US20050203285A1 - Filtration - Google Patents

Filtration Download PDF

Info

Publication number
US20050203285A1
US20050203285A1 US11/064,770 US6477005A US2005203285A1 US 20050203285 A1 US20050203285 A1 US 20050203285A1 US 6477005 A US6477005 A US 6477005A US 2005203285 A1 US2005203285 A1 US 2005203285A1
Authority
US
United States
Prior art keywords
virus
solution
protein
macromolecule
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/064,770
Inventor
Stefan Winge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Octapharma AG
Original Assignee
Octapharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26662085&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050203285(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from SE9402254A external-priority patent/SE502820C2/en
Application filed by Octapharma AG filed Critical Octapharma AG
Priority to US11/064,770 priority Critical patent/US20050203285A1/en
Publication of US20050203285A1 publication Critical patent/US20050203285A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/644Coagulation factor IXa (3.4.21.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/38Albumins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4717Plasma globulins, lactoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • C07K14/8121Serpins
    • C07K14/8128Antithrombin III
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)

Definitions

  • the present invention relates to a method of virus-filtering a solution that contains at least one macromolecule, by virtue of the total salt content of the solution lying in the range of from about 0.2 M up to saturation of the solution with the salt concerned.
  • the inventive method reduces the residence time and the extent to which the solution need to be diluted, and optimizes the yield when virus-filtering primarily proteins, polysaccharides and polypeptides.
  • the reduction in virus content is at least as good as with conventional techniques where the total salt content is low.
  • the present invention facilitates virus filtration with the aid of the so-called “dead-end” technique, which affords several process and economic advantages in comparison with the tangential virus-filtering technique normally used.
  • the yield obtained in the virus-filtering stage is increased from about 70% to above 95%, by raising the salt content of the solution in accordance with the present invention.
  • viruses are inactivated with the aid of chemical additives, primarily solvents and detergents, and/or by exposing the viruses to elevated temperatures.
  • the former method has the drawback of functioning solely on virus with lipid envelopes, for instance hepatitis virus B and HIV.
  • the latter technique mentioned above has the drawback that many proteins are thermally unstable at those temperatures required to effectively reduce the contaminating virus.
  • U.S. Pat. No. 4,473,494 (assigned to the U.S. Secretary of the Army) discloses a method for production of stroma-free, non-heme protein-free hemoglobin by use of zinc ions to promote precipitation of a zinc ion-bound insoluble hemoglobin complex, followed by membrane ultrafiltration of the zinc-hemoglobin complex from the filtrate fluid medium.
  • the total salt content is below 0.05 M, i.e. the total content of salt is conventional.
  • EP-A-0307373 (assigned to Ares-Serono) relates to removal of viruses and/or other contaminants from biological materials in fluid form by using ultrafiltration membranes having a 100,000 Da cut-off.
  • a preferred biological material is human growth hormone.
  • the total content of salt in the virus-filtering step lies in the range of from 0.01 up to 0.10 M (NH 4 CO 3 ), i.e. the total content of salt is conventional.
  • One object of the present invention is to markedly reduce the residence time when virus-filtering solutions that contain macromolecules.
  • Another object of the present invention is to markedly reduce the liquid volumes when virus-filtering solutions that contain macromolecules.
  • a further object of the present invention is to reduce the filter area required to effectively virus-filter solutions that contain macromolecules.
  • Yet another object of the present invention is to achieve a macromolecule yield in excess of about 90% in the virus-filtering stage.
  • Still another object of the present invention is to reduce the polymerization obtained on the virus filter surface, so as to enable the rate of flow to be increased and the process time to be decreased.
  • the present invention relates to a method of virus-filtering a solution containing at least one macromolecule wherein the total salt content of the solution lies within the range of from about 0.2 M up to saturation of the solution with the salt concerned.
  • virus filtration can be effected much more effectively than previously known, by increasing the salt content of the solution. This discovery is surprising, because hitherto in virus filtration of proteins it has been believed that solely the protein concentration, the rate of flow and the pH have had any influence on the process.
  • the effectiveness of the present invention is also enhanced when the difference in the size and/or the molecular weight of the contaminants and the product increases, i.e. with increasing concentrations of high molecular contaminants in the product.
  • the present invention also facilitates specific fractions to be separated from a desired product, for instance enables undesirable proteins to be separated from the protein that constitutes the product.
  • the use of a high salt content according to the present invention also enables the use of the so-called “dead-end” filtering technique.
  • This preferred embodiment has several advantages over conventional tangential filtering processes normally applied, especially with a pore size of about 5-30 nm. For instance, the equipment and operating procedures required are much simpler and therewith less expensive.
  • the use of “dead-end” filtration also reduces the loss of the macromolecule, reduces the process time, increases the permeability of the macromolecule through the filter, and also enables a generally constant concentration of the macromolecule to be achieved over the filter as well as a constant membrane pressure.
  • Another advantage with the dead-end filtering technique is the fact that scaling-up of virus filtering processes from laboratory to industrial scale is considerably facilitated.
  • the total salt content of the solution suitably lies within the range of from 0.3 up to 3.0 M, preferably within the range of from 0.4 up to 2.5 M, and more preferably within the range of from 0.6 up to 2.0 M. It is particularly preferred that the total salt content of the solution lies within the range of from 0.8 up to 1.5 M.
  • the total salt content of the solution can be adjusted by adding any acceptable salt.
  • any acceptable salt for instance, it is possible to use soluble inorganic salts, soluble organic salts or combinations of such salts. It is assumed that important process advantages are obtained when using salts which exhibit a high salting-out effect in accordance with the so-called Hofmeister series. Reference is here made to S. Glasstone, Textbook of Physical Chemistry, van Nostrand Co., Toronto, 2 nd edition, April 1946, pp. 1254-1259. The most important examples of anions which have such high salting-out effect are citrate, tartrate, sulfate, acetate and phosphate.
  • Cations that can be used advantageously when practicing the present invention are monovalent cations, such as sodium, potassium and ammonium, as well as divalent cations, such as calcium.
  • Sodium chloride, potassium chloride, sodium acetate and sodium citrate or combinations thereof are particularly preferred salts in accordance with the invention, in view of the advantages that are afforded by pharmaceutically acceptable additives. It is also conceivable to add one or more salts in sequence, when the filtration process is carried out in two or more steps.
  • a protein concentration within the range of from about 5 up to about 10 mg/ml solution is often recommended for virus filtration.
  • solutions having a higher protein concentration from about 10 up to about 20 mg/ml, could be processed advantageously through the virus filter.
  • the solution should have a temperature within the range from 0° C. up to the temperature at which the protein concerned is denatured.
  • the temperature of the solution suitably lies within the range of from 10° C. up to 50° C., preferably from 20° C. up to 35° C.
  • the solution should have a pH in the range of from about 3 up to about 9, suitably from 4 up to 8.
  • the pH of the protein solution should not lie too close to the isoelectric point of the protein concerned. For instance, in the case of gammaglobulin, a better result is obtained with a pH of 5.5 than with a pH of 6.8.
  • solution refers to a solution that contains at least 50 percent by weight of water, optionally including one or more solvents, such as methanol, ethanol, acetone or acetonitrile.
  • the present invention can be used to optimize process procedures when virus-filtering solutions that contain a large number of different types of macromolecules.
  • macromolecules examples of such molecules are proteins, polysaccharides and polypeptides or combinations thereof.
  • the origin of the macromolecules is irrelevant to the use of the present invention.
  • the macromolecules may thus derive from the plant kingdom or the animal kingdom or may be produced initially by industrial processes. However, the macromolecules are suitably of human or animal origin or engineered genetically (recombinants).
  • proteins in regard of the present invention are factor VIII, factor IX, antithrombin III, gammaglobulin, albumin, streptokinase, apolipoproteins and growth hormones.
  • a particularly preferred factor IX product is Nanotiv®, which is supplied by Pharmacia AB, Sweden.
  • the advantage with this product is that its specific activity prior to filtration is sufficiently high to enable the use of a filter of very fine structure. This enables the virus concentration to be lowered to an extremely low level, at the same time as the filtering process itself is very rapid and produces a high yield.
  • factor VIII are deletion derivatives of recombinant produced factor VIII products.
  • a particularly preferred factor VIII product is r-VIII SQ supplied by Pharmacia AB, Sweden.
  • One advantage with this product is that the recombinant produced product molecule lacks the inactive intermediate part of the natural factor VIII molecule. This gives the molecule a mean molecular weight of about 170,000.
  • a molecule of this size is particularly suited for filtration with such filters as those which enable a considerable virus reduction to be achieved.
  • Preferred apolipoproteins include apolipoprotein AI (Apo AI), apolipoprotein AII (Apo AII), apolipoprotein AIV (Apo AIV), apolipoprotein E (Apo E) and variants or mixtures thereof.
  • Variants include preforms, fragments and truncated, extended or mutated forms of Apo AI, Apo II, Apo IV and Apo E. Mutated forms in which at least one arginine group has been replaced with a cystein group are particularly preferred.
  • Apo A-IMilano is Apo A-IMilano (Apo A-IM), also produced with recombinant DNA technique by Pharmacia AB, Sweden.
  • glycosaminoglycans and bacteria polysaccharides.
  • glycosaminoglycans are heparins, heparin fragments, heparin derivatives, heparan sulfate and hyaluronic acid.
  • a particularly preferred group of glycosaminoglycans is comprised of low molecular weight heparins having a mean molecular weight of up to about 10,000, preferably from 2,000 up to 8,000.
  • bioactive polypeptides such as recombinant human growth hormones produced in mammalian cells.
  • the present invention can thus be used to optimize the process of virus-filtering solutions that contain, e.g., proteins, polysaccharides and polypeptides.
  • virus-filtering solutions that contain, e.g., proteins, polysaccharides and polypeptides.
  • the invention is described in the following with reference to solutions that contain proteins, more specifically proteins that occur naturally in the human organism.
  • viruses that may be present in protein solutions will normally be much larger than the proteins themselves. It is thus presumable that viruses can be removed from proteins in accordance with size, for instance by filtration.
  • Viruses that can be removed efficiently with the present invention can have a size smaller than about 350 nm.
  • the size of the viruses that can be removed suitably is smaller than 200 nm, preferably smaller than 150 nm.
  • the viruses that can be removed are larger than about 20 nm, i.e. the approximate size of the parvo virus.
  • the present invention is primarily intended for removing viruses from macromolecules, where the macromolecules are the product of interest. It is, however, within the scope of the invention, to use the present method for separating viruses from macromolecules, where the viruses are the product of interest.
  • An example is the purification of parvovirus for use as a testing agent, and poliovirus for use a vaccine, wherein e.g. proteins and polysaccharides can be removed by the present method.
  • Virus filtration is normally carried out in a tangential filtering process or in a so-called “dead-end” filtering process.
  • tangential virus filtration the protein solution is pumped around at a constant rate of flow on the retention side, while another pump draws the protein solution through the filter by suction.
  • a buffer is added on the retention side. This procedure is repeated a number of times, as necessary, with the major part of the remaining protein passing through the filter while retaining the virus on the retention side. Such a process is called diafiltration.
  • the filter is normally discarded after each run, to avoid transferring the virus.
  • “dead-end” virus filtration the same virus filter as that used in tangential virus filtration can be used, although the peripheral equipment and operating procedures are much simpler and less expensive than in the case of tangential virus filtration.
  • “dead-end” filtration involves placing the macromolecule-containing solution in a pressure vessel prior to filtration and pressing the solution through the virus filter with the aid of a pressure source, suitably nitrogen (gas).
  • the degree of fineness of filters generally, is normally given as pore size or the approximate molecular weight (relative molecular mass) at which the molecules are stopped by the filter, the so called cut-off.
  • the virus filters can have a cut-off of about 1,000,000, suitably 500,000.
  • the virus filters should have a cut-off of 200,000, preferably 100,000.
  • the virus filter should have a cut-off slightly higher than the macromolecule which is virus-filtered.
  • Virus filters are known in the art and are supplied by Millipore from Massachusetts, USA and Asahi Chemical Industry Co., Ltd. from Japan, among others. Millipore supplies filters having two different types of membrane, depending on the size of the protein concerned. For instance, Millipore supplies, among others, ViresolveTM/70 for proteins having a molecular weight, or relative molecular mass, of up to about 70,000, and ViresolveTM/180 for proteins having a molecular weight of up to about 180,000. This latter filter can be used for monoclonal antibodies, for instance. Asahi Chemical Industry supplies, among other things, PlanovaTM 35 and PlanovaTM 15 filters, this latter filter being used to remove smaller viruses, such as the polio virus.
  • the choice of filter will depend on the size of the protein concerned, among other things.
  • Factor IX, antithrombin III, human serum albumin (HSA) and Apo A-IM (the dimer) all have a molecular weight of roughly 60,000-70,000, wherein ViresolveTM/70, for instance, is a suitable alternative.
  • Gammaglobulin has a molecular weight of about 180,000, wherein ViresolveTM/180, for instance, is a suitable alternative.
  • the latter filter is also suitable for use with the recombinant produced factor VIII product, r-VIII SQ, which has a molecular weight of about 170,000, as mentioned before.
  • a fine structure filter also assumes that the protein solution has a high degree of purity prior to filtration.
  • the use of a fine structure filter is a prerequisite for the ability to produce protein solutions which have a very low virus content in the end product.
  • a filter of very fine structure for instance ViresolveTM/70.
  • the virus concentration cannot be lowered to quite such a low level when using ViresolveTM/180.
  • the effectiveness, or efficiency, of the filtering stage is influenced by the purity of the protein solution delivered to the filter.
  • a high specific activity prior to filtration results in a higher yield in the filtering stage.
  • the protein yield in the filtering stage can be increased from about 70% to above 95%.
  • the present invention it is possible to reduce the content of very small non-enveloped viruses, such as the parvovirus, by at least 3 logs, suitably at least 4 logs, and preferably at least 5 logs.
  • the reduction is very good with the tangential technique, but even better with the “dead-end” technique, when applied according to the present invention.
  • virus filtration is preferably carried out at the end of a protein manufacturing sequence, since a high specific activity prior to filtration will result in a higher protein yield in the filtering stage.
  • the present invention is preferably applied as a last purification stage, optionally followed by a stage for adjusting, for instance, protein concentration, salt content or the pH of the end product.
  • a following diafiltration stage using a UF-membrane may also be applied to remove salts which although advantageous from a process or economic aspect during virus filtration should not be included in the end product.
  • Protein solutions which are ready for administration will normally contain a physiological solution, for instance 0.15 M sodium chloride at a pH of 7, in combination with one or more stabilizers, such as saccharose or amino acids.
  • the virus filtration process may also be carried out in two or more steps, with or without intermediate process steps.
  • the present invention effectively reduces the content of virus with lipid envelopes and viruses without lipid envelopes.
  • viruses without a lipid envelope are the hepatitis virus A, polio virus and parvo virus, which, are relatively small viruses.
  • viruses with a lipid envelope are the hepatitis virus B, the hepatitis virus C and the Human Immunodeficiency Virus (HIV).
  • HIV Human Immunodeficiency Virus
  • factor IX as the macromolecule, to illustrate the effect of two salt contents on the protein sieving characteristic, the diafiltration volume and the yield.
  • the solution was ultra-filtered between each stage, except between the chemical virus inactivating stage and the affinity chromatographic stage.
  • Transmembrane pressure 0.2-0.3 bar. TABLE 1 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 35.0 2 6.9 39.6 3 10.7 45.8 4 14.1 56.2 5 17.6 55.6 6 20.8 58.3 7 24.3 61.7
  • Diafiltration with a dilution of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of about 90%.
  • the virus removing effect achieved with the experiments disclosed in Examples 1 and 2 was determined by a virus study.
  • the study was carried out on parvovirus, which are non-lipid-enveloped viruses and which have a size of 20-25 nm. In principle, experiments with such viruses fall into the “worst case” category since they are some of the smallest viruses known.
  • the parvovirus was added to the solutions containing factor IX, with a salt content of 0.144 M NaCl+0.0055 M sodium citrate (experiment 1) and 1.0 M NaCl+0.01 M sodium citrate (experiment 2) respectively.
  • the solutions were then virus-filtered in accordance with Examples 1 and 2.
  • the solutions were analyzed with respect to the parvovirus both before and after virus filtration.
  • Experiment Virus reduction 1 1 ⁇ 10 3.7 2 1 ⁇ 10 4.0
  • Diafiltration with dilution of about 3 volume units per volume unit of entering protein solution (1+3) resulted in a yield of about 65%.
  • the buffer comprised 0.5 M NaCl + 0.01 M sodium citrate.
  • Total salt content about 0.5 M.
  • the buffer comprised 1.0 M NaCl + 0.01 M sodium citrate. Total salt content: about 1.0 M.
  • the buffer comprised 1.5 M NaCl + 0.01 M sodium citrate. Total salt content: about 1.5 M.
  • the buffer comprised 0.5 M NaCl.
  • Total salt content 0.5 M.
  • the buffer comprised 0.5 M barium chloride.
  • Total salt content 0.5 M.
  • gammaglobulin as the macromolecule to show the effect of salt contention protein sieving coefficient, diafiltration volume and yield.
  • the solution containing gammaglobulin was a commercial product obtained from blood plasma, Gammonativ®, supplied by Pharmacia AB, Sweden. Prior to filtration, the gammaglobulin solution had been purified by an intitial Cohn fractionation followed by a chromatographic stage.
  • the experimental conditions applied were the same as those applied in Example 1, with the exception that the virus-removing filter was a ViresolveTM/180 filter, the pH of the solution was 6.8 and the protein concentration was 2.5-5.0 A 280 units.
  • the buffer comprised 2.2% albumin+0.15 M NaCl+0.02 M NaAc+0.075 M glycine. Total salt content: 0.17 M. TABLE 12 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 32 2 6.9 35 3 10.7 41 4 14.1 51 5 17.6 59 6 20.8 63 7 24.3 69
  • Example 13 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 38 2 6.9 57 3 10.7 64 4 14.1 71 5 17.6 75 6 20.8 80 7 24.3 81
  • Diafiltration with a dilution degree of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of 90%.
  • Example 15 The same conditions were applied as those applied in Example 10, with the exception that in this case the buffer comprised 2.2% albumin+1.0 M NaCl+0.02 M NaAc+0.075 M glycine. Total salt content: about 1.0 M. TABLE 15 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 57 2 6.9 67 3 14.1 78 4 20.8 88 5 28.1 90
  • albumin as the macromolecule to show the effect of salt content on protein sieving coefficient, diafiltration volume and yield.
  • the 4% solution containing Human Serum Albumin (HSA) obtained from blood plasma was supplied by Pharmacia AB, Sweden. Prior to filtration, the albumin-containing solution had been purified by combined Cohn fractionation and a chromatographic stage.
  • HSA Human Serum Albumin
  • the experimental conditions applied were the same as those applied in Example 1, with the exception that the protein concentration was about 10 A 280 units.
  • the buffer comprised 0.15 M NaCl+0.02 M NaAc, resulting in a total salt content of 0.17 M.
  • TABLE 16 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 34 2 6.9 39 3 14.1 50 4 20.8 51 5 24.3 50
  • Example 17 Determining the protein sieving coefficient. Experiment Filtrate flowrate, ml/min P/R, % 1 3.5 39 2 6.9 57 3 14.1 62 4 20.8 64 5 24.3 60
  • Diafiltration with a dilution degree of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of 85%.
  • Virus filtration technique Tangential “Dead-end” Amount of protein solution 294 1124 prior to virus filtration (g): Protein conc. (A 280 units): 0.66 1.0 Retention flowrate (l/h): 40 0 Filtrate flowrate buffer 24 28 (ml/min):
  • Virus filtration technique Tangential “Dead-end” Amount of protein solution 459 1146 after virus filtration (g): Dilution: 1 + 0.56 1 + 0.02 Yield (%): 89 94 Protein sieving coefficient 17-64 92-98 (P/R in %): Actual filtrate flowrate 15-24 7-25 (ml/min): Process time (kIU factor IX/h): 31 105 Protein load 413 2360 (A 280 units/ft 2 ):
  • Virus filtration of factor IX using the “dead-end” technique means less dilution, shorter process times and results in a higher yield and protein permeability.
  • Virus filtration technique Tangential “Dead-end” Amount of protein solution 1692 989 after virus filtration (g): Dilution: 1 + 0.75 1 + 0.02 Yield (%): 97 97 Protein sieving coefficient 73-86 95-98 (P/R in %): Actual filtrate flowrate 15-24 8-14 (ml/min): Process time (kIU AT III/h): 37 53 Protein load 18477 18481 (A 280 units/ft 2 ): Filtration efficiency 9 12 (1/m 2 filter * h):
  • Virus filtration of AT III when applying the “dead-end” technique means less dilution, affords higher protein permeability and shorter process times.
  • HSA Human Serum Albumin
  • the HSA solution used was similar to the solution used in Example 12.
  • the conditions applied were the same as those applied in Example 1, with the exception of the following differences: Virus filtration technique Tangential “Dead-end” Amount of protein solution 200 6460 prior to virus filtration (g): Protein conc. (A 280 units): 10 9.2 Retention flowrate (l/h): 40 0 Filtrate flowrate buffer 24 28 (ml/min):
  • Virus filtration of HSA when applying the “dead-end” technique means less dilution, and results in a higher yield and higher protein permeability and shorter process times.
  • gammaglobulin as the macromolecule in a solution of high salt content, to show the effect of this type of virus-filtering technique on dilution, yield, protein sieving coefficient and process time with remaining experimental conditions being essentially constant.
  • the gammaglobulin solution used was similar to the solution used in Example 8.
  • the conditions applied were the same as those applied in Example 1, with the exception of the following differences: Virus filtration technique Tangential “Dead-end” Amount of protein solution 301 400 prior to virus filtration (g): Protein conc. (A 280 units): 5.1 4.9 Retention flowrate (l/h): 40 0 Filtrate flowrate buffer 24 28 (ml/min): Transmembrane pressure (bar): 0.2 0.1
  • Virus-filtration of gammaglobulin with the “dead-end” technique involves less dilution, and results in a higher yield and protein permeability and shorter process times.
  • Transmembrane pressure 0.3 bar. TABLE 28 Determining dilution, yield, protein sieving coefficient and process time when using a filter area of 10 ft 2 and dead-end filtering technique according to the invention.
  • virus filtering antithrombin according to the invention can be applied on an industrial scale with excellent results.
  • Example 15 The virus-removing effect achieved with the experiments disclosed in Example 15 was determined by a virus study, but at a higher salt content.
  • the virus-filtering technique was the “dead-end” technique.
  • the study was carried out on parvovirus, as in Example 3.
  • the parvovirus was added to the solutions containing factor IX 1.0 M NaCl+0.01 M sodium citrate (experiment 1).
  • the solutions were analyzed with respect to the parvovirus both before and after virus filtration.

Abstract

Filtration methods comprise virus-filtering a solution containing a least one macromolecule. The total salt content of the solution for virus-filtering is within the range of from about 0.2 M up to saturation with the salt. Salts that can be used in the filtering methods include sodium chloride, potassium chloride, sodium acetate, sodium citrate, sodium phosphate, potassium dyhydrophosphate and combinations thereof.

Description

    TECHNICAL FIELD
  • The present invention relates to a method of virus-filtering a solution that contains at least one macromolecule, by virtue of the total salt content of the solution lying in the range of from about 0.2 M up to saturation of the solution with the salt concerned. The inventive method reduces the residence time and the extent to which the solution need to be diluted, and optimizes the yield when virus-filtering primarily proteins, polysaccharides and polypeptides. The reduction in virus content is at least as good as with conventional techniques where the total salt content is low. The present invention facilitates virus filtration with the aid of the so-called “dead-end” technique, which affords several process and economic advantages in comparison with the tangential virus-filtering technique normally used. When virus-filtering the plasma protein factor IX, the yield obtained in the virus-filtering stage is increased from about 70% to above 95%, by raising the salt content of the solution in accordance with the present invention.
  • BACKGROUND OF THE INVENTION
  • The problem of virus contamination of various protein preparations intended for the medication of human beings has received greater notice in recent years. For instance, occasional reports have been submitted concerning, e.g., blood proteins that have been contaminated with hepatitis virus A, hepatitis virus B, hepatitis virus C and/or Human Immunodeficiency Virus (HIV). In keeping with these reports, the authorities of several countries have sharpened their requirements with regard to cleansing protein preparations of their possible virus contaminants.
  • In present-day, conventional techniques, viruses are inactivated with the aid of chemical additives, primarily solvents and detergents, and/or by exposing the viruses to elevated temperatures. The former method has the drawback of functioning solely on virus with lipid envelopes, for instance hepatitis virus B and HIV. The latter technique mentioned above has the drawback that many proteins are thermally unstable at those temperatures required to effectively reduce the contaminating virus.
  • U.S. Pat. No. 4,473,494 (assigned to the U.S. Secretary of the Army) discloses a method for production of stroma-free, non-heme protein-free hemoglobin by use of zinc ions to promote precipitation of a zinc ion-bound insoluble hemoglobin complex, followed by membrane ultrafiltration of the zinc-hemoglobin complex from the filtrate fluid medium. In the only step where viruses are said to be removed from hemoglobin, the total salt content is below 0.05 M, i.e. the total content of salt is conventional.
  • EP-A-0307373 (assigned to Ares-Serono) relates to removal of viruses and/or other contaminants from biological materials in fluid form by using ultrafiltration membranes having a 100,000 Da cut-off. A preferred biological material is human growth hormone. In the examples of EP-A-0307373, the total content of salt in the virus-filtering step lies in the range of from 0.01 up to 0.10 M (NH4CO3), i.e. the total content of salt is conventional.
  • There is thus a need for an effective virus-reducing method which can be applied to different types of macromolecules, primarily proteins, and on different types of viruses.
  • DESCRIPTION OF THE INVENTION
  • One object of the present invention is to markedly reduce the residence time when virus-filtering solutions that contain macromolecules.
  • Another object of the present invention is to markedly reduce the liquid volumes when virus-filtering solutions that contain macromolecules.
  • A further object of the present invention is to reduce the filter area required to effectively virus-filter solutions that contain macromolecules.
  • Yet another object of the present invention is to achieve a macromolecule yield in excess of about 90% in the virus-filtering stage.
  • Still another object of the present invention is to reduce the polymerization obtained on the virus filter surface, so as to enable the rate of flow to be increased and the process time to be decreased.
  • These and other objects are fulfilled by the present invention, which relates to a method of virus-filtering a solution containing at least one macromolecule wherein the total salt content of the solution lies within the range of from about 0.2 M up to saturation of the solution with the salt concerned.
  • The inventor of this invention has thus found that virus filtration can be effected much more effectively than previously known, by increasing the salt content of the solution. This discovery is surprising, because hitherto in virus filtration of proteins it has been believed that solely the protein concentration, the rate of flow and the pH have had any influence on the process.
  • It is believed that the enhanced filtering effect achieved at higher salt concentrations is because the protein contracts and can therewith pass more easily through the filter pores. It is also conceivable, that the interaction is reduced between macromolecules themselves and/or between the macromolecules and the material of the filter membrane. It is also conceivable that proteins having a large number of hydrophobic groups are influenced to a greater extent by an elevated salt concentration.
  • The closer the molecular weight, or relative molecular mass, of the macromolecule lies to the pore size of the filter membrane, the more effective the present invention. The effectiveness of the present invention is also enhanced when the difference in the size and/or the molecular weight of the contaminants and the product increases, i.e. with increasing concentrations of high molecular contaminants in the product.
  • The present invention also facilitates specific fractions to be separated from a desired product, for instance enables undesirable proteins to be separated from the protein that constitutes the product.
  • The use of a high salt content according to the present invention, also enables the use of the so-called “dead-end” filtering technique. This preferred embodiment, has several advantages over conventional tangential filtering processes normally applied, especially with a pore size of about 5-30 nm. For instance, the equipment and operating procedures required are much simpler and therewith less expensive. The use of “dead-end” filtration also reduces the loss of the macromolecule, reduces the process time, increases the permeability of the macromolecule through the filter, and also enables a generally constant concentration of the macromolecule to be achieved over the filter as well as a constant membrane pressure. Another advantage with the dead-end filtering technique, is the fact that scaling-up of virus filtering processes from laboratory to industrial scale is considerably facilitated.
  • When practicing the present invention, the total salt content of the solution suitably lies within the range of from 0.3 up to 3.0 M, preferably within the range of from 0.4 up to 2.5 M, and more preferably within the range of from 0.6 up to 2.0 M. It is particularly preferred that the total salt content of the solution lies within the range of from 0.8 up to 1.5 M.
  • When necessary, the total salt content of the solution can be adjusted by adding any acceptable salt. For instance, it is possible to use soluble inorganic salts, soluble organic salts or combinations of such salts. It is assumed that important process advantages are obtained when using salts which exhibit a high salting-out effect in accordance with the so-called Hofmeister series. Reference is here made to S. Glasstone, Textbook of Physical Chemistry, van Nostrand Co., Toronto, 2nd edition, April 1946, pp. 1254-1259. The most important examples of anions which have such high salting-out effect are citrate, tartrate, sulfate, acetate and phosphate. Cations that can be used advantageously when practicing the present invention are monovalent cations, such as sodium, potassium and ammonium, as well as divalent cations, such as calcium. Sodium chloride, potassium chloride, sodium acetate and sodium citrate or combinations thereof are particularly preferred salts in accordance with the invention, in view of the advantages that are afforded by pharmaceutically acceptable additives. It is also conceivable to add one or more salts in sequence, when the filtration process is carried out in two or more steps.
  • A protein concentration within the range of from about 5 up to about 10 mg/ml solution is often recommended for virus filtration. When applying the present invention, it was surprisingly found that solutions having a higher protein concentration, from about 10 up to about 20 mg/ml, could be processed advantageously through the virus filter.
  • The solution should have a temperature within the range from 0° C. up to the temperature at which the protein concerned is denatured. The temperature of the solution suitably lies within the range of from 10° C. up to 50° C., preferably from 20° C. up to 35° C.
  • When practicing the present invention, the solution should have a pH in the range of from about 3 up to about 9, suitably from 4 up to 8. The pH of the protein solution should not lie too close to the isoelectric point of the protein concerned. For instance, in the case of gammaglobulin, a better result is obtained with a pH of 5.5 than with a pH of 6.8.
  • In the present invention, solution refers to a solution that contains at least 50 percent by weight of water, optionally including one or more solvents, such as methanol, ethanol, acetone or acetonitrile.
  • The present invention can be used to optimize process procedures when virus-filtering solutions that contain a large number of different types of macromolecules. Examples of such molecules are proteins, polysaccharides and polypeptides or combinations thereof. The origin of the macromolecules is irrelevant to the use of the present invention. The macromolecules may thus derive from the plant kingdom or the animal kingdom or may be produced initially by industrial processes. However, the macromolecules are suitably of human or animal origin or engineered genetically (recombinants).
  • Particularly appropriate proteins in regard of the present invention are factor VIII, factor IX, antithrombin III, gammaglobulin, albumin, streptokinase, apolipoproteins and growth hormones.
  • A particularly preferred factor IX product is Nanotiv®, which is supplied by Pharmacia AB, Stockholm, Sweden. The advantage with this product is that its specific activity prior to filtration is sufficiently high to enable the use of a filter of very fine structure. This enables the virus concentration to be lowered to an extremely low level, at the same time as the filtering process itself is very rapid and produces a high yield.
  • Preferred types of factor VIII are deletion derivatives of recombinant produced factor VIII products. A particularly preferred factor VIII product is r-VIII SQ supplied by Pharmacia AB, Stockholm, Sweden. One advantage with this product is that the recombinant produced product molecule lacks the inactive intermediate part of the natural factor VIII molecule. This gives the molecule a mean molecular weight of about 170,000. A molecule of this size is particularly suited for filtration with such filters as those which enable a considerable virus reduction to be achieved.
  • Preferred apolipoproteins include apolipoprotein AI (Apo AI), apolipoprotein AII (Apo AII), apolipoprotein AIV (Apo AIV), apolipoprotein E (Apo E) and variants or mixtures thereof. Variants include preforms, fragments and truncated, extended or mutated forms of Apo AI, Apo II, Apo IV and Apo E. Mutated forms in which at least one arginine group has been replaced with a cystein group are particularly preferred. One such mutated form is Apo A-IMilano (Apo A-IM), also produced with recombinant DNA technique by Pharmacia AB, Stockholm, Sweden.
  • Polysaccharides which are particularly preferred in accordance with the present invention are glycosaminoglycans and bacteria polysaccharides. Examples of glycosaminoglycans are heparins, heparin fragments, heparin derivatives, heparan sulfate and hyaluronic acid. A particularly preferred group of glycosaminoglycans is comprised of low molecular weight heparins having a mean molecular weight of up to about 10,000, preferably from 2,000 up to 8,000.
  • According to the present invention, particularly suitable polypeptides are bioactive polypeptides, such as recombinant human growth hormones produced in mammalian cells.
  • The present invention can thus be used to optimize the process of virus-filtering solutions that contain, e.g., proteins, polysaccharides and polypeptides. However, the invention is described in the following with reference to solutions that contain proteins, more specifically proteins that occur naturally in the human organism.
  • Those viruses that may be present in protein solutions will normally be much larger than the proteins themselves. It is thus presumable that viruses can be removed from proteins in accordance with size, for instance by filtration.
  • Viruses that can be removed efficiently with the present invention, can have a size smaller than about 350 nm. The size of the viruses that can be removed, suitably is smaller than 200 nm, preferably smaller than 150 nm. Normally, the viruses that can be removed are larger than about 20 nm, i.e. the approximate size of the parvo virus.
  • The present invention is primarily intended for removing viruses from macromolecules, where the macromolecules are the product of interest. It is, however, within the scope of the invention, to use the present method for separating viruses from macromolecules, where the viruses are the product of interest. An example, is the purification of parvovirus for use as a testing agent, and poliovirus for use a vaccine, wherein e.g. proteins and polysaccharides can be removed by the present method.
  • Virus filtration is normally carried out in a tangential filtering process or in a so-called “dead-end” filtering process. In tangential virus filtration, the protein solution is pumped around at a constant rate of flow on the retention side, while another pump draws the protein solution through the filter by suction. When a given volume has been obtained on the retention side, a buffer is added on the retention side. This procedure is repeated a number of times, as necessary, with the major part of the remaining protein passing through the filter while retaining the virus on the retention side. Such a process is called diafiltration. The filter is normally discarded after each run, to avoid transferring the virus.
  • In the case of so-called “dead-end” virus filtration, the same virus filter as that used in tangential virus filtration can be used, although the peripheral equipment and operating procedures are much simpler and less expensive than in the case of tangential virus filtration. Thus, in principle, “dead-end” filtration involves placing the macromolecule-containing solution in a pressure vessel prior to filtration and pressing the solution through the virus filter with the aid of a pressure source, suitably nitrogen (gas).
  • The degree of fineness of filters generally, is normally given as pore size or the approximate molecular weight (relative molecular mass) at which the molecules are stopped by the filter, the so called cut-off. In the present invention, the virus filters can have a cut-off of about 1,000,000, suitably 500,000. To remove small viruses, the virus filters should have a cut-off of 200,000, preferably 100,000. To reach a maximum virus-reduction, the virus filter should have a cut-off slightly higher than the macromolecule which is virus-filtered.
  • Virus filters are known in the art and are supplied by Millipore from Massachusetts, USA and Asahi Chemical Industry Co., Ltd. from Japan, among others. Millipore supplies filters having two different types of membrane, depending on the size of the protein concerned. For instance, Millipore supplies, among others, Viresolve™/70 for proteins having a molecular weight, or relative molecular mass, of up to about 70,000, and Viresolve™/180 for proteins having a molecular weight of up to about 180,000. This latter filter can be used for monoclonal antibodies, for instance. Asahi Chemical Industry supplies, among other things, Planova™ 35 and Planova™ 15 filters, this latter filter being used to remove smaller viruses, such as the polio virus.
  • As mentioned before, the choice of filter will depend on the size of the protein concerned, among other things. Factor IX, antithrombin III, human serum albumin (HSA) and Apo A-IM (the dimer) all have a molecular weight of roughly 60,000-70,000, wherein Viresolve™/70, for instance, is a suitable alternative. Gammaglobulin has a molecular weight of about 180,000, wherein Viresolve™/180, for instance, is a suitable alternative. The latter filter is also suitable for use with the recombinant produced factor VIII product, r-VIII SQ, which has a molecular weight of about 170,000, as mentioned before.
  • The possibility of choosing a fine structure filter also assumes that the protein solution has a high degree of purity prior to filtration. In turn, the use of a fine structure filter is a prerequisite for the ability to produce protein solutions which have a very low virus content in the end product. Thus, in order to be able to reduce the virus concentration to a very low level, there is required a filter of very fine structure, for instance Viresolve™/70. The virus concentration cannot be lowered to quite such a low level when using Viresolve™/180.
  • The effectiveness, or efficiency, of the filtering stage is influenced by the purity of the protein solution delivered to the filter. In this regard, a high specific activity prior to filtration results in a higher yield in the filtering stage. For instance, in the case of preferred embodiments applied when filtering solutions that contain factor IX, it has been found that the protein yield in the filtering stage can be increased from about 70% to above 95%. However, when practicing the present invention, it is possible to achieve protein yields of above 90%, even when working with solutions of low specific activity.
  • With the present invention, it is possible to reduce the content of very small non-enveloped viruses, such as the parvovirus, by at least 3 logs, suitably at least 4 logs, and preferably at least 5 logs. The reduction is very good with the tangential technique, but even better with the “dead-end” technique, when applied according to the present invention.
  • According to the invention, virus filtration is preferably carried out at the end of a protein manufacturing sequence, since a high specific activity prior to filtration will result in a higher protein yield in the filtering stage. The present invention is preferably applied as a last purification stage, optionally followed by a stage for adjusting, for instance, protein concentration, salt content or the pH of the end product. A following diafiltration stage using a UF-membrane may also be applied to remove salts which although advantageous from a process or economic aspect during virus filtration should not be included in the end product. Protein solutions which are ready for administration will normally contain a physiological solution, for instance 0.15 M sodium chloride at a pH of 7, in combination with one or more stabilizers, such as saccharose or amino acids. The virus filtration process may also be carried out in two or more steps, with or without intermediate process steps.
  • The present invention effectively reduces the content of virus with lipid envelopes and viruses without lipid envelopes. Examples of viruses without a lipid envelope are the hepatitis virus A, polio virus and parvo virus, which, are relatively small viruses. Examples of viruses with a lipid envelope are the hepatitis virus B, the hepatitis virus C and the Human Immunodeficiency Virus (HIV).
  • The invention will now be illustrated in more detail with the aid of exemplifying, non-limiting examples.
  • Experimental Section
  • Experiments were carried out in which the sieving coefficient of proteins, or protein permeability factor, was first determined at different filtrate flowrates. The sieving coefficient, or protein permeability factor, is given as P/R, where P is the concentration of protein on the permeate side (the filtrate side) measured by absorption at 280 nm (A280) and R is the concentration of protein on the retention side (R) measured by absorption at 280 nm (A280). The filtrate flowrate which gave the highest sieving coefficient in the absence of polymerization on the filter was then chosen. A yield optimization was also made with some macromolecules.
  • EXAMPLE 1
  • Experiments were carried out with factor IX as the macromolecule, to illustrate the effect of two salt contents on the protein sieving characteristic, the diafiltration volume and the yield. A commercial solution containing factor IX, Nanotiv®, was supplied by Pharmacia AB, Stockholm, Sweden. The solution containing factor IX was obtained from human blood plasma and prior to filtration had been treated in a sequence involving anion exchange, chemical virus inactivation, affinity chromatography and cation exchange. The solution was ultra-filtered between each stage, except between the chemical virus inactivating stage and the affinity chromatographic stage.
  • Experimental Conditions:
    • Degree of purity of the entering protein solution: high.
    • Buffer: 0.144 M NaCl+0.0055 M sodium citrate.
    • Total salt content: about 0.15 M.
    • Protein concentration: 0.5-1.0 A280 units.
    • Protein solution pH: 7.
    • Experimental temperature: room temperature (about 23° C.).
    • Virus separating filters: Viresolve™/70.
    • Filtering technique: tangential.
    • Filter area: ⅓ ft2
    • Retention flowrate: 41 l/h.
    • Pump: Watson-Marlow 504.
  • Transmembrane pressure: 0.2-0.3 bar.
    TABLE 1
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 35.0
    2 6.9 39.6
    3 10.7 45.8
    4 14.1 56.2
    5 17.6 55.6
    6 20.8 58.3
    7 24.3 61.7
  • An optimal filtrate flowrate of 20.8 ml/min was obtained by determining the protein sieving coefficient.
    TABLE 2
    Yield optimization. Filtrate flowrate: 20.8 ml/min. High degree of protein
    solution purity. Buffer: 0.144 M NaCl + 0.0055 M sodium citrate.
    Total salt content: about 0.15 M.
    Experiment Filtration time P/R, %
    1  3 min 10 s 55.1
    2  6 min 25 s 52.1
    3 10 min 40 s 44.5
    4 13 min 20 s 34.0
  • Diafiltration with a dilution of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of about 90%.
  • EXAMPLE 2
  • The same conditions were applied as those applied in Example 1, with the exception that in this case the buffer comprised 1.0 M NaCl+0.01 M sodium citrate, which gave a total salt content of about 1.0 M.
    TABLE 3
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 55.2
    2 6.9 55.7
    3 10.7 61.4
    4 14.1 68.4
    5 17.6 74.2
    6 20.8 77.0
    7 24.3 80.5
  • This determination of the protein sieving coefficient gave an optimal filtrate flowrate of 24.3 ml/min.
    TABLE 4
    Yield optimization. Filtrate flowrate: 24.3 ml/min.
    Experiment Filtration tim P/R, %
    1 2 min 30 s 72
    2 68
    3 7 min 14 s 65
    4 9 min 38 s 55
  • Diafiltration with a dilution of about 0.3 volume units per volume unit of entering solution (1+0.3) resulted in a yield of >95%.
  • EXAMPLE 3
  • The virus removing effect achieved with the experiments disclosed in Examples 1 and 2 was determined by a virus study. The study was carried out on parvovirus, which are non-lipid-enveloped viruses and which have a size of 20-25 nm. In principle, experiments with such viruses fall into the “worst case” category since they are some of the smallest viruses known.
  • The parvovirus was added to the solutions containing factor IX, with a salt content of 0.144 M NaCl+0.0055 M sodium citrate (experiment 1) and 1.0 M NaCl+0.01 M sodium citrate (experiment 2) respectively. The solutions were then virus-filtered in accordance with Examples 1 and 2. The solutions were analyzed with respect to the parvovirus both before and after virus filtration.
    Experiment Virus reduction
    1 1 × 103.7
    2 1 × 104.0
  • The results show that virus filtration in accordance with Examples 1 and 2 fulfil the requirements placed by the authorities on the virus reduction in one process step. Furthermore, the use of a high salt content in accordance with the invention is at least equally as effective in removing virus as previously known techniques.
  • EXAMPLE 4
  • The same conditions were applied as those applied in Example 1, with the exception that the entering protein solution was not as pure.
  • Diafiltration with dilution of about 3 volume units per volume unit of entering protein solution (1+3) resulted in a yield of about 65%.
  • EXAMPLE 5
  • The same conditions were applied as those applied in Example 2, with the exception that the entering protein solution was not as pure.
  • Diafiltration with dilution of about 3 volume units per volume unit of entering protein solution (1+3) resulted in a yield of 89%. The yield of factor IX:C was 87%.
  • EXAMPLE 6
  • Experiments were carried out with factor IX as the macromolecule, to show the effect of four salt contents on the protein sieving coefficient, the diafiltration volume and the yield, with other experiment conditions being constant. The Nanotiv® solution used was similar to that used in Example 1. The experimental conditions applied were the same as those applied in Example 1.
    TABLE 5
    Determining the protein sieving coefficient. The buffer comprised 0.144 M
    NaCl + 0.0055 M sodium citrate. Total salt content: about 0.15 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 25
    2 6.9 28
    3 14.1 43
    4 20.8 49
    5 24.3 50
  • TABLE 6
    Determining the protein sieving coefficient. The buffer comprised 0.5 M
    NaCl + 0.01 M sodium citrate. Total salt content: about 0.5 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 36
    2 6.9 44
    3 14.1 61
    4 20.8 67
    5 24.3 69
  • TABLE 7
    Determining the protein sieving coefficient. The buffer comprised 1.0 M
    NaCl + 0.01 M sodium citrate. Total salt content: about 1.0 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 49
    2 6.9 60
    3 14.1 72
    4 20.8 74
    5 24.3 76
  • TABLE 8
    Determining the protein sieving coefficient. The buffer comprised 1.5 M
    NaCl + 0.01 M sodium citrate. Total salt content: about 1.5 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 48
    2 6.9 56
    3 14.1 73
    4 20.8 76
    5 24.3 74
  • It is evident from Tables 5 to 8 that the present invention provides a marked improvement in the process conditions when virus-filtering factor IX solutions in comparison with previously known techniques where low salt contents have been used.
  • EXAMPLE 7
  • Experiments were carried out with factor IX as the macromolecule to show the effect of three different salts on the protein sieving coefficient, the diafiltration volume and the yield, with other experiment conditions being constant. The Nanotiv® solution used was similar to that used in Example 1. The conditions applied were the same as those applied in Example 1.
    TABLE 9
    Determining the protein sieving coefficient. The buffer comprised 0.5 M
    potassium dihydrophosphate. Total salt content: 0.5 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 34
    2 6.9 48
    3 14.1 57
    4 20.8 55
  • TABLE 10
    Determining the protein sieving coefficient. The buffer comprised
    0.5 M NaCl. Total salt content: 0.5 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 27
    2 6.9 43
    3 14.1 50
    4 20.8 46
  • TABLE 11
    Determining the protein sieving coefficient. The buffer comprised
    0.5 M barium chloride. Total salt content: 0.5 M.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 24
    2 6.9 36
    3 14.1 34
    4 20.8
  • It will be evident from Tables 9 to 11 that the present invention can be carried out advantageously with a number of different salts. It will also be seen that the protein sieving coefficient increases when using salts that have a high salting-out effect in accordance with the Hofmeister series (potassium dihydrophosphate) in comparison with a salt that has a low salting-out effect (barium chloride).
  • EXAMPLE 8
  • Experiments were carried out with gammaglobulin as the macromolecule to show the effect of salt contention protein sieving coefficient, diafiltration volume and yield. The solution containing gammaglobulin was a commercial product obtained from blood plasma, Gammonativ®, supplied by Pharmacia AB, Stockholm, Sweden. Prior to filtration, the gammaglobulin solution had been purified by an intitial Cohn fractionation followed by a chromatographic stage.
  • The experimental conditions applied were the same as those applied in Example 1, with the exception that the virus-removing filter was a Viresolve™/180 filter, the pH of the solution was 6.8 and the protein concentration was 2.5-5.0 A280 units. The buffer comprised 2.2% albumin+0.15 M NaCl+0.02 M NaAc+0.075 M glycine. Total salt content: 0.17 M.
    TABLE 12
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 32
    2 6.9 35
    3 10.7 41
    4 14.1 51
    5 17.6 59
    6 20.8 63
    7 24.3 69
  • Determination of the protein sieving coefficient gave an optimal filtrate flowrate of 20.8 ml/min.
  • EXAMPLE 9
  • The same conditions were applied as those applied in Example 8, with the exception that in this case the buffer comprised 2.2% albumin+1.0 M NaCl+0.02 M NaAc+0.075 M glycine. Total salt content: about 1.0 M.
    TABLE 13
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 38
    2 6.9 57
    3 10.7 64
    4 14.1 71
    5 17.6 75
    6 20.8 80
    7 24.3 81
  • Determination of the protein sieving coefficient gave an optimal filtrate flowrate of 20.8 ml/min.
  • Optimization of the yield at a filtrate flowrate of 20.8 ml/min. and a residence time of up to 10 min gave a P/R quotient of between 60% and 68%.
  • Diafiltration with a dilution degree of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of 90%.
  • EXAMPLE 10
  • The same conditions were applied as those applied in Example 8, with the exception that in this case the pH of the solution was 5.5.
    TABLE 14
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 41
    2 6.9 47
    3 14.1 62
    4 20.8 72
    5 24.3 74
  • EXAMPLE 11
  • The same conditions were applied as those applied in Example 10, with the exception that in this case the buffer comprised 2.2% albumin+1.0 M NaCl+0.02 M NaAc+0.075 M glycine. Total salt content: about 1.0 M.
    TABLE 15
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 57
    2 6.9 67
    3 14.1 78
    4 20.8 88
    5 28.1 90
  • EXAMPLE 12
  • Experiments were carried out with albumin as the macromolecule to show the effect of salt content on protein sieving coefficient, diafiltration volume and yield. The 4% solution containing Human Serum Albumin (HSA) obtained from blood plasma was supplied by Pharmacia AB, Stockholm, Sweden. Prior to filtration, the albumin-containing solution had been purified by combined Cohn fractionation and a chromatographic stage.
  • The experimental conditions applied were the same as those applied in Example 1, with the exception that the protein concentration was about 10 A280 units. The buffer comprised 0.15 M NaCl+0.02 M NaAc, resulting in a total salt content of 0.17 M.
    TABLE 16
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 34
    2 6.9 39
    3 14.1 50
    4 20.8 51
    5 24.3 50
  • Determination of the protein sieving coefficient resulted in an optimal filtrate flowrate of 20.8 ml/min.
  • EXAMPLE 13
  • The same conditions were applied as those applied in Example 12, with the exception that in this case the buffer comprised 1.0 M NaCl+0.02 M NaAc, resulting in a total salt content of about 1.0 M.
    TABLE 17
    Determining the protein sieving coefficient.
    Experiment Filtrate flowrate, ml/min P/R, %
    1 3.5 39
    2 6.9 57
    3 14.1 62
    4 20.8 64
    5 24.3 60
  • Diafiltration with a dilution degree of about 1 volume unit per volume unit of entering protein solution (1+1) resulted in a yield of 85%.
  • EXAMPLE 14
  • Experiments were carried out with factor IX as the macromolecule, to show the effect of the retention flowrate on the protein sieving coefficient with other conditions constant. The commercial Nanotiv® solution used was similar to the solution used in Example 1. The conditions applied were the same as those applied in Example 1, with the exception that in this case the buffer comprised 1 M NaCl+6.4 mM sodium citrate with a pH of 7.0.
    TABLE 18
    Determining the protein sieving coefficient at different retention flowrates.
    Retention Filtrate
    Experiment flowrate, l/h flowrate, ml/min P/R %
    1 1 14 79
    2 1 19 85
    3 1 24 85
    4 10 14 72
    5 10 19 76
    6 10 24 76
    7 20 14 62
    8 20 19 70
    9 20 24 76
    10 30 14 65
    11 30 19 69
    12 30 24 73
    13 40 14 60
    14 40 19 64
    15 40 24 70
    16 50 14 57
    17 50 19 61
    18 50 24 68
    19 60 14 51
    20 60 19 56
    21 60 24 62
    22 90 14 46
    23 90 19 56
    24 90 24 56
  • Lower retention flowrates result in higher protein permeability through the filter.
  • EXAMPLE 15
  • Experiments were carried out with factor IX as the macromolecule in a solution having a high salt content, to show the effect of type of virus-filtering technique on dilution, yield, protein sieving coefficient and process time, with other experimental conditions being essentially constant. The experimental conditions applied, including the Nanotiv® solution were the same as those applied in Example 1, with the exception of the following differences:
    Virus filtration technique Tangential “Dead-end”
    Amount of protein solution 294 1124
    prior to virus filtration (g):
    Protein conc. (A280 units): 0.66 1.0
    Retention flowrate (l/h): 40 0
    Filtrate flowrate buffer 24 28
    (ml/min):
  • TABLE 19
    Determining dilution, yield, protein sieving coefficient and
    process time using different virus-filtering techniques.
    Virus filtration technique
    Tangential “Dead-end”
    Amount of protein solution 459 1146
    after virus filtration (g):
    Dilution: 1 + 0.56 1 + 0.02
    Yield (%): 89 94
    Protein sieving coefficient 17-64 92-98
    (P/R in %):
    Actual filtrate flowrate 15-24 7-25
    (ml/min):
    Process time (kIU factor IX/h): 31 105
    Protein load 413 2360
    (A280 units/ft2):
  • Virus filtration of factor IX using the “dead-end” technique means less dilution, shorter process times and results in a higher yield and protein permeability.
  • EXAMPLE 16
  • Experiments were carried out with factor IX as the macromolecule, to show the effect of salt content on yield and the protein sieving coefficient when virus-filtering in accordance with the “dead-end” technique, with remaining experimental conditions constant. In addition to NaCl, the buffer also contains 6.4 mM sodium citrate (pH 7.0) in both cases. The conditions applied, including the Nanotiv® solution were the same as those applied in Example 1, with the exception of the following differences:
    Salt content (M NaCl): 1.0 0.15
    Amount of protein solution prior 293 256
    to virus filtration (g):
    Protein conc. (A280 units): 0.84 0.84
    Retention flowrate (l/h): 0 0
    Filtrate flowrate buffer 28 28
    (ml/min):
  • TABLE 20
    Determining dilution, yield and protein sieving coefficient when using
    a buffer which contained 1.0 M NaCl + 6.4 mM sodium citrate (pH 7.0).
    Amount of filtrate, g P/R, % Flowrate, ml/min
     50 83 31
    100 82 28
    150 84 30
    200 81 23
    250 81 21
    Protein conc.,
    Sample Amount, g A280 units Yield, %
    Prior to virus 293 0.84 100
    filtration
    Filtrate 284 0.67  77
    Wash  30 0.47  6
  • A total yield of 83% was obtained over the virus filter, with a dilution degree of 1+0.07. Process time 264 kIU factor IX/h.
    TABLE 21
    Determining dilution, yield, protein sieving coefficient and process time
    when using a buffer containing 0.15 M NaCl + 6.4 mM
    sodium citrate (pH 7.0).
    Amount of filtrate, g P/R, % Flowrate, ml/min
     50 61 22
    100 62 20
    150 63 18
    200 63 16
    Protein conc.,
    Sample Amount, g A280 units Yield, %
    Prior to virus 256 0.84 100
    filtration
    Filtrate 243 0.50  56
    Wash  30 0.50  7
  • A total yield of 63% was obtained with the virus filter, with a dilution degree of 1+0.07. Process time 194 kIU factor IX/h.
  • EXAMPLE 17
  • Experiments were carried out with antithrombin (AT III) as the macromolecule in a solution of low salt content, to show the effect of this type of virus filtration technique on dilution, yield, protein sieving coefficient and process time, with other conditions being essentially constant. The commercial ATenativ® solution used was delivered by Pharmacia AB, Stockholm, Sweden. The buffer contained 0.12 M NaCl+1 mM sodium phosphate (pH 7.4) in both cases. The conditions applied were the same as those applied in Example 1, with the exception of the following differences:
    Virus filtration technique
    Tangential “Dead-end”
    Amount of protein solution 967 970
    prior to virus filtration (g):
    Protein conc. (A280 units): 9.1 9.1
    Retention flowrate (l/h): 40 0
    Filtrate flowrate buffer 24 24
    (ml/min):
  • TABLE 22
    Determining dilution, yield, protein sieving coefficient and process time
    with the aid of different virus filtration techniques.
    Virus filtration technique
    Tangential “Dead-end”
    Amount of protein solution 1692 989
    after virus filtration (g):
    Dilution: 1 + 0.75 1 + 0.02
    Yield (%): 97 97
    Protein sieving coefficient 73-86 95-98
    (P/R in %):
    Actual filtrate flowrate 15-24 8-14
    (ml/min):
    Process time (kIU AT III/h): 37 53
    Protein load 18477 18481
    (A280 units/ft2):
    Filtration efficiency 9 12
    (1/m2 filter * h):
  • Virus filtration of AT III when applying the “dead-end” technique means less dilution, affords higher protein permeability and shorter process times.
  • EXAMPLE 18
  • Experiments were carried out with antithrombin (AT III) as the macromolecule, to show the effect of salt content on yield and protein permeability (sieving coefficient) when virus-filtering in accordance with the tangential technique, with remaining experimental conditions being constant. In addition to NaCl, the buffer contained 1 mM sodium phosphate (pH 7.4) in all experiments. The conditions applied, including the ATenativ® solution, were the same as those applied in Example 17, with the exception that the retention flowrate was 20 l/h in all experiments.
    TABLE 23
    Determining the protein sieving coefficient at different salt contents and
    different filtrate flowrates.
    Salt content, Filtrate flowrate
    Experiment M NaCl ml/min P/R %
    1 0.15 14 79
    2 0.15 19 84
    3 0.15 24 87
    4 1.0 14 87
    5 1.0 19 90
    6 1.0 24 89
  • High salt content result in improved protein permeability with regard to AT III.
  • EXAMPLE 19
  • Experiments were carried out with Human Serum Albumin (HSA) as the macromolecule in a solution having a high salt content, to show the effect of type of virus filtration technique on dilution, yield, protein permeability and process time, with other experimental conditions being essentially constant. The HSA solution used was similar to the solution used in Example 12. The buffer contained 1.0 M NaCl+20 mM sodium acetate (pH=7.4) in all experiments. The conditions applied were the same as those applied in Example 1, with the exception of the following differences:
    Virus filtration technique
    Tangential “Dead-end”
    Amount of protein solution 200 6460
    prior to virus filtration (g):
    Protein conc. (A280 units): 10 9.2
    Retention flowrate (l/h): 40 0
    Filtrate flowrate buffer 24 28
    (ml/min):
  • TABLE 24
    Determining dilution, yield, protein sieving coefficient and process time
    when using tangential virus filtration.
    Amount of filtrate, g P/R, %
     50 39
    100 57
    200 62
    300 64
    350 60
    Protein conc.,
    Sample Amount, g A280 units Yield, %
    Prior to virus 200 10.0 100
    filtration
    Filtrate 144 7.0 51
    Wash 1 100 4.4 22
    Wash 2 100 4.2 12
  • A total yield of 85% was obtained over the virus filter, with a dilution of 1+0.72. Process time 4615 mg HSA/h.
    TABLE 25
    Determining dilution, yield, protein sieving coefficient and process
    time when virus-filtering with the “dead-end” technique.
    Amount of protein solution 6380
    after virus filtration (g):
    Dilution: 1 + 0.0
    Yield (%): 98
    Protein sieving coefficient 97-100
    (P/R in %):
    Actual filtrate flowrate 24-34
    (ml/min):
    Process time (mg HSA/h): 14895
    Protein load 124807
    (A280 units/ft2):
    Filtering efficiency 34
    (l/m2 filter * h):
  • Virus filtration of HSA when applying the “dead-end” technique means less dilution, and results in a higher yield and higher protein permeability and shorter process times.
  • EXAMPLE 20
  • Experiments were carried out with gammaglobulin as the macromolecule in a solution of high salt content, to show the effect of this type of virus-filtering technique on dilution, yield, protein sieving coefficient and process time with remaining experimental conditions being essentially constant. The gammaglobulin solution used was similar to the solution used in Example 8. The buffer contained 1.0 M NaCl+20 mM sodium acetate +0.075 M glycine (pH =5.5) in all experiments. The conditions applied were the same as those applied in Example 1, with the exception of the following differences:
    Virus filtration
    technique
    Tangential “Dead-end”
    Amount of protein solution 301 400
    prior to virus filtration (g):
    Protein conc. (A280 units): 5.1 4.9
    Retention flowrate (l/h): 40 0
    Filtrate flowrate buffer 24 28
    (ml/min):
    Transmembrane pressure (bar): 0.2 0.1
  • TABLE 26
    Determining dilution, yield, protein sieving coefficient and
    process time when using “dead-end” filtration:
    Amount of filtrate, g P/R, % Flowrate, ml/min
    50 92 17
    100 92 12
    150 93 9
    200 92 8
    250 90 7
    300 88 6
    350 87 5
    Protein conc.,
    Sample Amount, g A280 units Yield, %
    Prior to virus 400 4.9 100
    filtration
    Filtrate 350 4.6 82
    Wash 100 2.3 12
  • A total yield of 94% was obtained over the virus filter, with a dilution degree of 1+0.12. Process time 2790 mg gammaglobulin/h.
    TABLE 27
    Determining dilution, yield, protein sieving coefficient
    and process time when using tangential virus filtration.
    Amount of protein solution 643
    after virus filtration (g):
    Dilution: 1 + 1.16
    Yield (%): 92
    Protein sieving coefficient 43-67
    (P/R in %):
    Actual filtrate flowrate 16-20
    (ml/min):
    Process time (mg gammaglobulin/ 1873
    h):
    Protein load 3192
    (A280 units/ft2):
    Filtering efficiency 23
    (l/m2 filter * h):
  • Virus-filtration of gammaglobulin with the “dead-end” technique involves less dilution, and results in a higher yield and protein permeability and shorter process times.
  • EXAMPLE 21
  • Experiments were carried out with antithrombin as the macromolecule, to illustrate that the present invention is applicable on an industrial scale by using a substatially bigger filter area (10 ft2) than in the previous Examples (1/3 ft2). A commercial solution containing antithrombin (AT III), ATenativ®, was supplied by Pharmacia AB, Stockholm, Sweden.
  • Experimental Conditions:
    • Buffer: 1 M NaCl+1 mM sodium phosphate.
    • Total salt content: about 1.0 M.
    • Protein concentration: 9.2 A280 units.
    • Protein solution pH: 7.4.
    • Amount of protein solution prior to virus filtration: 20.8 kg
    • Virus separating filters: Viresolve™ /70.
    • Filtering technique: dead-end.
    • Filter area: 10 ft2
    • Retention flowrate: 0 l/h.
    • Filtrate flowrate buffer: 20 l/h
  • Transmembrane pressure: 0.3 bar.
    TABLE 28
    Determining dilution, yield, protein sieving coefficient
    and process time when using a filter area of 10 ft2 and
    dead-end filtering technique according to the invention.
    Amount of protein solution 24.1
    after virus filtration (kg):
    Dilution: 1 + 0.16
    Yield (%): 96
    Protein sieving coefficient 94-97
    (P/R in %):
    Actual filtrate flowrate  7-12
    (ml/min):
    Process time (kIU AT III/h): 735
    Protein load 19,136
    (A280 units/ft2):
    Filtration efficiency 8.8
    (1/m2 filter * h):
  • It is evident from this Example, that virus filtering antithrombin according to the invention can be applied on an industrial scale with excellent results.
  • EXAMPLE 22
  • The virus-removing effect achieved with the experiments disclosed in Example 15 was determined by a virus study, but at a higher salt content. The virus-filtering technique was the “dead-end” technique. The study was carried out on parvovirus, as in Example 3. The parvovirus was added to the solutions containing factor IX 1.0 M NaCl+0.01 M sodium citrate (experiment 1). The solutions were analyzed with respect to the parvovirus both before and after virus filtration.
    Experiment Virus reduction
    1 1 × 105.5
  • The results show that virus filtration in accordance with Example 15 using dead-end technique fulfil the requirements placed by the authorities on the virus reduction in one process step. Furthermore, the use of a high salt content in accordance with the invention is at least equally as effective in removing virus as previously known techniques.

Claims (19)

1. A filtration method comprising virus-filtering a solution containing at least one macromolecule, wherein the total salt content of the solution is within the range of about 0.6 M up to saturation of the solution with the salt concerned.
2. A method according to claim 1, characterized in that the total salt content of the solution lies within the range of from 0.4 up to 2.5 M.
3. A method according to claim 2, characterized in that the total salt content of the solution lies within the range of from 0.6 up to 2.0 M.
4. A method according to claim 1, characterized in that the salt is selected from the group consisting of sodium chloride, potassium chloride, sodium acetate and sodium citrate and combinations thereof.
5. A method according to claim 1, characterized in that the macromolecule is selected from the group consisting of proteins, polysaccharides and polypeptides and combinations thereof.
6. A method according to claim 5, characterized in that the macromolecule is factor IX.
7. A method according to claim 5, characterized in that the macromolecule is gammaglobulin.
8. A method according to claim 5, characterized in that the macromolecule is albumin.
9. A method according to claim 5, characterized in that the macromolecule is antithrombin III.
10. A method according to claim 5, characterized in that the macromolecule is a deletion derivative of recombinant factor VIII.
11. A method according to claim 1, characterized in that the virus-filtering process is carried out in accordance with the “dead-end” filtering technique.
12. A method according to claim 1, characterized in that the virus-filtering process reduces the content of non-enveloped viruses by at least 4 logs.
13. A method according to claim 1, wherein a non-lipid enveloped virus is removed from the solution.
14. A method according to claim 13, wherein the non-lipid enveloped virus is selected from the group consisting of hepatitis virus A, polio virus and parvo virus.
15. A method according to claim 1, wherein a lipid-enveloped virus is removed from the solution.
16. A method according to claim 15, wherein the lipid-enveloped virus is selected from the group consisting of hepatitis virus B, hepatitis virus C and the human immuno-deficiency virus (HIV).
17. A method according to claim 1, wherein a virus smaller than about 350 nm is removed from the solution.
18. A method according to claim 17, wherein the virus removed from the solution is smaller than 200 nm.
19. A method according to claim 18, wherein the virus removed from the solution is smaller than 150 nm and larger than about 20 nm.
US11/064,770 1994-06-23 2005-02-23 Filtration Abandoned US20050203285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/064,770 US20050203285A1 (en) 1994-06-23 2005-02-23 Filtration

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
SE9402254-8 1994-06-23
SE9402254A SE502820C2 (en) 1994-06-23 1994-06-23 Filtering macromolecule soln. with specific salt content
SE9500724-1 1995-02-24
SE9500724A SE9500724D0 (en) 1994-06-23 1995-02-24 Filtration
US08/750,664 US6486306B1 (en) 1994-06-23 1995-06-22 Filtration
PCT/SE1995/000777 WO1996000237A1 (en) 1994-06-23 1995-06-22 Filtration
US10/304,902 US20030191292A1 (en) 1994-06-23 2002-11-26 Filtration
US11/064,770 US20050203285A1 (en) 1994-06-23 2005-02-23 Filtration

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/304,902 Continuation US20030191292A1 (en) 1994-06-23 2002-11-26 Filtration

Publications (1)

Publication Number Publication Date
US20050203285A1 true US20050203285A1 (en) 2005-09-15

Family

ID=26662085

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/750,664 Expired - Fee Related US6486306B1 (en) 1994-06-23 1995-06-22 Filtration
US09/511,953 Expired - Fee Related US6399357B1 (en) 1994-06-23 2000-02-23 Filtration
US10/304,902 Abandoned US20030191292A1 (en) 1994-06-23 2002-11-26 Filtration
US11/064,770 Abandoned US20050203285A1 (en) 1994-06-23 2005-02-23 Filtration

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/750,664 Expired - Fee Related US6486306B1 (en) 1994-06-23 1995-06-22 Filtration
US09/511,953 Expired - Fee Related US6399357B1 (en) 1994-06-23 2000-02-23 Filtration
US10/304,902 Abandoned US20030191292A1 (en) 1994-06-23 2002-11-26 Filtration

Country Status (16)

Country Link
US (4) US6486306B1 (en)
EP (1) EP0796269B1 (en)
JP (1) JP3676370B2 (en)
AT (1) ATE212354T1 (en)
CA (1) CA2192683C (en)
DE (2) DE796269T1 (en)
DK (1) DK0796269T3 (en)
ES (1) ES2105992T3 (en)
FI (1) FI965145A (en)
GR (1) GR970300038T1 (en)
MX (1) MX9606639A (en)
NO (1) NO320952B1 (en)
NZ (1) NZ288789A (en)
PT (1) PT796269E (en)
SE (1) SE9500724D0 (en)
WO (1) WO1996000237A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468032C2 (en) * 2006-06-26 2012-11-27 Омрикс Биофармасьютикалс Инк. Method of cleaning thrombin solution from infectious particles

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9500724D0 (en) * 1994-06-23 1995-02-24 Pharmacia Ab Filtration
SE9500778D0 (en) 1995-03-03 1995-03-03 Pharmacia Ab Process for producing a protein
SE9603068D0 (en) * 1996-08-23 1996-08-23 Pharmacia & Upjohn Ab Process for purifying a protein
SE9603303D0 (en) 1996-09-11 1996-09-11 Pharmacia & Upjohn Ab Process for purifying a protein
EP0860444A1 (en) * 1997-02-24 1998-08-26 Stichting Centraal Laboratorium van de Bloedtransfusiedienst van het Nederlandse Rode Kruis (CLB) Method for removing viruses from a protein solution
US6045588A (en) 1997-04-29 2000-04-04 Whirlpool Corporation Non-aqueous washing apparatus and method
US6096872A (en) * 1997-10-14 2000-08-01 Ortho Diagnostic Systems, Inc. Viral clearance process
FR2772381B1 (en) 1997-12-15 2001-06-08 Lab Francais Du Fractionnement PROCESS FOR THE PREPARATION BY FILTRATION OF A VIRALLY SECURE FACTOR VIII SOLUTION
US6861001B2 (en) * 1999-12-02 2005-03-01 The General Hospital Corporation Methods for removal, purification, and concentration of viruses, and methods of therapy based thereupon
KR101239818B1 (en) 2002-05-23 2013-03-07 오르토-클리니칼 다이아그노스틱스, 인코포레이티드 Capture, concentration and quantitation of abnormal prion protein from biological fluids using depth filtration
ES2282638T3 (en) * 2002-06-14 2007-10-16 Centocor, Inc. USE OF A CLATRATE MODIFIER TO PROMOTE THE PROTEIN PASS DURING NANOFILTRATION.
JP2004099506A (en) * 2002-09-09 2004-04-02 Mitsubishi Rayon Co Ltd Method for producing amino acid amide
US8258264B2 (en) * 2003-04-09 2012-09-04 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Process for producing albumin preparation
WO2004113518A1 (en) * 2003-06-20 2004-12-29 Microbix Biosystems Inc. Improvements in virus production
CN100398642C (en) * 2003-06-20 2008-07-02 迈克必斯生物系统公司 Improvements in virus production
FR2861395B1 (en) 2003-10-23 2006-02-17 Lab Francais Du Fractionnement FACTOR VIII VIRAL SECURITY WITH LOW HIGHER MULTIMER CONTENT
US7739891B2 (en) 2003-10-31 2010-06-22 Whirlpool Corporation Fabric laundering apparatus adapted for using a select rinse fluid
US7695524B2 (en) 2003-10-31 2010-04-13 Whirlpool Corporation Non-aqueous washing machine and methods
ES2507091T3 (en) 2003-12-01 2014-10-14 Novo Nordisk Health Care Ag Nanofiltration of factor VII solutions to eliminate viruses
AU2005214090B2 (en) 2004-02-23 2008-09-11 Crucell Holland B.V. Virus purification methods
FR2866890B1 (en) 2004-02-27 2008-04-04 Lab Francais Du Fractionnement ALBUMIN PURIFICATION PROCESS COMPRISING A NANOFILTRATION STEP, SOLUTION AND THERAPEUTIC USE COMPOSITION CONTAINING THE SAME
EP1740757A1 (en) 2004-04-29 2007-01-10 Unilever N.V. Dry cleaning method
US7141171B2 (en) * 2004-05-21 2006-11-28 Wisconsin Alumni Research Foundation Membrane cascade-based separation
AU2005229674B2 (en) 2004-11-18 2010-11-04 Kedrion Melville Inc. Low concentration solvent/detergent process of immuneglobulin with pre-treatment
CA2602944C (en) 2005-04-11 2015-08-11 Crucell Holland B.V. Virus purification using ultrafiltration
US7966684B2 (en) 2005-05-23 2011-06-28 Whirlpool Corporation Methods and apparatus to accelerate the drying of aqueous working fluids
AU2008266131B2 (en) 2007-06-15 2011-10-20 Amgen Inc. Methods of treating cell culture media for use in a bioreactor
KR100870423B1 (en) * 2007-06-27 2008-11-26 주식회사 하이닉스반도체 Semiconductor memory device
US7989593B1 (en) 2010-05-27 2011-08-02 Bing Lou Wong Method for the preparation of a high-temperature stable oxygen-carrier-containing pharmaceutical composition and the use thereof
US7932356B1 (en) 2010-06-23 2011-04-26 Bing Lou Wong Method for the preparation of a heat stable oxygen carrier-containing pharmaceutical composition
US8048856B1 (en) 2010-06-23 2011-11-01 Billion King, Ltd. Treatment methods using a heat stable oxygen carrier-containing pharmaceutical composition
US8084581B1 (en) 2011-04-29 2011-12-27 Bing Lou Wong Method for removing unmodified hemoglobin from cross-linked hemoglobin solutions including polymeric hemoglobin with a high temperature short time heat treatment apparatus
JP5711369B2 (en) * 2011-06-24 2015-04-30 旭化成メディカル株式会社 Method for producing protein preparation
US20130052232A1 (en) 2011-08-31 2013-02-28 Bing Lou Wong Method for the preparation of a heat stable oxygen carrier-containing composition facilating beta-beta cross-linking
US9294158B2 (en) 2012-08-07 2016-03-22 Broadcom Corporation Broadcast audio service
WO2015017888A1 (en) * 2013-08-08 2015-02-12 Csl Limited Contaminant removal method
WO2018053384A1 (en) 2016-09-19 2018-03-22 Asgco Manufacturing, Inc. Return idler trainer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870801A (en) * 1968-08-09 1975-03-11 Lever Brothers Ltd Fluid aqueous protein compositions and food products prepared therefrom
US3874999A (en) * 1973-10-31 1975-04-01 American Cyanamid Co Process for the purification of virus vaccine
US3919044A (en) * 1973-03-28 1975-11-11 Armour Pharma Processes for concentrating and purifying viruses and viral antigens
US4208323A (en) * 1978-03-23 1980-06-17 General Foods, Limited Process for isolation of proteins using food grade salt solutions at specified pH and ionic strength
US4473494A (en) * 1983-05-04 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Preparation of stroma-free, non-heme protein-free hemoglobin
US5017292A (en) * 1990-05-10 1991-05-21 Millipore Corporation Membrane, process and system for isolating virus from solution
US5076933A (en) * 1990-06-29 1991-12-31 Coulter Corporation Process and apparatus for removal of dna and viruses
US5221483A (en) * 1990-06-29 1993-06-22 Coulter Corporation Process and apparatus for removal of DNA, viruses and endotoxins
US6399357B1 (en) * 1994-06-23 2002-06-04 Biovitrum Ab Filtration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684723A (en) * 1985-09-11 1987-08-04 Miles Laboratories, Inc. Method of separating proteins from aqueous solutions
JPH0720986B2 (en) * 1985-10-07 1995-03-08 日本ケミカルリサ−チ株式会社 Method for producing physiologically active substance
AU605901B2 (en) 1987-09-11 1991-01-24 Ares Trading S.A. Purification process
RU1781355C (en) * 1990-04-23 1992-12-15 В.П.Широбоков, Л.Я.Палиенко, А.И.Евтушенко, Л.А Коптюх, Ю.В.Загороднюк и К.Д Стеценко Filtering material
SE9301582D0 (en) 1993-05-07 1993-05-07 Kabi Pharmacia Ab PURIFICATION OF PLASMA PROTEINS

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870801A (en) * 1968-08-09 1975-03-11 Lever Brothers Ltd Fluid aqueous protein compositions and food products prepared therefrom
US3919044A (en) * 1973-03-28 1975-11-11 Armour Pharma Processes for concentrating and purifying viruses and viral antigens
US3874999A (en) * 1973-10-31 1975-04-01 American Cyanamid Co Process for the purification of virus vaccine
US4208323A (en) * 1978-03-23 1980-06-17 General Foods, Limited Process for isolation of proteins using food grade salt solutions at specified pH and ionic strength
US4473494A (en) * 1983-05-04 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Preparation of stroma-free, non-heme protein-free hemoglobin
US5017292A (en) * 1990-05-10 1991-05-21 Millipore Corporation Membrane, process and system for isolating virus from solution
US5076933A (en) * 1990-06-29 1991-12-31 Coulter Corporation Process and apparatus for removal of dna and viruses
US5221483A (en) * 1990-06-29 1993-06-22 Coulter Corporation Process and apparatus for removal of DNA, viruses and endotoxins
US6399357B1 (en) * 1994-06-23 2002-06-04 Biovitrum Ab Filtration
US6486306B1 (en) * 1994-06-23 2002-11-26 Biovitrum Ab Filtration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468032C2 (en) * 2006-06-26 2012-11-27 Омрикс Биофармасьютикалс Инк. Method of cleaning thrombin solution from infectious particles

Also Published As

Publication number Publication date
ES2105992T1 (en) 1997-11-01
DE69525176D1 (en) 2002-03-14
GR970300038T1 (en) 1997-11-28
AU682274B2 (en) 1997-09-25
EP0796269B1 (en) 2002-01-23
NZ288789A (en) 1997-12-19
MX9606639A (en) 1997-03-29
CA2192683A1 (en) 1996-01-04
US20030191292A1 (en) 2003-10-09
US6486306B1 (en) 2002-11-26
ES2105992T2 (en) 1997-11-01
JP3676370B2 (en) 2005-07-27
NO965523L (en) 1996-12-20
SE9500724D0 (en) 1995-02-24
EP0796269A1 (en) 1997-09-24
ES2105992T3 (en) 2002-09-16
CA2192683C (en) 2005-07-05
DK0796269T3 (en) 2002-05-06
ATE212354T1 (en) 2002-02-15
FI965145A0 (en) 1996-12-20
DE796269T1 (en) 1998-01-02
JPH10502074A (en) 1998-02-24
NO320952B1 (en) 2006-02-20
WO1996000237A1 (en) 1996-01-04
PT796269E (en) 2002-06-28
NO965523D0 (en) 1996-12-20
US6399357B1 (en) 2002-06-04
DE69525176T2 (en) 2002-06-27
AU2813295A (en) 1996-01-19
FI965145A (en) 1996-12-20

Similar Documents

Publication Publication Date Title
US6486306B1 (en) Filtration
EP0698615B1 (en) Purification of alpha-1 proteinase inhibitor using novel chromatographic separation conditions
JP4476362B2 (en) Purification of biologically active peptides from milk
JP3094167B2 (en) Purification method of immune serum globulin
EP0176926B1 (en) Process for producing a high purity antihemophilic factor concentrate
RU2000113224A (en) METHOD FOR PRODUCING A HIGH DEGREE OF VIRUS-SAFE COMPONENTS FOR PRODUCING FIBRINE GLUE FROM A HUMAN PLASMA POOL
ZA200601206B (en) Process for preparing an alpha-1-antitrypsin solution
JPH04243899A (en) Purification of factor viii and factor viii produced by said method
CN107163138B (en) Separation and purification method of human plasma protein alpha 1-antitrypsin
JPH0768275B2 (en) Virus inactivation and purification of active proteins
JP3650937B2 (en) Process for the preparation of an inter-α-trypsin inhibitor concentrate for use in therapy, and the concentrate so obtained
KR100685448B1 (en) Haemostatically active preparation containing vwf and method for the production thereof
JP2002508396A (en) Method for preparing a virally safe factor VIII solution by filtration
US8293242B2 (en) Ultra-high yield of alpha-1-anti-trypsin
AU682274C (en) Filtration
CA1340236C (en) Method of preparing highly purified alpha-1-proteinage inhibitor
JP6096613B2 (en) Purification of cell culture-derived alpha 1 protease inhibitor
US4526782A (en) Process for recovering interferon
CA2308610A1 (en) Heparin cofactor ii preparation and process therefor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION