Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050192610 A1
Publication typeApplication
Application numberUS 11/065,378
Publication dateSep 1, 2005
Filing dateFeb 24, 2005
Priority dateFeb 27, 2004
Also published asCN101141922A, CN101141922B, EP2474276A1, EP2474276B1, US8444663, US20100023044
Publication number065378, 11065378, US 2005/0192610 A1, US 2005/192610 A1, US 20050192610 A1, US 20050192610A1, US 2005192610 A1, US 2005192610A1, US-A1-20050192610, US-A1-2005192610, US2005/0192610A1, US2005/192610A1, US20050192610 A1, US20050192610A1, US2005192610 A1, US2005192610A1
InventorsKevin Houser, Sarah Noschang, Steven Neuenfeldt, Craig Faller, Jeffrey Vaitekunas
Original AssigneeHouser Kevin L., Noschang Sarah A., Steven Neuenfeldt, Faller Craig N., Vaitekunas Jeffrey J.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ultrasonic surgical shears and tissue pad for same
US 20050192610 A1
Abstract
An ultrasonic-surgical-shears tissue pad has a tissue-pad body including a base material and at least one filler material. An alternate ultrasonic-surgical-shears tissue pad has a tissue-pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material. An ultrasonic surgical shears includes an ultrasonic surgical blade and a clamping arm which is operable to open and close toward the blade and which has a transversely and resiliently flexible distal tip. An alternate ultrasonic surgical shears includes an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.
Images(4)
Previous page
Next page
Claims(23)
1. An ultrasonic-surgical-shears tissue pad comprising: an ultrasonic-surgical-shears tissue pad body including a base material and at least one filler material which is a different material from the base material.
2. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the at-least-one filler material has at least one property which has a different value from that of the at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.
3. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a heat deflection temperature greater than 500 degrees Farenheight.
4. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a melt temperature greater than 700 degrees Farenheight.
5. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second.
6. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material consists essentially of a thermoset plastic material.
7. The ultrasonic-surgical-shears tissue pad of claim 6, wherein the base material consists essentially of a polyimide material.
8. An ultrasonic-surgical-shears tissue pad comprising: an ultrasonic-surgical-shears tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.
9. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first region consists essentially of the first material and wherein the second region consists essentially of the second material.
10. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has at least one property which has a different value from that of the second material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.
11. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a heat deflection temperature greater than 500 degrees Farenheight.
12. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a melt temperature greater than 700 degrees Farenheight.
13. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second.
14. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material consists essentially of a thermoset plastic material.
15. The ultrasonic-surgical-shears tissue pad of claim 14, wherein the base material consists essentially of a polyimide material.
16. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first region includes a base material and at least one filler material, and wherein the base material is the first material.
17. An ultrasonic surgical shears comprising:
a) an ultrasonic surgical blade; and
b) a clamping arm operable to open and close toward the blade and having a transversely and resiliently flexible distal tip.
18. The ultrasonic surgical shears of claim 17, also including:
c) a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.
18. The ultrasonic surgical shears of claim 17, wherein the tissue pad comprises a tissue pad body including a base material and at least one filler material, wherein the at-least-one filler material has at least one property which has a different value from that of the at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.
19. The ultrasonic surgical shears of claim 17, wherein the tissue pad comprises a tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.
20. An ultrasonic surgical shears comprising:
a) an ultrasonic surgical blade;
b) a clamping arm operable to open and close toward the blade; and
c) a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.
21. The ultrasonic surgical shears of claim 20, wherein the tissue pad comprises a tissue pad body including a base material and at least one filler material, wherein the at-least-one filler material has at least one property which has a different value from that of the at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.
22. The ultrasonic surgical shears of claim 20, wherein the tissue pad comprises a tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.
Description
    REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The present application claims the priority benefit of U.S. provisional patent application Ser. No. 60/548,301, filed on Feb. 27, 2004, the contents of which are incorporated herein by reference.
  • [0002]
    This application contains subject matter related to co-owned patent application No. 60/617,427, filed on Oct. 8, 2004, the contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0003]
    The present invention is related generally to surgical instruments, and more particularly to an ultrasonic surgical shears and to a tissue pad for an ultrasonic surgical shears.
  • BACKGROUND OF THE INVENTION
  • [0004]
    Ultrasonic surgical instruments are known which include an ultrasonic surgical shears having an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a polytetrafluoroethylene tissue pad which is attached to the clamping arm and which includes a clamping surface. The clamping arm exerts a clamping force on a blood vessel which is positioned between the clamping surface of the tissue pad and the blade. The result of the ultrasonically-vibrating ultrasonic surgical blade and the clamping force on the blood vessel is a coaptation of the blood vessel (a bringing together of the walls of the blood vessel), a transection (a cutting) of the coapted blood vessel, and a coagulation (a sealing) of the coapted cut ends of the blood vessel. At the completion of a tissue transection, the ultrasonically-vibrating ultrasonic surgical blade contacts and cuts away some of the polytetrafluoroethylene tissue pad because of the frictional abrasion and frictional heat generated by the blade vibrating against the tissue pad. Exemplary devices are described in U.S. Pat. Nos. 5,322,055 and 6,325,811, the contents of which are incorporated herein by reference.
  • [0005]
    Still, scientists and engineers continue to seek improved ultrasonic surgical shears and improved tissue pads for ultrasonic surgical shears.
  • SUMMARY OF THE INVENTION
  • [0006]
    A first embodiment of an ultrasonic-surgical-shears tissue pad of the invention includes an ultrasonic-surgical-shears tissue pad body having a base material and at least one filler material which is a different material from the base material.
  • [0007]
    A second embodiment of an ultrasonic-surgical-shears tissue pad of the invention includes an ultrasonic-surgical-shears tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.
  • [0008]
    A first embodiment of an ultrasonic surgical shears of the invention includes an ultrasonic surgical blade and a clamping arm operable to open and close toward the blade and having a transversely and resiliently flexible distal tip.
  • [0009]
    A second embodiment of an ultrasonic surgical shears of the invention includes an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a tissue pad attached to the clamping arm and having a clamping surface. At least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.
  • [0010]
    Several benefits and advantages are obtained from one or more of the embodiments of the invention. Having a tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled polytetrafluoroethylene tissue pad showed substantially the same wear with a 7 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. Having a flexible clamping arm and/or a flexible tissue pad should also improve the wearability of the tissue pad due to the ability of the flexible member to more evenly distribute the load across the entire surface of the tissue pad.
  • [0011]
    The present invention has, without limitation, application in straight or curved ultrasonic surgical blades as disclosed in the patents incorporated by reference and further in hand-activated instruments as well as in robotic-assisted instruments.
  • BRIEF DESCRIPTION OF THE FIGURES
  • [0012]
    FIG. 1 is a cross-sectional view of a portion of a first embodiment of an ultrasonic-surgical-shears tissue pad of the invention;
  • [0013]
    FIG. 2 is a cross-sectional view of a portion of a second embodiment of an ultrasonic-surgical-shears tissue pad of the invention;
  • [0014]
    FIG. 3 is a side-elevational view of a first alternate embodiment of the tissue pad of FIG. 2;
  • [0015]
    FIG. 4 is a side-elevational view of a second alternate embodiment of the tissue pad of FIG. 2;
  • [0016]
    FIG. 5 is a side-elevational view of a third additional alternate embodiment of the tissue pad of FIG. 2;
  • [0017]
    FIG. 6 is a schematic side elevational view of a portion of an embodiment of an ultrasonic surgical shears of the invention;
  • [0018]
    FIG. 7 is a schematic side elevational view of a portion of an alternate embodiment of an ultrasonic surgical shears of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0019]
    Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
  • [0020]
    It is understood that any one or more of the following-described embodiments, examples, etc. can be combined with any one or more of the other following-described embodiments, examples, etc.
  • [0021]
    Referring now to the Figures, in which like numerals indicate like elements, FIG. 1 illustrates a first embodiment of an ultrasonic-surgical-shears tissue pad 10 of the invention. The ultrasonic-surgical-shears tissue pad 10 has an ultrasonic-surgical-shears tissue pad body 12 including a base material 14 and at least one filler material 16 which is a different material from the base material 14.
  • [0022]
    In one example of the embodiment of the ultrasonic-surgical-shears tissue pad 10 of FIG. 1, the at-least-one filler material 16 has at least one property which has a different value from that of the at-least-one property of the base material 14, wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature. In one variation, at least two or more or all of the properties have different values for the base material 14 and the at-least-one filler material 16.
  • [0023]
    In one illustration of the ultrasonic-surgical-shears tissue pad 10 of FIG. 1, the base material 14 has a heat deflection temperature greater than 500 degrees Farenheight. In the same or a different illustration, the base material 14 has a melt temperature greater than 700 degrees Farenheight. In the same or a different illustration, the base material 14 has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second. In one choice of materials of the ultrasonic-surgical-shears tissue pad 10 of FIG. 1, the base material 14 consists essentially of a thermoset plastic material. In one variation, the base material 14 consists essentially of a polyimide material.
  • [0024]
    In one enablement of the invention, the at-least-one filler material 16 has a hardness which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a stiffness which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a lubricity which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a dynamic coefficient of friction which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a heat transfer coefficient which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has an abradability which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a heat deflection temperature which is different than that of the base material 14. In the same or a different enablement, the at-least-one filler material 16 has a melt temperature which is different than that of the base material 14.
  • [0025]
    In one example of the invention, the at-least-one filler material 16 is chosen from the group consisting of glass, carbon fiber, graphite, metal particles, molybdenum disulfide, a liquid lubricant, a solid material that changes to a more lubricous powder at an increased temperature, a solid that changes to a liquid at an increased temperature, carbon nanotubes, polyphenelene sulfone, polyphenelene sulfide, sumifine powder, boron nitride, polytetrafluoroethylene powder, silicone oil, and an aerogel.
  • [0026]
    In the same or another example of the invention, the base material 14 is chosen from the group consisting of a plastic, a porous ceramic, a polished ceramic, a self-constructing nanocomposite (a material that is a combination of two or more materials that, when cured, structures itself into a predetermined matrix), a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer (these are materials that are filled with small amounts of clay material where the clay material combines with the polymer molecule to yield a material with superior properties to the original polymer material such as a clay-filled nylon that exhibits a heat deflection temperature of at least 100 degrees Fahrenheit higher than that of the regular nylon material), and a polyimide material. In one variation, the plastic is chosen from the group consisting of a polytetrafluoroethylene and a polyimide. In one modification, substantially 85% of the ultrasonic-surgical-blade tissue pad body 12 consists essentially of the base material 14 and substantially 15% of the ultrasonic-surgical-blade tissue pad body 12 consists essentially of the at-least-one filler material 16, wherein the base material 14 consists essentially of polytetrafluoroethylene, and wherein the at-least-one filler material 16 consists essentially of graphite.
  • [0027]
    In one expression of the invention, the ultrasonic-surgical-shears tissue pad body 12 includes a base material 14 and at least one filler material 16, wherein the base material 14 is chosen from the group consisting of a plastic, a porous ceramic, a polished ceramic, a self-constructing nanocomposite, a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer, and a polyimide material.
  • [0028]
    In one configuration of the invention, not shown, the ultrasonic-surgical-shears tissue pad body consists essentially of a material chosen from the group consisting of a porous ceramic, a polished ceramic, a self-constructing nanocomposite, a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer, and a polyimide.
  • [0029]
    In one deployment of the invention, the ultrasonic-surgical-shears tissue pad body 12 includes a base material 14 and at least one filler material 16, wherein the base material 14 consists essentially of a porous polymer, and wherein the at-least-one filler material 16 is chosen from the group consisting essentially of a solid lubricant, a liquid lubricant, and a solid lubricant which changes to a liquid lubricant at an increased temperature.
  • [0030]
    In one arrangement of the invention, not shown, the ultrasonic-surgical-shears tissue pad body consists essentially of a porous wicking material which upon contact wicks patient body fluids into the ultrasonic-surgical-shears tissue pad body or absorbs water when immersed in a water containing solution such as saline. These materials improve the temperature performance of the tissue pad body by absorbing some of the heat energy to evaporate the water entrapped in the tissue pad body.
  • [0031]
    FIG. 2 illustrates a second embodiment of an ultrasonic-surgical-shears tissue pad 18 of the invention. The ultrasonic-surgical-shears tissue pad 18 has an ultrasonic-surgical-shears tissue pad body 20 having adjoining first and second regions 24 and 26, wherein the first region 24 includes a first material 28 and wherein the second region 26 includes a second material 30 which is a different material from the first material 28. The above description of the tissue pad 18 of FIG. 2 is equally applicable to the tissue pads of FIGS. 3-5, as can be appreciated by the artisan from the below discussion of the tissue pads of FIGS. 3-5. In one variation of the tissue pad 18 of FIG. 2, the first region 24 consists essentially of the first material 28 and the second region 26 consists essentially of the second material 30. In another variation, the first region 24 includes a base material and at least one filler material, wherein the base material is the first material 28. In the same or a different variation, the second region 26 includes a base material and at least one filler material, wherein the base material is the second material 30.
  • [0032]
    In one construction of the tissue pad 18 of FIG. 2, the interface between the first and second regions 24 and 26 of the tissue pad body 20 is substantially perpendicular to the clamping surface 22 of the tissue pad body 20 as shown in the figure. In another construction, not shown, the interface between the first and second regions is substantially parallel to the clamping surface (this can be visualized by rotating the tissue pad 18 in FIG. 2 by ninety degrees. In an additional construction, not shown, the interface is slanted with respect to the clamping surface at an angle between substantially 1 and 89 degrees, as can be appreciated by the artisan.
  • [0033]
    It is noted that the examples, illustrations, choices of materials, etc. described for the embodiment of the ultrasonic-surgical-shears tissue pad 10 of FIG. 1 are equally applicable to the embodiment of the ultrasonic-surgical-shears tissue pad 18 of FIG. 2 with the phrase “first material 28” replacing the phrase “base material 14” and with the phrase “second material 30” replacing the phrase “at-least-one filler material 16”.
  • [0034]
    FIG. 3 is an exterior side-elevational view of a tissue pad 118 which is a first alternate embodiment to the tissue pad 18 of FIG. 2. Tissue pad 118 includes tissue pad body 120 having adjoining first and second regions 124 and 126 as shown in the figure. First region 124 includes a first material 128, and second region 126 includes a second material 130 which is a different material from the first material. In one variation, the clamping surface 122 of the tissue pad body 120 consists essentially of the first material 128 which extends away from the clamping surface 122 toward the second regions 126. In one enablement, the material transversely between the second regions 126 is the first material 128 of the first region 124. In another enablement, not shown, a third region with a third material is disposed transversely between the second regions.
  • [0035]
    FIG. 4 is an exterior side-elevational view of a tissue pad 218 which is a second alternate embodiment to the tissue pad 18 of FIG. 2. Tissue pad 218 includes tissue pad body 220 having adjoining first and second regions 224 and 226 as shown in the figure. First region 224 includes a first material 228, and second region 226 includes a second material 230 which is a different material from the first material. In one variation, the clamping surface 222 of the tissue pad body 220 consists essentially of the first material 228 which extends away from the clamping surface 222 toward the second regions 226. In one enablement, the material transversely between the second regions 226 is the first material 228 of the first region 224. In another enablement, not shown, a third region with a third material is disposed transversely between the second regions.
  • [0036]
    FIG. 5 is an exterior side-elevational view of a tissue pad 318 which is a third alternate embodiment to the tissue pad 18 of FIG. 2. Tissue pad 318 includes tissue pad body 320 having adjoining first and second regions 324 and 326 as shown in the figure. First region 324 includes a first material 328, and second region 326 includes a second material 330 which is a different material from the first material. In one variation, the clamping surface 322 of the tissue pad body 320 consists essentially of the first material 328 which extends away from the clamping surface 322 toward the second regions 326. In one application, tissue pad 318 improves pad life by the first region 324 being sacrificial and being abraded or melted relatively quickly but having certain properties, such as lubricity, that are desirable. The ultrasonic surgical blade, not shown in FIG. 5, moves through the first material 318 and then comes into contact with the second material 330. The second material 330 is selected for properties that make it abrade or melt less than the first material 318.
  • [0037]
    It is noted that the examples, illustrations, choices of materials, etc. described for the embodiment of the tissue pad 18 of FIG. 2 are equally applicable to the embodiments of the tissue pad 118, 218 and 318 of FIGS. 3-5. Other alternate embodiments to the tissue pad 18 are left to the artisan.
  • [0038]
    FIG. 6 illustrates a first embodiment of an ultrasonic surgical shears 32 of the invention. The ultrasonic-surgical-shears 32 includes an ultrasonic surgical blade 34 and a clamping arm 36 operable to open and close toward the blade 34 and having a transversely and resiliently flexible distal tip 38. By “resiliently flexible distal tip” is meant that the distal tip 38 resiliently flexes during clamping of the clamping arm 36 such as when the ultrasonic-surgical-shears 32 is used to transect and seal a blood vessel, disposed between the clamping surface 42 and the ultrasonic surgical blade 34, whose walls have been coapted by a clamping force applied via the clamping arm 36. In one implementation of the first expression, the ultrasonic surgical shears 32 also includes a tissue pad 40 attached to the clamping arm 36 and having a clamping surface 42, wherein the tissue pad 40 is resiliently flexible in a direction substantially perpendicular to the clamping surface 42. In one illustration of the embodiment of the ultrasonic-surgical-shears 32, the tissue pad 40 includes a base material and at least one filler material as previously described for the tissue pad 10 of FIG. 1. In another illustration of the ultrasonic-surgical-shears 32, the tissue pad 40 includes a first material and a second material as previously described for the tissue pad 18, 118, 218 or 318 of FIGS. 2-5.
  • [0039]
    FIG. 7 illustrates a second embodiment of an ultrasonic surgical shears 44 of the invention. The ultrasonic-surgical-shears 44 includes an ultrasonic surgical blade 46, a clamping arm 48 operable to open and close toward the blade 46, and a tissue pad 50. The tissue pad 50 is attached to the clamping arm 48 and has a clamping surface 52. At least a portion of the tissue pad 50 is resiliently flexible in a direction substantially perpendicular to the clamping surface 52. By “resiliently flexible” is meant that the tissue pad 50 resiliently flexes during clamping of the clamping arm 48 such as when the ultrasonic-surgical-shears 44 is used to transect and seal a blood vessel, disposed between the clamping surface 52 and the ultrasonic surgical blade 46, whose walls have been coapted by a clamping force applied via the clamping arm 48. In one illustration of the embodiment of the ultrasonic-surgical-shears 44, the tissue pad 50 includes a base material and at least one filler material as previously described for the tissue pad 10 of FIG. 1. In another illustration of the ultrasonic-surgical-shears 44, the tissue pad 40 includes a first material and a second material as previously described for the tissue pad 18, 118, 218 or 318 of FIGS. 2-5.
  • [0040]
    Several benefits and advantages are obtained from one or more of the embodiments of the invention. Having a tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled polytetrafluoroethylene tissue pad showed substantially the same wear with a 7 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. Having a flexible clamping arm and/or a flexible tissue pad should also improve the wearability of the tissue pad due to the ability of the flexible member to more evenly distribute the load across the entire surface of the tissue pad.
  • [0041]
    While the present invention has been illustrated by a description of several embodiments, it is not the intention of the applicants to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the ultrasonic surgical shears and the tissue pad of the invention have application in robotic assisted surgery taking into account the obvious modifications of such systems, components and methods to be compatible with such a robotic system. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3101715 *Jul 12, 1961Aug 27, 1963Mueller & Company VNon-crushing clamp
US5322055 *Jan 27, 1993Jun 21, 1994Ultracision, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
US6129735 *Oct 13, 1998Oct 10, 2000Olympus Optical Co., Ltd.Ultrasonic treatment appliance
US6312430 *Sep 20, 1999Nov 6, 2001Endoscopic Concepts, Inc.Bipolar electrosurgical end effectors
US6325811 *Oct 5, 1999Dec 4, 2001Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US6468286 *Sep 6, 2001Oct 22, 2002The United States Surgical CorporationUltrasonic curved blade
US20030171747 *Feb 26, 2001Sep 11, 2003Olympus Optical Co., Ltd.Medical treatment instrument
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7544200Oct 7, 2005Jun 9, 2009Ethicon Endo-Surgery, Inc.Combination tissue pad for use with an ultrasonic surgical instrument
US7846155Oct 7, 2005Dec 7, 2010Ethicon Endo-Surgery, Inc.Handle assembly having hand activation for use with an ultrasonic surgical instrument
US7901423Nov 30, 2007Mar 8, 2011Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US7928338Feb 2, 2007Apr 19, 2011Plasma Surgical Investments Ltd.Plasma spraying device and method
US8030849Sep 11, 2009Oct 4, 2011Plasma Surgical Investments LimitedPulsed plasma device and method for generating pulsed plasma
US8057467Oct 7, 2005Nov 15, 2011Ethicon Endo-Surgery, Inc.Clamp mechanism for use with an ultrasonic surgical instrument
US8057498Nov 30, 2007Nov 15, 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US8058771Jul 15, 2009Nov 15, 2011Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8105325Jul 7, 2006Jan 31, 2012Plasma Surgical Investments LimitedPlasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma
US8109928Jul 7, 2006Feb 7, 2012Plasma Surgical Investments LimitedPlasma-generating device, plasma surgical device and use of plasma surgical device
US8114104May 22, 2007Feb 14, 2012Ethicon Endo-Surgery, Inc.Mechanism for assembly of ultrasonic instrument
US8142461Mar 22, 2007Mar 27, 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US8182502Feb 7, 2011May 22, 2012Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US8226675Mar 22, 2007Jul 24, 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US8236019Mar 26, 2010Aug 7, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8252012Jul 31, 2007Aug 28, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with modulator
US8253303Nov 11, 2011Aug 28, 2012Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8257377Jul 27, 2007Sep 4, 2012Ethicon Endo-Surgery, Inc.Multiple end effectors ultrasonic surgical instruments
US8319400Jun 24, 2009Nov 27, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8323302Feb 11, 2010Dec 4, 2012Ethicon Endo-Surgery, Inc.Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8334635Jun 24, 2009Dec 18, 2012Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US8337494Jan 26, 2012Dec 25, 2012Plasma Surgical Investments LimitedPlasma-generating device having a plasma chamber
US8344596Jun 24, 2009Jan 1, 2013Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US8348967Jul 27, 2007Jan 8, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8366727May 22, 2007Feb 5, 2013Ethicon Endo-Surgery, Inc.Tissue pad ultrasonic surgical instrument
US8372102Apr 20, 2012Feb 12, 2013Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US8382782Feb 11, 2010Feb 26, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8419759Feb 11, 2010Apr 16, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with comb-like tissue trimming device
US8430898Jul 31, 2007Apr 30, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8435258Jun 18, 2012May 7, 2013Ethicon Endo-Surgery, Inc.Mechanism for assembly of ultrasonic instrument
US8461744Jul 15, 2009Jun 11, 2013Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US8465487Jan 25, 2012Jun 18, 2013Plasma Surgical Investments LimitedPlasma-generating device having a throttling portion
US8469981Feb 11, 2010Jun 25, 2013Ethicon Endo-Surgery, Inc.Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096Feb 11, 2010Jul 16, 2013Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US8512365Jul 31, 2007Aug 20, 2013Ethicon Endo-Surgery, Inc.Surgical instruments
US8523889 *Jul 27, 2007Sep 3, 2013Ethicon Endo-Surgery, Inc.Ultrasonic end effectors with increased active length
US8531064Feb 11, 2010Sep 10, 2013Ethicon Endo-Surgery, Inc.Ultrasonically powered surgical instruments with rotating cutting implement
US8546996Aug 14, 2012Oct 1, 2013Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US8546999Jul 23, 2012Oct 1, 2013Ethicon Endo-Surgery, Inc.Housing arrangements for ultrasonic surgical instruments
US8574252May 22, 2007Nov 5, 2013Ethicon Endo-Surgery, Inc.Ultrasonic blade support
US8579928Feb 11, 2010Nov 12, 2013Ethicon Endo-Surgery, Inc.Outer sheath and blade arrangements for ultrasonic surgical instruments
US8591536Oct 11, 2011Nov 26, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US8613742Jan 29, 2010Dec 24, 2013Plasma Surgical Investments LimitedMethods of sealing vessels using plasma
US8623027Oct 3, 2008Jan 7, 2014Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US8650728Jun 24, 2009Feb 18, 2014Ethicon Endo-Surgery, Inc.Method of assembling a transducer for a surgical instrument
US8652155Aug 1, 2011Feb 18, 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US8663220Jul 15, 2009Mar 4, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8663223Oct 26, 2011Mar 4, 2014Olympus CorporationSurgical treatment apparatus
US8704425Aug 13, 2012Apr 22, 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8709031Aug 27, 2012Apr 29, 2014Ethicon Endo-Surgery, Inc.Methods for driving an ultrasonic surgical instrument with modulator
US8715306 *Apr 16, 2010May 6, 2014Ethicon Endo-Surgery Inc.Tissue pad for use with an ultrasonic surgical instrument
US8735766Aug 6, 2007May 27, 2014Plasma Surgical Investments LimitedCathode assembly and method for pulsed plasma generation
US8749116Aug 14, 2012Jun 10, 2014Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US8754570Dec 17, 2012Jun 17, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments comprising transducer arrangements
US8773001Jun 7, 2013Jul 8, 2014Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US8779648Aug 13, 2012Jul 15, 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8808319Jul 27, 2007Aug 19, 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US8882791Jul 27, 2007Nov 11, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8888809Oct 1, 2010Nov 18, 2014Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US8900259Mar 8, 2012Dec 2, 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US8911460Mar 22, 2007Dec 16, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8951248Oct 1, 2010Feb 10, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US8951272Feb 11, 2010Feb 10, 2015Ethicon Endo-Surgery, Inc.Seal arrangements for ultrasonically powered surgical instruments
US8956349Oct 1, 2010Feb 17, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US8961547Feb 11, 2010Feb 24, 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with moving cutting implement
US8979890Oct 1, 2010Mar 17, 2015Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US8986302Oct 1, 2010Mar 24, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9017326Jul 15, 2009Apr 28, 2015Ethicon Endo-Surgery, Inc.Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9023072Apr 8, 2013May 5, 2015Ethicon Endo-Surgery, Inc.Mechanism for assembly of ultrasonic instrument
US9039695Oct 1, 2010May 26, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9044261Jul 29, 2008Jun 2, 2015Ethicon Endo-Surgery, Inc.Temperature controlled ultrasonic surgical instruments
US9050093Oct 1, 2010Jun 9, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9050124Jul 10, 2012Jun 9, 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US9060775Oct 1, 2010Jun 23, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9060776Oct 1, 2010Jun 23, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9066747Nov 1, 2013Jun 30, 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US9072539Aug 14, 2012Jul 7, 2015Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US9089319Jul 22, 2010Jul 28, 2015Plasma Surgical Investments LimitedVolumetrically oscillating plasma flows
US9089360Oct 1, 2010Jul 28, 2015Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US9095367Oct 22, 2012Aug 4, 2015Ethicon Endo-Surgery, Inc.Flexible harmonic waveguides/blades for surgical instruments
US9107689Jul 15, 2013Aug 18, 2015Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US9168054Apr 16, 2012Oct 27, 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US9170349Apr 18, 2012Oct 27, 2015Johnson & Johnson Vision Care, Inc.Medical devices having homogeneous charge density and methods for making same
US9198714Jun 29, 2012Dec 1, 2015Ethicon Endo-Surgery, Inc.Haptic feedback devices for surgical robot
US9220527Jul 28, 2014Dec 29, 2015Ethicon Endo-Surgery, LlcSurgical instruments
US9226766Mar 15, 2013Jan 5, 2016Ethicon Endo-Surgery, Inc.Serial communication protocol for medical device
US9226767Jun 29, 2012Jan 5, 2016Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
US9232979Feb 6, 2013Jan 12, 2016Ethicon Endo-Surgery, Inc.Robotically controlled surgical instrument
US9237921Mar 15, 2013Jan 19, 2016Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US9241728Mar 15, 2013Jan 26, 2016Ethicon Endo-Surgery, Inc.Surgical instrument with multiple clamping mechanisms
US9241731Mar 15, 2013Jan 26, 2016Ethicon Endo-Surgery, Inc.Rotatable electrical connection for ultrasonic surgical instruments
US9244196May 22, 2013Jan 26, 2016Johnson & Johnson Vision Care, Inc.Polymers and nanogel materials and methods for making and using the same
US9259234Feb 11, 2010Feb 16, 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US9283045Jun 29, 2012Mar 15, 2016Ethicon Endo-Surgery, LlcSurgical instruments with fluid management system
US9297929May 22, 2013Mar 29, 2016Johnson & Johnson Vision Care, Inc.Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US9326788Jun 29, 2012May 3, 2016Ethicon Endo-Surgery, LlcLockout mechanism for use with robotic electrosurgical device
US9339289Jun 18, 2015May 17, 2016Ehticon Endo-Surgery, LLCUltrasonic surgical instrument blades
US9351754Jun 29, 2012May 31, 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments with distally positioned jaw assemblies
US9393037Jun 29, 2012Jul 19, 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US9408622Jun 29, 2012Aug 9, 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US9414853Mar 25, 2013Aug 16, 2016Ethicon Endo-Surgery, LlcUltrasonic end effectors with increased active length
US9427249May 10, 2013Aug 30, 2016Ethicon Endo-Surgery, LlcRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9439668Mar 15, 2013Sep 13, 2016Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US9439669Mar 28, 2013Sep 13, 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US9445832Jun 21, 2013Sep 20, 2016Ethicon Endo-Surgery, LlcSurgical instruments
US9486236Mar 21, 2012Nov 8, 2016Ethicon Endo-Surgery, LlcErgonomic surgical instruments
US9498245May 6, 2014Nov 22, 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US9504483Jul 3, 2012Nov 29, 2016Ethicon Endo-Surgery, LlcSurgical instruments
US9504855Mar 20, 2015Nov 29, 2016Ethicon Surgery, LLCDevices and techniques for cutting and coagulating tissue
US9510850Nov 11, 2013Dec 6, 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US9522980May 4, 2011Dec 20, 2016Johnson & Johnson Vision Care, Inc.Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US20060079874 *Oct 7, 2005Apr 13, 2006Faller Craig NTissue pad for use with an ultrasonic surgical instrument
US20060079875 *Oct 7, 2005Apr 13, 2006Faller Craig NClamp mechanism for use with an ultrasonic surgical instrument
US20060079876 *Oct 7, 2005Apr 13, 2006Houser Kevin LHandle assembly having hand activation for use with an ultrasonic surgical instrument
US20060079877 *Oct 7, 2005Apr 13, 2006Houser Kevin LFeedback mechanism for use with an ultrasonic surgical instrument
US20060079878 *Oct 7, 2005Apr 13, 2006Houser Kevin LCombination tissue pad for use with an ultrasonic surgical instrument
US20060079879 *Oct 7, 2005Apr 13, 2006Faller Craig NActuation mechanism for use with an ultrasonic surgical instrument
US20070029292 *Jul 7, 2006Feb 8, 2007Nikolay SuslovPlasma-generating device, plasma surgical device and use of a plasma surgical device
US20070282332 *May 22, 2007Dec 6, 2007Witt David ATissue pad for ultrasonic surgical instrument
US20070282333 *May 22, 2007Dec 6, 2007Fortson Reginald DUltrasonic waveguide and blade
US20070282334 *May 22, 2007Dec 6, 2007Young Joseph EUltrasonic blade support
US20070282335 *May 22, 2007Dec 6, 2007Young Joseph EMechanism for assembly of ultrasonic instrument
US20090223033 *May 19, 2009Sep 10, 2009Houser Kevin LCombination tissue pad for use with an ultrasonic surgical instrument
US20100094323 *Nov 19, 2009Apr 15, 2010Isaacs Karen KTissue pad for an ultrasonic device for cutting and coagulating
US20100222713 *Apr 16, 2010Sep 2, 2010Faller Craig NTissue pad for use with an ultrasonic surgical instrument
USD618797Nov 12, 2008Jun 29, 2010Ethicon Endo-Surgery, Inc.Handle assembly for surgical instrument
USD631965May 17, 2010Feb 1, 2011Ethicon Endo-Surgery, Inc.Handle assembly for surgical instrument
USD661801Sep 26, 2011Jun 12, 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD661802Sep 26, 2011Jun 12, 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD661803Sep 26, 2011Jun 12, 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD661804Sep 26, 2011Jun 12, 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD687549Oct 24, 2011Aug 6, 2013Ethicon Endo-Surgery, Inc.Surgical instrument
USD691265Oct 17, 2011Oct 8, 2013Covidien AgControl assembly for portable surgical device
USD700699Oct 17, 2011Mar 4, 2014Covidien AgHandle for portable surgical device
USD700966Oct 17, 2011Mar 11, 2014Covidien AgPortable surgical device
USD700967Oct 17, 2011Mar 11, 2014Covidien AgHandle for portable surgical device
EP2474280A1 *Oct 25, 2010Jul 11, 2012Olympus Medical Systems Corp.Surgical treatment device
EP2474280A4 *Oct 25, 2010Aug 29, 2012Olympus Medical Systems CorpSurgical treatment device
EP2691034A4 *Mar 30, 2012Jul 29, 2015Covidien LpUltrasonic surgical instruments
WO2007143439A3 *May 29, 2007Oct 16, 2008Ethicon Endo Surgery IncUltrasonic surgical instrument
WO2011140318A1May 5, 2011Nov 10, 2011Johnson & Johnson Vision Care, Inc.Non-reactive, hydrophilic polymers having terminal siloxanes and uses of the same
WO2013176886A2May 8, 2013Nov 28, 2013Johnson & Johnson Vision Care, Inc.Polymers and nanogel materials and methods for making and using the same
WO2013177513A1May 24, 2013Nov 28, 2013Johnson & Johnson Vision Care, Inc.Contact lenses comprising water soluble n-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
WO2013177523A2May 24, 2013Nov 28, 2013Johnson & Johnson Vision Care, Inc.Polymers and nanogel materials and methods for making and using the same
Classifications
U.S. Classification606/169
International ClassificationA61B17/32, A61B17/28, A61B17/00
Cooperative ClassificationA61B17/320092, A61B2017/2825, A61B2017/00831
European ClassificationA61B17/32U8
Legal Events
DateCodeEventDescription
Feb 24, 2005ASAssignment
Owner name: ETHICON ENDO-SURGERY, INC., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOUSER, KEVIN L.;NOSCHANG, SARAH A.;NEUENFELDT, STEVEN;AND OTHERS;REEL/FRAME:016328/0746;SIGNING DATES FROM 20050217 TO 20050223