Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050197624 A1
Publication typeApplication
Application numberUS 11/073,421
Publication dateSep 8, 2005
Filing dateMar 4, 2005
Priority dateMar 4, 2004
Also published asUS8518011, US20090318857, WO2005091910A2, WO2005091910A3
Publication number073421, 11073421, US 2005/0197624 A1, US 2005/197624 A1, US 20050197624 A1, US 20050197624A1, US 2005197624 A1, US 2005197624A1, US-A1-20050197624, US-A1-2005197624, US2005/0197624A1, US2005/197624A1, US20050197624 A1, US20050197624A1, US2005197624 A1, US2005197624A1
InventorsHarry Goodson, Craig Ball, Jeffrey Elkins
Original AssigneeFlowmedica, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sheath for use in peripheral interventions
US 20050197624 A1
Abstract
A dual lumen introducer sheath provides access to at least one renal artery and at least one peripheral blood vessel of a patient. The introducer sheath includes a proximal hub comprising first and second ports, a first lumen, and a second lumen. The first lumen extends from the first port to a first distal aperture and has sufficient length such that when the first port is positioned outside the patient the first distal aperture is positionable in the abdominal aorta at or near origins of the patient's renal arteries. The second lumen extends from the second port to a second distal aperture, has a shorter length than the length of the first lumen, and is configured to allow passage of a catheter device through the second lumen and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient.
Images(6)
Previous page
Next page
Claims(31)
1. A single lumen introducer sheath for accessing at least one renal artery and at least one peripheral blood vessel of a patient, the introducer sheath comprising:
a proximal hub comprising first and second ports;
a lumen extending from the first and second ports and having sufficient length such that when the ports are positioned outside the patient a distal end of the lumen is positionable in an abdominal aorta at or near origins of the patient's renal arteries;
a proximal aperture in the lumen, configured to allow passage of a vascular catheter device through the proximal aperture and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient; and
a distal aperture at the distal end of the lumen, configured to allow passage of a bifurcated renal catheter device out of the distal aperture to enter at least one of the renal arteries.
2. An introducer sheath as in claim 1, wherein the proximal aperture comprises a side aperture in the lumen.
3. A dual lumen introducer sheath for accessing at least one renal artery and at least one peripheral blood vessel of a patient, the introducer sheath comprising:
a proximal hub comprising first and second ports;
a first lumen extending from the first port to a first distal aperture and having sufficient length such that when the first port is positioned outside the patient the first distal aperture is positionable in an abdominal aorta at or near origins of the patient's renal arteries; and
a second lumen extending from the second port to a second distal aperture and having a shorter length than the length of the first lumen,
wherein the second lumen is configured to allow passage of a catheter device through the second lumen and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient.
4. An introducer sheath as in claim 3, wherein the first and second lumens are disposed side-by-side in a proximal portion of the introducer sheath, and wherein the first lumen extends beyond the proximal portion.
5. An introducer sheath as in claim 3, wherein the first lumen is configured to accept a bifurcated catheter for delivering one or more substances into the renal arteries.
6. An introducer sheath as in claim 3, wherein the second lumen is configured to accept a balloon angioplasty catheter device for performing an angioplasty procedure in one or more peripheral arteries.
7. A method for advancing at least two catheter devices into vasculature of a patient, the method comprising:
positioning a single lumen introducer sheath in the patient such that the sheath extends from a proximal, two-port hub outside the patient into one of the patient's iliac arteries, and thus to a distal end in an abdominal aorta at or near origins of renal arteries of the patient;
advancing a bifurcated renal artery catheter device through the distal end of the sheath's lumen to extend into the renal arteries; and
advancing a vascular catheter device through a proximal aperture in the lumen into at least one peripheral vessel of the patient on a contralateral side of the patient relative to an insertion point of the sheath.
8. A method as in claim 7, further comprising delivering at least one substance into at least one of the renal arteries through the bifurcated renal artery catheter device.
9. A method as in claim 8, wherein the at least one substance is selected from the group consisting of vasodilators, saline, diuretics, hyper-oxygenated blood, hyper-oxygenated blood substitutes and filtered blood.
10. A method as in claim 8, further comprising delivering at least one additional substance into peripheral vessel(s) of the patient through the vascular catheter device.
11. A method as in claim 10, wherein the additional substance comprises a radiocontrast agent.
12. A method as in claim 10, further comprising performing an interventional procedure in at least one peripheral vessel of the patient, using the vascular catheter device.
13. A method as in claim 12, wherein the interventional procedure comprises an angioplasty procedure.
14. A method for advancing at least two catheter devices into vasculature of a patient, the method comprising:
positioning a dual lumen introducer sheath in the patient such that the sheath extends from a proximal hub outside the patient into one of the patient's iliac arteries, and thus to a first distal aperture of a first lumen in an abdominal aorta at or near origins of renal arteries of the patient and to a second distal aperture of a second lumen in or near the iliac artery in which the sheath is positioned;
advancing a bifurcated renal artery catheter device through the first lumen and first distal aperture to extend into the renal arteries; and
advancing a vascular catheter device through the second lumen and second distal aperture into at least one peripheral vessel of the patient on a contralateral side of the patient relative to an insertion point of the sheath.
15. A method as in claim 14, further comprising delivering at least one substance into at least one of the renal arteries through the bifurcated renal artery catheter device.
16. A method as in claim 15, wherein the at least one substance is selected from the group consisting of vasodilators, saline, diuretics, hyper-oxygenated blood, hyper-oxygenated blood substitutes and filtered blood.
17. A method as in claim 15, further comprising delivering at least one additional substance into peripheral vessel(s) of the patient through the vascular catheter device.
18. A method as in claim 17, wherein the additional substance comprises a radiocontrast agent.
19. A method as in claim 17, further comprising performing an interventional procedure in at least one peripheral vessel of the patient, using the vascular catheter device.
20. A method as in claim 19, wherein the interventional procedure comprises an angioplasty procedure.
21. A system for accessing at least one renal artery and at least one peripheral blood vessel of a patient, the system comprising:
a single lumen introducer sheath comprising:
a proximal hub comprising first and second ports;
a lumen extending from the first and second ports and having sufficient length such that when the ports are positioned outside the patient a distal end of the lumen is positionable in an abdominal aorta at or near origins of the patient's renal arteries;
a proximal aperture in the lumen, configured to allow passage of a vascular catheter device through the proximal aperture and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient; and
a distal aperture at the distal end of the lumen, configured to allow passage of a bifurcated renal catheter device out of the distal aperture to enter at least one of the renal arteries.
a bifurcated renal artery catheter device for advancing through the first lumen to access the renal arteries; and
a vascular catheter device for advancing through the second lumen and into or through the contralateral iliac artery.
22. A system as in claim 21, wherein the bifurcated renal artery catheter device is configured to expand from a constrained configuration within the introducer sheath to a deployed configuration in which two oppositely directed distal ends are positioned within the two renal arteries or the patient.
23. A system as in claim 22, wherein one of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into one of the renal arteries.
24. A system as in claim 22, wherein each of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into each of the renal arteries.
25. A system as in claim 21, wherein the vascular catheter device comprises a balloon angioplasty catheter.
26. A system for accessing at least one renal artery and at least one peripheral blood vessel of a patient, the system comprising:
a dual lumen introducer sheath comprising:
a proximal hub comprising first and second ports;
a first lumen extending from the first port to a first distal aperture and having sufficient length such that when the first port is positioned outside the patient the first distal aperture is positionable in the abdominal aorta at or near origins of the patient's renal arteries; and
a second lumen extending from the second port to a second distal aperture and having a shorter length than the length of the first lumen,
wherein the second lumen is configured to allow passage of a catheter device through the second lumen and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient;
a bifurcated renal artery catheter device for advancing through the first lumen to access the renal arteries; and
a vascular catheter device for advancing through the second lumen and into or through the contralateral iliac artery.
27. A system as in claim 26, wherein the first and second lumens of the sheath are disposed side-by-side in a proximal portion of the introducer sheath, and wherein the first lumen extends beyond the proximal portion.
28. A system as in claim 26, wherein the bifurcated renal artery catheter device is configured to expand from a constrained configuration within the introducer sheath to a deployed configuration in which two oppositely directed distal ends are positioned within the two renal arteries or the patient.
29. A system as in claim 28, wherein one of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into one of the renal arteries.
30. A system as in claim 28, wherein each of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into each of the renal arteries.
31. A system as in claim 26, wherein the vascular catheter device comprises a balloon angioplasty catheter.
Description
    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    The present application claims priority to U.S. Provisional Patent Application Nos.: 60/550,632 (original attorney docket number FLO5360.56P1), filed Mar. 4, 2004, and 60/550,774, (original attorney docket number FLO5360.56P2), filed Mar. 5, 2004, the full disclosures of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention is related to medical devices, methods and systems. More specifically, the invention is related to devices, methods and systems for accessing various blood vessels in a patient, such as one or both renal arteries and one or more peripheral vessels.
  • [0003]
    In the setting of interventional radiology, numerous conditions exist that warrant placement of various intravascular devices into the lower limb arteries (iliac, femoral, popliteal, etc.). Such devices may include catheters and guidewires for diagnostic purposes, or systems for therapeutic or prophylactic applications such as drug infusion, monitoring/sampling, angioplasty and stenting, possibly in conjunction with embolic protection. In any event, these procedures often involve the use of radiocontrast agents known to have detrimental effects on renal function.
  • [0004]
    In many instances, lower limb arteries intended for diagnosis or intervention are accessed via an “up-and-over” approach, which first involves gaining arterial access on one side of the patient, typically though not necessarily via a femoral artery. From that access point, one or more diagnostic, prophylactic, and/or treatment devices are advanced in a retrograde fashion through the iliac artery on the side of access to the aortic bifurcation and then down along the direction of blood flow on the contralateral side, through the contralateral iliac artery, into and possibly through the contralateral femoral artery, etc. to the site of treatment and/or diagnostic procedure. As mentioned above, performing the treatment and/or diagnostic procedure often involves injection of a radiocontrast agent to allow the physician(s) to visualize the treatment/diagnostic site.
  • [0005]
    The nephrotoxicity of radiocontrast agents has been well established. In patients with known risk factors, radiocontrast nephropathy (RCN) is a prevalent adverse effect of interventional procedures utilizing organically bound iodine-based contrast imaging agents. While the full mechanism of RCN is not known, its detrimental results on morbidity and mortality are well documented, and it is hypothesized that local agent administration to the renal arteries during the time of contrast media exposure may mitigate the development of RCN. Agents in this case may include vasodilators, diuretics, or hyper-oxygenated blood or blood substitute. As well as agent infusion, the exchange of blood laden with contrast media and replacement of it with filtered blood, via use of an external blood filter/pump might be warranted.
  • [0006]
    Various apparatus and methods for providing local delivery of substances to renal arteries have be described by the inventors of the present invention in U.S. patent application Ser. No. 09/724,691 (Attorney Docket No. FLO5360.3A), filed Nov. 28, 2000; Ser. No. 10/422,624 (Attorney Docket No. FLO5360.03.A1), filed Apr. 23, 2003; Ser. No. 10/251,915 (Attorney Docket No. FLO5360.05A), filed Sep. 20, 2002; Ser. No. 10/636,359 (Attorney Docket No. FLO5360.05A1), filed Aug. 6, 2003; and Ser. No. 10/636,801 (Attorney Docket No. FLO5360.05A2), filed Aug. 6, 2003, the full disclosures of which are all incorporated herein by reference. Apparatus and methods for renal delivery of substances have also been described in PCT Patent Application Nos.: PCT/US03/029744 (Attorney Docket No. FLO5360.48FP), filed Sep. 22, 2003; PCT/US03/29995 (Attorney Docket No. FLO5360.49FP), filed Sep. 22, 2003; PCT/US03/29743 (Attorney Docket No. FLO5360.50FP), filed Sep. 22, 2003; and PCT/US03/29585 (Attorney Docket No. FLO5360.51FP), filed Sep. 22, 2003, the full disclosures of which are all incorporated herein by reference.
  • [0007]
    For the reasons described above, in some diagnostic and treatment procedures performed in the peripheral vasculature, especially in patients with renal risk factors, it may be desirable to concurrently provide for a means of renal protection via site-specific agent delivery to the renal arteries. Thus, a need exists for devices, methods and systems that provide access to one or more renal arteries and to one or more peripheral vessels. Ideally, such devices, methods and systems would allow for access and substance delivery through a common introducer device that provides access via a femoral artery. At least some of these objectives will be met by the present invention.
  • BRIEF SUMMARY OF THE INVENTION
  • [0008]
    In one aspect of the present invention, a single lumen introducer sheath for accessing at least one renal artery and at least one peripheral blood vessel of a patient includes a proximal hub comprising first and second ports and a lumen extending from the ports and having proximal and distal apertures. The lumen extends from the first and second ports and has sufficient length such that when the ports are positioned outside the patient a distal end of the lumen is positionable in the abdominal aorta at or near origins of the patient's renal arteries. The proximal aperture in the lumen is configured to allow passage of a vascular catheter device through the proximal aperture and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient. The distal aperture at the distal end of the lumen is configured to allow passage of a bifurcated renal catheter device out of the distal aperture to enter at least one of the renal arteries. Typically, though not necessarily, the proximal aperture comprises a side aperture in the lumen.
  • [0009]
    For purposes of the present application, the term “contralateral” refers to the side of the patient that is opposite the side in which an introducer sheath is placed. Various embodiments of the sheath described herein may be placed on either side of a patient, typically though not necessarily via a femoral artery access site. Thus, in one example where a sheath is inserted into a patient's right femoral artery, then the left side of the patient's body would be the contralateral side. If a sheath is inserted into a patient's left femoral artery, then the contralateral side is the right side.
  • [0010]
    In another aspect of the present invention, a dual lumen introducer sheath for accessing at least one renal artery and at least one peripheral blood vessel of a patient includes a proximal hub comprising first and second ports, a first lumen, and a second lumen. The first lumen extends from the first port to a first distal aperture and has sufficient length such that when the first port is positioned outside the patient the first distal aperture is positionable in the abdominal aorta at or near origins of the patient's renal arteries. The second lumen extends from the second port to a second distal aperture and has a shorter length than the length of the first lumen. The second lumen is configured to allow passage of a catheter device through the second lumen and into or through an iliac artery contralateral to an insertion point of the introducer sheath into the patient.
  • [0011]
    In some embodiments, the first and second lumens are disposed side-by-side in a proximal portion of the introducer sheath, and the first lumen extends beyond the proximal portion. In some embodiments, the first lumen is configured to accept a bifurcated catheter for delivering one or more substances into the renal arteries. The second lumen may be configured to accept, for example, a balloon angioplasty catheter device for performing an angioplasty procedure in one or more peripheral arteries.
  • [0012]
    In another aspect of the present invention, a method for advancing at least two catheter devices into vasculature of a patient first involves positioning a single lumen introducer sheath in the patient such that the sheath extends from a proximal, two-port hub outside the patient into one of the patient's iliac arteries, and thus to a distal end in an abdominal aorta at or near origins of renal arteries of the patient. Next, a bifurcated renal artery catheter device is advanced through the distal end of the sheath's lumen to extend into the renal arteries, and a vascular catheter device is advanced through a proximal aperture in the lumen into at least one peripheral vessel of the patient on a contralateral side of the patient relative to an insertion point of the sheath. In various embodiments, the vascular catheter may be advanced through the introducer sheath before or after the renal catheter is advanced.
  • [0013]
    In some embodiments, the method further involves delivering at least one substance into at least one of the renal arteries through the bifurcated renal artery catheter device. For example, substances which may be delivered through the renal artery catheter device include, but are not limited to, vasodilators, diuretics, hyper-oxygenated blood, hyper-oxygenated blood substitutes and filtered blood. In some embodiments, the method further involves delivering at least one additional substance into peripheral vessel(s) of the patient through the vascular catheter device. For example, such an additional substance may include, but is not limited to, a radiocontrast agent. Optionally, the method may further include performing an interventional procedure in at least one peripheral vessel of the patient, using the vascular catheter device. One example of such a procedure is an angioplasty procedure.
  • [0014]
    In another aspect of the present invention, a method for advancing at least two catheter devices into vasculature of a patient involves positioning a dual lumen introducer sheath in the patient such that the sheath extends from a proximal hub outside the patient into one of the patient's iliac arteries, and thus to a first distal aperture of a first lumen in the abdominal aorta at or near origins of renal arteries of the patient and to a second distal aperture of a second lumen in or near the iliac artery in which the sheath is positioned. The method then involves advancing a bifurcated renal artery catheter device through the first lumen and first distal aperture to extend into the renal arteries. The method then involves advancing a vascular catheter device through the second lumen and second distal aperture into at least one peripheral vessel of the patient on a contralateral side of the patient relative to an insertion point of the sheath. Again, in various embodiments, the vascular catheter may be advanced through the sheath either before or after the renal catheter is advanced.
  • [0015]
    In another aspect of the invention, a system for accessing at least one renal artery and at least one peripheral blood vessel of a patient includes a single lumen introducer sheath, a bifurcated renal artery catheter device for advancing through the first lumen to access the renal arteries, and a vascular catheter device for advancing through the second lumen and into or through the contralateral iliac artery. The single lumen sheath includes a proximal hub, a lumen, a proximal aperture in the lumen, and a distal aperture at the distal end of the lumen, as described above. The sheath may include any of the features previously described.
  • [0016]
    In some embodiments, the bifurcated renal artery catheter device is configured to expand from a constrained configuration within the introducer sheath to a deployed configuration in which two oppositely directed distal ends are positioned within the two renal arteries or the patient. In some embodiments, one of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into one of the renal arteries. In alternative embodiments, each of the two distal ends includes an aperture for allowing passage of fluid from the bifurcated renal artery catheter into one of the renal arteries. The vascular catheter may comprise any diagnostic and/or treatment catheter device suitable for accessing and performing a function in a blood vessel. In one embodiment, for example, the vascular catheter device comprises a balloon angioplasty catheter.
  • [0017]
    In another aspect of the present invention, a system for accessing at least one renal artery and at least one peripheral blood vessel of a patient includes a dual lumen introducer sheath, a bifurcated renal artery catheter device for advancing through the first lumen to access the renal arteries, and a vascular catheter device for advancing through the second lumen and into or through the contralateral iliac artery. The dual lumen introducer sheath includes a proximal hub, a first lumen, and a second lumen, as described above. The introducer sheath may include any of the features previously described.
  • [0018]
    These and other aspects and embodiments of the invention will be described in further detail below, with reference to the attached drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0019]
    FIG. 1 is a side view of a dual lumen sheath and catheter system for accessing renal arteries and peripheral vessels, shown in situ, according to one embodiment of the present invention.
  • [0020]
    FIG. 2 is a side view of a dual lumen sheath for providing access to renal arteries and peripheral vessels, according to one embodiment of the present invention.
  • [0021]
    FIGS. 2A and 2B are end-on cross-sectional views of the dual lumen sheath of FIG. 2, at different points along the length of the sheath.
  • [0022]
    FIG. 2C is an end-on cross-sectional view a dual lumen sheath, according to an alternative embodiment of the present invention.
  • [0023]
    FIG. 3 is a side view of a single lumen sheath and catheter system for accessing renal arteries and peripheral vessels, according to an alternative embodiment of the present invention.
  • [0024]
    FIG. 4 is a side view of the single lumen sheath of FIG. 3.
  • [0025]
    FIG. 5 is a side view of a bifurcated renal artery catheter device for use with a sheath of the present invention, according to one embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0026]
    Referring to FIG. 1, a vascular access system 10 in one embodiment suitably includes a dual lumen introducer sheath 12, a bifurcated renal catheter 14 and an additional vascular catheter device 16. As will be described in further detail below, in alternative embodiments, introducer sheath 12 may have only one lumen, with distal and proximal apertures. In the embodiment shown in FIG. 1, introducer sheath 12 includes a proximal hub 18 having two having first and second ports 24, 26, a first lumen 20 in fluid communication with first port 24 and a first distal aperture 28, and a second lumen 22 in fluid communication with second port 26 and a second distal aperture 30. Introducer sheath 12 is typically, though not necessarily, introduced into a patient through a femoral artery and advanced into an iliac artery, which in FIG. 1 is referred to as the ipsilateral iliac artery II. Upon positioning of sheath 12, first lumen 20 extends into the patients aorta A such that first distal aperture 28 locates at or near the origins of the patient's renal arteries R, which lead from the aorta A to the kidneys K. Meanwhile, second lumen 22 ends more proximally in second distal aperture 30, which upon positioning of sheath 12 typically resides in or near the ipsilateral iliac artery II.
  • [0027]
    Introducer sheath 12 is generally adapted to be placed at the desired in-vivo location via traditional vascular access technique. After this placement, bifurcated renal artery catheter 14 is delivered into first entry port 24 on hub 18 and advanced through first lumen 20 to extend out first distal aperture 28, such that each of its two branches is positioned within a renal artery R. In various embodiments, bifurcated renal artery catheter 14 may be any of a number of suitable renal catheter devices, many examples of which are described in the patent applications incorporated by reference above in the background section. In some embodiments, bifurcated catheter 14 may be adapted to access both renal arteries, while in alternative embodiments only one renal artery may be accessed, and the opposite arm of the bifurcated catheter may act as an anchor or support. Once it is placed in a desired position, bifurcated renal artery catheter 14 may be used to selectively infuse one or more agents, typically renal protective agents, into the renal arteries. Such agents may include, but are not limited to, vasodilators, saline, diuretics, hyper-oxygenated blood, hyper-oxygenated blood substitutes and filtered blood. In other embodiments, other agent(s) may be used prevent or reduce negative effects of one or more radiocontrast agents that are subsequently or simultaneously delivered elsewhere. In some embodiments, system 10 may include a source of such agent(s).
  • [0028]
    In some embodiments, once renal catheter 14 is positioned, vascular catheter device 16 may then be advanced into second entry port 26 on hub 18, advanced through second lumen 22 and second distal aperture 30, and further advanced into and possibly through the contralateral iliac artery CI. Depending on the desired treatment and/or diagnosis site, vascular catheter 16 may be advanced into the contralateral femoral artery or through the contralateral femoral artery into one or more peripheral vessels. Vascular catheter device 16 itself may comprise any of a number of suitable devices, such as an a balloon angioplasty catheter (as shown), an atherectomy catheter, an ultrasound catheter, an infusion catheter or the like. Once placed in a desired position in the contralateral peripheral vasculature of the patient, vascular catheter 16 may then be used to perform one or more diagnostic and/or therapeutic procedures. Many of such procedures involve the introduction of one or more radiocontrast dyes or agents, and any adverse effects of such agents on the kidneys K will be mitigated by the substance(s) delivered via bifurcated renal artery catheter 14.
  • [0029]
    In various embodiments, system 10 may include additional, fewer and/or alternative components or devices. Furthermore, in various embodiments of a method for using system 10, the various steps may be performed in a different order and/or steps may be added or eliminated. For example, in one embodiment, a renal protective substance may be delivered via renal catheter 14 at the same time that a radiocontrast agent is delivered via vascular catheter 16. In another embodiment, the method may involve multiple infusions of renal protective substance(s) and/or multiple infusions of radiocontrast material(s) in any of a number of different orders. Thus, the described method is but one preferred way in which vascular access system 10 may be used.
  • [0030]
    With reference now to FIG. 2-2C, dual lumen introducer sheath 12 is shown in greater detail. Again, sheath includes Y-shaped proximal hub 18, which allows for introduction of multiple (in the exemplary case two) devices simultaneously. In some embodiments, hub 18, first lumen 20 and second lumen 22 may each be sized to allow passage of devices up to about 10 French in outer diameter, or possibly even more, with a preferrered embodiment being compatible with a renal catheter via first lumen 20 and a 5 Fr. to 8 Fr. peripheral diagnostic or interventional catheter via second lumen 22. FIG. 2A shows a cross-section of first lumen 20, FIG. 2B shows a cross-section of first and second lumens 20, 22, in a more proximal portion of sheath 12, and FIG. 2C shows a cross-section of an alternative embodiment of the more proximal portion, with a different design of first and second lumens 20, 22. The overall usable length of sheath 12 is generally such that it allows for standard femoral access (or other access point), and also allows first distal aperture 28 in first lumen 20 to reach a location at or near the renal arteries in order to deliver the bifurcated renal catheter. Again, various lengths for this device may also be provided to suit individual patients' anatomies, such as in a kit that allows for a particular device to be chosen for a particular case. Should an independently collapsible and expandable renal catheter be employed, the sheath's overall length may be reduced as desired.
  • [0031]
    Because sheath 12 may be delivered to the peri-renal aorta, past the aortic bifurcation, sheath 12 may be further adapted to allow for the diagnostic or interventional device performing the lower limb procedure to exit along its length at a pre-determined or variable location so as to allow for the “up-and-over” delivery about the aortic bifurcation as previously discussed. In one particular embodiment, this may involve an aperture or other opening in the side wall of sheath 12 at an appropriate point. In an alternative embodiment, as shown in FIGS. 1-2C and as described above, a dual-lumen design may be adapted to deliver one device to the peri-renal aorta and the other to the area of the bifurcation. In a further embodiment, a valve apparatus (or multiple apparatuses) in combination with one or both of the other designs may be employed. In any event, sheath 12 may provide a mechanism for delivering one device (such as for example the renal catheter) to the level of the peri-renal aorta while simultaneously or contemporaneously allowing for another device (such as for example the peripheral diagnostic or interventional device) to exit lower at the area of the bifurcation. In the case of an independently collapsible and expandable renal catheter, a shorter sheath may be used that reaches just to or below to the level on the aortic bifurcation (i.e., still in the iliac artery on the side of access). Both devices may be simultaneously or contemporaneously deployed to their respective sites.
  • [0032]
    Referring now to FIGS. 3 and 4, an alternative embodiment of a vascular access system 50 and a single lumen introducer sheath 52 are shown. In FIG. 3, vascular access system includes single lumen introducer sheath 52, a bifurcated renal catheter 60 and a vascular catheter device 62, which in this example is a balloon angioplasty device. Single lumen sheath 52 includes a hub 54 with first 56 and second 58 ports and connected to a fluid infusion device 68, and a single lumen 53 having a proximal aperture 66, a distal aperture 64, and two radiopaque markers 51 for facilitating visualization of the proximal aperture 66 location. In this embodiment, renal catheter 60 and vascular catheter 62 are as described previously above, but in various embodiments any suitable alternative devices may be substituted.
  • [0033]
    A method for using system 50 is much the same as the method described above with reference to FIG. 1. Sheath 52 is placed via a femoral artery using a standard technique or any other desired access technique, such that distal aperture 64 is positioned at or near the ostia of the renal arteries. Renal catheter 60 may then be inserted through first port 56 and advanced through lumen 53 and distal aperture 64 to position its branches 65 within the renal arteries. Before, after or simultaneously with that step, vascular catheter 62 is inserted through second port 58 and advanced through lumen 53 and proximal aperture 66 to extend into the contralateral iliac artery and as far peripherally as desired by the physician. One or more renal substances are then infused into the renal arteries via renal catheter 60, and a radiocontrast substance is infused into the peripheral vessel(s) via vascular catheter 62. In some embodiments, vascular catheter 62 is then used to perform a procedure in one or more vessels. Optionally, infusion device 68 may be used to deliver one or more substances into lumen 53.
  • [0034]
    FIG. 4 shows single lumen introducer sheath 52 in greater detail. Radiopaque markers 51 may be placed in any of a number of various configurations and locations in various embodiments, to facilitate visualization and localization of proximal aperture 66, distal aperture 64 and/or any other features of sheath 52.
  • [0035]
    Referring now to FIG. 5, a distal portion of bifurcated renal catheter 14 includes two branches 15, 17, each including a distal aperture 11, 13, and a proximal catheter body. Each branch 15, 17 provides a means to deliver one or more substances to the renal artery in which it is placed. Overall usable length of the renal catheter 14 would generally be such that renal access from a typical femoral artery vascular access point (or other access point) is achieved without an undue length of catheter remaining outside of the patient. Again, various embodiments and features of bifurcated renal catheters are described more fully in U.S. patent application Ser. Nos. 09/724,691, 10/422,624, 10/251,915, 10/636,359 and 10/636801, and in PCT Patent Application Nos. PCT/US03/029744, PCT/US03/29995, PCT/US03/29743 and PCT/US03/29585, which were previously incorporated by reference.
  • [0036]
    Renal catheter 14 may be delivered in a collapsed condition via sheath 12 to the abdominal aorta in the vicinity of the renal arteries. Once deployed, it may expand to contact the walls of the vessel, in an attempt to regain the shape configuration as demonstrated above. This expansion and contraction may be active or passive, as desired, based on the design of renal catheter 14. For the purposes of illustration, the device is considered to be in its free state as pictured in FIG. 3 and compressed via the constraint of the introducer sheath 12 or other means during delivery. Thus renal catheter 14 would “self-expand” upon deployment, to an extent determined by the constraint of the blood vessel. However, renal catheter 14 could alternatively be designed to have the collapsed condition as default and be actively opened once deployed. Such may be accomplished for example by use of integrated pull-wires, etc. In any event, the outward contact with the blood vessel (aorta) allows for easy cannulation of multiple vessels, as the device naturally seeks its lower energy state by opening into branch vessels.
  • [0037]
    When deployed in the aorta, in a procedure where it is desired to access the renal arteries, renal catheter 14 will exit introducer sheath 12, and branches 15, 17 will seek to open to their natural, at-rest state. This will bias branches 15, 17 away from each other and against the inner wall of the vessel, at approximately 180 apart from each other, more or less centering catheter body 32 in the aorta. The proximal end of renal catheter 14 may be manipulated via standard technique (i.e., the use of a supplied “torque device” as is common with intravascular guidewires) so that branches 15, 17 are more or less aligned near the target renal arteries' ostia, and with a minimal amount of axial or rotational manipulation, bilateral renal artery cannulation can be achieved.
  • [0038]
    Previous disclosures by the inventors of the present invention have also addressed the merits of various embodiments of bifurcated renal catheters 14 in providing access to multiple vessels simultaneously through a single vascular access point, alone or in combination with other diagnostic or therapeutic interventions or other procedures. For example, such disclosures include U.S. Provisional Patent Application Nos.: 60/476,347 (Attorney Docket No. FLO5360.44P1), filed Jun. 5, 2003; 60/486,206 (Attorney Docket No. FLO5360.47P1, filed Jul. 9, 2003; 60/502,600 (Attorney Docket No. FLO5360.48P1), filed Sep. 13, 2003; 60/502,339 (Attorney Docket No. FLO5360.51P1), filed Sep. 13, 2003; 60/505,281 (Attorney Docket No. FLO5360.53P), filed Sep. 22, 2003; 60/493,100 (Attorney Docket No. FLO5360.54P1), filed Aug. 5, 2003; 60/502,468 (Attorney Docket No. FLO5360.54P2), filed Sep. 13, 2003; 60/543,671 (Attorney Docket No. FLO5360.55P1), filed Feb. 9, 2004; 60/550,632 (Attorney Docket No. FLO5360.56P1), filed Mar. 4, 2004; 60/550,774 (Attorney Docket No. FLO5360.56P2), filed Mar. 5, 2004; 60/571,057 (Attorney Docket No. FLO5360.57P1), filed May 14, 2004; 60/612,731 (Attorney Docket No. FLO5360.57P2), filed Sep. 24, 2004; and 60/612,801 (Attorney Docket No. FLO5360.60P1), filed Sep. 24, 2004, the full disclosures of which are all hereby incorporated by reference. Similar and alternative embodiments are described in PCT Patent Application Nos.: PCT/US03/029744 (Attorney Docket No. FLO5360.48FP), filed Sep. 22, 2003; PCT/US04/008573 (Attorney Docket No. FLO5360.55FP), filed Mar. 19, 2004; PCT/US03/029586 (Attorney Docket No. FLO5360.54FP), filed Sep. 22, 2003; and PCT/US03/029585 (Attorney Docket No. FLO5360.51FP), filed Sep. 22, 2003, the full disclosures of which are hereby incorporated by reference.
  • [0039]
    Bifurcated renal catheter 14 may be similar to that previously described in the above-referenced patent applications or may have any other suitable design and features for bilateral renal cannulation. The example provided and discussed herein for illustration includes, without limitation, a passively self-expanding branched assembly that uses outer sheath constraint to allow delivery to the area of the renal arteries and then expands upon delivery out of the sheath. However, in further embodiments the catheter may also be of the type that is independently collapsible and expandable, if so desired. Various features may be further included. In one particular beneficial embodiment, two distal arms are provided whose shapes and flexibility profile allow for fast bilateral renal artery cannulation with a minimum of required manipulation and such that there is no induced vascular trauma. Exemplary catheter shaft and distal arms may be in the range for example of about 1 Fr. to about 4 Fr. outer diameter. Exemplary arm lengths may be for example in the range of about 2 cm to about 5 cm.
  • [0040]
    Dimensions and other particular features such as shape, stiffness, etc. may be varied according to the scale of the patient's anatomy, and thus a kit of devices may be provided from which a healthcare provider may chose one particular device to meet a particular need for a particular patient. For example, multiple renal catheters may be provided having small, medium, and large sizes, respectively. Upon being provided a particular patient parameter, such as anatomical dimensions, a person could refer to the device sizes offered and simply match the chosen size to the parameter given. In this regard, a chart may be provided which assists in matching a measured or estimated patient parameter with the appropriate catheter choice.
  • [0041]
    Although the foregoing is a complete and accurate description of various embodiments of the present invention, any of a number of changes, additions or deletions may be made to one or more embodiments without departing from the scope of the invention. Therefore, the foregoing description is provided for exemplary purposes and should not be interpreted to limit the scope of the invention as set forth in the claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2499045 *Aug 16, 1948Feb 28, 1950Herman Young FrankRectal dilator and medicator
US3516408 *Sep 21, 1967Jun 23, 1970Vincent L MontantiArterial bypass
US3667069 *Mar 27, 1970Jun 6, 1972Univ MinnesotaJet pump cardiac replacement and assist device and method of at least partially replacing a disabled right heart
US3730186 *Mar 5, 1971May 1, 1973Univ CalifAdjustable implantable artery-constricting device
US3791374 *Aug 9, 1971Feb 12, 1974Department Of Health EducationProgrammer for segmented balloon pump
US4248224 *Aug 1, 1978Feb 3, 1981Jones James WDouble venous cannula
US4309994 *Feb 25, 1980Jan 12, 1982Grunwald Ronald PCardiovascular cannula
US4423725 *Mar 31, 1982Jan 3, 1984Baran Ostap EMultiple surgical cuff
US4493697 *Aug 14, 1981Jan 15, 1985Krause Horst EMethod and apparatus for pumping blood within a vessel
US4636195 *Apr 4, 1985Jan 13, 1987Harvey WolinskyMethod and apparatus for removing arterial constriction
US4723939 *Jul 31, 1986Feb 9, 1988The Research Foundation Of State Univ. Of New YorkApparatus and method for multiple organ procurement
US4753221 *Oct 22, 1986Jun 28, 1988Intravascular Surgical Instruments, Inc.Blood pumping catheter and method of use
US4817586 *Nov 24, 1987Apr 4, 1989Nimbus Medical, Inc.Percutaneous bloom pump with mixed-flow output
US4834707 *Sep 16, 1987May 30, 1989Evans Phillip HVenting apparatus and method for cardiovascular pumping application
US4840172 *Nov 6, 1987Jun 20, 1989Augustine Scott DDevice for positioning an endotracheal tube
US4902272 *Jun 17, 1987Feb 20, 1990Abiomed Cardiovascular, Inc.Intra-arterial cardiac support system
US4902291 *Jan 31, 1989Feb 20, 1990University Of Utah Research FoundationCollapsible artificial ventricle and pumping shell
US4906229 *May 3, 1988Mar 6, 1990Nimbus Medical, Inc.High-frequency transvalvular axisymmetric blood pump
US4909252 *May 26, 1988Mar 20, 1990The Regents Of The Univ. Of CaliforniaPerfusion balloon catheter
US4911163 *Jun 16, 1987Mar 27, 1990Ernesto FinaTwo ballooned catheter device for diagnostic and operative use
US4919647 *Oct 13, 1988Apr 24, 1990Kensey Nash CorporationAortically located blood pumping catheter and method of use
US4925377 *Dec 2, 1986May 15, 1990Data Promeditech I.N.C. AbPump
US4925443 *Feb 27, 1987May 15, 1990Heilman Marlin SBiocompatible ventricular assist and arrhythmia control device
US4927407 *Jun 19, 1989May 22, 1990Regents Of The University Of MinnesotaCardiac assist pump with steady rate supply of fluid lubricant
US4927412 *Dec 8, 1988May 22, 1990Retroperfusion Systems, Inc.Coronary sinus catheter
US4990139 *Apr 25, 1990Feb 5, 1991Jang G DavidTandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems
US4995864 *Aug 15, 1989Feb 26, 1991Imed CorporationDual chamber pumping apparatus
US5002531 *Jun 6, 1987Mar 26, 1991Tassilo BonzelDilation catheter with an inflatable balloon
US5002532 *Jun 21, 1989Mar 26, 1991Advanced Cardiovascular Systems, Inc.Tandem balloon dilatation catheter
US5087244 *Sep 27, 1990Feb 11, 1992C. R. Bard, Inc.Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5089019 *Dec 6, 1989Feb 18, 1992Medtronic, Inc.Muscle work output monitor by intramuscular temperature variation measurement
US5098370 *Apr 4, 1990Mar 24, 1992Galram Technology Industries, Inc.Heart assist device
US5098442 *Dec 6, 1989Mar 24, 1992Medtronic, Inc.Muscle contraction control by intramuscular pressure monitoring
US5112301 *Jun 19, 1991May 12, 1992Strato Medical CorporationBidirectional check valve catheter
US5112349 *Oct 22, 1990May 12, 1992American Biomed, Inc.Heart assist pump
US5119804 *Nov 19, 1990Jun 9, 1992Anstadt George LHeart massage apparatus
US5180364 *Jul 3, 1991Jan 19, 1993Robert GinsburgValved self-perfusing catheter guide
US5205810 *Oct 15, 1990Apr 27, 1993Medtronic, Inc.Muscle powered cardiac assist system
US5282784 *Oct 9, 1991Feb 1, 1994Mentor CorporationInjection stent system
US5290227 *Mar 23, 1993Mar 1, 1994Pasque Michael KMethod of implanting blood pump in ascending aorta or main pulmonary artery
US5292309 *Jan 22, 1993Mar 8, 1994Schneider (Usa) Inc.Surgical depth measuring instrument and method
US5308319 *Dec 30, 1992May 3, 1994Sumitmo Bakelite Company LimitedCardio assist system and insertion device therefor
US5308320 *Dec 28, 1990May 3, 1994University Of Pittsburgh Of The Commonwealth System Of Higher EducationPortable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method
US5312343 *Nov 23, 1990May 17, 1994Michael KrogDevice for segmental perfusion and aspiration of colon and rectum
US5320604 *Jun 3, 1993Jun 14, 1994Baxter International Inc.Low-profile single-lumen dual-balloon catheter with integrated guide wire for embolectomy dilatation/occlusion and delivery of treatment fluid
US5383840 *Jul 28, 1992Jan 24, 1995Vascor, Inc.Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly
US5389090 *Feb 7, 1994Feb 14, 1995Cathco, Inc.Guiding catheter with straightening dilator
US5397307 *Dec 7, 1993Mar 14, 1995Schneider (Usa) Inc.Drug delivery PTCA catheter and method for drug delivery
US5405341 *Jun 3, 1993Apr 11, 1995Med-Pro Design, Inc.Catheter with multiple lumens
US5411479 *Apr 30, 1993May 2, 1995Bgh Medical Products IncCancer treatment and catheter for use in treatment
US5421826 *Jan 13, 1994Jun 6, 1995Cardiovascular Dynamics, Inc.Drug delivery and dilatation catheter having a reinforced perfusion lumen
US5484385 *Apr 21, 1994Jan 16, 1996C. R. Bard, Inc.Intra-aortic balloon catheter
US5505701 *Nov 22, 1994Apr 9, 1996Anaya Fernandez De Lomana; Eugenio F.Intra-aortic balloon catheter
US5509428 *May 31, 1994Apr 23, 1996Dunlop; Richard W.Method and apparatus for the creation of tricuspid regurgitation
US5599306 *Sep 29, 1995Feb 4, 1997Localmed, Inc.Method and apparatus for providing external perfusion lumens on balloon catheters
US5609628 *Apr 20, 1995Mar 11, 1997Keranen; Victor J.Intravascular graft and catheter
US5613949 *Apr 1, 1994Mar 25, 1997Advanced Cardiovascular Systems, Inc.Double balloon catheter assembly
US5613980 *Dec 22, 1994Mar 25, 1997Chauhan; Tusharsindhu C.Bifurcated catheter system and method
US5617878 *May 31, 1996Apr 8, 1997Taheri; Syde A.Stent and method for treatment of aortic occlusive disease
US5637086 *Sep 7, 1995Jun 10, 1997Boston Scientific CorporationMethod of delivering a therapeutic agent or diagnostic device using a micro occlusion balloon catheter
US5713853 *Jun 7, 1995Feb 3, 1998Interventional Innovations CorporationMethods for treating thrombosis
US5713860 *Jun 5, 1995Feb 3, 1998Localmed, Inc.Intravascular catheter with infusion array
US5720735 *Feb 12, 1997Feb 24, 1998Dorros; GeraldBifurcated endovascular catheter
US5755779 *Nov 5, 1996May 26, 1998Horiguchi; SachioBlood stream adjuster
US5762599 *May 2, 1994Jun 9, 1998Influence Medical Technologies, Ltd.Magnetically-coupled implantable medical devices
US5902229 *Mar 30, 1998May 11, 1999Cardio Technologies, Inc.Drive system for controlling cardiac compression
US5902336 *Oct 15, 1996May 11, 1999Mirimedical, Inc.Implantable device and method for removing fluids from the blood of a patient method for implanting such a device and method for treating a patient experiencing renal failure
US6013054 *Apr 28, 1997Jan 11, 2000Advanced Cardiovascular Systems, Inc.Multifurcated balloon catheter
US6039721 *Dec 3, 1997Mar 21, 2000Cordis CorporationMethod and catheter system for delivering medication with an everting balloon catheter
US6068629 *Dec 15, 1998May 30, 2000Medtronic, Inc.System and methods for tissue mapping and ablation
US6190349 *Aug 2, 1999Feb 20, 2001Hemocleanse, Inc.Splittable multiple catheter assembly and methods for inserting the same
US6210380 *Apr 4, 2000Apr 3, 2001Advanced Cardiovascular Systems, Inc.Bifurcated catheter assembly
US6387037 *Dec 23, 1999May 14, 2002Orqis Medical CorporationImplantable heart assist system and method of applying same
US6390969 *Apr 21, 2000May 21, 2002Orqis Medical CorporationImplantable heart assist system and method of applying same
US6508787 *Sep 26, 1996Jan 21, 2003Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.System for actively supporting the flow of body fluids
US6514226 *Feb 10, 2000Feb 4, 2003Chf Solutions, Inc.Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6533747 *Oct 30, 2000Mar 18, 2003Chf Solutions, Inc.Extracorporeal circuit for peripheral vein fluid removal
US6540779 *Jun 26, 2001Apr 1, 2003Medinol Ltd.Bifurcated stent with improved side branch aperture and method of making same
US6699231 *Dec 30, 1998Mar 2, 2004Heartport, Inc.Methods and apparatus for perfusion of isolated tissue structure
US6733474 *Mar 22, 2001May 11, 2004Scimed Life Systems, Inc.Catheter for tissue dilatation and drug delivery
US6884258 *Feb 26, 2001Apr 26, 2005Advanced Stent Technologies, Inc.Bifurcation lesion stent delivery using multiple guidewires
US6887258 *Jun 26, 2002May 3, 2005Advanced Cardiovascular Systems, Inc.Embolic filtering devices for bifurcated vessels
US6994700 *Mar 18, 2005Feb 7, 2006Flowmedica, Inc.Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US20020022857 *Sep 17, 2001Feb 21, 2002St. Jude Medical Cardiovascular Group, Inc.Medical grafting methods and apparatus
US20030050600 *Aug 9, 2002Mar 13, 2003Velocimed, L.L.C.Emboli protection devices and related methods of use
US20030069468 *Nov 6, 2002Apr 10, 2003Bolling Steven F.Implantable heart assist system and method of applying same
US20030100919 *Nov 22, 2002May 29, 2003Incept LlcVascular device for emboli, thrombus and foreign body removal and methods of use
US20040002730 *Jun 26, 2002Jan 1, 2004Denison Andy E.Embolic filtering devices for bifurcated vessels
US20040044302 *Sep 3, 2003Mar 4, 2004Chf Solutions, Inc.Method and device for removal of radiocontrast media from blood
US20040064089 *Apr 23, 2003Apr 1, 2004Kesten Randy J.Intra-aortic renal drug delivery catheter
US20040097900 *Jul 3, 2003May 20, 2004Gad KerenApparatus and methods for treating congestive heart disease
US20050027305 *Jan 5, 2004Feb 3, 2005Brian ShiuIntegrated mechanical handle with quick slide mechanism
US20060030814 *Mar 18, 2005Feb 9, 2006Flowmedica, Inc.Method and apparatus for selective drug infusion via an intra-aortic flow diverter delivery catheter
US20060036218 *Mar 16, 2005Feb 16, 2006Flowmedica, Inc.Method and apparatus for selective material delivery via an intra-renal catheter
US20060047266 *Oct 25, 2005Mar 2, 2006Flowmedica, Inc.Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US20060069323 *Sep 22, 2005Mar 30, 2006Flowmedica, Inc.Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060079836 *Oct 12, 2004Apr 13, 2006Holman Thomas JReinforced and drug-eluting balloon catheters and methods for making same
US20060079859 *Sep 29, 2005Apr 13, 2006Flowmedica, Inc.Renal infusion systems and methods
US20070053904 *Aug 4, 2006Mar 8, 2007Millennium Pharmaceuticals, Inc.Antibodies having diagnostic, preventive, therapeutic, and other uses
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7647115Jun 3, 2005Jan 12, 2010Ardian, Inc.Renal nerve stimulation method and apparatus for treatment of patients
US7653438May 13, 2005Jan 26, 2010Ardian, Inc.Methods and apparatus for renal neuromodulation
US7717948Aug 16, 2007May 18, 2010Ardian, Inc.Methods and apparatus for thermally-induced renal neuromodulation
US7766961Dec 5, 2005Aug 3, 2010Angio Dynamics, Inc.Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7771401Jun 5, 2007Aug 10, 2010Angiodynamics, Inc.Selective renal cannulation and infusion systems and methods
US7853333Jun 12, 2006Dec 14, 2010Ardian, Inc.Methods and apparatus for multi-vessel renal neuromodulation
US7914503 *Mar 16, 2005Mar 29, 2011Angio DynamicsMethod and apparatus for selective material delivery via an intra-renal catheter
US7937143Oct 18, 2005May 3, 2011Ardian, Inc.Methods and apparatus for inducing controlled renal neuromodulation
US7993325Sep 29, 2005Aug 9, 2011Angio Dynamics, Inc.Renal infusion systems and methods
US8012121Jun 26, 2007Sep 6, 2011Angiodynamics, Inc.Method and apparatus for selective material delivery via an intra-renal catheter
US8131371Apr 13, 2006Mar 6, 2012Ardian, Inc.Methods and apparatus for monopolar renal neuromodulation
US8131372Mar 19, 2007Mar 6, 2012Ardian, Inc.Renal nerve stimulation method for treatment of patients
US8145316Jul 25, 2005Mar 27, 2012Ardian, Inc.Methods and apparatus for renal neuromodulation
US8145317Mar 6, 2006Mar 27, 2012Ardian, Inc.Methods for renal neuromodulation
US8150518Jun 3, 2005Apr 3, 2012Ardian, Inc.Renal nerve stimulation method and apparatus for treatment of patients
US8150519Mar 6, 2006Apr 3, 2012Ardian, Inc.Methods and apparatus for bilateral renal neuromodulation
US8150520Mar 6, 2006Apr 3, 2012Ardian, Inc.Methods for catheter-based renal denervation
US8175711Mar 6, 2006May 8, 2012Ardian, Inc.Methods for treating a condition or disease associated with cardio-renal function
US8347891Nov 14, 2006Jan 8, 2013Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8393328Dec 28, 2007Mar 12, 2013BiO2 Medical, Inc.Airway assembly and methods of using an airway assembly
US8394218Jul 13, 2010Mar 12, 2013Covidien LpMethod for making a multi-lumen catheter having a separated tip section
US8433423Dec 13, 2010Apr 30, 2013Ardian, Inc.Methods for multi-vessel renal neuromodulation
US8444640Sep 14, 2012May 21, 2013Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8454594Aug 11, 2009Jun 4, 2013Medtronic Ardian Luxembourg S.A.R.L.Apparatus for performing a non-continuous circumferential treatment of a body lumen
US8518011Aug 28, 2009Aug 27, 2013Angiodynamics, Inc.Sheath for use in peripheral interventions
US8548600Sep 14, 2012Oct 1, 2013Medtronic Ardian Luxembourg S.A.R.L.Apparatuses for renal neuromodulation and associated systems and methods
US8551069Mar 6, 2006Oct 8, 2013Medtronic Adrian Luxembourg S.a.r.l.Methods and apparatus for treating contrast nephropathy
US8585678Mar 7, 2008Nov 19, 2013Angiodynamics, Inc.Method and apparatus for intra-aortic substance delivery to a branch vessel
US8613753Jan 8, 2010Dec 24, 2013BiO2 Medical, Inc.Multi-lumen central access vena cava filter apparatus and method of using same
US8620423Mar 14, 2011Dec 31, 2013Medtronic Ardian Luxembourg S.A.R.L.Methods for thermal modulation of nerves contributing to renal function
US8626300Mar 11, 2011Jan 7, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for thermally-induced renal neuromodulation
US8668712Aug 31, 2007Mar 11, 2014BiO2 Medical, Inc.Multi-lumen central access vena cava filter apparatus and method of using same
US8684998Mar 9, 2012Apr 1, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for inhibiting renal nerve activity
US8721637Jul 12, 2013May 13, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8728137Feb 12, 2013May 20, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for thermally-induced renal neuromodulation
US8728138Feb 12, 2013May 20, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for thermally-induced renal neuromodulation
US8740896Jul 12, 2013Jun 3, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8747388 *Jun 27, 2012Jun 10, 2014Boston Scientific Scimed, Inc.Access and drainage devices
US8768470May 11, 2010Jul 1, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for monitoring renal neuromodulation
US8771252May 20, 2005Jul 8, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and devices for renal nerve blocking
US8774913Nov 14, 2006Jul 8, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for intravasculary-induced neuromodulation
US8774922May 21, 2013Jul 8, 2014Medtronic Ardian Luxembourg S.A.R.L.Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8777977Apr 21, 2011Jul 15, 2014BiO2 Medical, Inc.Self-centering catheter and method of using same
US8777981Aug 29, 2012Jul 15, 2014Bio2Medical, Inc.Multi-lumen central access vena cava filter apparatus and method of using same
US8784463Feb 12, 2013Jul 22, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for thermally-induced renal neuromodulation
US8805545Apr 16, 2013Aug 12, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for multi-vessel renal neuromodulation
US8818514Jul 2, 2013Aug 26, 2014Medtronic Ardian Luxembourg S.A.R.L.Methods for intravascularly-induced neuromodulation
US8845629Apr 5, 2010Sep 30, 2014Medtronic Ardian Luxembourg S.A.R.L.Ultrasound apparatuses for thermally-induced renal neuromodulation
US8852163Jun 28, 2013Oct 7, 2014Medtronic Ardian Luxembourg S.A.R.L.Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods
US8864812 *May 20, 2013Oct 21, 2014W.L. Gore & Associates, Inc.Branched stent delivery system
US8880186Apr 11, 2013Nov 4, 2014Medtronic Ardian Luxembourg S.A.R.L.Renal neuromodulation for treatment of patients with chronic heart failure
US8934978Apr 22, 2014Jan 13, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for renal neuromodulation
US8948865Nov 15, 2013Feb 3, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods for treating heart arrhythmia
US8958871Jan 14, 2011Feb 17, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8983595Nov 21, 2013Mar 17, 2015Medtronic Ardian Luxembourg S.A.R.L.Renal neuromodulation for treatment of patients with chronic heart failure
US8986294Feb 4, 2010Mar 24, 2015Medtronic Ardian Luxembourg S.a.rl.Apparatuses for thermally-induced renal neuromodulation
US9023037Apr 23, 2013May 5, 2015Medtronic Ardian Luxembourg S.A.R.L.Balloon catheter apparatus for renal neuromodulation
US9039728Jan 7, 2013May 26, 2015BiO2 Medical, Inc.IVC filter catheter with imaging modality
US9039729Jun 14, 2013May 26, 2015BiO2 Medical, Inc.IVC filter catheter with imaging modality
US9072527Jul 15, 2013Jul 7, 2015Medtronic Ardian Luxembourg S.A.R.L.Apparatuses and methods for renal neuromodulation
US9089666Jan 25, 2013Jul 28, 2015Covidien LpMethod for making a multi-lumen catheter having a separated tip section
US9101450Dec 20, 2012Aug 11, 2015BiO2 Medical, Inc.Multi-lumen central access vena cava filter apparatus and method of using same
US9108040Jun 26, 2014Aug 18, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for multi-vessel renal neuromodulation
US9125661Oct 17, 2013Sep 8, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for renal neuromodulation
US9131978Apr 23, 2014Sep 15, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods for bilateral renal neuromodulation
US9138281Sep 23, 2013Sep 22, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets
US9186198 *Sep 14, 2012Nov 17, 2015Medtronic Ardian Luxembourg S.A.R.L.Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US9186213May 15, 2014Nov 17, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods for renal neuromodulation
US9192715Mar 21, 2014Nov 24, 2015Medtronic Ardian Luxembourg S.A.R.L.Methods for renal nerve blocking
US9265558Apr 23, 2014Feb 23, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for bilateral renal neuromodulation
US9289255Mar 3, 2015Mar 22, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for renal neuromodulation
US9308043Nov 20, 2014Apr 12, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for monopolar renal neuromodulation
US9308044Nov 20, 2014Apr 12, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for therapeutic renal neuromodulation
US9314630Nov 20, 2014Apr 19, 2016Medtronic Ardian Luxembourg S.A.R.L.Renal neuromodulation for treatment of patients
US9320561Nov 20, 2014Apr 26, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for bilateral renal neuromodulation
US9326817Dec 1, 2014May 3, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for treating heart arrhythmia
US9327122Feb 2, 2015May 3, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for catheter-based renal neuromodulation
US9364280Dec 17, 2014Jun 14, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US9402992Jul 2, 2015Aug 2, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for multi-vessel renal neuromodulation
US9439726Mar 14, 2016Sep 13, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for therapeutic renal neuromodulation
US9445867Mar 21, 2016Sep 20, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for renal neuromodulation via catheters having expandable treatment members
US9456869Mar 14, 2016Oct 4, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for bilateral renal neuromodulation
US9463066Oct 8, 2015Oct 11, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for renal neuromodulation
US9468497Mar 14, 2016Oct 18, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for monopolar renal neuromodulation
US9474563Apr 16, 2014Oct 25, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods for renal neuromodulation
US9486270Aug 3, 2015Nov 8, 2016Medtronic Ardian Luxembourg S.A.R.L.Methods and apparatus for bilateral renal neuromodulation
US20080249484 *Oct 28, 2005Oct 9, 2008Invatec S.R.L.Auxiliary Probes
US20100069853 *Nov 18, 2009Mar 18, 2010Stanislaw ZukowskiBranched Stent Delivery System
US20110190778 *Jul 28, 2009Aug 4, 2011Paul ArpasiMultiple Port Introducer for Thrombolysis
US20120265020 *Jun 27, 2012Oct 18, 2012Boston Scientific Scimed, Inc.Access and drainage devices and methods of use thereof
US20130012844 *Sep 14, 2012Jan 10, 2013Ardian, Inc.Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US20130253630 *May 20, 2013Sep 26, 2013W. L. Gore & Associates, Inc.Branched stent delivery system
US20140024955 *Jul 15, 2013Jan 23, 2014Michael ZhadkevichCarotid Artery Occluding Apparatus with First and Second Occluding Balloons
US20160008588 *Sep 24, 2015Jan 14, 2016Terumo Kabushiki KaishaIntroducer sheath and method for using the same
Classifications
U.S. Classification604/96.01, 604/43
International ClassificationA61M29/00, A61M25/06, A61M25/00
Cooperative ClassificationA61M25/0032, A61M25/007, A61M25/0662
European ClassificationA61M25/06H
Legal Events
DateCodeEventDescription
Oct 20, 2005ASAssignment
Owner name: FLOWMEDICA, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODSON, HARRY B.;BALL, CRAIG A.;ELKINS, JEFFREY M.;REEL/FRAME:016667/0206;SIGNING DATES FROM 20050415 TO 20050422
Feb 25, 2009ASAssignment
Owner name: ANGIODYNAMICS, INC., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FLOWMEDICA, INC.;REEL/FRAME:022299/0922
Effective date: 20090112