold waste having either a high moisture or a high B.T.U. content. In the former case, the material dries while on the grate. In the latter, some of the volatile hydrocarbons burn or are driven off to prevent overheating and possible slagging on the hearth floor. In either case, the fixed hydrocarbon refuse falls through the grate to undergo thorough combustion on the hearth below. The refuse may do so while it still contains over half of its combustible hydrocarbons. Alternately, the grate may have openings of a particular size to accomplish the stated objectives. Moving the grate can jostle its contents to permit the desired burning and encourage dried or partially burned refuse to fall through to the hearth underneath.
  • A fluid passing through the grate, such as air or steam, may serve to cool the supporting metal structure of the grate, and a refractory may serve to further protect it. When the grate has air passing through it, the gas may then directly enter the combustion chamber to enhance the combustion efficiency. Thus, the air passing through the grate may actually possess two separate and distinct purposes. First, it cools the internal structure of the grate to prevent destruction by the combustion within the main chamber. Second, it may provide oxygen to the combustion fire itself.
  • The latest patent U.S. Pat. No. 5,413,715 listed above relates to a scoop for taking ashes out of a pool of water after the incinerator dumps them there. The scoop travels along a track, and when it reaches the bottom, its blade rotates and closes so that it can grab the ashes. After travelling upward on the track, the scoop opens, and the ashes drop out into a receptacle of some sort, like a tote bin or truck.
  • As seen from the above, the art and science of refuse incineration has advanced significantly under Mr. Basic's creativity and tutelage. As the recent history of incineration given above shows, each step forward opens new vistas for further improvements. A number of such advances are set forth below.
  • SUMMARY
  • The above discussion of Mr. Basic's U.S. Pat. No. 5,209,169 indicated that a grate may sit above a hearth floor and hold refuse for drying and vaporizing volatile hydrocarbons. Passing air through the grate serves to maintain its temperature below a point where it may suffer harm or even destruction. This air may also provide oxygen-containing gas to the combustion fire.
  • However, subsequent work has shown the difficulty of controlling the two functions of the air in the grate to achieve maximum efficiency and cleanliness in the burning of refuse or any hydrocarbon stream. Thus, as discussed in Mr. Basic's patents U.S. Pat. Nos. 4,438,705 and 4,516,510, the main combustion chamber should generally receive stoichiomentric amounts of oxygen for the material undergoing burning there. This includes the underfire, overfire, and grate air. The portion specifically permitted for the grate may not suffice to adequately cool it to prevent harming it; alternately, adequately cooling through the grate may require an amount of air passing through it that would prove more than the optimal.
  • Furthermore, introducing air to both cool the grate and provide combustion air through its jets may overachieve its objective and decrease the temperature of the environs of the grate area to an unacceptably low point. This can happen even when the oxygen-containing air picks up some heat by passing through plenums surrounding various incinerator components. Also, the drying of wet refuse on the grate may actually require more heat than oxygen. This can prove particularly difficult to control.
  • A further and serious problem involving the use of the combustion air to control the temperature in the grate results from any possible disruption of the air supply itself. The deleterious disruption in the air supply to the grate may occur as a result of the failure of the blower fan supplying the air. As a further possibility, the installation may experience an electrical failure which, again, stops the supply of cooling air to the grate. Or, the operator, during shut-down, may simply turn off the air blower before the grate has a chance to adequately cool.
  • In any event, the loss of cooling air to the grate may result in its destruction. The grate sits in the extreme heat conditions of the incinerator chamber. It typically uses steel as its structural material, with a possible coating of refractory. At about 700 to 900 degrees Fahrenheit, steel loses 90 percent of its strength. Thus, the unexpected loss of adequate cooling air for whatever reason will likely lead to the severe misshapening and destruction of the grate itself.
  • On the other hand and as suggested above, providing adequate air to prevent heat damage to the grate may actually introduce excessive air into the refuse sitting on the grate. As indicated previously and in Mr. Basic's patents discussed above, placing the refuse on the grate may serve two purposes. First, it allows moisture in the refuse to vaporize from the refuse. Only when the refuse moisture content falls to around 50 percent can it actually ignite. Excessive air and its concomitant cooling effect upon the refuse may actually interfere with the removal of moisture from the material.
  • Further, placing refuse upon the grate may serve to drive off volatile hydrocarbons contained in it. This keeps the volatile HC's from falling onto the hearth floor below where they can flash into a “bloom” of fire, create localized overheating, and result in slagging due to the excessive heat. However, providing a large amount of air through the grate, possibly considered necessary to cool it, may allow the volatile HC's to actually burn on or near the grate itself. This can actually cause slagging on the grate due to the heat generated by the blooming fire of the volatilizing HC's. Controlling the cooling and the amount of air supplied to the volatilizing HC's also constitutes a very tricky and not always soluble task.
  • Divorcing the control of the air-grate's temperature from the air introduced into the incinerator chamber through the grate portends significant improvements in the system's operation and reliability. It will provide closer control of the conditions of incineration and the factors that could lead to the air-grate's destruction.
  • Generally, an incinerator system for bulk refuse and hydrocarbon-containing liquids may include a substantially enclosed chamber and a fire-resistant floor means within the chamber for holding and burning material on it. An inlet opening to the chamber allows for the introduction of solid bulk refuse and an outlet opening permits the egress of the gaseous products of combustion from the chamber.
  • A grate means having openings through it and located within the chamber, adjacent to the inlet opening and above the floor, holds refuse newly introduced through the inlet opening above the floor for a limited period of time. It then allows the refuse to drop through to the floor while burning. An oxygenating means couples to the grate means and introduces an oxygen-containing gas into the chamber through the grate means.
  • A significant improvement to the system includes regulating means coupled to the grate means. The regulating means controls the temperature of the grate means separate from the oxygenating means, the oxygen-containing gas, and the gaseous products of combustion.
  • In particular, an improved incinerator system may comprise temperature-controlling means, coupled to the grate means. The temperature-controlling means passes a fluid, other than the oxygen-containing gas and of a temperature within a predetermined range, through the grate means and separate from the oxygen-containing gas. As a specific choice, the fluid may take the form of a two-phase fluid of a temperature within a predetermined range. Because of its known characteristics, the steam-water combination represents a good selection for the two-phase system, although others may find use in particular circumstances. The steam-water two-phase flow in particular will continue to circulate without the need of electrical power. Thus, a loss of electricity will not destroy the steam-water combination's ability to protect the grate structure.
  • Since the fluid passes through the grate means separate from the oxygenating-containing gas, it may beneficially circulate through a closed system. This permits the treatment of the fluid for its temperature-controlling or other purposes and its subsequent return to the grate means.
  • In one particular situation, the incinerator system may include a boiler coupled to the outlet opening. The boiler captures heat contained in the gaseous products of combustion passing through the outlet opening and transfers it to a separate fluid. Usually, this fluid takes the form of two-phase steam. A significant improvement results when the temperature-controlling means couples to the boiler and the grate means and passes the two-phase fluid between the boiler and the grate means while still keeping it separate from the oxygen-containing gas. This accomplishes two separate though interrelated purposes. First, it permits the cooling fluid to rid itself of excess heat that it may have acquired during its passage through the grate means. Second, it permits the capture of the heat acquired by the fluid for economically beneficial use elsewhere.
  • Regardless of which of the specific features discussed above find use in a particular incinerator system, the temperature-controlling fluid, when used, passes through the grate means separate from the oxygenating-containing gas. An advanced structure for accomplishing the passage of the fluid without mixing with the oxygen-containing gas assumes the form of a “membrane tube wall”. The membrane tube wall constitutes part of the grate means and is formed into a conduit from relatively thin sections, or plates, of substantially heat conducting material. The wall then has at least two spaced-apart, substantially fluid-tight tubules formed from substantially heat conducting material and in thermal contact with the thin plate, or fin, sections of metal. As discussed below, the temperature-controlling fluid passes through the tubules and effects a substantial degree of control over their temperature. This controlled temperature then passes to the other parts of the wall because of its construction from a substantially-heat conducting material.
  • In the typical construction, the thin sections and the tubules are welded to each other to form an integral whole. Moreover, two of the tubules are in fluid-tight, fluid communication with each other. In fact, the wall will typically have an even number of tubules. This allows for their connections to each other in units of two tubules each. In each pair, one tubule takes the fluid entering the grate means. The fluid then passes from the first tubule to the second in the pair from which it ultimately leaves the grate means.
  • A particularly useful form of the membrane tube wall has the shape of a conduit. To achieve this, the membrane tube wall may curve around into a circular cross section to form an enclosed cylindrical tube. The tubules run parallel to the axis of the tube. The oxygen-containing gas then passes through the tube wall's interior and exits through openings, for example nozzles, through the tube. The control of the tube's temperature permits the use of very hot oxygen-containing gasses. As discussed below, such gasses may be or include flue gasses from the incinerator chamber which will still have a content of some oxygen. To take advantage of the closed cylinder-shaped membrane tube wall, the grate means may take the form of a plurality of grate arms, with each of the arms comprising an enclosed membrane tube wall in the form of a conduit. As stated above, the oxygenating means introduces the oxygen-containing gas through a plenum formed from the membrane tube wall.
  • The temperature controlling feature of the grate means obviates the necessity for materials that can themselves withstand the heat generated by the combustion. It also dispenses with heat-protective materials that themselves have difficulty living in the combustion temperatures. As a consequence, materials such as steel that lose their strength at such high temperatures may find use even without additional protection, such as refractory coatings, from the temperatures encountered. Accordingly, the grate means may comprises at least one passageway through which the oxygen-containing gas passes prior to being introduced into the chamber. The passageway may then have a composition of steel, and at least a portion of the steel passageway is directly exposed to the combustion occurring within the chamber. The remainder of the passageway may still have a refractory or other coating to protect it from abrasion damage from the refuse or other material placed upon it or contacting it in other fashions.
  • The flue gas from an incinerator represents a source of heat. However, the products of combusting refuse often contain one or more severely corrosive components, especially chlorine at higher temperatures or hydrochloric acid at lower temperatures. Either of these could well have a destructive effect upon metal components of the blower used to handle the movement of the flue gas. This would appear to limit the flue gas' potential for subsequent use as a heat source in the incinerator itself and especially in the grate means.
  • However, the flue gas may have several properties that make it particularly desirable for use as part or all of the oxygen-containing gas passing through the grate means into the combustion chamber and specifically into the refuse on the grate means itself. First, the flue gas has a substantial moisture content as a result of the combustion process. The water molecules impart a high specific heat to the gas. This, in turn, allows the flue gas to impart more heat rapidly to the refuse sitting on the grate means.
  • Further, the flue gas, because it has already experienced use in combustion, has a lower oxygen content than, for example, air. As a result, it has less ability to support combustion in the refuse sitting on the grate. This proves particularly beneficial where the refuse contains substantial amounts of volatile hydrocarbons. The low oxygen content of the flue gas limits the burning of the volatilizing HC's. As a result, they may well not bloom into flame on the grate means which would cause extreme localized overheating, slagging, and possibly some damage to the grate itself. However, the use of flue gas for air-grate purposes has not proved generally feasible in the past.
  • In general, to use the flue gas, an improved incinerator system will have the oxygenating means for the grate means coupled to the outlet opening of the substantially enclosed combustion chamber. The oxygenating means then introduces at least a portion of the gaseous products of combustion that it had obtained from the outlet opening back into the chamber through the grate means as all or at least a part of the oxygen-containing gas.
  • The oxygenating means may go further to assist the combustion process occurring upon the grate means. To do so, the oxygenating means will also establish the temperature of the oxygen-containing flue gas to within a predetermined range prior to the oxygen-containing flue gas entering the grate means. When the refuse contains chlorine, often from the commonly used polyvinylchlorides (“PVC's”), the temperature typically will range about 350 to 800 degrees and more desirably 400 to 750 degrees F. Below this range, hydrochloric acid could damage parts of the blower used to move the flue gas. Using acid-resistant blower parts may permit the use of temperatures below this range. Above the upper end, chlorine gas, for example, can attack the blower.
  • One convenient way that the oxygenating means establishes the temperature of the oxygen-containing flue gas is to combine with the gaseous products of combustion a separate oxygen-containing gas having a temperature lower than the gaseous products of combustion taken from the chamber's outlet opening. Naturally, air represents a convenient low-temperature gas. Combining the appropriate amount of it with the flue gas will bring it into the desired temperature range where it sill support combustion without damaging the system.
  • On the other hand, if the refuse has no chlorine, the temperature limits due to the chlorine and acid gas corrosion discussed above lack relevance especially on high-temperature blowers used to convey the flue gasses. The flue-gas temperature then need only remain below the temperature design limit of the blower, typically 2000 degrees F. for high-temperature parts.
  • However, if the refuse, and thus the gaseous products of combustion, contain chlorine, the flue gas could well attack the components of the blower used to move the flue gas into the grate system. Typically the conduits may have protective coatings of refractory, and the grate means will benefit from protective temperature control. To avoid damaging or even destroying the unprotected blower components, one of two solutions present themselves. Either keep these components out of contact with the chlorine-containing flue gas or only allow such contact after the gas has fallen into the harmless temperature range.
  • To achieve the former, the oxygenating means includes a conduit in fluid communication with the outlet opening and the grate means. A blower means, coupled to this conduit, introduces air from outside the chamber under pressure into the conduit to make a mixture of the products of combustion and the air. The blower accomplishes this task while remaining entirely out of contact with the gaseous products of combustion and the resulting mixture of flue gases and air. The oxygenating means then introduces at least a portion of this mixture of the products of combustion and air into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • Alternately, to reduce the gas' temperature to the desired range before it contacts the components, the oxygenating means includes a conduit in fluid communication with the outlet opening and the grate means. An inlet means couples to this conduit between the outlet opening and the grate means and provides a pathway for the introduction of air into the gaseous products of combustion. A blower means couples to the conduit between the inlet means and the grate means. The blower means draws air under a partial negative pressure from the inlet means and places it into the gaseous products of combustion to form a mixture of the air and the gaseous products of combustion prior to the products of combustion reaching the blower means. Since the mixture is created before the gasses reach the blower means, the blower means only sees gasses within the desired temperature range. The blower means then introduces the mixture of air and the gaseous products of combustion under pressure through the conduit and into the combustion chamber through the grate means as at least a part of the oxygen-containing gas.
  • The system described in Mr. Basic's patents has significantly altered the manner of incinerating bulk refuse. The improvements have advanced the manner and apparatus for accomplishing this task. Refuse for incineration need no longer undergo prior treatment such as shredding or comminutization before it meets the fire. However, the question arises as to the effect that prior shredding or just small-sized particles may have on the system described in the patents. Not surprisingly, small particles may readily fall through the grate and not remain upon it for a sufficiently long period of time to accomplish the dual objectives stated above. For such material, the dryer grate serves very little purpose since the particulate or shredded material does not dwell upon it long enough to dry and force the vaporization of the volatile hydrocarbons. However, adding a second grate below the first may retard the passage of the particulate matter long enough to accomplish the two objectives of drying and driving off volatile HC's.
  • In general terms, an improved incinerator system especially useful for particulate or shredded material has a is a first grate means and generally defines a first upper geometric surface. This is typically the only grate means in the incinerator chambers discussed above. For the present development of two grate means, a second grate means, with openings therethrough, is located within the combustion chamber and generally defines a second geometric upper surface, with the second upper surface generally lying below the first upper surface and below the first grate means. To improve the versatility of the system the second grate means may be removable from the combustion chamber.
  • Naturally, the improvements discussed above where the oxygenating means passes an oxygen-containing gas through the first grate means will also be realized where the oxygenating means also passes the oxygen-containing gas through the second grate means. Of course, all of the temperature-controlling features can apply to the second grate means as well as the first. Thus, the temperature-controlling means of the prior discussion can couple to both the first and second grate means and pass a first and second fluid, respectively, other than the oxygen-containing gas and of a temperature within a predetermined range, through the first and second grate means and separate from the oxygen-containing gas. Usually, the temperature-controlling fluids for the two grate means will be the same, typically two-phase water-steam under pressure.
  • In particular, the first and second grate means may each have openings through it and comprises, respectively, a first and second plurality of elongated arms attached to the chamber with the first grate means near and extending away from the inlet opening. The first and second plurality of elongated arms lie generally parallel to each other. The tops of the first and second plurality of arms generally define, respectively, a first and a second upper surface with the second upper surface generally lying below the first upper surface. To keep shredded and particulate matter on the two grate means for a longer period of time, the arms of the first plurality lie generally parallel to but staggered from the horizontal location of the arms of the second plurality. Accordingly, the small pieces of material may rapidly pass through the first grate means. But, they fall onto the second grate means and undergo further reaction there.
  • Not unexpectedly, the oxygenating means may pass an oxygen-containing gas through the second grate means as well as the first and for the same reasons. Similarly, a temperature-controlling means may couple to both the first and second grate means. As expected, it passes a first and second fluid, respectively, (usually the same) other than the oxygen-containing gas and of a temperature within a predetermined range, through the first and second grate means and separate from the oxygen-containing gas. This serves to control the temperatures of both grate means and prevent damage to either.
  • To permit the incinerator to handle the normal, bulk material, the second plurality of arms may permit its removal from the chamber. Closing off any openings that passed oxygen-containing gas or temperature-controlling fluid to this second grate means changes the incinerator to the usual structure described above.
  • As a further structural feature, one end of each of the arms of the first and second plurality of arms attaches to and cantilevers from the chamber. This allows for the expansion of the grate means under the influence of the heat in the incinerator. Connecting the ends of the arms to the sidewalls could result in damaging either or both since they heat, expand, cool and shrink at different rates. Further, cantilevered arms allow metal objects, such as tire wires or even bicycles to slide off the end without holding up the remainder of the burning refuse.
  • As discussed above, the refuse, upon its entry into the incinerator chamber, enters the inlet opening and sits upon the grate means for a period of time. During this time, its water content should fall below 50 percent, and its volatile HC's should enter the gas phase. Placing an excessively large pile of refuse, specifically an excessively tall stack of material, may well limit if not defeat many of the beneficial purposes of the grate means discussed above and in Mr. Basic's patents. Avoiding the height of the pile of refuse above the grate means will lead to a more efficient treatment of the material. Accordingly, an improved Incinerator system results with the use of a loader means coupled to the chamber in proximity to the inlet opening. Naturally, the loader means first must move refuse into the chamber through the inlet opening and onto the grate means. As its secondary objective and to help the grate means and its air to perform their functions, the loader means might also limit the height of the refuse above the top of the grate means. The loader means thus can aid in preventing an excessively thick layer of refuse upon the grate means.
  • The various developments discussed above can find use in systems other than refuse incinerators. In particular, each feature will benefit a system that can burn any type of material. Such a system comprises a chamber with a fire-resistant floor means within the chamber, for holding burning material on it. A grate means having openings through it is located within the chamber. It holds the material above the floor means for a limited period of time and then allows it to drop through to the floor means. As for a refuse incinerator system, an oxygenating means couples to the grate means and introduces an oxygen-containing gas into the chamber through the grate means. Each of the improvements enumerated above for a refuse incinerator system also finds use for this type of system that more generally burns other materials.
  • As indicated in Mr. Basic's patents above, controlling the temperature of the incinerating process constitutes an important objective in burning refuse and hydrocarbon-containing liquids. One incinerator system for carrying such burning includes a substantially enclosed chamber. This enclosure then has a fire-resistant floor means within the chamber for holding and burning material on it, an inlet opening for the introduction of solid bulk refuse, and an outlet opening for the egress of the gaseous products of combustion from the chamber. A grate means having openings through it sits within the chamber and adjacent to the inlet opening and above the floor means. The grate means holds refuse newly introduced through the inlet opening above the floor means for a limited period of time and then allows the refuse to drop through to the floor means while burning. A significant step forward in regulating the temperature of the system involves controlling the temperature of the grate means, but doing so independently of the temperatures of both the oxygen-containing gas introduced through the grate means and, if present, the gaseous products of combustion. This method of independently controlling the temperature of the grate means permits the separate optimization of the temperatures of the grate means, the oxygen-containing gas introduced through the grate means, and, where appropriate, the gaseous products of combustion.
  • One convenient method of separately controlling the temperature of the oxygen-containing gas through the grate means involves passing a fluid other than the oxygen-containing gas and of a temperature within a predetermined range, through the grate means. Keeping this fluid separate from the oxygen-containing gas allows the former to control the temperature of the latter without mixing with it. This, in turn, permits the use of two entirely separate fluids for the different purposes.
  • A very useful material for passing through the grate means for controlling its temperature takes the form of a two-phase fluid of a temperature within a predetermined range. The water-steam combination readily accomplishers this task, especially since its temperature under various pressure has long been established. Regardless of the fluid employed, the fact that it is passed separately through the grate means permits its facile handling in another manner. Specifically, the fluid may be retained in a closed system and treated elsewhere. Accordingly, after the fluid has passed through the grate means, it then passes along a closed system and back through the grate means. Two particular advantages of the water-steam system results from the fact that it needs no outside source of power to assure its circulation. Thus, even with an electrical failure, the water-steam mixture will continue to circulate to provide its temperature protecting function. Further, the continued circulation of this two-phase system avoids localized hot spots that could otherwise develop and effect harm in various locations of the system.
  • The gaseous products of combustion contain heat that can find economic use elsewhere. To obtain this heat in a useful form, the combustion gasses typically pass through a heat exchanger, usually a boiler. The method of recovery involves transferring the heat in the gaseous products of combustion to a two-phase fluid such as water-steam. The fluid, after receiving the heat from the combustion gasses, may then find use in controlling the temperature in the grate means. To accomplish this objective, the two-phase fluid is then passed through the grate means separate from the oxygen-containing gas.
  • Passing the fluid through the grate means and separate from the oxygen-containing means has the purpose, of course, of allowing heat transfer between the two fluids without intermixing their contents. To accomplish this, the oxygen-containing gas may be introduced into the combustion chamber through a conduit formed in a membrane tube wall from sections of relatively thin, substantially heat conducting material. The membrane tube wall should constitute at least part of the grate means and have at least two spaced-apart, substantially fluid-tight tubules formed from substantially heat-conducting material and in thermal contact with the sections through which the oxygen-containing gas passes. The fluid other than the oxygen-containing gas passes through the substantially fluid-tight tubules to control the temperature of the grate means.
  • Controlling the temperature of the grate means also results in guarding it from heat destruction. This provides considerable leeway in the selection of the materials for the grate means and in the maimer of protecting them or even dispensing with the need to protect such materials. In particular, the grate means may comprise at least one passageway having a composition of steel through which the oxygen-containing gas passes prior to being introduced into the combustion chamber. The steel has the benefits of strength (below specific temperatures) and economy. As a result of controlling the temperature, refuse may undergo combustion in the chamber. At least a portion of the steel passageway may be directly exposed to this combustion occurring within the chamber without any harmful effect of the heat upon the steel.
  • The methods given above have the primary purposes of incinerating bulk refuse. They may also properly incinerate particulate and shredded matter without alteration or addition. However, this may not always prove to be the case. In some instances, the particulate matter may fall through the grate means too fast to adequately remove its contained water or volatile hydrocarbons. When this occurs, the process may be able to properly handle the matter by passing it through first one grate means and then a second. Thus, the process will make use of first and second grate means each having openings through them. The first grate means has a general location within the chamber adjacent to the inlet opening and above the floor means. The first and second grate means generally define, respectively, first and second geometric upper surfaces. The second upper surface of the second grate means generally lies below the first upper surface and thus below the first grate means. The process for assisting combustion within an incinerator system of this sort generally involves passing an oxygenating-containing gas through the first grate means and into the chamber. Refuse is introduced through the inlet opening and placed upon the first upper surface from where it is allowed to drop through the first grate means. The refuse is then placed upon the second upper surface and then allowed to drop through the second grate means as well. Lastly, the refuse is then placed upon the floor means while burning. The time involved in the refuse sitting on and passing through the two grate means may accomplish its incineration in the controlled manner discussed above.
  • In particular, the first and second grate means may generally comprise, respectively, first and second pluralities of elongated arms attached to the chamber with the first plurality extending away from the inlet opening. The second plurality of elongated arms lies generally parallel to the first plurality. The tops of the first and second pluralities of arms generally define, respectively, first and second upper surfaces. The second upper surface generally lies below the first upper surface with the arms of the first plurality lying generally parallel to but staggered from the horizontal location of the arms of the second plurality. In this type of incinerator, the process will include passing an oxygen-containing gas through the first grate means and into the chamber accompanied by placing refuse newly introduced through the inlet opening and upon the first upper surface. The refuse is then allowed to drop through the first plurality of arms and is then placed upon the second upper surface. From there, it is allowed to drop through the second plurality of arms and is then placed upon the floor means while still burning.
  • Since the oxygen-containing gas does not bear the burden of controlling the temperature of the grate, gasses other than air may more readily find use in this process. In particular, for the reasons alluded to above, the flue gasses hold significant potential for advancing the incinerating methods. To take advantage of the flue gas' characteristics, at least a portion of the gaseous products of combustion from the chamber's outlet opening may be introducing into the chamber through the grate means as at least a part of the oxygen-containing gas. Although resulting from the burning process, the flue gas still contains an amount, albeit lower than air, of oxygen.
  • However, having a separate fluid used for temperature-controlling purposes does not necessarily mean that no reason exists for also controlling the temperature of the flue gasses when they find use as the oxygen-containing gas. Further, properly controlling the temperature of the flue gasses prior to introducing them into the grate means may, in appropriate circumstances, obviate the necessity of using a separate, temperature-controlling fluid altogether. In any event, the use of temperature-controlled gasses involves first introducing at least a portion of the gaseous products of combustion into the chamber through the grate means as at least a part of the oxygen-containing gas. The temperature of the oxygen-containing gas may be established to within a predetermined range prior to the oxygen-containing gas entering the grate means.
  • Using the flue gasses as part of the oxygen-containing gas introduced through the grate means suggests taking care to protect components that may prove susceptible to attack by the gasses themselves. Particularly is this the case where the refuse undergoing combustion, and thus the flue gasses as well, contain chlorine. In this case, any component with steel, especially a blower, exposed to the gasses may suffer unacceptable harm if exposed to the flue gasses outside the temperature range of 350 to 800 degrees F., or more particularly and safely, 400 to 750 degrees F. One method of preventing such harm is to keep the blower and other steel components out of contact with the flue gasses. To do this, for example, the blower may sit outside of the gas stream and introduce air under sufficient pressure to create a Venturi, or vectored, effect and force the air and the flue gasses into the grate means. Stated more generally, this process involves first introducing air from outside the chamber under pressure into the gaseous products of combustion through the use of blower means to form a mixture of air and such products. At least a portion of the mixture of air and the gaseous products of combustion is introduced into the chamber through the grate means as at least a part of the oxygen-containing gas. The blower means is, of course, kept out of contact with the gaseous products of combustion and the mixture.
  • Alternately, the blower may suck air into the flue gasses and reduce their temperature to an acceptable level before the latter can reach the blower itself. Taking advantage of this concept involves introducing under a partial negative pressure, provided by a blower means, air from outside of the chamber into the gaseous products of combustion. A mixture of the air and the gaseous products of combustion is formed prior to the products of combustion reaching the blower means. Finally, the mixture of air and the gaseous products of combustion is introduced under positive pressure into the grate means and into the chamber through the grate means as at least a part of the oxygen-containing gas.
  • Naturally, even with using the flue gasses as part of the oxygen-containing gas and even controlling the temperature of the latter as indicated above, the temperature of the grate means may still need or desire additional temperature control. This process involves introducing the gaseous products of combustion from the outlet opening of the chamber into the chamber through the grate means as at least part of the oxygen-containing gas. As with the temperature control set forth previously, a fluid, other than the oxygen-containing gas and of a temperature within a predetermined range, is passed through the grate means and separate from the oxygen-containing (flue) gas.
  • The oxygen-containing gas from the grate means has the functions described with regards to the refuse sitting there. Allowing the oxygen-containing gas to pass through the mass of refuse will allow it to accomplish its objective. An excessively large and tall mass may prevent the gas from penetrating it and prevent or minimize the desirable functions of the gas. A method to avoid this first involves moving refuse into the chamber through the inlet opening onto the grate means. The height of the refuse above the top of the grate means may then be limited to permit the gas to penetrate the mass of material.
  • The foregoing description of the various methods has centered upon an incinerator burning refuse. Clearly, the methods will have equal applicability to any similar system burning nonrefuse material. Such a system will include a chamber, a fire-resistant floor means within the chamber for holding material on it. Again, a grate means having openings through it will have a location within the chamber and the material above the floor means for a limited period of time. The grate means will then allow the material to drop through to the floor means. This generalized system for burning or even drying material can take advantage of all the methods described above and below for refuse incinerators.
  • The structures and methods described above can also serve to merely dry refuse or other material for any purposes and not just in aid of incinerating the material. In this case, the gas introduced through the grate means need not contain oxygen since it may not even support combustion. Or, although combustion may take place in the dried material, the gas from the grate means may supply none of the requisite oxygen. Furthermore, the drying may also benefit from the use of the generally hot gaseous products of combustion even though no burning takes place in the drying chamber. In this case, the drying may utilize the gaseous products of combustion taking place elsewhere for other purposes, for example for power generation from fossil fuels. The exhaust gasses from such a generator could well find use for this drying purpose.
  • A drying chamber for this purpose will have a grate means. A gas then passes through the grate means and into the drying material. The material to be dried sits upon the grate means. Under these conditions, all of the structures and methods described above will find use, individually or in combination to benefit the drying equipment and methods. Alternatively or in addition, the same components and methods may serve, under the proper conditions, to force volatile hydrocarbons from the material.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 gives a side elevational diagram of a water-wall incinerator system having two stages of reburn.
  • FIG. 2 provides a diagram of a main incinerator chamber with three pulsing hearths and a newly introduced load of refuse sitting on a dryer grate.
  • FIG. 3 shows the same chamber as FIG. 2 but with the load of refuse spread upon the dryer grate.
  • FIG. 4 gives a diagrammatic, isometric view of a dryer grate in the vicinity of the loader opening to the main incinerator chamber.
  • FIG. 5 shows a cross-sectional view along the line 5-5 of the dryer grate of FIG. 4.
  • FIG. 6 provides an isometric view of an alternate dryer grate near the loader opening of the main chamber which has sloping walls.
  • FIG. 7 gives a cross-sectional view along the line 7-7 of FIG. 6 of a single arm of a dryer grate.
  • FIG. 8 provides an end view along the line 8-8 of FIG. 6 of a single arm of a dryer grate.
  • FIG. 9 gives a side-elevational view, partly in cross section, of a single arm of a dryer grate having three continuous membrane tubes for the circulation of heat-controlling fluid.
  • FIG. 10 has a cross-sectional view, along the line 10-10, of a single arm of the temperature-controlled grate of FIG. 9.
  • FIG. 11 provides an enlarged view of a portion of the arm of the membrane dryer grate of FIG. 10.
  • FIG. 12 shows, in cross-sectional view, the end connection between two tubes in the dryer grate arm of FIGS. 9 to 12.
  • FIG. 113 gives an alternative end connection, in cross-sectional view, between two tubes in a dryer grate arm.
  • FIG. 14 provides a top-plan view of an air-grate system having three arms.
  • FIG. 15 shows a side-elevational view, partly in cross section along the line 15-15, of the dryer-grate system of FIG. 14.
  • FIG. 16 gives a cross-sectional view along the line 16-16, of the dryer grate system of FIG. 14.
  • FIG. 17 provides a partial, enlarged, side-elevational view, along the line 17-17, of an arm of the dryer grate of FIGS. 16 and 18.
  • FIG. 18 has a cross-sectional view along the line 18-18 of the dryer grate arm of FIG. 17.
  • FIG. 19 illustrates, in a top-plan view, a dryer grate system very similar to that of FIGS. 14 to 18 but where each grate arm has five pairs of tubes for the circulation of temperature-controlling fluid rather than the three pairs of the prior figures.
  • FIG. 20 provides a side-elevational view, partly in cross section along the line 20-20, of the dryer-grate system of FIG. 19.
  • FIG. 21 gives a cross-sectional view along the line 21-21 of the dryer grate system of FIG. 19.
  • FIG. 22 shows a dryer grate arm with a generally trapezoidal cross section as an alternative to the rectangular shape of FIG. 21.
  • FIG. 23 illustrates a dryer grate arm having a trapezoidal cross section similar to that of FIG. 22 but with less protective refractory.
  • FIG. 24 also has a trapezoidal dryer grate arm similar to that of FIG. 23 but with additional nozzles for the introduction of the oxygen-containing gas.
  • FIG. 25 shows a dryer grate system utilizing the trapezoidal arm of FIG. 24 and a plenum for the introduction of the oxygen-containing gas into the grates.
  • FIG. 26 gives a bottom plan view, partially in section, along the line 26-26 of the dryer grate system of FIG. 25.
  • FIG. 27 has a cross-sectional view, along the line 27-27, of the dryer grate system of FIGS. 25 and 26 showing the plenum introducing the oxygen-containing gas into the arms themselves:
  • FIG. 28 provides a cross-sectional view, along the line 27-27, of the dryer grate system of FIGS. 25 and 26 showing the plenum with the arms forming a membrane, gas-tight wall.
  • FIG. 29 diagrams the route for introducing flue gas from the incinerator's later stages into the dryer grate system.
  • FIG. 30 provides a side elevational view of a recirculatory system that provides flue gas from incinerator combustion directly into an air-grate system.
  • FIG. 31 gives a top plan view the flue-gas recirculating system of FIG. 30.
  • FIG. 32 is a side elevational view of the conduits which, in the vicinity of the dryer grate, provide recirculated flue gas directly to the grate arms.
  • FIG. 33 provides a view of the connection of the conduit providing the recirculated flue gas in FIG. 32 to a dryer grate.
  • FIG. 34 shows an end elevational view of a recirculation system for flue gas in which a blower, introducing ambient air, remains out of contact with the flue gas.
  • FIG. 35 gives an isometric view, partially in section, of a damper control for limiting the amount of flue gas recirculated to a dryer grate system.
  • FIG. 36 shows a mostly cross-sectional view along the line 36-36 of the flue-gas controlling damper of FIG. 35.
  • FIG. 37 shows, in an isometric view, the damper door and support for the damper of FIGS. 35 and 36.
  • FIG. 38 gives a top plan view of the recirculation system of FIG. 34 showing the bleeding of flue gas from the incinerator system and the introduction of air into it.
  • FIG. 39 portrays an alternate structure for the gas mixing and blower system of FIG. 38.
  • FIG. 40 provides a side elevational view of the recirculating system of FIGS. 34 and 38 showing the passage of the flue gas to the dryer grate.
  • FIG. 41 gives an end elevational view of the flue-gas recirculating system of FIGS. 37 to 39 showing the system's connection to the dryer grate arms.
  • FIG. 42 diagrams a system utilizing two dryer grates for particulate, small, and shredded refuse in which one grate may readily undergo removal.
  • DETAILED DESCRIPTION
  • FIG. 1 shows generally at 75 a modern incinerator system employing the two pulse hearths 76 and 77 and the two stages of heat recovery composed of the water wall 78 and the boiler 79. To begin the process, solid bulk refuse enters the hopper 82. From there the ram loader 83 pushes it into the main combustion chamber indicated generally at 84. In the main combustion chamber 84, the refuse falls onto the first pulsed hearth 76 where it burns with the assistance, if necessary, of additional heat from the burner 85. The first pulsed hearth 76 moves the burning refuse across its surface and away from the entrance to the main chamber 84 in the fashion of the Basic U.S. Pat. No. 4,475,469 discussed above. Eventually, the burning refuse falls onto the second pulsed hearth 77 where incineration continues. The blowers 86 and 87 provide air for the combustion process.
  • While the refuse burns, it naturally releases heat energy. Part of this energy enters the water wall 78 to heat the fluid contained in it. The heated fluid from the membrane-tube water wall 78 may then travel along the conduit 88 to the boiler 79. Steam removed from the top of the boiler 79 may find constructive use elsewhere either in the incinerator 75 or elsewhere as in electrical generation or for heating.
  • The refuse, after completing its burning, falls from the second pulsed hearth 77 into the ash pit 89 which contains water. The scoop 90, pulled by the cable 91 attached to the motor 92, travels along the track 93. It then dumps the ashes into the hopper 94, and from there it falls into the bin 95.
  • The gaseous products of combustion pass from the main incinerator chamber 84 into the passageway 102. There, they join gasses from the raw refuse in the hopper 82, which under the action of the blower 103 travel along the conduit 104. This removes and will serve to destroy the foul aroma of the raw refuse.
  • The gasses from the passageway 102 then enter the first reburn stage 108. There, with the controlled assistance of the auxiliary fuel burner 109, if necessary, and the air fan 110, they continue to burn at an elevated temperature to destroy combustible moieties in the gas stream. As the incineration of the gaseous products of combustion proceeds, the gasses pass to the second reburn section 111 where they continue to burn. While doing so, they receive controlled amounts of additional air from the blower 112.
  • After the second reburn stage 111, the gasses could, if a problem existed in the system, escape through the safety relief stack 117. In normal operation, however, the damper 118 keeps the stack 117 closed, and the gasses travel to stage 4 of the system 121. There they receive the addition of cooled gasses from the conduit 122. The cooling of the combustion gas stream thus effected lowers its temperature below the point where various ingredients in the gasses, such as zinc oxide, can exist in the vapor state. These components thus precipitate out in the cooling process and, accordingly, do not condense on the tubes of the boiler convection 79 when the combustion stream enters it. As the somewhat cooled gasses travel through the boiler 79, the give up additional heat for further useful purposes. As discussed in the first Basic patent U.S. Pat. No. 4,438,705 listed above, the first and second reburn stages 108 and 111 intervene between the water wall 78 and the boiler 79. This permits sufficient heat to remain in the gasses in the two reburn stages 108 and 111 to achieve full burning of the combustible elements of the gas stream.
  • After exiting the boiler 79, the gas stream enters the economizer 123. There, it preheats feed water that will find use in the boiler system of the water wall 78 and the boiler 79. Accordingly, the economizer saves further heat energy from the combustion process and feeds it back into the water that will pass through the system. This saved heat adds to the steam and electrical generation of the incinerator system 75.
  • From the economizer 123, some of the gas travels along the conduit 124 under the action of the blower 125. This gas, of course has given up much of its heat content in the boiler 179 and the economizer 123 and thus has a lower temperature then when it entered these latter components. Thus, after traveling along the conduit 122, it enters the stage 4 area 121 and lowers the temperature of the gas stream passing from the second reburn tunnel 111 as discussed above.
  • The remainder of the gas stream from the economizer 123 passes along the conduit 132 to the heat exchanger 133. The blower 134 passes outside air through the exchanger 133 to further cool the gas stream. At this point, the gasses have given up a substantial portion of their heat in the boiler 79 and in the economizer 123. However, the temperature of the gas stream may still remain above the vaporization temperature, or the dew point, of acids contained in it. The heat exchanger 133 reduces the temperature to a point, generally below about 250° F. where the acids in the gas stream actually condense into the liquid state. This allows their neutralization by combining with a base and their removal in subsequent treatment, as discussed immediately below.
  • The exhaust gasses then receive dry lime and activated carbon along the conduit 135 to neutralize the condensed acids and remove pollutants, respectively. The gas stream with these added materials then enters the baghouse filter and dry acid gas scrubber 138 which separates the gas from the particulate matter. The solid matter falls into the bin 141 where it awaits removal.
  • The cleaned gas from the baghouse 138 travels along the conduit 142. At this point, with actual refuse in an operating incinerator, no gas enters the exit conduit 142 from the conduit 143 because the motor 144 has closed the damper 145 to direct the combustion gasses into the baghouse 138.
  • The gasses in the conduit 142 are pulled by the induced-draft fan 148, and they escape into the atmosphere through the main exhaust stack 149. The continuous emissions monitor system 150 permits the evaluation of the discharge gasses for various combustion products possibly contained in the gasses exiting the stack 149. These could include the particulates, the carbon compounds, the nitrous oxides, the sulfur emissions, as well as others. The exact task of the monitor system 150 depends upon the particular case involved including such factors as the refuse undergoing incineration, the siting of the incinerator, and others.
  • During the startup operations, the incinerator 75 uses a fuel such as natural gas, propane, butane, or oil in its burners 85 and 109 to heat it to its operating temperature where it can start receiving actual refuse. During this warming time, the exhaust gas stream contains virtually no components that the baghouse 138 need remove. Under these limited conditions, the damper 145 may fully open and allow exhaust gasses to bypass the baghouse 138 and pass through the conduit 143 directly to the conduit 142 and the exhaust stack 149. However, when the incinerator 75 has reached its operating temperature, the damper 145 closes, and the exhaust gas stream enters the baghouse 138 as described above.
  • FIGS. 2 and 3 show the main incinerator chamber generally at 155 with the three hearths 156 to 158. These hearths actually take the form of pulsed hearths as shown in Mr. Basic's patents U.S. Pat. Nos. 4,475,469 and 4,706,578 referenced previously. The chamber 155 disposes of its gasses of combustion through the outlet opening 162. The ashes remaining after the refuse burns fall into the pit 163.
  • The inlet opening 164 allows for the entry of the bulk refuse 168 into the interior 169 of the combustion chamber 155. The inlet door 170 sits in its upward, or open, configuration in the figures to permit the entry of the refuse 168. To close, the door 170 would rotate in a counterclockwise direction about the arc 171 shown in dashed lines to block the opening 164.
  • The refuse 168 starts its journey into the incinerator chamber 155 by being placed into the hopper 175. To permit this, the plug loader 176 would have to move to the left of the hopper 175 and provide a space within the hopper 175 for the material. With the refuse in the hopper 176, the plug loader would then move to the right under the force of a motor. Eventually, the loader 176 would reach the position shown in FIG. 2 with its front end 179 just inside the inlet opening 164. With the loader 176 in the position shown in FIG. 2, the refuse 168 sits in a large pile partially upon the shelf 180 and partially upon the grate 181.
  • With the refuse 168 in the towering pile shown in FIG. 1, air from the grate 181 would have difficulty penetrating the material. Stated in other words, the pile of refuse 168 would simply block the air from leaving the grate 181 (except where no or minimal refuse sits). In any event, substantially no air from the grate 181 would penetrate through the entire pile of refuse.
  • In FIG. 3, the loader 176 has moved further to the right and into the incinerator chamber 155. As it moved to the right, it spread the refuse 168 into a relatively thin layer upon the grate 181. This allows the oxygen-containing gas introduced through nozzles in the grate 181 to seep and percolate through the entire mass of refuse, drying it and boosting off the volatile hydrocarbons. Typically, a layer of two to six and possibly eight inches in depth will permit the gasses from the grate 181 to achieve their desired objectives.
  • The movement of the plug loader 176 into the chamber 155 has a beneficial effect in addition to spreading out the refuse 168 on the grate 181. Often bulk refuse contains various substantial pieces of metal or wire. This may include tire bindings, bicycles, and the like. These could simple sit on the grate and 181 and block passage of refuse on in into the chamber. As the loader 176 moves into the chamber, it pushes this noncombustible metal debris along the grate 181. Moving the loader sufficiently far into the chamber that its front end 179 reaches the end of the grate 181 will force these metal pieces to fall off the grate and onto the floor 156. Eventually, the floors 156 to 158 will move the metal refuse to the pit 163. As seen from this, though, moving the loader 176 into the chamber 155 serves the purpose of cleaning the grate 181 of accumulated, most likely noncombustible, debris. Clearly, it could do the same for very large hunks of combustible material such as logs and the like which will not likely fall through the openings in the grate itself.
  • As suggested by the above, the depth to which the loader 176 moves into the incinerator chamber 155 varies for different circumstances. To push material off of the grate 181, the loader may travel far enough for its front end 179 to reach or almost reach the end of the grate 181. For a large amount of material, the loader 176 may extend almost as far as seen in FIG. 3. For lesser amounts of refuse, the loader may only enter a small or medium distance into the chamber 155. In any event, to allow for different penetrations, the motor moving the loader should have controls, whether manual or automatic, to permit the different movements of the loader 176 depending upon the circumstances.
  • Clearly, as the loader 176 enters the chamber 155, it experiences the heat generated by the combustion occurring there. Accordingly, it should typically have some protection from the high temperatures found there. This protection may take one or more forms. Thus, the loader may first have a refractory covering. Further, air may circulate within the loader itself to effectuate its cooling. Whatever cooling finds use, it should desirably have the ability to protect the loader if it should happen to become stuck inside of the chamber 155.
  • FIG. 4 diagrams the air-grate, shelf, and loader interrelationship. As seen there, the loader 176 pushes the refuse onto the shelf 180, described below especially with regards to FIG. 5. The shelf 180 may actually take the form of a plenum having the interior 186. This interior 186 receives cooling air from the conduit forced there by the blower 190. The cool air passes through the interior 186, around the three arms 193 to 195 of the grate 181, and out the passageway 197. The plenum 180 has an interior skin 198 of metal, typically steel, and a refractory coating 199 to protect it from the heat and possibly chemicals in the combustion chamber and from abrasion caused by refuse moving across it.
  • The three grate arms 193 to 195, described extensively below, extend through the plenum 186 and to the outside 201 of the incinerator chamber. The ends 203 of the grate arms that protrude from the chamber permit the passage of the oxygen-containing gas and the cooling fluid into the arms themselves.
  • FIGS. 6 to 8 give a more realistic view of an incinerator chamber in the general area 206 of its inlet opening or throat 207 but without the loader. Again refuse enters the opening 207 in the wall 208 and sits or, more accurately, moves along upon the shelf 209. It can then come to rest on the two identical grate arms 213 and 214. The shelf 209 forms the top of the plenum 215 whose side 216 permits the entry of cooling air.
  • The incinerator also includes the two side walls 217 and 218. Each includes the membrane-tube wall, 219 and 220, respectively, to permit heat recovery and removal from the incinerator chamber as seen in Mr. Basic's patents listed above. Additionally, the walls 219 and 218 include the sloping side shelves 223 and 224, respectively. The shelves cause the refuse to slide from the side walls 217 to 218 so that it will come to the grate arms 213 and 214.
  • The structure of the grate arm 214 appears in the cross-sectional view of FIG. 7. However, because of their identical structure, the same comments also hold true for the other grate arm 213. As seen in the figure, the grate arm 214 has the six metal tubules 231 to 236 sitting at the corners of a hexagon. Each of the sheet metal fins 241 to 246 sits between two of the tubules 231 to 236 and, by welds, connect them intimately together. The net result is an integral whole that takes the general form of a hollow, cylindrical membrane tube wall.
  • This important structure of the grate arm 214 (and the arm 213) achieves two purposes. First, the hollow interior 249 permits the passage of the oxygen-containing gas used in the processes occurring in the refuse on top of the arm 214. The oxygen-containing gas escapes the arm 214 through the openings, or nozzles or jets, 251 and 252 placed in the metal fins 241 and 244, respectively. The oxygen-containing gas can take various alternatives of which air represents the most common and expedient. Flue gas, as discussed both above and below, portends significant benefits as the oxygen-containing gas. First, it has a significant amount of heat that can find use in drying the refuse, if needed. Also, its heat can assist in driving off the volatile hydrocarbons. Its water content has a high specific heat which causes it to provide more heat to the refuse on the grate arms. Further, its relatively low oxygen content will allow the volatile HC's to leave the grate arm before blooming into fire. This helps prevent localized excessive hot spots on the grate arms and the resultant slagging.
  • Using air as the oxygen-containing gas brings a gas of very low temperature into the combustion chamber. It could well benefit from heating to help it achieve its purposes. On the other hand, using flue gasses for the same purposes introduces a potentially very hot gas into the air- grate arms 213 and 214. These excessively high temperatures can cause the steel in the grate arms to lose most of its strength. In fact, at temperatures around 800 to 950 degrees F., the different alloys of steel can lose 90 percent of their strength. Introducing flue gas at temperatures that can approach 2000 degrees F. clearly portend the air-grate arms losing structural integrity. Additionally, the arms 213 and 214, of course, sit in the combustion chamber where the temperature, due to the incineration occurring there, can well reach 1200 to 1400 degrees F. and can even go as high as 2000 to 2400 degrees F. Clearly, these, temperatures have the capability of robbing the arms of all of their strength. As a result, the gases entering the interior conduit 249 may well benefit from controlling their temperature. Even more importantly, the steel structure of the arms 213 and 214 can benefit from controlling their temperature.
  • To control the temperature of the arms 213 and 214 and possibly the gas traveling along their interiors, a fluid having a generally known temperature passes through the tubules 231 to 236. Clearly, since the tubules 231 to 236 have a composition of a heat conducting material such as steel, the fluid's temperature will pass to the tubules' metal.
  • However, the benefit of the temperature-controlling fluid passes further than the tubules 231 to 236 themselves. The tubules 231 to 236 have a heat-conducting connection to the metal fins 241 to 246. Welding or other integral connections will work well for this purpose. Accordingly, the temperature of the tubules 231 to 236 will pass from the tubules and onto the fins 241 to 246. In other words, excess heat from the fins 241 to 246 will pass to the tubules 231 to 236 from where the fluid inside will carry it off to another location. Naturally, the width of the fins 241 to 246 should not exceed that beyond which their heat can pass in a timely fashion to the tubules 231 to 236 with their fluid.
  • Two-phase steam represents a desirable fluid to pass through the tubules 231 to 236. At a known pressure, it will maintain a known temperature. Furthermore, heating it anywhere will induce circulation of the fluid, thus avoiding the build-up of temperature at a location that could cause a hot-spot with concomitant localized structural deterioration or destruction of the arm 213 or 214. Other potential fluids can include oil and water, either most likely under forced circulation. The two-phase steam may move through the tubules under its own impetus or under forced circulation. Furthermore, saturated steam at 40 bars of pressure, has a temperature of about 500 degrees F. Any steam system that will maintain the temperature of the grate arms below the temperature at which they will start to suffer damage will clearly suffice.
  • FIG. 8 shows, in effect, how the tubules 231 to 236 pass the fluid in them through and out of the incinerator chamber. (Since the two arms 213 of FIGS. 8 and 214 of FIG. 7 have the same structure, the same numbers for the similarly located tubules for both will find use here.) As seen in FIG. 8, the tubules 231 to 236 connect to each other in pairs. Thus, the end of the tubule 233 connects to the end of the tubule 236 through the sealed end connection 255. Similarly, the tubule 232 connects to the tubule 231 through the end connection 256, and the tubule 234 connects to the tubule 235 through the end connection 257. Accordingly, fluid introduced into the tubules 232 to 234 passes out of the chamber through the tubules 231, 236, and 235, respectively. Stated in other words, the tubules 231 to 236 with their end connections 255 to 257 constitute a completely closed, sealed system for the passage of the temperature-controlling fluid. That fluid never leaves the sealed tubule system and in particular never contacts the oxygen-containing gas passing through the interior 249 of the arms 213 and 214. The temperature-controlling fluid thus enters the arms 213 and 214, passes through the tubules 232 to 234, and enters the end connections 256, 255, and 257, respectively. It then travels along the tubules 235, 236, and 231 and departs the incinerator chamber entirely. In its passage through the metal tubule system, the fluid controls the temperature first of the tubules themselves and then the metal fins 241 to 246. This temperature control prevents the heat destruction of the arms themselves, thus preserving the grate for its purposes discussed above.
  • The oxygen-containing gas enters the arms' interiors 249 outside of the combustion chamber. It then travels inside the chamber and exits the arms 213 and 214 through the nozzles 251 and 252 to enter the combustion chamber. Naturally, it can then enter refuse sitting upon the grate arms to dry it and drive off its volatile HC's. (FIGS. 6 and 8 show the interconnecting metal fins 241 and 246 cut away to show the underlying tubules 233 and 234. In actual operation, the fins 241 to 246 extend all the way and weld to the end connections 255 to 257 and completely seal off the interiors 149 at the ends of the arms 213. As a result, air from the air-grate arm interior 249 can depart the dryer grate arm and enter the combustion chamber only through the nozzles 251 and 252.)
  • FIGS. 6 to 8 show the steel components of the arms 213 and 214 completely unprotected from heat. The fluid in the tubules 231 to 236 (as well as the end connections 255 to 257) adequately cools the arms 213 and 214 so that the high temperatures generally encountered in the combustion chamber do not have a deleterious effect upon them. Stated otherwise, the steel components of the arms 213 and 214, because of the fluid in the tubule components 231 to 236 and 255 to 257, remain at a sufficiently low temperature that they require no heat protection such as that offered by a refractory coating.
  • The oxygen-containing gas, such as air, can fail to appear in the interiors 249 of the arms 213 and 214. This can result from such simple causes as the failure of electricity for the blower pushing the oxygen-containing gas. Or, the blower itself may fail. However, the loss of the oxygen-containing gas in the arm interiors 249 will not result in the loss of structural integrity in steel of the arms 213 and 214. The fluid in the tubules 231 to 236 and 255 to 257 will still protect the grate arms 213 and 214 from the high heat encountered in the combustion chamber. Further, the temperature-controlling fluid avoids the need for the air or other oxygen-containing gas to cool the grate arms 213 and 214. In fact, to support combustion, air introduced into the grate arm interiors 249 may undergo substantial heating to high temperatures prior to reaching the arms. The fluid in the tubules 231 to 236 and 255 to 257 will protect the grate from the hot air as well as from the heat in the combustion chamber itself.
  • Removing all or part of the refractory coating on the steel grate arms 213 and 214 thus becomes feasible due to the temperature-controlling effect of the fluid in the tubules 231 to 236 and 255 to 257. Dispensing of any amount of refractory has several potential benefits. This results from the necessity of supporting the weight of any refractory used or, alternately, the benefit of not having to carry the weight of refractory not used. Since the arms 213 and 214 use no refractory (and other structures described below have only partial refractory coverings) these structures may support other weight that can benefit the process. This allows grate arms of greater length with the same supporting structure. Or, the grate arms can receive and support greater loads of refuse. Or, without the necessity for the same amount of refractory, a lighter supporting structure may suffice where heavier supports were required in the past.
  • However, a refractory coating may serve to protect a dryer grate from other dangers. This could include abrasion damage from contact with the refuse, especially sharp, hard, or scraping matter contained in it. Accordingly, FIGS. 9 to 11 show a grate arm generally at 261 largely surrounded by a refractory coating. In particular, the grate arm 261 includes the six fluid tubules 265 to 270, with the tubules 265 and 266 interconnecting through the end connector 275, the tubules 267 and 270 connecting through the end tubule 276, and the tubules 268 and 268 similarly interconnected at their ends. The fins 279 weld to the tubules 265 to 270 to make a membrane tube wall conduit with the interior 280 as discussed previously. The interior 280 provides a channel for the passage of the oxygen-containing gas which enters the combustion chamber through the jets 283. The sections 286 of refractory or ceramic material or even metal adhere to the fins 279 to provide abrasion resistance. In the case of metal sections 286, the fluid in the tubules 265 to 270 also provide them protection against heat damage.
  • As seen in FIGS. 9 to 11, the arm 261 has the refractory sections 286 almost completely encircling it. Only the outside portions of the tubules 265 to 270 show through the refractory. In FIGS. 6 to 8, in comparison, the arms 213 and 214 carried no refractory over the metal of the tubules or the interconnecting fins. The figures that follow show other arrangements of refractory. In some cases, all of the metal of the arm has a refractory covering. In others, only the top portions of the arms have the covering which serves the purpose specifically of protecting them from abrasion damage as the refuse sits and moves upon them.
  • FIG. 12 provides an enlarged view of the end interconnection 275 between the two side tubules 265 and 266. The joining of these three components leaves a smooth, uninterrupted interior channel 291 for the temperature-controlling fluid to pass through on its way from its inlet, through the chamber, and on to its outlet.
  • An alternative end connection between the two tubules 295 and 296 appears in FIG. 13. In this case, the fluid-tight, box-type connector 297 connects to the tubules 295 and 296. The fluid may freely flow between the tubules 295 and 296 through the connector 297. The box connector 297, however, has the two openings 299 and 300 in its end. This allows direct access to the two tubules 295 and 296 for cleaning purposes, for example. In particular, when using steam, some scale may deposit on the tubules unless boiler water has been used. In this case, the openings permit the removal of such scale. Suitable plugs inserted in the openings 299 and 300 close them when the tubules find actual use during incineration.
  • A complete, three-arm, air-grate system appears generally at 311 in FIGS. 14 to 18. The actual components for introducing the temperature-controlling fluid receive discussion below with regards to FIGS. 29 to 40. The dryer grate 311 includes the three cantilevered arms 313 to 315. These arms appear almost identical to the arms 213, 214, and 261 of the prior figures. However, the arms 313 to 315 have the refractory sections 318 which completely encase all of the steel of their tubules 319 and 320. Anchors, such as the bolts 323, keep the refractory sections 318 in place. The refractory end caps 324 protect the ends of the tubules 319 and 320.
  • The tubules 319 and 320, on their respective ways into and out of the incinerator chamber, pass through the plenum 331 seen in FIGS. 14 and 15. The plenum has the steel casing 332 with the protective refractory covering 333. The top 334 of the plenum 331 forms the shelf over which the refuse passes as it enters the combustion chamber. As discussed with reference to FIGS. 4 and 5, an air supply through the plenum 331 protects it from heat damage. On the outside of the combustion chamber, or to the left of the plenum 331 in FIGS. 14 and 15, the inlet tubules 319 connect to the lower header 339 to receive their supply of temperature-controlling fluid. Similarly, the outlet tubules, on the outside of the combustion chamber, connect to the upper header 340. Thus, the temperature-controlling fluid, from whatever source, enters the lower header 339 through its coupling 341. It then passes through the lower tubules 319, which themselves travel through the plenum 331, until it reaches the ends of the arms 313 to 315. It then returns along the upper tubules 320, again through the plenum 331, and out to the upper header 340. The fluid leaves the header 340 through its coupling 342 for further processing, after which it may then again engage in the same journey.
  • As discussed below, oxygen-containing gas enters the interiors 345 of the membrane tube wall conduits of the arms 313 to 315, seen in FIGS. 16 and 18. It then passes through the jets 346 into the refuse, if any, sitting on the arms 313 to 315, and then into the combustion chamber.
  • The air-grate system generally at 351 of FIGS. 19 to 21 appears very similar to that of the prior five figures. It has the three arms 353 to 355 with each including the inlet tubules 357 and the outlet tubules 358. Both sets of tubules 357 and 358 pass through the plenum 361 which has the refractory covering 362. The inlet tubules connect to the lower header 365 where the temperature-controlling fluid arrives through the coupling 366. Similarly, the outlet tubules 358 pass through the plenum 361 and connect to the outlet header 367 which attaches to its coupling 368.
  • The differences between the grate system 351 of these figures and the system 311 of FIGS. 14 to 18 appear most clearly in FIG. 21. As seen there, the arms 353 to 355 each incorporates five inlet tubules 357 and the same number of outlet tubules 358, which compares to the total number of six tubules of the prior five figures. The arrangement of the tubules in FIG. 21 gives the arms 353 a generally rectangular cross section. Nonetheless, the refractory sections 371, held in place by the anchor bolts 372, cover the tubules 357 and 358 entirely. The oxygen-containing gas passes from the interior 375 through the jets 376. The larger number of tubules 357 and 358 in comparison to the prior systems permits arms 353 to 355 with the large interiors 375. The interiors 375 can then pass greater amounts of gas through them and the jets 376 and into the refuse and the combustion chamber.
  • The air-grate arm seen generally at 381 appears virtually identical to the arms 353 to 355 in FIG. 21. Accordingly, the same numbers have found use in this figure for the same parts. However, As FIG. 22 shows, the bottom 382 of the arm 381 has a smaller width than the top 383. In other words, the sides 387 slope inward as they go from the top 383 to the bottom 382. The benefit of this configuration becomes clear when several of the arms 381, typically three, line up next to each other in a combustion chamber. There, the spaces between each pair of adjacent arms increases in descending from the tops 383 to the bottoms 382. This results from the evident fact that the arm bottoms 382 are narrower than the tops 383. As a result, refuse, in whatever stage of drying, vaporization of HC's, or burning, that descends into the space between two adjacent arms cannot become wedged there; the space between the arms below the refuse increases, allowing the refuse to drop through to the floor below, such as the pulsed hearth 156 in FIGS. 2 and 3.
  • The grate arm generally at 389 in FIG. 23 has a trapezoidal shape similar to that of the arm 381 of the prior figure and for the same reason: to avoid refuse falling off the top of the arm becoming wedged against the arm as it travels to the floor underneath. As with the prior two figures, the arm 389 includes the inlet tubules 390 and the outlet tubules 391. As before, the inlet tubules 390 and the outlet tubules 391 pair up with each other to provide continuous paths for the temperature-controlling fluid. The fins 393 interconnect the tubules 390 and 391 to create the membrane-tube-wall conduit. Further, oxygen-containing gas in the interior 394 of the arm's membrane-tube wall exits through the jets 395 to enter the combustion chamber 396.
  • However, the structure of the arm 389 displays substantial differences from those in the prior figures. As FIG. 23 shows, the refractory 401 only covers the top 402 and a small portion of the sides 403 of the arm 389. As stated below, the fluid flowing through the tubules 390 and 391 provide heat protection to the metal components of the tubules 390 and 391 themselves as well as the fins 393. Accordingly, the refractory 402 need not guard the metal components against the heat in the incinerator chamber. Rather, the refractory 410 imparts abrasion resistance to the arm's top 402. This protects the top 402 from damage that refuse of different types could otherwise effect upon the grate arm 389.
  • Further, as seen in the figure, the Y-anchors 406 hold the refractory 401 in place on the top 402 of the arm 389. The use of the alloy Y-anchors 406 indicates that the refractory 401 was cast in place on the top 402 of the arm 389. Further, this occurred after the attachment of the anchors 406 to the fins 393. Typically, and as seen in the figure, the refractory 401, when cast, extends across the entire width of the arm 389. However, to simplify the process, the refractory 401 may be cast in sections along the length of the arm. This makes construction noticeably simpler and may allow for expansion and contraction of the components.
  • As clearly suggested by FIG. 23, the refractory 402 only serves to protect the top of the metal structure of the tubules 391 and 392 and the interconnecting fins 393 from abrasion. The fluid passing through the tubules 391 and 392 protect it from heat. Accordingly, having a chunk of the refractory 402 in FIG. 23 or of the material of the prior figures fall off does not spell doom. In fact, this rather common occurrence will likely have very little or no effect upon the operation of the structure. It can simply wait until the next maintenance shutdown of the incinerator for the appropriate repairs.
  • Further, other coverings may serve the same abrasion protection as the refractory 402 in FIG. 23 or the other refractories in the figures. Thus, a metal plate affixed to the top of the metal structure may well provide such protection. The metal, attached to the metal-tubule structure, may also receive some heat protection from fluid passing through the tubules. However, this has less importance than the heat protection of the tubule-and-fin membrane construction since the latter supports the grate-arm structure and allows it to carry its own weight and the weight of the refuse placed on top of it.
  • The grate arm 413 in FIG. 24 has a structure almost identical to the arm 389 of the prior figure. The essential difference lies in the second set of jets 415 for introducing the drying, oxygen-containing air into the combustion chamber. These additional jets 415, passing through the refractory 416, allow for the introduction of greater amounts of gas from the arm's interior 394 into the refuse sitting on top. Having additional jets, rather than the same number of larger-diameter jets, permits the entry of more gas without the loss of gas velocity passing through them. The arm with these additional jets may find use in particular with very wet refuse such as food. The additional gas passing through the jets can help dry the refuse so that it can ignite and burn. This in particular can allow drying of very wet refuse such as food which can have up to 80 percent moisture and can contain such items as celery and watermelon.
  • FIGS. 25 to 28 show the use of a plenum to introduce the oxygen-containing gas into the membrane-tube-wall conduits for passage into the combustion chamber. The discussion below with regards to FIGS. 36 to 40 illustrates the direct entry of the gas into the interiors of the membrane tube wall conduits.
  • The air-grate system generally at 427 in FIGS. 25 and 26 show the use of the three grate arms 413 described with regards to the prior figure. The structure described there extends to the shelf plenum 428 through which a cooling gas passes from its inlet 429 to its outlet 430. The top 435 of the plenum 428 constitutes the shelf over which the refuse passes as it enters the combustion chamber 436, as discussed with reference to FIGS. 4 to 6 above. The space 437 to the left of the plenum 428 sits outside of the combustion chamber. There, the inlet tubules 390 connect with the inlet header 439, while the outlet tubules 391 connect to the outlet header 440. The temperature-controlling fluid passes from the inlet header 439, through the inlet tubules 390 and the outlet tubules 391, and into the outlet header 440 for treatment elsewhere.
  • The dryer-grate system 427 has the oxygen plenum 444 to the left in FIGS. 25 and 26. It also appears in the cross-sectional views of FIGS. 27 and 28. As seen in FIGS. 25 and 27, the oxygen-containing gas enters the oxygen plenum 444 from the inlet 447 situated under the tubules 390 and 391 at the left end of the grate system. Once inside the plenum 444 as seen in, FIG. 27, the gas enters under pressure into the spaces 448 between the tubules 390 and 391 where there are no fins 393. To keep the gas from escaping and to force it into the grate arms, the oxygen plenum has the top 449 formed from some of the fins 393 and the refractory-coated metal strips 450. The remainder of the enclosure for the plenum is formed from the fins 393 on the left and right sides in FIG. 27, the three fins 393 in the lower right and left corners, and the refractory-coated strips 451.
  • When the plenum 444 reaches the back plate 455 seen in FIG. 28, the construction has created the membrane-tube-wall conduits 394 that will carry the oxygen-containing gas into the combustion chamber where it will escape through the jets 395 and 415. At this point, because of the blocking action of the plenum back wall 455 and the presence of all of the fins 393, the pressurized oxygen-containing gas can only leave the plenum through the conduits 394 and travel along them to the combustion chamber and the jets 394 and 415.
  • FIG. 29 diagrams the obtention of the oxygen-containing gas and its routing into the dryer-grate system. As seen there, refuse is placed into the hopper 458 from where the loader 459 can push it into the combustion chamber. There it sits on the grate 461. Eventually, the refuse falls onto the floor 462. The combustion occurring within the chamber 460 produces gasses which depart through the chamber's outlet opening 465. The gasses then enter the first reburn tunnel 467 and then the second reburn tunnel 468 for further burning. From this point, the gasses could go out the emergency relief stack 469 or onto the fourth stage 470 of the system.
  • The conduit 475 takes gasses from the third stage 468 and provides it to the blower 476 where it can combine with air from the air conduit 477. Suitable controls allow proportioning the gasses used from all air, or all combustion gas, or any desired combination of the two. The blower 476 then impels the desired oxygen-containing gas along the conduit 478 into the grate 461 for use in the drying, volatilizing, and combustion processes as discussed above.
  • Returning briefly to FIG. 1, the actual flue gas used in the grate system may actually emanate from any of several different locations in the incinerator system 75 itself. Thus the end 481 of the reburn tunnels 111 may provide flue gas which may have a temperature here of at least about 1400 to 2100 to even 2700 degrees F. and generally at least about 1800 degrees F. The second location 482 after stage four 121 but before the boiler 79 can provide flue gas with an approximate temperature of 1200 to 1400 degrees F. The third location 483 after the economizer 123 provides a flue gas at around 400 to 450 degrees F. After the heat exchanger 133, flue gas with a temperature of about 250 to 300 degrees F. becomes available at the fourth location 484. In fact, the flue gas could come from almost any location where it passes. Its temperature would have to be taken into consideration when blending it with air to reach the final combination.
  • FIGS. 31 to 33 show the incinerator generally at 487 which takes flue gas from the end 488 of the reburn tunnels 489. (This corresponds to the first location 481 at the end of the reburn tunnel 111 in FIG. 1.) As seen in FIGS. 30 and 31, a small amount of the total flue gas in the tunnel section 488 leaves and passes into the conduit 492. In the conduit 492, the flue gas encounters the damper 492, which has a refractory coating to protect it from the heat and possible corrosiveness of the gas itself. The damper 493 changes its position from fully open to fully closed or in between in order to control the amount of flue gas that passes back to the dryer grate as discussed below.
  • After the damper 493, the flue gas enters the conduit 494. There, it meets and mixes with air sucked in through the inlet 497. However, after entering the inlet, the air must pass its own damper 498. The air damper 498, like the flue-gas damper 493, may be controlled from the fully open to the fully closed position as well as intermediate configurations. The air and flue gas, to the extent that their respective dampers 498 and 493 admit them, then pass through the remainder of the conduit 494 to the blower 501 operated by the motor 502. The blower 501 then puts the gas passing through it into the conduit 505 for introduction into the incineration chamber 506 by way of the dryer grate 507, as discussed below.
  • The two dampers 493 and 498 serve several purposes. First, their relative settings, or openings, determine the relative amounts of air and flue gas passing through the blower 501 and then fed into the grate 507. For example, opening the air damper 498 further relative to the flue-gas damper 493 will increase the proportion of air relative to the flue gas in the gas stream passing to the blower 501 and then to the dryer grate 507. Equivalently, closing the flue-gas damper 493 relative to the air damper 498 will achieve the same result of increasing the proportion of air in the subsequent gas stream.
  • Altering the relative proportions of air to flue gas in the gas stream has several effects. First, it will determine the temperature of the gas stream in the conduit 494, the blower 501, the conduit 505 and the dryer grate 507. Increasing the fraction of the low-temperature air decreases the temperature of the gas stream passing through these components. Clearly, the converse holds true as well; increasing the fraction of flue gas increases the temperature.
  • The control of temperature has particular importance for the blower 501 if the refuse burning in the in the chamber 506 has chlorine. In this instance, the flue gases will have corrosive chlorine gas at temperatures above about 800 to 850 degrees F. and can damage the blower 501. Below about 350 degrees F., the flue gas will have hydrochloric acid that can also attack the blower 501. To provide some safety margin, the gas entering the blower 501 should typically have its temperature in the range of 400 to 700 or 750 degrees F. As can be seen from the figures, the blower 501 provides the important function of creating an induced draft that pulls in the flue gas and the air through their respective inlets 492 and 497 and feeds the resulting gas mixture into the conduit 505 and then the dryer grate 507. Its destruction would have a deleterious effect upon the operation of the dryer grate and perhaps the entire incinerator. Combining the cold air with the hot flue gas prior to either reaching the blower 501 permits the control of the temperature so that it falls in the range given above where the gas should not damage it.
  • Unlike the other components that the gas stream contacts, the blower 501 does not carry a refractory covering. Accordingly, protecting it from chlorine attack involves controlling the temperature of the gas stream passing through it. As clearly seen from FIGS. 30 and 31, the air mixes with and effectuates the control of the temperature of the flue gas in the conduit 494 before either can reach the blower 501 itself. Thus, although the blower 501 provides the negative draft that sucks in the flue gas from the reburn tunnel 488, it remains out of contact with the flue gas until after the air has mixed with it and brought its temperature down to within the safe ranges given above.
  • The gas stream, as discussed above, passes through the center of the membrane tube wall forming the conduits passing through the grate arms as discussed with reference to the prior drawings. While there, it clearly contacts the steel that composes the membrane tube wall itself. However, the fluid passing through the tubules in the membrane tube wall controls the temperature of the gas stream and keeps it out of the realm where the gas could damage the membrane tube wall itself.
  • The two dampers 493 and 498 also permit the control of the total amount of air-flue gas mixture fed into the grate 507 without changing the relative proportions of the two gasses constituting the mixture. Accordingly, opening both dampers 493 and 498 (by the appropriate amounts) will increase the total amount of gas introduced into the incinerator chamber through the direr grate without changing the relative proportions of the two components in the mixture. Thus, the final mixture will remain at the desired temperature where it avoids damaging the blower 501. Yet, its total volume entering the chamber 506 can increase when necessary for greater amounts of refuse on the grate or where that refuse has excessive amount of moisture that must dry before it will support incineration.
  • In any event, gas from the conduit 505 passes through the right-angle conduit 509 and into the coupling 510. The coupling 510 takes the gas stream from the conduit 509 with a circular cross section and passes it horizontally to the conduit 511 with a rectangular cross section, as seen in FIG. 33. The conduit 511 then passes the gas through the opening 512 in the end plate 513 and into the interior 514 of a dryer-grate arm discussed previously. There, it will pass through jets in the dryer-grate arm and meet refuse introduced into the incinerator chamber 506 by the loader 517. After the gas has dried the refuse and driven off its volatile hydrocarbons, the remaining fixed hydrocarbons fall onto the pulsed hearth 518 for further burning.
  • FIGS. 32 and 33 also show that the temperature controlling fluid enters the lower heading 521 through the coupling 522. From there it enters the inlet tubules 525 through the flanged couplings 526. Staggering the flanges 526 permits their location within the cramped space next to the gas conduit 511. After passing through the incinerator in the grate arm, the temperature-controlling fluid passes out of the incinerator chamber through the outlet tubules 531, pass the flanged couplings 532 in FIG. 32, into the upper header 533, and out through the coupling 534. The arrangement of the upper header 533, the outlet tubules 531 and the outlet flanges 532 generally constitutes a mirror image through a horizontal plane of the corresponding components for the similar inlet components. The foregoing description combines the passage of the oxygen-containing gas stream into the same grate arm as, but separate from, the flow of the temperature-controlling fluid such as two-phase steam.
  • FIGS. 34 to 41 show an incinerator system that also accomplishes the same objectives of taking flue gas, combining it with air, and introducing it through the dryer grate into the incinerator chamber while keeping it separate from the temperature-controlling fluid. However, it uses several different components to accomplish the same results.
  • In the incinerator system shown generally at 541 in the figures, refuse enters the main incinerator chamber 542 through the opening 543. As before, the loader 546 (in FIG. 40) moves the refuse through the door 543. As the refuse dries, loses its volatile hydrocarbons, and continues to burn, the gaseous products of combustion depart through the outlet openings 549 into the twin reburn tunnels 550 where they continue to burn. The twin reburn tunnels 550, coming from the back to the front in FIG. 34, then both enter the cross reburn tunnel 551. Most of the gasses then travel past (or, if necessary, into) the relief stack and along the path elucidated in FIG. 1.
  • As seen in FIGS. 35 and 36, some of the combustion gasses may depart the cross reburn tunnel into the side conduit 554. It then travels past the flange ring 555 which holds the side conduit 554 to the damper housing conduit 556. From there, the gas passes from the damper conduit 556 into the damper housing 559 through the opening 560. However, the damper 565 in both figures covers the opening 560 and prevents the passage of gas from the conduit 556 into the damper housing 559. However, moving the damper 565 in the counterclockwise direction of the arrow 566 in the figures moves it off of the opening 560. This permits the passage of flue gas into the housing 559. The amount of gas admitted into the housing naturally depends upon the degree of CCW rotation of the damper 560 in the housing 559. A small rotation allows a minimal amount of gas to enter. Greater rotations admit correspondingly larger amounts of gas. A 90-degree rotation places the damper 560 in the horizontal position shown in phantom in FIGS. 35 and 36.
  • In any event, any gas that enters the housing 559 may depart through the exit opening 570. As discussed below, the gas departing the damper housing 559 will reenter the combustion chamber through the dryer grate.
  • The damper housing has the main portion 571 and the upper portion 572. The flanges 573 hold the two portions 571 and 572 together. Removal of the upper housing portion 572 allows access to the interior of the damper housing 559. It also permits placement of the damper 560 within the housing 559. The upper and lower housing portions 571 and 572 both have the steel housing 579 and the refractory covering 580. The refractory 580 protects the steel 579 from corrosion and heat damage because of the flue gasses passing through the housing 559. Similarly, the conduits 554 and 556 have the refractory covering 581 for the same reason. Further, the damper conduit 556 has the refractory seat 584 against which the damper 565 seats when closed as seen in FIG. 36.
  • The structure of the damper 565 itself appears in FIG. 37. The damper 565 includes the hollow steel body 587 covered by the refractory and insulation layers 588. The steel body 587 attaches to the hollow steel tube 589 which in turn has its own protective refractory and insulation covering 590 (seen in FIGS. 35 and 36). As before, the coverings 588 and 590 protect the steel components 587 and 589 from the destructive effects of the flue gasses passing through the damper housing 559 and keep the heat inside.
  • The ends 595 and 596 extend beyond their respective sides of the damper housing 559. This serves two purposes. First, the ends 595 and 596 sit in cut out portions of the housing wall and support the damper 565 in the housing 559. The support form the tube ends 595 and 596, as implied above, allows the rotation of the damper 565 between its closed and various open configurations.
  • Further, the hollow tube 589 permits the flow of air through the interior of the damper 565 to help protect it from the heat it sees in the flue gasses. Specifically, air under pressure may enter the opening 601 in the end 595 of the hollow tube 589. There, it travels along until it meets the cutout 602 in the tube 589. This allows air from the tube 589 to enter the hollow interior of the damper 565. The air then travels along its circuitous route in the damper 565 as directed by the baffles 603. The air may then depart the damper through the cutout 606 and travel through the hollow tube 589 and exit through the end 596. In other words, the baffles 603 prevent the passage of the air from the inlet cutout 602 directly to the outlet cutout 606.
  • Additionally, the tube 589 has the disc 607 blocking the direct passage air from the inlet end 595 to the outlet end 596. Rather, it forces the air to pass through the inlet opening 602 and then through the interior of the damper 565 as described above. Placing the disc 607 in the interior of the tube 589 typically involves cutting the tube into two pieces. The disc 607 is then welded in place followed by welding the two tube sections back together to form the tube 589.
  • To aid in its positioning, the damper 565 includes the counterweight 611 welded to the arm 612 which is affixed to the sleeve 613. In turn, the bolts 618 keep the sleeve 613 and thus the counterweight 611 in place on the tube 589.
  • The damper 565, because of the refractory 588 in addition to its steel structure 587, has a very substantial weight. When the damper 565 occupies any position other than closed in FIGS. 35 and 36, its own weight would tend to force it to rotate in the clockwise direction back to the closed configuration. The counterweight 611, rigidly affixed to the tube 589, serves to prevent this unwanted motion. If necessary, the tube 589 could have a counterweight at each end 595 and 596 to accomplish this objective. Clearly, the counterweight 611 must have clearance relative to the reburn section 551′, the conduit sections 554 and 556, and the flange 555 to rotate to the desired positions.
  • As the flue gas leaves the damper housing 559 through the exit 570, it enters the air mixing section 617. The mixing section 617 receives air under pressure from the blower 618 powered by the motor 619. Specifically, the blower places air under pressure into the plenum 620 that lies on the inside surface of the mixer 617. The air in the plenum 620 then passes through the jets 621 in the interior wall 622. The air from the jets 622 then combines with the flue gas in the interior 623 of the mixer 617.
  • The blower 618 provides a substantial force to the air streaming through the jets 621 into the flue gas in the interior 623 of the mixer 617. This accomplishes two tasks. First, it assures proper mixing of the air with the flue gas. Second, the jets 621, as seen in the figure, point in the direction that the gasses should flow, or toward the mixer outlet 626. As a result, the air moving forcefully through the jets 621 creates a Venturi-like vectored effect to pull the gasses from the damper into the mixer 617 and push them out of the mixer 617 through its outlet 623. Stated in other words, the mixer section 617, with the aid of the blower 618, creates an induced draft for the flue gas from the reburn section 551. It also impels the gas out of its exit 626 and into the connecting conduit 630.
  • Significantly, however, the blower 618 never makes contact with the flue gasses passing through the mixer section 617. As seen in FIG. 38, the only gas that the blower 618 actually directly sees is air. The blower 618 places this air into the plenum 620 and from there it travels by itself through the jets 621 in the interior wall 622. The flue gas cannot come back through the wall to ever see the blower 618. Accordingly, any corrosive elements in the flue gas cannot ever contact or effect any damage to the blower 619. In the structure shown in the FIGS. 30 and 31, air combines with flue gas before the mixture reaches the blower 501 there. The air combining with the flue gas brings the latter to a temperature range (preferably 400 to 750 degrees F.) where any chlorine corrosiveness in the latter could not affect the components of the blower 501. In the present structure of FIG. 38, the flue gas never contacts the blower 618. Accordingly, any corrosive components in the flue gas simply cannot attack the metal components of the blower 619.
  • As discussed with reference to the structure of FIGS. 30 and 31, the system for providing flue gas to the dryer grate should control two entirely separate variables in the supplied gas. First, it must control the relative proportions of air and flue gas in the mixture. This can span the range from solely air to only flue gas. The former represents the case where the refuse that will sit on the grate has virtually no moisture that must evaporate prior to combustion. The latter situation of using solely flue gas may find use where the refuse contains virtually no chlorine that can adversely affect the blower. Other conditions may influence the relative proportions of air to flue gas. For example, various governments may require that the final gas expelled into the atmosphere contain a certain percentage of oxygen. This requirement provides assurance that the hydrocarbon material in the gas has undergone complete combustion.
  • Second, the total amount of the gas mixture admitted to the dryer grate must also submit to control. This permits the system to adjust the amount of gas dependent upon the amount of refuse introduced into the incinerator as well as the nature of that refuse.
  • The present structure of FIGS. 34 to 41 permits control over the same two variables. Opening and closing the damper 565 provides the first control of the amount of flue gas permitted to pass to the dryer grate. The force of the blower 618 controls the amount of air introduced into the mixture and the amount of mixture introduced into the channel 630 that will pass to the dryer grate as discussed below. Balancing the two variables of the opening of the damper 565 and the speed and thus force the blower 618 of will permit the selection of the amount and nature of the gas introduced into and through the dryer grate.
  • As seen in FIG. 38, the blower 618, of necessity, introduces air into the gas stream headed to the direr grate in order to provide the necessary induced draft through the Venturi effect in the mixing chamber 617. However, the amount of air thus introduced may not be necessary or desirable for the refuse on the grate. For example, a very high moisture content would suggest an oxygen-containing gas with less oxygen but a much higher heat content. Furthermore, it may require a substantial volume of such gas to effectuate the desired drying in a reasonable amount of time.
  • The modified structure seen in FIG. 39 provides greater flexibility in the composition of the oxygen-containing gas supplied to the dryer grate. As seen there, the blower 618 receives its input gas stream from the bypass conduit 635 which has the refractory lining 636. By comparison, the blower 618 in FIG. 38 received its input directly from the environment which thus simply constituted air.
  • Returning to FIG. 39, the input of the blower 618 provides a negative partial pressure along the bypass conduit 635 to draw gas from its two sources. The first source to the bypass conduit 635 comes from the side outlet of the mixing chamber 617. The side outlet 637 receives flue gas directly from the damper-housing outlet 570. Thus the side outlet 637, which the flange coupling 63 connects directly to the bypass outlet 636, supplies the latter with flue gas taken directly from the reburn tunnel 551.
  • Another source of gas for the bypass conduit 635 appears at the opening 641 to the conduit section 642 which feeds directly into the bypass conduit 635. The opening 641, however, supplies only air to the conduit 635. The amount of air reaching the bypass conduit from the opening 641 falls under the control of the air damper 643. The air damper 643 thus determines the relative amounts of flue gas and air in the bypass conduit 635 reaching the blower 618. The blower 618, in turn, forces this mixture into the plenum 622 and through the jets 621 into the interior 623 of the mixer 617. There, it combines with flue gas drawn directly from the outlet 570 of the damper housing 559. Thus the mixer interior 623 combines flue gas from the damper outlet 570 with the air-flue gas mixture (as determined by the air damper 643) from the bypass conduit 635. This again compares with the mixer 617 of FIG. 38 which only combines air with flue gas.
  • The structure of FIG. 39 provides a wide latitude in selecting the gas placed into the connecting conduit 630. Closing the control damper 643 completely blocks the passage of air into the blower 618 and thus the mixer 617 and subsequently the conduit 630. Accordingly, the connecting conduit will supply only flue gas to the dryer grate (by the path discussed below). As stated before, this flue-gas introduced into the dryer grate might well find use for very wet, especially low B.T.U. refuse. This particular use benefits from the fact that the blower 618 provides the induced draft necessary to provide the flue gas from the reburn tunnel to the dryer grate.
  • However, two limitations apply to passing flue gas through the blower 618. First, if the flue gas (and thus the burning refuse) has no chlorine, the gas' temperature must remain below about 2000 degrees F. Temperatures above this will cause destruction of most every metal that can find use in the blower. Second, in the presence of chlorine, the temperature in the blower should generally not exceed about 750 degrees F. to avoid corrosive damage to the blower's components. Clearly, having the control damper 643 admit air into the bypass conduit 635 will reduce the temperature of the gas there to a point where it will not adversely affect the blower 618. The refractory linings 636 and 649 protect the conduit 635 and the mixer 617, respectively.
  • On the other hand, closing the damper 565 from the reburn tunnel 551 and opening the air damper 643 results in the blower 618 supplying pure air to the dryer grate. This situation may prove beneficial where the refuse has very little moisture. In conclusion, the adjustment of the two dampers 595 and 643 and the blower 618 permit the delivery to the dryer grate of the desired amounts of oxygen-containing gas where that gas has the desired ratio of flue gas to air.
  • In FIGS. 34, 40, and 41, the mixture of flue-gas and air passes through the connecting conduit 630 to the feed conduit 652 along the bottom on the side of the combustion chamber 542. From the feed conduit 652, the oxygen-containing gas travels upward through the channels 653 into the grate arms 654. From there, the gas passes through jets in the grate arms 654 into the combustion chamber 542 as described above.
  • The refuse on the grate arms 654 dries and loses its volatile HC's. Eventually, it drops through the grate arms 654 and falls onto the first hearth 657, the second hearth 658, and the succeeding hearths.
  • FIG. 42 shows a dryer grate system generally at 661 that proves particularly useful for refuse containing small pieces or particulate material or may have undergone prior shredding or communitization. Such material may include rice hulls, refuse derived fuel (“'RDF”), and discarded rolls for tape that failed to meet their specifications. The problem arises that such material may fall through the grates previously described too readily to accomplish the desired objectives of drying and driving off volatile HC's. The material may then land on the floor below, engage in localized overheating, for example, and cause slagging. If wet, the material may simply douse the fire underneath.
  • The air-grate system 661 includes the upper layer 662 of the grate arms 663 to 665 and the lower layer 668 of the grate arms 669 and 670. Each of the grate arms 663 to 665, 669, and 670 sit in and attach to an incinerator chamber and may have the structure of any of the grates previously shown and described. Thus, they may pass an oxygen-containing gas down their interiors and out into the combustion chamber through jets. Further, a temperature-controlling fluid may generally keep the grate arms at a desired temperature. The use of the previously elucidated structure of a membrane-tube wall for the grate arms in both layers 662 and 668 will again serve well in this role. The arms may have a refractory covering that is complete or partial. Or, they may have none. They may also cantilever from the chamber wall.
  • Moreover, grate structures different from those shown above may well suffice for this multi-layered purpose, especially those shown in Mr. Basic's prior patents previously listed. Thus the grate structure may not take the form of arms, have an oxygen-containing gas passing through, or have a cooling fluid inside. However, the grate arms described here would appear to have especial benefit for this application as for the others related previously.
  • In FIG. 42, the particulate material 675 would fall first on the upper layer 675 of grate arms 663 to 665. Because of the relatively small size of the material 675, the particles may not remain there for a sufficient period of time to accomplish the desired objectives of drying and volatilization. As they drop from the first layer 662, they fall onto the second layer 668 of grate arms 669 and 670. The additional delay caused by resting on the second layer 668 may provide the requisite time to accomplish the treatments related above.
  • The choice of specific structural parameters may help insure a sufficient residence time for the particulate matter 675 to permit the desired drying and volatilization. Initially, the lower layer 668 of grate arms 669 and 670 should typically have a staggered configuration relative to the grate arms 663 to 665 of the first layer 662. In other words, the lower grate arm 669 should lie under the space 676 between the upper arms 663 and 664. This will cause material falling through the space 676 to rest upon the lower arm 669. Similarly, the lower arm 670 underlies the space 677 between the upper arms 664 and 665.
  • Adjusting the widths of the arms 663 to 665, 669, and 667 relative to the size of the small pieces of matter 675 and relative to the spaces 676 and 677 may also permit control of the amount of time until matter falls through the two layers. A good starting point will have the width of the arms 669 and 670 in the lower layer 668 about equaling the spaces 676 and 677 between the arms 663 to 665 of the upper layer 662. Further, using flat top surfaces on the grate arms 663 to 665, 669 and 670 may also retard the progress of the particles of matter 675 through the grate structure and allow drying and volatilization of HC's.
  • The plural layers 662 and 668 of grate arms may prove undesirable for normal, bulk refuse. To permit an incinerator outfitted with the grate-arm structure 661 of FIG. 42 to accommodate such bulk material, the removal of one of the layers may become particularly desirable. Thus, for example, the grate arms 669 and 670 of the lower layer 668 may simply telescope into channels set into the combustion chamber wall. These channels will have connections for both the oxygen-containing gas and the temperature-controlling fluid. Inserting the arms 669 and 670 into these channels will allow the connections to provide the gas and the fluid to the arms in the usual fashion.
  • Removing the grate arms 669 and 670, for example, will allow the use of the combustion chamber with the remaining three arms 663 to 665 of the upper layer to operate in the normal fashion for bulk refuse or large-particle material. In this configuration, the connections for the oxygen-containing gas and the temperature-controlling fluid in the lower arms 669 and 670 should be covered to prevent their escape into the combustion chamber.

Claims (140)

1. In a system for drying material comprising a chamber, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement comprising temperature-controlling means, coupled to said grate means, for passing a fluid other than said gas and of a temperature within a predetermined range, through said grate means and separate from said gas.
2. The improvement of claim 1 wherein said temperature-controlling means passes a two-phase fluid of a temperature within a predetermined range, through said grate means.
3. The improvement of claim 2 wherein said system further includes boiler means, coupled to said chamber, for transferring heat from said chamber to a two-phase fluid and wherein said temperature-controlling means is coupled to said boiler means and said grate means and passes said two-phase fluid between said boiler means and said grate means.
4. The improvement of claim 1 wherein said temperature-controlling means passes a fluid other than said gas and having a generally known temperature through a closed system circulating through said grate means and separate from said gas.
5. The improvement of claim 1 wherein said gas introduced into said chamber through said grate means comprises gaseous products of combustion.
6. The improvement of claim 1 wherein said grate means comprises at least one passageway through which said gas passes prior to being introduced into said chamber, said passageway has a composition of steel, and at least a portion of said passageway is directly exposed to the interior of said chamber.
7. A method for drying material in a system comprising a chamber and grate means having openings therethrough and located within said chamber for holding said material comprising (a) introducing a gas into said chamber through said grate means and (b) passing a fluid other than said gas and of a temperature within a predetermined range, through said grate means and separate from said gas.
8. The method of claim 7 wherein said fluid is a two-phase fluid of a temperature within a predetermined range.
9. The method of claim 8 further comprising transferring heat in gaseous products of combustion to said two-phase fluid prior to passing said two-phase fluid through said grate means.
10. The method of claim 7 wherein, after said fluid has passed through said grate means said fluid is passed through a closed system back through said grate means.
11. The method of claim 7 wherein said gas introduced into said chamber through said grate means comprises gaseous products of combustion.
12. The method of claim 7 wherein said grate means comprises at least one passageway having a composition of steel through which said gas passes and is then introduced into said chamber and further comprising directly exposing a portion of said steel passageway to combustion occurring within said chamber.
13. In a system comprising a chamber, a fire-resistant floor means within said chamber, for holding burning material thereon, grate means having openings therethrough and located within said chamber for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means, and oxygenating means, coupled to said grate means, for introducing an oxygen-containing gas into said chamber through said grate means, the improvement comprising temperature-controlling means, coupled to said grate means, for passing a fluid other than said oxygen-containing gas and of a temperature within a predetermined range, through said grate means and separate from said oxygen-containing gas.
14. The system of claim 13 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
15. The improvement of claim 14 wherein the temperature in said enclosed chamber around said grate means is above said range.
16. The improvement of claim 14 wherein the temperature of said oxygen-containing gas in said grate means is above the temperature of said fluid in said grate means.
17. The improvement of claim 14 wherein the temperature of said oxygen-containing gas in said grate means is below the temperature of said fluid is said grate means.
18. The improvement of claim 14 wherein said oxygen-containing gas introduced into said chamber through said grate means is air.
19. The improvement of claim 14 wherein said oxygen-containing gas introduced into said chamber through said grate means comprises said gaseous products of combustion in said enclosed chamber.
20. The improvement of claim 19 wherein said oxygen-containing gas introduced into said chamber through said grate means is a combination of air and. said gaseous products of combustion in said enclosed chamber
21. The improvement of claim 13 wherein said fluid passed through said grate means is a two-phase fluid.
22. The improvement of claim 21 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
23. The improvement of claim 22 wherein said two-phase fluid is a water-steam combination.
24. The improvement of claim 21 wherein said system further comprises boiler means, coupled to said chamber, for transferring heat in gaseous products of combustion from said chamber to said two-phase fluid, said improvement further comprising temperature-controlling means, coupled to said boiler means and said grate means, for passing said two-phase fluid between said boiler means and said grate means.
25. The improvement of claim 21 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
26. The improvement of claim 21 wherein said temperature-controlling means, passes said fluid through a closed system circulating through said grate means.
27. The improvement of claim 26 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
28. The improvement of claim 13 wherein said oxygen-containing gas introduced into said chamber through said grate means comprises gaseous products of combustion from said chamber.
29. The improvement of claim 28 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
30. The improvement of claim 29 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes proportioning means for controlling the relative amounts of air and said flue gas in said oxygen-containing gas.
31. The improvement of claim 30 wherein said oxygenating means further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
32. The improvement of claim 29 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
33. The improvement of claim 13 wherein said grate means comprises at least one passageway through which said oxygen-containing gas passes prior to being introduced into said chamber, said passageway has a composition of steel, and at least a portion of said passageway is directly exposed to combustion occurring within said chamber.
34. The improvement of claim 33 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
35. The improvement of claim 34 wherein said portion of said passageway directly exposed to the combustion occurring within said chamber is at least half of said passageway.
36. A method for controlling the temperature within a system comprising a chamber, a fire-resistant floor means within said chamber, for holding material thereon, grate means having openings therethrough and located within said chamber for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means comprising (a) introducing an oxygen-containing gas into said chamber through said grate means and (b) passing a fluid other than said oxygen-containing gas and of a temperature within a predetermined range, through said grate means and separate from said oxygen-containing gas.
37. The method of claim 36 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
38. The method of claim 36 wherein said fluid passed through said grate means comprises a two-phase fluid of a temperature within a predetermined range.
39. The method of claim 38 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
40. The method of claim 38 further comprising transferring heat in gaseous products of combustion to said two-phase fluid prior to passing said two-phase fluid through said grate means.
41. The method of claim 41 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
42. The method of claim 36 wherein, after said fluid has passed through said grate means, said fluid is passed through a closed system back through said grate means.
43. The method of claim 42 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
44. The method of claim 36 wherein said gas introduced into said chamber through said grate means comprises gaseous products of combustion.
45. The method of claim 44 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
46. The method of claim 36 wherein said grate means comprises at least one passageway having a composition of steel through which said gas passes and is then introduced into said chamber and further comprising directly exposing a portion of said steel passageway to combustion occurring within said chamber.
47. The method of claim 46 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
48. In a system for drying material comprising a chamber, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement wherein said grate means comprises a membrane tube wall formed into a conduit from sections of relatively thin, substantially heat conducting material and having at least two spaced-apart, substantially fluid-tight tubules formed from substantially heat conducting material and in thermal contact with said sections.
49. The improvement of claim 48 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon and oxygenating means, coupled to said grate means, for introducing an oxygen-containing gas into said chamber through said grate means, said grate means, after holding said material above said floor means for a limited period of time, allowing said material to drop through to said floor means.
50. The improvement of claim 49 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
51. The improvement of claim 50 wherein sections and said tubules are integral with each other.
52. The improvement of claim 51 wherein sections and said tubules are welded to each other.
53. The improvement of claim 50 wherein two of said tubules are in fluid-tight, fluid communication with each other.
54. The improvement of claim 50 wherein said grate means comprises a plurality of grate arms, each of said arms comprises said membrane tube wall in the form of a conduit, and said oxygenating means introduces said oxygen-containing gas through said membrane tube wall.
55. The improvement of claim 54 wherein said oxygen-containing gas comprises said gaseous products of combustion.
56. The improvement of claim 54 wherein said oxygen-containing gas comprises air.
57. The improvement of claim 54 wherein said oxygen-containing gas comprises a combination of said gaseous products of combustion and air.
58. A method for controlling the temperature in a system comprising a chamber and grate means having openings therethrough and located within said chamber for holding material thereon comprising (a) introducing a gas into said chamber through a conduit formed in a membrane tube wall from sections of relatively thin, substantially heat conducting material and having at least two spaced-apart, substantially fluid-tight tubules from substantially heat conducting material and in thermal contact with said sections, said membrane tube wall comprising at least part of said grate means, and (b) passing a fluid other than said gas through said substantially fluid-tight tubules.
59. The method of claim 58 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon, said grate means, after holding said material above said floor means for a limited period of time, allows said material to drop through to said floor means, and said gas is an oxygen-containing gas.
60. The method of claim 59 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
61. In a system for drying material comprising a chamber with an inlet opening, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement comprising loader means, coupled to said chamber in proximity to said inlet opening, for (1) moving said material into said chamber through said inlet opening onto said grate means and (2) limiting the height of said material above the top of said grate means.
62. The improvement of claim 61 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon and oxygenating means, coupled to said grate means, for introducing an oxygen-containing gas into said chamber through said grate means, said grate means, after holding said material above said floor means for a limited period of time, allowing said material to drop through to said floor means.
63. The improvement of claim 62 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
64. The improvement of claim 63 wherein said loader means takes the form of a plug loader with motive means for moving said plug loader in a direction toward said inlet opening and the interior of said enclosed chamber.
65. The improvement of claim 64 wherein said motive means moves said loader through said inlet opening and into said interior of said chamber.
66. The improvement of claim 65 wherein said motive means moves said loader through said inlet opening and into said interior of said chamber in a direction and to a depth within said chamber that said loader is at a position where said loader substantially reaches the end of said grate means.
67. The improvement of claim 66 wherein said motive means moves said loader through said inlet opening and into said interior of said chamber to a number of positions in said chamber wherein, in each of said positions, said loader is located at a different depth within said chamber than at the other of said positions, and further including control means, coupled to said motive means, for selecting the particular position for said positions to which said motive means moves said loader.
68. The improvement of claim 65 further including a heat and corrosion resistant material on the exterior of said loader.
69. The improvement of claim 65 further including cooling means, coupled to said loader, for reducing the temperature of said loader.
70. A method for drying material in a system comprising a chamber and grate means having openings therethrough and located within said chamber for holding said material comprising (1) placing said material onto said grate means and (2) limiting the height of said material above the top of said grate means.
71. The method of claim 70 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon and said grate means, after holding said material above said floor means for a limited period of time, allows said material to drop through to said floor means.
72. The method of claim 71 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
73. In a system for drying material comprising a chamber, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement wherein said gas means introduces gaseous products of combustion into said chamber through said grate means as at least a part of said gas.
74. The improvement of claim 73 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon, said gas means is an oxygenating means, coupled to said grate means and to said outlet means, for introducing an oxygen-containing gas into said chamber through said grate means, and said grate means, after holding said material above said floor means for a limited period of time, allows said material to drop through to said floor means.
75. The improvement of claim 74 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
76. The improvement of claim 75 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes proportioning means for controlling the relative amounts of air and said flue gas in said oxygen-containing gas.
77. The improvement of claim 76 wherein said oxygenating means further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
78. The improvement of claim 75 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
79. The improvement of claim 73 wherein said gas means establishes the temperature of said oxygen-containing gas to within a predetermined range prior to said oxygen-containing gas entering said grate means.
80. The improvement of claim 79 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon, said gas means is an oxygenating means, coupled to said grate means and to said outlet means, for introducing an oxygen-containing gas into said chamber through said grate means, and said grate means, after holding said material above said floor means for a limited period of time, allows said material to drop through to said floor means.
81. The improvement of claim 80 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
82. The improvement of claim 81 wherein said temperature range is about 400 to 750 degrees F.
83. The improvement of claim 82 wherein said oxygenating means establishes said temperature of said oxygen-containing gas by combining with said gaseous products of combustion with a separate oxygen-containing gas having a temperature lower than said gaseous products of combustion.
84. The improvement of claim 83 wherein said separate oxygen-containing gas is air.
85. The improvement of claim 81 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes proportioning means for controlling the relative amounts of air and said flue gas in said oxygen-containing gas.
86. The improvement of claim 85 wherein said oxygenating means further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
87. The improvement of claim 81 wherein said oxygenating means also introduces air into said grate means as at least a part of said oxygen-containing gas and further includes volume means for controlling the total amount of said oxygen-containing gas introduced through said grate means.
88. The improvement of claim 73 wherein said gas means (a) includes a conduit in fluid communication with a source of products of combustion and said grate means and blower means, coupled to said conduit for introducing under pressure air from outside said chamber into said conduit to make a mixture of said products of combustion and said air, said blower means remaining out of contact with said gaseous products of combustion and said mixture, and (b) introduces at least a portion of said mixture of said products of combustion and air into said chamber through said grate means as at least a part of said gas.
89. The improvement of claim 79 wherein said system further comprises a fire-resistant floor means within said chamber for holding burning material thereon, said chamber has an outlet opening for the egress of the gaseous products of combustion from said chamber, said conduit is in fluid communication with said outlet, said grate means, after holding said material above said floor means for a limited period of time, allows said material to drop through to said floor means, and said gas means is an oxygenating means, introduces air from outside of said chamber into said conduit to make a mixture of said products of combustion and said air, and introduces at least a portion of samd mixture of products of combustion and said air into said chamber through said grate means.
90. The improvement of claim 89 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
91. The improvement of claim 90 wherein said oxygenating further includes proportioning means for controlling the relative amounts of air and said flue gas in said mixture.
92. The method of claim 91 wherein said oxygenating means further includes volume means for controlling the total amount of said mixture introduced through said grate means.
93. The improvement of claim 90 wherein said oxygenating means further includes volume means for controlling the total amount of mixture introduced through said grate means.
94. The improvement of claim 89 wherein (1) said gas means inlet means coupled to said conduit between said source of the products of combustion and said grate means, for providing a pathway for the introduction of air into said gaseous products of combustion, and (2) said blower means is coupled to said conduit between said inlet means and said grate means, for (a) drawing under a partial negative pressure air from said inlet means into said gaseous products of combustion to form said mixture of said air and said gaseous products of combustion and (b) introducing under pressure said mixture of said air and said gaseous products of combustion into said grate means through said conduit and into said chamber through said grate means as at least a part of said gas.
95. The improvement of claim 94 wherein said chamber has an outlet opening for the egress of gaseous products of combustion from said chamber, said system further comprises a fire-resistant floor means within said chamber, for holding burning material thereon, and said grate means is for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means, said conduit is in fluid communication with said outlet opening and said blower means is for drawing under a partial negative pressure air from said inlet means into said gaseous products of combustion from said outlet opening to form said mixture of said air and said gaseous products of combustion.
96. The improvement of claim 95 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
97. The improvement of claim 96 wherein said oxygenating further includes proportioning means for controlling the relative amounts of air and said flue gas in said mixture.
98. The method of claim 97 wherein said oxygenating means further includes volume means for controlling the total amount of said mixture introduced through said grate means.
99. The improvement of claim 96 wherein said oxygenating means further includes volume means for controlling the total amount of mixture introduced through said grate means.
100. The improvement of claim 96 wherein (a) said conduit is a first conduit, said mixture is a first mixture, and said oxygenating means includes a second conduit in fluid communication with said outlet means, said first conduit, and said grate means and (b) said blower means couples to said second conduit and introduces under pressure said first mixture into said second conduit to make a second mixture of said first mixture and said products of combustion, said blower means remaining out of contact with said gaseous products of combustion and said second mixture, and (b) introduces at least a portion of said second mixture of said first mixture and said products of combustion said chamber through said grate means as at least a part of said oxygen-containing gas.
101. A method for drying material in a system comprising a chamber and grate means having openings therethrough and located within said chamber for holding said material comprising introducing into said chamber through said grate means gaseous products of combustion.
102. The method of claim 101 wherein said system further comprises a fire-resistant floor means within said chamber for holding material thereon and grate means having openings therethrough and located within said chamber for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means and wherein at least a portion of said gaseous products of combustion from said chamber comprise at least a part of said oxygen-containing gas.
103. The improvement of claim 102 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
104. The method of claim 101 further comprising establishing the temperature of said gaseous products of combustion to within a predetermined range prior to said gaseous products of combustion entering said grate means.
105. The method of claim 101 wherein said chamber has an outlet opening for the egress of the gaseous products of combustion from said chamber and a fire-resistant floor means within said chamber for holding material thereon and said grate means having holds said material above said floor means for a limited period of time and then allows said material to drop through to said floor means and said gaseous products of combustion from said chamber comprise at least a portion of said gaseous products of combustion introduced into said chamber through said grate means as at least a part of said oxygen-containing gas.
106. The improvement of claim 105 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
107. The method of claim 101 wherein introducing said gaseous products of combustion into said chamber comprises (a) introducing under pressure air from outside said chamber into initial gaseous products of combustion through the use of blower means to form a mixture of said initial products and air, (b) introducing at least a portion of said mixture of air and said initial gaseous products of combustion into said chamber through said grate, and (c) keeping said blower means out of contact with said initial gaseous products of combustion and said mixture.
108. The method of claim 107 wherein said chamber further comprises an outlet opening for the egress of the gaseous products of combustion from said chamber and a fire-resistant floor means within said chamber for holding material thereon, said grate means holds said material above said floor means for a limited period of time and then allows said material to drop through to said floor means and wherein said initial products of combustion are obtained from said outlet opening.
109. The method of claim 108 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
110. The method of claim 101 wherein introducing said gaseous products of combustion into said chamber comprises (a) introducing under a partial negative pressure, provided by a blower means, air from outside of said chamber into initial gaseous products of combustion, (b) forming a mixture of said air and said initial gaseous products of combustion prior to said initial products of combustion reaching said blower means, and (c) introducing under positive pressure said mixture of said air and said initial gaseous products of combustion into said grate means and into said chamber through said grate means.
111. The method of claim 110 wherein said chamber further comprises an outlet opening for the egress of the gaseous products of combustion from said chamber and a fire-resistant floor means within said chamber for holding material thereon, said grate means holds said material above said floor means for a limited period of time and then allows said material to drop through to said floor means and wherein said initial products of combustion are obtained from said outlet opening.
112. The method of claim 111 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
113. In a system for drying material comprising a chamber, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement wherein said grate means is a first grate means and generally defines a first upper surface and comprising second grate means having openings therethrough, located within said chamber, and generally defining a second upper surface, said second upper surface generally lying below said first upper surface and below said first grate means.
114. The improvement of claim 113 wherein said system further comprises a fire-resistant floor means within said chamber, for holding burning material thereon, said grate means is for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means, and said gas means is an oxygenating means is for introducing an oxygen-containing gas into said chamber through said grate means.
115. The improvement of claim 114 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
116. The improvement of claim 115 wherein said second grate means is removable from said chamber.
117. The improvement of claim 116 wherein said oxygenating means passes an oxygen-containing gas through said second grate means.
118. The improvement of claim 117 further comprising temperature-controlling means, coupled to said first and second grate means, for passing a first and second fluid, respectively, other than said oxygen-containing gas and of a temperature within a predetermined range, through said first and second grate means and separate from said oxygen-containing gas.
119. The improvement of claim 113 wherein said first grate means comprises a first plurality of elongated arms attached to said chamber, the tops of said first plurality of arms generally defining said first upper surface and said second grate means comprises a second plurality of elongated arms lying generally parallel to said first plurality of arms, the tops of said second plurality of arms generally defining said second upper surface with said arms of said first plurality lying generally parallel to but staggered from the horizontal location of said arms of said second plurality.
120. The improvement of claim 119 wherein said system further comprises a fire-resistant floor means within said chamber, for holding burning material thereon, said grate means is for holding said material above said floor means for a limited period of time and then allowing said material to drop through to said floor means, and said gas means is an oxygenating means is for introducing an oxygen-containing gas into said chamber through said grate means.
121. The improvement of claim 120 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
122. The improvement of claim 121 wherein said second plurality of arms is removable from said chamber.
123. The improvement of claim 121 wherein one end of each of the arms of said first and second plurality of arms is attached to and cantilevered from said chamber.
124. The improvement of claim 121 wherein said oxygenating means passes an oxygen-containing gas through said second grate means.
125. The improvement of claim 124 further comprising temperature-controlling means, coupled to said first and second grate means, for passing a first and second fluid, respectively, other than said oxygen-containing gas and of a temperature within a predetermined range, through said first and second grate means and separate from said oxygen-containing gas.
126. A method for drying material in a system comprising a chamber and first and second grate means each having openings therethrough, each of said first and second grate means generally defining, respectively, first and second upper surfaces with said second upper surface generally lying below said first upper surface and below said first grate means comprising passing a gas through said first grate means and into said chamber, placing material upon said first upper surface, allowing said material to drop through said first grate means, then placing said material upon said second upper surface, then allowing said material to drop through said second grate means, and then placing said material upon a floor means below said second grate means.
127. The method of claim 126 wherein (a) said system comprisies a substantially enclosed chamber having a fire-resistant floor means within said chamber for holding and burning material thereon, and an inlet opening for the introduction of said material, (b) said method further comprises passing an oxygenating-containing gas through said first grate means and into said chamber, (c) material newly introduced through said inlet opening is placed upon said first upper surface, and (d) said material is placed upon said floor means while burning.
128. The method of claim 127 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
129. The method of claim 126 wherein said first and second grate means are located within said chamber with each of said first and second grate means generally comprising, respectively, a first and second pluralities of elongated arms attached to said chamber with said first plurality extending away from said inlet opening, said second plurality of elongated arms lying generally parallel to said first plurality of arms, the tops of said first and second pluralities of arms generally defining, respectively, said first and second upper surfaces, with said arms of said first plurality lying generally parallel to but staggered from the horizontal location of said arms of said second plurality and further comprising passing a gas through said first grate means and into said chamber, allowing said material to drop through said first plurality of arms, then placing said material upon said second upper plurality of arms, then allowing said material to drop through said second plurality of arms, and then placing said material upon floor means below said second grate means.
130. The method of claim 129 wherein (a) said system comprises a substantially enclosed chamber having a fire-resistant floor means within said chamber for holding and burning material thereon, and an inlet opening for the introduction of said material, (b) said method further comprises passing an oxygenating-containing gas through said first grate means and into said chamber, (c) material newly introduced through said inlet opening is placed upon said first upper surface, and (d) said material is placed upon said floor means while burning.
131. The method of claim 130 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
132. In a system for drying material comprising a chamber, grate means having openings therethrough and located within said chamber for holding said material, and gas means, coupled to said grate means, for introducing a gas into said chamber through said grate means, the improvement comprising regulating means, coupled to said grate means and separate from said gas means, said gas, and gases in said chamber, for controlling the temperature of said grate means.
133. The improvement of claim 132 wherein said system further comprises fire-resistant floor means within said chamber, for holding burning material thereon, said grate means hold is said material above said floor means for a limited period of time and then allows said material to drop through to said floor means, said gas means oxygenating means, coupled to said grate means, for introducing an oxygen-containing gas into said chamber through said grate means, and said regulating means is separate from said oxygenating means, said oxygen-containing gas, and gaseous products of combustion in said chamber.
134. The improvement of claim 133 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
135. The improvement of claim 134 wherein said oxygen-containing gas introduced into said chamber through said grate means is air.
136. The improvement of claim 134 wherein said oxygen-containing gas introduced into said chamber through said grate means comprises said gaseous products of combustion in said enclosed chamber.
137. The improvement of claim 136 wherein said oxygen-containing gas introduced into said chamber through said grate means is a combination of air and. said gaseous products of combustion in said enclosed chamber
138. A method for drying material in a system comprising a chamber and grate means having openings therethrough and located within said chamber for holding said material comprising passing a gas through said grate means and into said chamber and controlling the temperature of said grate means independently of the temperature of said gas and the interior of said chamber.
139. The method of claim 138 wherein said system further comprises a fire-resistant floor means within said chamber for holding material thereon, said grate means holds said material above said floor means for a limited period of time and then allows said material to drop through to said floor means, said gas is an oxygen-containing gas, and the temperature of said grate means is controlled independently of the temperature of said oxygen-containing gas and any gaseous products of combustion in said chamber.
140. The method of claim 139 wherein said system is an incinerator system for bulk refuse and hydrocarbon-containing liquids, said material is solid bulk refuse, said chamber is substantially enclosed with an inlet opening for the introduction of bulk refuse and an outlet opening for the egress of the gaseous products of combustion from said chamber, and said grate means is located adjacent to said inlet opening and holds refuse newly introduced through said inlet opening for a limited period of time and then allows said refuse to to drop through to said floor means while burning.
US11/022,573 2003-06-12 2004-12-24 Temperature-controlled incinerator dryer grates Abandoned US20050183642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/022,573 US20050183642A1 (en) 2003-06-12 2004-12-24 Temperature-controlled incinerator dryer grates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2003/018701 WO2004001289A2 (en) 2002-06-24 2003-06-12 Temperature-controlled incinerator dryer grates
WOPCT/US03/18701 2003-06-12
US11/022,573 US20050183642A1 (en) 2003-06-12 2004-12-24 Temperature-controlled incinerator dryer grates

Publications (1)

Publication Number Publication Date
US20050183642A1 true US20050183642A1 (en) 2005-08-25

Family

ID=34859795

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/022,573 Abandoned US20050183642A1 (en) 2003-06-12 2004-12-24 Temperature-controlled incinerator dryer grates

Country Status (1)

Country Link
US (1) US20050183642A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090291629A1 (en) * 2006-11-03 2009-11-26 Jari Hokkanen Device for controlling flow
US20120067257A1 (en) * 2010-03-01 2012-03-22 Plasco Energy Group. Inc. A Lateral Transfer System
US20140208748A1 (en) * 2013-01-29 2014-07-31 Middlebury College Control system and method for biomass power plant
CN104236281A (en) * 2014-09-11 2014-12-24 哈密市巧匠农机科技开发有限责任公司 Dry burning hot-air multilayer fruit air-drying device
CN104896911A (en) * 2013-01-04 2015-09-09 李宏江 Second environment-friendly and energy-saving drying machine of three food and medicine environment-friendly and energy-saving drying machines
US20160326440A1 (en) * 2014-01-10 2016-11-10 Manik Ventures Limited Disposal of refuse
US20190316771A1 (en) * 2016-07-11 2019-10-17 Clean Thermodynamic Energy Conversion Limited Combustion kiln system and method of operating the same
CN112013379A (en) * 2020-08-27 2020-12-01 衡阳衡锅锅炉有限公司 Self-adjusting combustion machine
CN115123722A (en) * 2022-07-12 2022-09-30 湖南汇特焊材科技有限公司 Intelligent equipment for welding rod production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209169A (en) * 1982-03-29 1993-05-11 Basic J N Sen Incinerator improvements
US5241916A (en) * 1991-02-07 1993-09-07 Martin Gmbh Fur Umwelt- Und Energietechnik Procedure for supplying combustion air and a furnace therefor
US5899150A (en) * 1996-06-04 1999-05-04 Martin Gmbh Grate element and grate with fluid cooling
US6378447B1 (en) * 1999-06-28 2002-04-30 Martin Gmbh Fuer Umwelt- Und Energietechnik Furnace with liquid-cooled grate elements and cooling circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209169A (en) * 1982-03-29 1993-05-11 Basic J N Sen Incinerator improvements
US5241916A (en) * 1991-02-07 1993-09-07 Martin Gmbh Fur Umwelt- Und Energietechnik Procedure for supplying combustion air and a furnace therefor
US5899150A (en) * 1996-06-04 1999-05-04 Martin Gmbh Grate element and grate with fluid cooling
US6378447B1 (en) * 1999-06-28 2002-04-30 Martin Gmbh Fuer Umwelt- Und Energietechnik Furnace with liquid-cooled grate elements and cooling circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090291629A1 (en) * 2006-11-03 2009-11-26 Jari Hokkanen Device for controlling flow
US20120067257A1 (en) * 2010-03-01 2012-03-22 Plasco Energy Group. Inc. A Lateral Transfer System
CN104896911A (en) * 2013-01-04 2015-09-09 李宏江 Second environment-friendly and energy-saving drying machine of three food and medicine environment-friendly and energy-saving drying machines
CN104990398A (en) * 2013-01-04 2015-10-21 李宏江 First kind environment-friendly energy-saving drying machine of three kinds of environment-friendly energy-saving drying machines for foods and medicines
US20140208748A1 (en) * 2013-01-29 2014-07-31 Middlebury College Control system and method for biomass power plant
US9163528B2 (en) * 2013-01-29 2015-10-20 Middlebury College Control system and method for biomass power plant
US10018357B2 (en) 2013-01-29 2018-07-10 Middlebury College Control system and method for biomass power plant
US11485912B2 (en) * 2014-01-10 2022-11-01 Manik Ventures Limited Disposal of refuse
US20160326440A1 (en) * 2014-01-10 2016-11-10 Manik Ventures Limited Disposal of refuse
CN104236281A (en) * 2014-09-11 2014-12-24 哈密市巧匠农机科技开发有限责任公司 Dry burning hot-air multilayer fruit air-drying device
US11002446B2 (en) * 2016-07-11 2021-05-11 Clean Thermodynamic Energy Conversion Limited Combustion kiln system and method of operating the same
US20190316771A1 (en) * 2016-07-11 2019-10-17 Clean Thermodynamic Energy Conversion Limited Combustion kiln system and method of operating the same
EP3482128B1 (en) * 2016-07-11 2023-10-25 Clean Thermodynamic Energy Conversion Ltd Combustion kiln system and method of operating the same
CN112013379A (en) * 2020-08-27 2020-12-01 衡阳衡锅锅炉有限公司 Self-adjusting combustion machine
CN115123722A (en) * 2022-07-12 2022-09-30 湖南汇特焊材科技有限公司 Intelligent equipment for welding rod production

Similar Documents

Publication Publication Date Title
EP0064589B1 (en) Incinerator with two reburn stages and, optionally, heat recovery
US4516510A (en) Incinerator with two reburn stages and, optionally, heat recovery
US20050183642A1 (en) Temperature-controlled incinerator dryer grates
EP0509774A2 (en) Incinerator improvements
WO2004001289A2 (en) Temperature-controlled incinerator dryer grates
WO1992020965A1 (en) Cremator
JP6887917B2 (en) Incinerator plant
US5413715A (en) Incinerator improvements
EP0913636B1 (en) Incinerator system and method for bulk refuse
MXPA04006903A (en) Incinerator seals.
NZ213735A (en) Combustion chamber for burning bulk refuse at predetermined heat output
JP3314298B2 (en) Incinerator
IE20000398A1 (en) Fume Burning System and Method
JPH04278112A (en) Improvement of incineration system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION