Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050208093 A1
Publication typeApplication
Application numberUS 10/807,362
Publication dateSep 22, 2005
Filing dateMar 22, 2004
Priority dateMar 22, 2004
Also published asDE602005018178D1, EP1732621A1, EP1732621B1, US20150328375, WO2005092406A1
Publication number10807362, 807362, US 2005/0208093 A1, US 2005/208093 A1, US 20050208093 A1, US 20050208093A1, US 2005208093 A1, US 2005208093A1, US-A1-20050208093, US-A1-2005208093, US2005/0208093A1, US2005/208093A1, US20050208093 A1, US20050208093A1, US2005208093 A1, US2005208093A1
InventorsThierry Glauser, Stephen Pacetti, Syed Hossainy, Ni Ding
Original AssigneeThierry Glauser, Pacetti Stephen D, Hossainy Syed F, Ni Ding
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Phosphoryl choline coating compositions
US 20050208093 A1
Abstract
A polymer comprising phospholipid moieties and a biocompatible polymer backbone, a composition comprising the polymer and optionally a bioactive agent, an implantable devices such as a DES comprising thereon a coating comprising the polymer and optionally a bioactive agent, and a method of using the device for the treatment of a disorder in a human being are provided.
Images(15)
Previous page
Next page
Claims(99)
1. A biocompatible polymer having a biodegradable or nondegradable polymeric backbone, comprising:
a biodegradable or nondegradable polymer; and
choline or phospholipid moieties.
2. The biocompatible polymer of claim 1 wherein the phospholipid moieties comprise a component selected from the group consisting of phosphoryl choline, phosphoryl serine, phosphoryl inositol, di-phosphoryl glycerol, zwitterionic phosphoryl ethanolamine, and combinations thereof.
3. The biocompatible polymer of claim 1 wherein the nondegradable polymer comprises monomers selected from the group consisting of methylmethacrylate (MMA), ethylmethacrylate (EMA), butylmethacrylate (BMA), 2-ethylhexylmethacrylate, laurylmethacrylate (LMA), hydroxylethyl methacrylate (HEMA), PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), methacrylic acid (MA), acrylic acid (AA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, 3-trimethylsilylpropyl methacrylate (TMSPMA), and combinations thereof.
4. The biocompatible polymer of claim 1 wherein the biodegradable polymer comprises monomers selected from the group consisting of glycolide, lactide, butyrolactone, caprolactone, hydroxyalkanoate, 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hdyroxyvalerate, 3-hydroxyhexanoate, and combinations thereof.
5. The biocompatible polymer of claim 1 wherein the biodegradable polymer is selected from the group consisting of polyesters, polyhydroxyalkanoates (PHAs), poly(α-hydroxyacids), poly(β-hydroxyacid) such as poly(3-hydroxybutyrate) (PHB); poly(3-hydroxybutyrate-co-valerate) (PHBV), poly(3-hydroxyproprionate) (PHP), poly(3-hydroxyhexanoate) (PHH), or poly(4-hydroxyacids), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(hydroxyvalerate, poly(ester amides) that may optionally contain alkyl; amino acid; PEG and/or alcohol groups, polycaprolactone, polylactide, polyglycolide, poly(lactide-co-glycolide), polydioxanone (PDS), polyorthoester, polyanhydride, poly(glycolic acid-co-trimethylene carbonate), polyphosphoester polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), poly(tyrosine carbonates), polycarbonates, poly(tyrosine arylates), polyurethanes, copoly(ether-esters), polyalkylene oxalates, polyphosphazenes, PHA-PEG, and combinations thereof.
6. The biocompatible polymer of claim 1 wherein the nondegradable polymer is selected from the group consisting of ethylene vinyl alcohol copolymer (EVOH), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, styrene-isobutylene-styrene triblock copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, polyvinyl chloride, polyvinyl ethers, polyvinyl methyl ether, polyvinylidene halides, polyvinylidene fluoride, polyvinylidene chloride, polyfluoroalkenes, polyperfluoroalkenes, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, polystyrene, polyvinyl esters, polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactam, alkyd resins, polyoxymethylenes; polyimides; polyethers, epoxy resins, rayon, rayon-triacetate, and combinations thereof.
7. The biocompatible polymer of claim 1 further comprising a biobeneficial moiety selected from the group consisting of a non-fouling moiety, an anti-thrombogenic moiety, and a combination thereof.
8. The biocompatible polymer of claim 7 wherein the non-fouling moiety is selected from the group consisting of PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof; and the anti-thrombogenic moiety is selected from the group consisting of heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof, and combinations thereof.
9. The biocompatible polymer of claim 8 wherein heparin is attached to the polymer via a PEG spacer.
10. The biocompatible polymer of claim 2 further comprising a biobeneficial moiety selected from the group consisting of a non-fouling moiety, an anti-thrombogenic moiety, and a combination thereof.
11. The biocompatible polymer of claim 10 wherein the non-fouling moiety is selected from the group consisting of PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof; and the anti-thrombogenic moiety is selected from the group consisting of heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof, and combinations thereof.
12. The biocompatible polymer of claim 11 wherein heparin is attached to the polymer via a PEG spacer.
13. The biocompatible polymer of claim 3 further comprising a biobeneficial moiety selected from the group consisting of a non-fouling moiety, an anti-thrombogenic moiety, and a combination thereof.
14. The biocompatible polymer of claim 13 wherein the non-fouling moiety is selected from the group consisting of PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof; and the anti-thrombogenic moiety is selected from the group consisting of heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof, and combinations thereof.
15. The biocompatible polymer of claim 14 wherein heparin is attached to the polymer via a PEG spacer.
16. The biocompatible polymer of claim 5 further comprising a biobeneficial moiety selected from the group consisting of a non-fouling moiety, an anti-thrombogenic moiety, and a combination thereof.
17. The biocompatible polymer of claim 16 wherein the non-fouling moiety is selected from the group consisting of PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof; and the anti-thrombogenic moiety is selected from the group consisting of heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof, and combinations thereof.
18. The biocompatible polymer of claim 17 wherein heparin is attached to the polymer via a PEG spacer.
19. The biocompatible polymer of claim 1 wherein the polymeric backbone is capable of degrading into components which are pharmacologically active and therapeutic to the process of restenosis or Sub-acute thrombosis.
20. The biocompatible polymer of claim 1 wherein the polymeric backbone is PolyAspirin™.
21. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 1.
22. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 2.
23. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 3.
24. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 4.
25. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 5.
26. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 6.
27. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 7.
28. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 8.
29. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 9.
30. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 10.
31. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 11.
32. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 12.
33. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 13.
34. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 14.
35. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 15.
36. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 16.
37. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 17.
38. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 18.
39. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 19.
40. An implanatable device comprising a coating that comprises the biocompatible polymer of claim 20.
41. The implantable device of claim 21 wherein the coating further comprises a biobeneficial material selected from the group consisting of a non-fouling polymer, an anti-thrombogenic polymer, and a combination thereof.
42. The implantable device of claim 22 wherein the coating further comprises a biobeneficial material selected from the group consisting of a non-fouling polymer, an anti-thrombogenic polymer, and a combination thereof.
43. The implantable device of claim 21 wherein the coating further comprises a bioactive agent.
44. The implantable device of claim 43 wherein the bioactive agent is selected from the group consisting of proteins, peptides, anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, cytostatic agents, prodrugs thereof, co-drugs thereof, and a combination thereof.
45. The implantable device of claim 22 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1′-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
46. The implantable device of claim 23 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2- hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
47. The implantable device of claim 24 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
48. The implantable device of claim 25 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
49. The implantable device of claim 26 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
50. The implantable device of claim 27 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
51. The implantable device of claim 28 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
52. The implantable device of claim 29 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
53. The implantable device of claim 30 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
54. The implantable device of claim 31 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
55. The implantable device of claim 32 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
56. The implantable device of claim 33 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
57. The implantable device of claim 34 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2- hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
58. The implantable device of claim 35 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
59. The implantable device of claim 36 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
60. The implantable device of claim 37 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
61. The implantable device of claim 38 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
62. The implantable device of claim 39 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
63. The implantable device of claim 40 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
64. The implantable device of claim 41 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
65. The implantable device of claim 42 wherein the coating further comprising an agent selected from the group consisting of ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
66. A method of treating a human being by implanting in the human being a stent as defined in claim 21,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
67. A method of treating a human being by implanting in the human being a stent as defined in claim 41,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
68. A method of treating a human being by implanting in the human being a stent as defined in claim 42,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
69. A method of treating a human being by implanting in the human being a stent as defined in claim 43,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
70. A method of treating a human being by implanting in the human being a stent as defined in claim 44,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
71. A method of treating a human being by implanting in the human being a stent as defined in claim 45,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
72. A method of treating a human being by implanting in the human being a stent as defined in claim 46,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
73. A method of treating a human being by implanting in the human being a stent as defined in claim 47,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
74. A method of treating a human being by implanting in the human being a stent as defined in claim 48,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
75. A method of treating a human being by implanting in the human being a stent as defined in claim 49,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
76. A method of treating a human being by implanting in the human being a stent as defined in claim 50,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
77. A method of treating a human being by implanting in the human being a stent as defined in claim 51,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
78. A method of treating a human being by implanting in the human being a stent as defined in claim 52,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
79. A method of treating a human being by implanting in the human being a stent as defined in claim 53,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
80. A method of treating a human being by implanting in the human being a stent as defined in claim 54,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
81. A method of treating a human being by implanting in the human being a stent as defined in claim 55,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
82. A method of treating a human being by implanting in the human being a stent as defined in claim 56,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
83. A method of treating a human being by implanting in the human being a stent as defined in claim 57,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
84. A method of treating a human being by implanting in the human being a stent as defined in claim 58,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
85. A method of treating a human being by implanting in the human being a stent as defined in claim 59,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
86. A method of treating a human being by implanting in the human being a stent as defined in claim 60,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
87. A method of treating a human being by implanting in the human being a stent as defined in claim 61,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
88. A method of treating a human being by implanting in the human being a stent as defined in claim 62,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
89. A method of treating a human being by implanting in the human being a stent as defined in claim 63,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm; vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
90. A method of treating a human being by implanting in the human being a stent as defined in claim 64,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
91. A method of treating a human being by implanting in the human being a stent as defined in claim 65,
wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
92. A method of preparing a phosphoryl choline (PC) containing polymer or copolymer, comprising:
forming a monomer or commoner comprising at least one PC moiety; and
polymerizing the monomer or commoner comprising at least one PC moiety to form the PC containing polymer or copolymer.
93. A coating composition comprising the polymer of claim 1.
94. A coating composition comprising the polymer of claim 2.
95. A coating composition comprising the polymer of claim 3.
96. A coating composition comprising the polymer of claim 4.
97. A coating composition comprising the polymer of claim 5.
98. A coating composition comprising the polymer of claim 6.
99. A coating composition comprising the polymer of claim 7.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention generally relates to a composition comprising at least a hospholipid such as phosphoryl choline that is useful for coating an implantable device such as a drug eluting stent.
  • [0003]
    2. Description of the Background
  • [0004]
    Implanted stents have been used to carry medicinal agents, such as thrombolytic agents. U.S. Pat. No. 5,163,952 to Froix discloses a thermal-memoried expanding plastic stent device formulated to carry a medicinal agent in the material of the stent itself. Pinchuk, in U.S. Pat. No. 5,092,877, discloses a stent of a polymeric material which may have a coating associated with the delivery of drugs. Other patents which are directed to devices of the class utilizing bio-degradable or bio-absorbable polymers include Tang et al., U.S. Pat. No. 4,916,193, and MacGregor, U.S. Pat. No. 4,994,071.
  • [0005]
    A patent to Sahatjian, U.S. Pat. No. 5,304,121, discloses a coating applied to a stent consisting of a hydrogel polymer and a preselected drug such as cell growth inhibitors or heparin. A further method of making a coated intravascular stent carrying a therapeutic material is described in Berg et al., U.S. Pat. No. 5,464,650, issued on Nov. 7, 1995 and corresponding to European Patent Application No. 0 623 354 A1 published Nov. 9, 1994. In that disclosure, a polymer coating material is dissolved in a solvent and the therapeutic material dispersed in the solvent; the solvent evaporated after application.
  • [0006]
    An article by Michael N. Helmus entitled “Medical Device Design—A Systems Approach: Central Venous Catheters”, 22nd International Society for the Advancement of Material and Process Engineering Technical Conference (1990) relates to polymer/drug/membrane systems for releasing heparin. Those polymer/drug/membrane systems require two distinct types of layers to function.
  • [0007]
    It has been recognized that contacting blood with the surface of a foreign body in vivo has a tendency to induce thrombogenic responses, and that, as the surface area of a foreign device in contact with host blood increases, the tendency for coagulation and clot forming at these surfaces also increases. This has led to the use of immobilized systemic anti-coagulant or thrombolytic agents such as heparin on blood-contacting surfaces such as blood oxygenator, hemodialysis membrane devices to reduce this phenomenon. Such an approach is described by Winters, et al., in U.S. Pat. Nos. 5,182,317; 5,262,451 and 5,338,770 in which the amine functional groups of the active material are covalently bonded using polyethylene oxide (PEO) on a siloxane surface.
  • [0008]
    Another approach is described in U.S. Pat. No. 4,613,665 to Larm in which heparin is chemically covalently bound to plastic surface materials containing primary amino groups to impart a non-thrombogenic surface to the material. Other approaches for bonding heparin are described in Barbucci, et al., “Coating of commercially available materials with a new heparinizable material”, Journal of Biomedical Materials Research, Vol. 25, pp. 1259-1274 (1991); Hubbell, J. A., “Pharmacologic Modification of Materials”, Cardiovascular Pathology, Vol. 2, No. 3 (Suppl.), 121 S-127S (1993); Gravlee, G. P., “Heparin-Coated Cardiopulmonary Bypass Circuits”, Journal of Cardiothoracic and Vascular Anesthesia, Vol. 8, No. 2, pp. 213-222 (1994).
  • [0009]
    Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. To effect a controlled delivery of an active agent in stent based therapy, the stent can be coated with a biocompatible polymeric coating. The biocompatible polymeric coating can function either as a permeable layer or a carrier to allow a controlled delivery of the agent. A continuing challenge in the art of implantable stents is to provide a coating that possesses good biobeneficial properties, which refer to good biocompatibilities in both the acute and chronic timeframes.
  • [0010]
    Generally, a polymer forming a coating composition for an implantable device has to be at least biologically benign. Additionally, the polymer could have a therapeutic effect either additively or synergistically with the bioactive agent. The polymer is preferably biocompatible. To provide for a coating that is biologically benign, various compositions have been used with limited success. For example, coating compositions containing poly(ethylene glycol) have been described (see, for example, U.S. Pat. No. 6,099,562). One of the needs in the art is to provide for a coating that has favorable long term biological properties.
  • [0011]
    Phosphoryl choline (PC) has a zwitterionic functionality that mimics the outer blood-contacting surface of the lipid bilayer structure in blood corpuscles. PC possesses numerous biobeneficial properties such as hemocompatibility, non-thrombogenicity, arterial tissue acceptance and long-term in vivo stability. PC has been used to increase biocompatibility of polymers, especially that of acrylic copolymers.
  • [0012]
    The polymer and methods of making the polymer disclosed herein address the above described problems.
  • SUMMARY OF THE INVENTION
  • [0013]
    Provided herein is a biocompatible polymer comprising choline or phospholipid moieties and a biodegradable or nondegradable polymeric backbone. The phospholipid moieties can be any synthetic and/or natural phospholipids. In one embodiment, the phospholipids include phosphoryl choline, phosphoryl serine, phosphoryl inositol, di-phosphoryl glycerol, zwitterionic phosphoryl ethanolamine, and combinations thereof.
  • [0014]
    In another embodiment, the nondegradable polymer can be a polymer that comprises any of the following monomers, e.g., methylmethacrylate (MMA), ethylmethacrylate (EMA), butylmethacrylate (BMA), 2-ethylhexylmethacrylate, laurylmethacrylate (LMA), hydroxylethyl methacrylate (HEMA), PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), methacrylic acid (MA), acrylic acid (AA), hydroxypropyl methacrylate (HPMA), hydroxypropyl methacrylamide, 3-trimethylsilylpropyl methacrylate (TMSPMA), and combinations thereof. The non-degradable polymer can be, for example, any of ethylene vinyl alcohol copolymer (EVOH), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, polyvinyl chloride, polyvinyl ethers, polyvinyl methyl ether, polyvinylidene halides, polyvinylidene fluoride, polyvinylidene chloride, polyfluoroalkenes, polyperfluoroalkenes, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, polystyrene, polyvinyl esters, polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactam, alkyd resins, polyoxymethylenes; polyimides; polyethers, epoxy resins, rayon, rayon-triacetate, and combinations thereof. In another embodiment environmentally sensitive polymers such as temperature sensitive N-isopropyl acrylamide (NIPAAm), pH sensitive polymer dimethyl aminoethyl methacrylate (DMAEM) can be copolymerized with the above PC moieties.
  • [0015]
    In a further embodiment, the biocompatible polymer can be any biodegradable polymer that comprises any of the following monomers, e.g., glycolide, lactide, butyrolactone, caprolactone, hydroxyalkanoate, 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxyhexanoate, and combinations thereof. The biodegradable polymers can be, for example, any of polyesters, polyhydroxyalkanoates (PHAs), poly(α-hydroxyacids), poly(β-hydroxyacid) such as poly(3-hydroxybutyrate) (PHB); poly(3-hydroxybutyrate-co-valerate) (PHBV), poly(3-hydroxyproprionate) (PHP), poly(3-hydroxyhexanoate) (PHH), or poly(4-hydroxyacids), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(hydroxyvalerate, poly(ester amides) that may optionally contain alkyl; amino acid; PEG and/or alcohol groups, polycaprolactone, polylactide, polyglycolide, poly(lactide-co-glycolide), polydioxanone (PDS), polyorthoester, polyanhydride, poly(glycolic acid-co-trimethylene carbonate), polyphosphoester polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), poly(tyrosine carbonates), polycarbonates, poly(tyrosine arylates), polyurethanes, copoly(ether-esters), polyalkylene oxalates, polyphosphazenes, PHA-PEG, and combinations thereof.
  • [0016]
    In still further embodiment of the present invention, the biocompatible polymer may further comprise a biobeneficial moiety such as a non-fouling moiety, an anti-thrombogenic moiety, or a combination thereof. Representative non-fouling moieties are PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof. Representative anti-thrombogenic moieties are heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof. Various forms of heparin can be used. For example, heparin can be attached to the polymer via a PEG spacer.
  • [0017]
    The biocompatible polymer described herein can be used alone or in combination with one or more polymers and/or biobeneficial materials, and optionally a bioactive agent. Representative biobeneficial materials include non-fouling materials such as PEG and polyalkene oxides and anti-thrombogenic materials such as heparin. Representative bioactive agents include, but are not limited to, proteins, peptides, anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, cytostatic agents, prodrugs, co-drugs, and a combination thereof, for example, ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs, co-drugs, and a combination thereof.
  • [0018]
    The polymeric compositions described herein can be used to form a coating on an implantable device such as a drug-eluting device (DES). The implantable device can be used for the treatment of a disorder in a human being by implanting in the human being an implantable device as described herein. Such a disorder includes, e.g., atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
  • DETAILED DESCRIPTION Coating Composition Comprising at Least a Phospholipid
  • [0019]
    Provided herein is a biocompatible polymer having a biodegradable or nondegradable polymeric backbone that comprises at least one phospholipid or choline moiety and a degradable or nondegradable polymer. The polymeric backbone can be degradable or nondegradable formed of any biocompatible polymer. Optionally, the polymeric backbone is capable of degrading into components that are pharmacologically active and therapeutic to the process of restenosis or sub-acute thrombosis such as PolyAspirin™. The phospholipid includes, for example, phosphoryl choline, phosphoryl serine, phosphoryl inositol, di-phosphoryl glycerol, zwitterionic phosphoryl ethanolamine, etc, and combinations thereof. The biocompatible polymer can be used to form a coating on an implantable device such as a drug-eluting stent. The coating may optionally include one or more bioactive agents and/or a non-fouling polymer, an anti-thrombogenic polymer, or a combination thereof.
  • Copolymers Comprising Phospholipid Moieties
  • [0020]
    In accordance with one aspect of the present invention, it is disclosed herein a copolymer comprising a biocompatible polymer moiety and a phospholipid. The biocompatible polymer can be a biodegradable polymer or a non-degradable polymer. The phospholipids can be any synthetic or natural phospholipids.
  • Biocompatible Polymers
  • [0021]
    In one embodiment, the biocompatible polymer useful for making the copolymer comprising a phospholipid moiety is a biodegradable polymer, which can be any biodegradable polymer known in the art. Representative biodegradable polymers include, but are not limited to, polyesters, polyhydroxyalkanoates (PHAs), poly(ester amides) that may optionally contain alkyl; amino acid; PEG and/or alcohol groups, polycaprolactone, poly(L-lactide), poly(D,L-lactide), poly(D,L-lactide-co-PEG) block copolymers, poly(D,L-lactide-co-trimethylene carbonate), polyglycolide, poly(lactide-co-glycolide), polydioxanone (PDS), polyorthoester, polyanhydride, poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polycarbonates, polyurethanes, copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes, PHA-PEG, and combinations thereof. The PHA may include poly(α-hydroxyacids), poly(β-hydroxyacid) such as poly(3-hydroxybutyrate) (PHB); poly(3-hydroxybutyrate-co-valerate) (PHBV); poly(3-hydroxyproprionate) (PHP); poly(3-hydroxyhexanoate) (PHH), or poly(4-hydroxyacid) such as poly poly(4-hydroxybutyrate); poly(4-hydroxyvalerate); poly(4-hydroxyhexanoate), poly(hydroxyvalerate), poly(tyrosine carbonates), poly(tyrosine arylates).
  • [0022]
    In another embodiment, the biocompatible polymer useful as moiety of the copolymer comprising phospholipid moieties is a non-degradable polymer. Representative biocompatible, non-degradable polymers include, but are not limited to, ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, styrene-isobutyl-styrene triblock copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, poly(vinyldifluoride-co-hexafluoropropane), poly(chlorotrifluoroethylene-co-hexafluoropropane), polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyfluoroalkenes, polyperfluoroalkenes, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactam, alkyd resins, polyoxymethylenes; polyimides; polyethers, epoxy resins, rayon, rayon-triacetate, polyurethanes, silk, silk-elasitn, polyphosphazenes and combinations thereof.
  • [0023]
    In a further embodiment, the copolymer described herein comprises one or more of the following hydrophobic monomers: methylmethacrylate (MMA), ethylmethacrylate (EMA), butylmethacrylate (BMA), 2-ethylhexylmethacrylate, laurylmethacrylate (LMA), or combinations thereof. By varying the copolymer's content of the hydrophobic monomers, mechanical properties such as elongation at break and toughness can be modulated. For example, a monomer having a relatively long side chain would enhance the flexibility of a coating comprising the copolymer. In contrast, a monomer having a relatively short side chain would enhance the rigidity and toughness of a coating comprising the copolymer.
  • [0024]
    In a further embodiment, the copolymer described herein comprises one or more of the following hydrophilic monomers: non-fouling monomers such as hydroxylethyl methacrylate (HEMA), PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), hydroxyl bearing monomers such as HEMA, hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, 3-trimethylsilylpropyl methacrylate (TMSPMA), and combinations thereof. The carboxylic acid bearing monomers or hydroxyl bearing monomers can be used to crosslink the copolymer once it is applied to the substrate to coat. This will hinder a very hydrophilic coating from dissolving away.
  • Phospholipids
  • [0025]
    In one embodiment, the phospholipids useful for making a copolymer with a biocompatible polymer can be neutral, positively charged or negatively charged synthetic phospholipids. Representative useful synthetic phospholipids include, but are not limited to, semi-synthetic phosphoryl choline such as cardiolipin or sphingosine.
  • [0026]
    In another embodiment, the phospholipids useful for making a copolymer with a biocompatible polymer can be neutral, positively charged or negatively charged natural phospholipids. Representative useful natural phospolipids include, but are not limited to, phosphoryl choline, phosphoryl serine, phosphoryl inositol, di-phosphoryl glycerol, or zwitterionic phosphoryl ethanolamine, and combinations thereof.
  • [0027]
    In a further embodiment, the phospholipid useful for making a copolymer with a biocompatible polymer can be phosphoryl choline. Phosphoryl choline (PC) is a zwitterionic functionality that mimics the outer surface of a lipid bilayer. It has good hemocompatibility, non-thrombogenicity, arterial tissue acceptance and long-term in-vivo stability. It has been used to increase the biocompatibility of polymers, especially of acrylic copolymers.
  • Methods of Making Copolymers Comprising Phospholipids
  • [0028]
    The copolymer described herein can be synthesized by introducing the phospholipids moiety into a polymer. The phospholipid moieties can be introduced into the polymer via a reactive functionality, which can be, for example, hydroxyl groups, amino groups, halo groups, carboxyl groups, thiol groups, aldehyde, N-hydroxysuccinimide (NHS). Alternatively, a phospholipid moiety can be introduced into a monomer such as an oxirane. Polymerization of the monomer can generate a polymer bearing phospholipids moieties.
  • [0029]
    In one embodiment, a monomer bearing a protected hydroxyl functionality can be copolymerized with an oxirane, for example lactide or caprolactone, etc., or incorporated into a polymer such as a polyester amide backbone. The hydroxyl functionality then can be deprotected and subsequently converted to a phospholipid functionality, for example, a PC functionality. The protective group can be the any of the ones that are easily removable and thus would not interfere with the polymerization.
  • [0030]
    The synthesis of polymerizable monomers bearing protected hydroxyl groups is illustrated in Schemes 1 and 2. Scheme 1 illustrates an exemplary method of introducing a PC functionality into a polymerizable monomer via the synthesis of a benzyl ester protected hydroxyl functional caprolactone. Cyclohexane-1,4-diol can be oxidized by an oxidizing agent, for example a mixture of NaBrO3 and (NH4)2Ce(NO3)6, to form 4-hydroxyl-cyclohexanone. The hydroxyl group can be protected using a protective agent such as benzyl bromide to protect the hydroxyl group, forming, for example, 4-benzoxycyclohexanone, which can react with a peroxyacid such as 4-chlorobenzoic peroxyacid to form a caprolactone bearing a benzyl group protected hydroxyl functionality. Other useful protective groups include, for example, tert-butyldimethylsilyl (TBDMS), N-tert-butoxycarbonate (t-BOC), and N(9-fluorenylmethoxycarbonyl) (FMOC).
  • [0031]
    Scheme 2 illustrates another embodiment of the method described herein. A protected hydroxyl aldehyde such as benzoxyacetaldehyde can undergo cyclization with a halo acyl compound such as acetyl bromide in the presence of a catalyst such as AlCl3/AgSbF6 (in the presence of a base such as (DIEA) diisopropylethylamine to form a butyrolactone such as β-benzoxymethylbutyrolactone.
  • [0032]
    Monomers bearing a protected reactive functionality can undergo polymerization alone or copolymerization with other comonomers to form polymers or copolymers bearing protected functionalities. For example, the substituted ε-caprolactone and β-butyrolactone can be copolymerized with glycolide, lactide, or an oxirane such as butyrolactone, valerolactone, or caprolactone to form a polymer or copolymer with different compositions. In one embodiment, a benzyl protected caprolactone can polymerize in the presence of a catalyst such as dioctylstannane (Sn(Oct)2) to yield a polycaprolactone with benzyl protected hydroxyl groups. The benzyl groups can be cleaved off under acidic conditions to generate free hydroxyl groups (Scheme 3).
  • [0033]
    In another embodiment, any suitable compound having three hydroxyl groups can be protected with a protective group such as a benzyl group. The remaining two free hydroxyl groups can react with an amino acid and be subsequently incorporated into a poly(ester amide) backbone (Scheme 4). Alternatively, a molecule with two amine groups and one hydroxyl group can be used to incorporate a protected hydroxyl group into the poly(ester amide) backbone (Scheme 4). The protective group can then be removed as described above to generate free hydroxyl groups.
  • [0034]
    The phospholipid moieties can be readily introduced into the polymer via the reactive functional groups by simple coupling of the phospholipids moieties with the functional group, with or without a linkage. Representative linkages can be hydroxyl, amino, carboxyl, thiol, or other groups with or without a spacer such as poly(ethylene glycol), etc. Alternatively the phospholipid moieties can be synthesized in situ via standard organic reactions (see embodiment below).
  • [0035]
    In one embodiment, the PC functionalities can be introduced into a polymer bearing hydroxyl groups according to Scheme 5. The polymer, which has a repeating unit designated as
    is allowed to react with an agent such as ethylene chlorophosphate to form a ethylene phosphate derivative of the polymer. The ethylene phosphate functionality can react with an amine such as trimethylamine at a temperature such as about 60░ C. to generate the PC functionality (Scheme 5).
  • [0036]
    Monomers bearing a phospholipid moiety can polymerize alone or with other comonomers, with or without phospholipid moieties, by means known in the art e.g., catalytic polymerization, chemical reaction, or free radical polymerization, to form respective polymers bearing phospholipid moieties. For example, MPC, an olefinic monomer bearing a phosphoryl choline functionality, can readily polymerize, alone or with one or more other comonomers, by free radical polymerization to form a polymer bearing phosphoryl choline moieties.
  • Biobeneficial Polymers
  • [0037]
    In another aspect of the present invention, the composition described herein may include one or more biobeneficial polymers including non-fouling polymers and anti-thrombogenic agents. Various non-fouling polymers are known in the art. Exemplary non-fouling polymers include PEG, polyalkene oxides, hydroxyethylmethacrylate (HEMA), poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, and combinations thereof. Representative anti-thrombogenic moieties are heparin, salicylate (aspirin), hirudin, flavonoids, NO donor, thrombomodulin, Atrial natriuretic peptide (ANP), and combinations thereof. The non-fouling polymer can be used together with the polymers comprising phospholipid moieties as a blend or can be incorporated into the backbone of the polymers comprising phospholipid moieties.
  • [0038]
    In one embodiment, the non-fouling polymer is PEG. PEG is commonly used as a non-fouling surface material in biomedical applications. PEG is water-soluble and must be covalently attached to a hydrophobic backbone or to a crosslinked polymer to yield long-term benefits. PEG can readily be incorporated into the backbone of any of the copolymers by, for example, coupling the hydroxyl, amino, or carboxylic acid terminated PEG with the pendant functional groups such as carboxylic acids or hydroxyls in the backbone of the copolymer by a linking agent such as carbodiimide chemistry (1,3-dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and other Mitsunobu reagents). The PEG useful for coupling with the hydrophobic backbone of the phospholipid containing polymer has a molecular weight in the range between about 300 daltons and about 40,000 daltons.
  • [0039]
    In another embodiment, the biobeneficial polymer is heparin. Heparin is commonly used as an anti-thrombogenic agent. Heparin can be coupled via a spacer such as PEG to a polymer backbone containing functional groups such as carboxylic acids. In one embodiment, the coupling can be carried out using an aldehyde terminated heparin, which can be coupled to a PEG diamine where one amine is protected with a protective group such as t-BOC. Upon removal of the protective group, the second amine can be coupled to a carboxylic group on the polymer backbone using a linking agent such as 1,3-dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and other Mitsunobu reagents. In another embodiment, 2-(dimethylamino)ethyl methacrylate (DMAEMA) can also be incorporated into the backbone and used to ionically coordinate or conjugate with heparin.
  • [0040]
    In a further embodiment, PEG and heparin are both incorporated into the polymer comprising the phospholipid moieties. In one embodiment, a polymer having a methacrylate backbone can be made to contain 2-methacryloyloxyethylphosphorylcholine and 2-aminoethyl methacrylamide. Aldehyde terminated heparin, which is commercially available, can be coupled to the terminal amino group via reductive amination using sodium cyanoborohydride (Scheme 6).
    This heparin coupling can be done either before, or after, a topcoat, comprising a polymer having a methacrylate backbone that contains 2-methacryloyloxyethylphosphorylcholine and 2-aminoethyl methacrylamide, is placed onto an implantable device such as a DES. A topcoat comprising both the PEG and heparin and a phospholipid (for example, PC) containing polymer is non-fouling and anti-thrombogenic. If desirable, other non-fouling and/or anti-thrombogenic moieties can be incorporated into the topcoat.
  • Bioactive Agents
  • [0041]
    The bioactive agent can be any agent which is biologically active, for example, a therapeutic, prophylactic, or diagnostic agent. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Compounds with a wide range of molecular weight can be encapsulated, for example, between 100 and 500,000 or more grams per mole. Examples of suitable materials include proteins such as antibodies, receptor ligands, and enzymes, peptides such as adhesion peptides, saccharides and polysaccharides, synthetic organic or inorganic drugs, and nucleic acids. Examples of materials which can be encapsulated include enzymes, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator; antigens for immunization; hormones and growth factors; polysaccharides such as heparin; oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Representative diagnostic agents are agents detectable by x-ray, fluorescence, magnetic resonance imaging, radioactivity, ultrasound, computer tomagraphy (CT) and positron emission tomagraphy (PET). Ultrasound diagnostic agents are typically a gas such as air, oxygen or perfluorocarbons.
  • [0042]
    In the case of controlled release of agents, a wide range of different bioactive agents can be incorporated into a controlled release device. These include hydrophobic, hydrophilic, and high molecular weight macromolecules such as proteins. The bioactive compound can be incorporated into polymeric coating in a percent loading of between 0.01% and 70% by weight, more preferably between 5% and 50% by weight.
  • [0043]
    In one embodiment, the bioactive agent can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the bioactive agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The bioactive agent can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the bioactive agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site. Examples of active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL« by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere«, from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin« from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin« from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ń (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten« and Capozide« from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil« and Prinzide« from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor« from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, ABT-578, dexamethasone, clobetasol, paclitaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), tacrolimus, sirolimus, sirolimus derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs, co-drugs, and a combination thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
  • [0044]
    Useful bioactive agents also include prodrugs and co-drugs of the agents described herein.
  • [0045]
    The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the administered ingredient resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • Coating Constructs
  • [0046]
    The copolymers described herein can be used to form coating compositions for coating on an implantable device, for example, a drug-eluting stent (DES). The copolymer comprising at least one phospholipid moiety can be used alone or in combination with another polymer. For use as DES coatings, the composition can include a bioactive agent.
  • [0047]
    The coatings described herein can have various configurations. In one embodiment, the coating can be formed with the copolymer described herein alone or in combination with other polymers. Useful other polymers include the degradable and non-degradable biocompatible polymers described above. The copolymers described herein can be used to form a topcoat on DES on top of a drug reservoir coating that does not contain the copolymers comprising the PC moieties. For example, a DES can be made to have a coating that has a primer layer comprising a polymer such as poly(n-butyl methacrylate) (PBMA), a drug reservoir layer comprising a biocompatible, biodegradable or non-degradable polymer as described above with no phospholipid moieties such as ethylene vinyl alcohol (EVAL) or polyvinylidene fluoride (PVDF), and finally a topcoat with a copolymer described herein that comprises phospholipid moieties such as PC methacrylate. The topcoat may further comprise a polymer with no phospholipid moieties such as PBMA.
  • [0048]
    In another embodiment, the coating may comprise a copolymer comprising phospholipids moieties in all the layers of the coating. For example, a DES coating can be formed to have a primer layer that comprises about 1-5 wt % PBMA-PC, a layer of reservoir that comprises PBMA and about 1-20 wt % PBMA-PC, and a topcoat that comprises PBMA and 25-50 wt % PBMA-PC.
  • [0049]
    In another embodiment, the coating can be made to comprise layers having a copolymer that comprises phospholipid moieties in a concentration gradient in the various layers with a concentration of the copolymer that is higher in the topcoat, decreasing to the lowest concentration in the primer layer. For example, the copolymer can be PBMA-PC.
  • [0050]
    In a further embodiment, the coating construct can be made to release two or more drugs. In one embodiment, if desirable, the second drug can be blended into the matrix with the first drug such as ABT-578 or EVEROLIMUS such that the second drug can be released in the same time frame with the first drug. In another embodiment, if the second drug is hydrophilic and it is desirable to have a quick release of the second drug, it can be blended with the topcoat comprising phospholipid moieties such as PC moieties. Such hydrophilic drugs include peptides such as cyclic RGD, aspirin, nitric oxide donors, and stable nitroxides, etc. The second drug can also be swell-loaded into the applied topcoat. Additional drugs can be loaded onto the coat in the drug reservoir or topcoat.
  • Methods of Using the Coating Composition
  • [0051]
    The coating composition can be coated onto any implantable device by any established coating process, e.g., a spray process. Generally, the coating process involves dissolving or suspending the composition in a solvent to form a solution or a suspension of the coating composition, and then applying the solution or suspension to an implantable device such as a DES.
  • [0052]
    As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. A preferred implantable device is DES. Examples of stents include self-expandable stents, balloon-expandable stents, and stent-grafts. Other exemplary implantable devices include grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • EXAMPLES
  • [0053]
    The embodiments of the present invention will be illustrated by the following set forth examples. All parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.
  • Example 1 P(MPC-PEGA-BMA) Copolymer
  • [0054]
    The components, 2-methacryloyloxyethyl phosphorylcholine (MPC) butylmethacrylate (BMA), poly(ethylene glycol)acrylate (PEGA) (Mn=350 Da) and AIBN (α,α′-azobutyronitrile) were dissolved in ethanol at a molar ratio of (15:10:74:1). The reactants were maintained at 62░ C. for 24 h. The polymer was purified, by a double precipitation in methanol, to yield a white powder.
  • [0055]
    A first composition was prepared by mixing the following components:
      • (a) about 2 mass % poly(butyl methacrylate) (PBMA);
      • (b) dissolved in a mixture of acetone and cyclohexanone (30% and 70% respectively).
  • [0058]
    The first composition was applied onto the surface of a bare 12 mm VISION stent (available from Guidant Corporation) by spraying and dried to form a stent coating. A spray coater was used, having a 0.014 fan nozzle maintained at ambient temperature with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.3 atm (about 20 psi). About 20 μg of the wet coating was applied per pass. Between the passes, the coating was dried at about 50░ C. for about 10 seconds. Following the last pass, the coating was baked at about 50░ C. for about 1 hour, yielding a dry primer layer. The dry primer layer contained about 80 μg of PBMA.
  • [0059]
    A second composition was prepared by mixing the following components:
      • (a) about 2 mass % SOLEF; and
      • (b) about 0.7 mass % EVEROLIMUS; and
      • (c) the balance, a mixture of acetone and cyclohexanone (30% and 70% respectively.
  • [0063]
    The second composition was applied onto the dry primer layer using the same coating technique and conditions as for making the primer layer, yielding a dry reservoir layer. The dry reservoir layer contained about 430 μg of Solef and 150 μg of EVEROLIMUS. The total weight of the coating was about 580 μg.
  • [0064]
    A third composition was prepared by mixing the following components:
      • (a) about 2 mass % p(MPC-PEGA-BMA); and
      • (b) the balance, a mixture of acetone and dimethylformamide (50% and 50% respectively.
  • [0067]
    The third composition was applied onto the dry reservoir layer using the same coating technique and conditions as for making the primer layer, yielding a dry topcoat layer. The dry topcoat layer contained about 100 μg of p(MPC-PEGA-BMA).
  • [0068]
    16 stents were coated as described above. 8 stents were sterilized using electron beam sterilization at a dose of 25 KGy as known to those having ordinary skill in the art, and the other 8 stents were not sterilized.
  • Example 2 Hydroxyl Functional Caprolactone
  • [0069]
    A 100 g 1,4-hexanediol was dissolved in 1.4 L of a mixture of acetonitrile and water (7:3 by volume). A mixture of 45.4 g of sodium bromate and 16.5 g of ammonium cerium (IV) nitrate was slowly added. The reaction was maintained under reflux conditions for 90 min. Once acetonitrile was removed by rotary evaporation, the solution was diluted with 800 mL of water and continuously extracted with chloroform for 72 h. The organic solution was dried over magnesium sulfate. Finally chloroform was evaporated from the organic solution to yield 99.5 g of a colorless oil (4-hydroxycyclohexanone).
  • [0070]
    130 g of benzyl chloride were slowly added to a solution of 60 g of 4-hydroxycyclohexanone in 400 mL of triethylamine. The solution was left to react at 25 ░ C. for 2 h. After removal of the solvent, the product was purified by column chromatography to yield 100 g of a white powder 4-benzylestercyclohexanone.
  • [0071]
    To a solution of 20 g 3-chloroperoxybenzoic acid in 200 mL of chloroform was added a solution of 15 g of 4-benzylestercylohexanone in 100 mL of chloroform. The reaction proceeded at 25░ C. for 14 h. The solution was passed through Celite™, extracted with brine and water successively. The solution was dried over magnesium sulfate and the solvent evaporated. Finally, the product was re-crystallized from a solution of ethyl acetate:hexane (1:4) to yield 7 g of white powder, benzylester protected 4-hydroxylcaprolactone (p-CLOH).
  • [0072]
    50 mg of 1,6-hexandiol, 20 g of D,L lactide (DLL) monomer and 4 g of p-CLOH were dried by azeotropic distillation of toluene. The monomers were heated to 140░ C. to add stannous octoate (0.5 mol %) under a blanket of argon. The reaction was left to proceed at 160░ C. for 14 h. The resulting polymer poly(DLL-pCLOH) was dissolved in acetone, precipitated in methanol and dried under reduced pressure.
  • [0073]
    The benzyl protecting group was removed by dissolving 10 g of poly(DLL-pCLOH) in 100 ml of anhydrous ethyl acetate and adding 0.8 g of tin(IV) chloride under a blanket of argon. The reaction proceeded at 25░ C. for 90 min. The resulting polymer poly(DLL-CLOH) was precipitated in methanol and dried under reduced pressure.
  • [0074]
    To 4 g of poly(DLL-CLOH) dissolved in 20 mL of predried dichloromethane, was added 1.5 eq. of dry pyridine and was cooled to −5░ C. A solution of ethylene chlorophosphate (0.5 mg) in 5 mL of dry chloroform was added dropwise and reacted for 2 h at −5░ C. The resultant solution was allowed to reach 25░ C. and react for 4 more h. The resulting solution was diluted with 50 mL dichloromethane, and then extracted with distilled water and a 1 M solution of NaHCO3. The organic phase was dried with sodium sulfate and filtered to yield poly(DLL-CLP).
  • [0075]
    3 g of poly(DLL-CLP) were dissolved in 30 mL of dry acetonitrile and cooled to −10░ C. Approximately 300 μL of trimethylamine was condensed into the pressure vessel, which was then slowly heated to 60░ C. The solution was stirred for 45 h at this temperature. The resulting polymer, a copolymer of d,l-lactide and caprolactone bearing phosphorylcholine pendant groups (poly(DLL-CLPC)), was precipitated in methanol and dried under reduced pressure.
  • [0076]
    A first composition was prepared by mixing the following components:
      • (a) about 2 mass % poly(D,L lactide); was
      • (b) dissolved in a mixture of acetone and cyclohexanone (75% and 25% respectively).
  • [0079]
    The first composition was applied onto the surface of a bare 12 mm VISION stent (available from Guidant Corporation) by spraying and dried to form a stent coating. A spray coater was used, having a 0.014 fan nozzle maintained at ambient temperature with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.3 atm (about 20 psi). About 20 μg of the wet coating was applied per pass. Between the passes, the coating was dried at about 50░ C. for about 10 seconds. Following the last pass, the coating was baked at about 50░ C. for about 1 hour, yielding a dry reservoir layer. The dry primer layer contained about 75 μg of poly(D,L lactide).
  • [0080]
    A second composition was prepared by mixing the following components:
      • (a) about 2 mass % poly(D,L lactide); and
      • (b) about 0.7 mass % EVEROLIMUS; and
      • (c) the balance, a mixture of acetone and cyclohexanone (75% and 25% respectively.
  • [0084]
    The second composition was applied onto the dry primer layer using the same coating technique and conditions as for making the primer layer, yielding a dry reservoir layer. The dry reservoir layer contained about 200 μg of poly(D,L-lactide) and 100 μg of EVEROLIMUS.
  • [0085]
    A third composition was prepared by mixing the following components:
      • (a) about 2 mass % p(DLL-CLPC); and
      • (b) the balance, a mixture of acetone and cyclohexanone (75% and 25% respectively.
  • [0088]
    The third composition was applied onto the dry reservoir layer using the same coating technique and conditions as for making the primer layer, yielding a dry topcoat layer. The dry topcoat layer contained about 80 μg of p(DLL-CLPC).
  • [0089]
    16 stents were coated as described above. 8 stents were sterilized using electron beam sterilization method at a dose of 25 KGy as known to those having ordinary skill in the art, and the other 8 stents were not sterilized.
  • [0090]
    While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4329383 *Jul 21, 1980May 11, 1982Nippon Zeon Co., Ltd.Non-thrombogenic material comprising substrate which has been reacted with heparin
US4733665 *Nov 7, 1985Mar 29, 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882 *Mar 13, 1987Jan 31, 1989Cook IncorporatedEndovascular stent and delivery system
US4916193 *Aug 1, 1988Apr 10, 1990Allied-Signal Inc.Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US4994071 *May 22, 1989Feb 19, 1991Cordis CorporationBifurcating stent apparatus and method
US5092877 *Jul 5, 1990Mar 3, 1992Corvita CorporationRadially expandable endoprosthesis
US5112457 *Jul 23, 1990May 12, 1992Case Western Reserve UniversityProcess for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5182317 *Jun 17, 1991Jan 26, 1993Cardiopulmonics, Inc.Multifunctional thrombo-resistant coatings and methods of manufacture
US5292516 *Nov 8, 1991Mar 8, 1994Mediventures, Inc.Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260 *Jun 9, 1992Mar 29, 1994Mediventures, Inc.Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5300295 *Sep 13, 1991Apr 5, 1994Mediventures, Inc.Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5302385 *Aug 20, 1990Apr 12, 1994Becton, Dickinson And CompanyPolyurethane-polyvinylpyrrolidone block copolymer and iodine carrier therefrom
US5304121 *Nov 22, 1991Apr 19, 1994Boston Scientific CorporationDrug delivery system making use of a hydrogel polymer coating
US5306501 *Nov 8, 1991Apr 26, 1994Mediventures, Inc.Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5380299 *Aug 30, 1993Jan 10, 1995Med Institute, Inc.Thrombolytic treated intravascular medical device
US5417981 *Apr 28, 1993May 23, 1995Terumo Kabushiki KaishaThermoplastic polymer composition and medical devices made of the same
US5605696 *Mar 30, 1995Feb 25, 1997Advanced Cardiovascular Systems, Inc.Drug loaded polymeric material and method of manufacture
US5609629 *Jun 7, 1995Mar 11, 1997Med Institute, Inc.Coated implantable medical device
US5624411 *Jun 7, 1995Apr 29, 1997Medtronic, Inc.Intravascular stent and method
US5628730 *Jul 18, 1994May 13, 1997Cortrak Medical, Inc.Phoretic balloon catheter with hydrogel coating
US5716981 *Jun 7, 1995Feb 10, 1998Angiogenesis Technologies, Inc.Anti-angiogenic compositions and methods of use
US5735897 *Jan 2, 1997Apr 7, 1998Scimed Life Systems, Inc.Intravascular stent pump
US5746998 *Aug 8, 1996May 5, 1998The General Hospital CorporationTargeted co-polymers for radiographic imaging
US5858746 *Jan 25, 1995Jan 12, 1999Board Of Regents, The University Of Texas SystemGels for encapsulation of biological materials
US5865814 *Aug 6, 1997Feb 2, 1999Medtronic, Inc.Blood contacting medical device and method
US5869127 *Jun 18, 1997Feb 9, 1999Boston Scientific CorporationMethod of providing a substrate with a bio-active/biocompatible coating
US5873904 *Feb 24, 1997Feb 23, 1999Cook IncorporatedSilver implantable medical device
US5876433 *May 29, 1996Mar 2, 1999Ethicon, Inc.Stent and method of varying amounts of heparin coated thereon to control treatment
US5877224 *Jul 28, 1995Mar 2, 1999Rutgers, The State University Of New JerseyPolymeric drug formulations
US6010530 *Feb 18, 1998Jan 4, 2000Boston Scientific Technology, Inc.Self-expanding endoluminal prosthesis
US6015541 *Nov 3, 1997Jan 18, 2000Micro Therapeutics, Inc.Radioactive embolizing compositions
US6033582 *Jan 16, 1998Mar 7, 2000Etex CorporationSurface modification of medical implants
US6042875 *Mar 2, 1999Mar 28, 2000Schneider (Usa) Inc.Drug-releasing coatings for medical devices
US6051576 *Jan 29, 1997Apr 18, 2000University Of Kentucky Research FoundationMeans to achieve sustained release of synergistic drugs by conjugation
US6051648 *Jan 13, 1999Apr 18, 2000Cohesion Technologies, Inc.Crosslinked polymer compositions and methods for their use
US6056993 *Apr 17, 1998May 2, 2000Schneider (Usa) Inc.Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6060451 *Mar 20, 1995May 9, 2000The National Research Council Of CanadaThrombin inhibitors based on the amino acid sequence of hirudin
US6060518 *Aug 16, 1996May 9, 2000Supratek Pharma Inc.Polymer compositions for chemotherapy and methods of treatment using the same
US6203551 *Oct 4, 1999Mar 20, 2001Advanced Cardiovascular Systems, Inc.Chamber for applying therapeutic substances to an implant device
US6231600 *May 26, 1999May 15, 2001Scimed Life Systems, Inc.Stents with hybrid coating for medical devices
US6335029 *Dec 3, 1998Jan 1, 2002Scimed Life Systems, Inc.Polymeric coatings for controlled delivery of active agents
US6346110 *Jan 3, 2001Feb 12, 2002Advanced Cardiovascular Systems, Inc.Chamber for applying therapeutic substances to an implantable device
US6358556 *Jan 23, 1998Mar 19, 2002Boston Scientific CorporationDrug release stent coating
US6379381 *Sep 3, 1999Apr 30, 2002Advanced Cardiovascular Systems, Inc.Porous prosthesis and a method of depositing substances into the pores
US6383215 *Apr 20, 2001May 7, 2002Norbert SassMethod and intravascular stent for reducing complications after implantation of an intravascular stent
US6395326 *May 31, 2000May 28, 2002Advanced Cardiovascular Systems, Inc.Apparatus and method for depositing a coating onto a surface of a prosthesis
US6503538 *Aug 30, 2000Jan 7, 2003Cornell Research Foundation, Inc.Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6503556 *Dec 28, 2000Jan 7, 2003Advanced Cardiovascular Systems, Inc.Methods of forming a coating for a prosthesis
US6503954 *Jul 21, 2000Jan 7, 2003Advanced Cardiovascular Systems, Inc.Biocompatible carrier containing actinomycin D and a method of forming the same
US6506437 *Oct 17, 2000Jan 14, 2003Advanced Cardiovascular Systems, Inc.Methods of coating an implantable device having depots formed in a surface thereof
US6527801 *Apr 13, 2000Mar 4, 2003Advanced Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US6527863 *Jun 29, 2001Mar 4, 2003Advanced Cardiovascular Systems, Inc.Support device for a stent and a method of using the same to coat a stent
US6540776 *Dec 28, 2000Apr 1, 2003Advanced Cardiovascular Systems, Inc.Sheath for a prosthesis and methods of forming the same
US6544223 *Jan 5, 2001Apr 8, 2003Advanced Cardiovascular Systems, Inc.Balloon catheter for delivering therapeutic agents
US6544543 *Dec 27, 2000Apr 8, 2003Advanced Cardiovascular Systems, Inc.Periodic constriction of vessels to treat ischemic tissue
US6544582 *Jan 5, 2001Apr 8, 2003Advanced Cardiovascular Systems, Inc.Method and apparatus for coating an implantable device
US6555157 *Jul 25, 2000Apr 29, 2003Advanced Cardiovascular Systems, Inc.Method for coating an implantable device and system for performing the method
US6558733 *Oct 26, 2000May 6, 2003Advanced Cardiovascular Systems, Inc.Method for etching a micropatterned microdepot prosthesis
US6565659 *Jun 28, 2001May 20, 2003Advanced Cardiovascular Systems, Inc.Stent mounting assembly and a method of using the same to coat a stent
US6673154 *Jun 28, 2001Jan 6, 2004Advanced Cardiovascular Systems, Inc.Stent mounting device to coat a stent
US6703040 *Jan 11, 2001Mar 9, 2004Intralytix, Inc.Polymer blends as biodegradable matrices for preparing biocomposites
US6712845 *Apr 24, 2001Mar 30, 2004Advanced Cardiovascular Systems, Inc.Coating for a stent and a method of forming the same
US7005137 *Jun 21, 2002Feb 28, 2006Advanceed Cardiovascular Systems, Inc.Coating for implantable medical devices
US7022334 *Mar 20, 2002Apr 4, 2006Advanced Cardiovascular Systems, Inc.Therapeutic composition and a method of coating implantable medical devices
US7166680 *Oct 6, 2004Jan 23, 2007Advanced Cardiovascular Systems, Inc.Blends of poly(ester amide) polymers
US7169178 *Nov 12, 2002Jan 30, 2007Advanced Cardiovascular Systems, Inc.Stent with drug coating
US7175874 *Nov 30, 2001Feb 13, 2007Advanced Cardiovascular Systems, Inc.Apparatus and method for coating implantable devices
US7201935 *Sep 17, 2002Apr 10, 2007Advanced Cardiovascular Systems, Inc.Plasma-generated coatings for medical devices and methods for fabricating thereof
US7202325 *Jan 14, 2005Apr 10, 2007Advanced Cardiovascular Systems, Inc.Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
US7323209 *May 15, 2003Jan 29, 2008Advanced Cardiovascular Systems, Inc.Apparatus and method for coating stents
US7329413 *Nov 6, 2003Feb 12, 2008Advanced Cardiovascular Systems, Inc.Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
US7335265 *Oct 8, 2002Feb 26, 2008Advanced Cardiovascular Systems Inc.Apparatus and method for coating stents
US7335391 *Dec 5, 2003Feb 26, 2008Advanced Cardiovascular Systems, Inc.Method for coating implantable devices
US7341630 *Jun 26, 2003Mar 11, 2008Advanced Cardiovascular Systems, Inc.Stent coating system
US7354480 *Feb 26, 2003Apr 8, 2008Advanced Cardiovascular Systems, Inc.Stent mandrel fixture and system for reducing coating defects
US7481835 *Oct 29, 2004Jan 27, 2009Advanced Cardiovascular Systems, Inc.Encapsulated covered stent
US7504125 *Dec 28, 2001Mar 17, 2009Advanced Cardiovascular Systems, Inc.System and method for coating implantable devices
US7645504 *Jun 26, 2003Jan 12, 2010Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices comprising hydrophobic and hydrophilic polymers
US20030021762 *Jun 25, 2002Jan 30, 2003Luthra Ajay K.Polysaccharide biomaterials and methods of use thereof
US20030073961 *Sep 28, 2001Apr 17, 2003Happ Dorrie M.Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030082368 *Dec 7, 2000May 1, 2003Hardy ReuterCoating that contains a colloidally dispersed metallic bismuth
US20040047980 *Sep 8, 2003Mar 11, 2004Pacetti Stephen D.Method of forming a diffusion barrier layer for implantable devices
US20040052858 *Sep 15, 2003Mar 18, 2004Wu Steven Z.Microparticle coated medical device
US20040054104 *Sep 5, 2002Mar 18, 2004Pacetti Stephen D.Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040060508 *Sep 12, 2003Apr 1, 2004Pacetti Stephen D.Stent mounting device
US20040062853 *Oct 2, 2003Apr 1, 2004Pacetti Stephen D.Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US20040063805 *Sep 19, 2002Apr 1, 2004Pacetti Stephen D.Coatings for implantable medical devices and methods for fabrication thereof
US20040071861 *Oct 2, 2003Apr 15, 2004Evgenia MandrusovMethod of manufacturing a stent coating and a method of using the stent
US20040072922 *Oct 9, 2002Apr 15, 2004Hossainy Syed F.A.Rate limiting barriers for implantable medical devices
US20040073298 *Oct 8, 2003Apr 15, 2004Hossainy Syed Faiyaz AhmedCoating for a stent and a method of forming the same
US20050021127 *Jul 21, 2003Jan 27, 2005Kawula Paul JohnPorous glass fused onto stent for drug retention
US20050025799 *Jul 30, 2003Feb 3, 2005Hossainy Syed F. A.Biologically absorbable coatings for implantable devices and methods for fabricating the same
US20050032826 *Aug 6, 2004Feb 10, 2005Mollison Karl W.Medical devices containing rapamycin analogs
US20050074544 *Oct 7, 2003Apr 7, 2005Pacetti Stephen D.System and method for coating a tubular implantable medical device
US20060002968 *Jun 30, 2004Jan 5, 2006Gordon StewartAnti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US20060034888 *Jul 30, 2004Feb 16, 2006Advanced Cardiovascular Systems, Inc.Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US20060043650 *Aug 26, 2004Mar 2, 2006Hossainy Syed FMethods for manufacturing a coated stent-balloon assembly
US20060062824 *Sep 22, 2004Mar 23, 2006Advanced Cardiovascular Systems, Inc.Medicated coatings for implantable medical devices including polyacrylates
US20060089485 *Oct 27, 2004Apr 27, 2006Desnoyer Jessica REnd-capped poly(ester amide) copolymers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7202325 *Jan 14, 2005Apr 10, 2007Advanced Cardiovascular Systems, Inc.Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
US7666973Jul 30, 2007Feb 23, 2010Tyco Healthcare Group LpCarbonate copolymers
US7772359Sep 9, 2008Aug 10, 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7786249Sep 9, 2008Aug 31, 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7906134Dec 21, 2005Mar 15, 2011Abbott LaboratoriesRoom temperature-curable polymers
US7927620 *May 15, 2007Apr 19, 2011Boston Scientific Scimed, Inc.Medical devices having antifouling character
US8057816Oct 12, 2006Nov 15, 2011Abbott LaboratoriesCompositions and methods of administering paclitaxel with other drugs using medical devices
US8088580 *Jun 1, 2007Jan 3, 2012Sumitomo Bakelite Company, Ltd.RNA detection method
US8092822Jan 10, 2012Abbott Cardiovascular Systems Inc.Coatings including dexamethasone derivatives and analogs and olimus drugs
US8133553Jun 18, 2007Mar 13, 2012Zimmer, Inc.Process for forming a ceramic layer
US8183337May 22, 2012Abbott Cardiovascular Systems Inc.Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices
US8257726Sep 4, 2012Abbott LaboratoriesCompositions, systems, kits, and methods of administering rapamycin analogs with paclitaxel using medical devices
US8268958Mar 30, 2011Sep 18, 2012Tyco Healthcare Group IpPhospholipid copolymers
US8293318Oct 23, 2012Abbott Cardiovascular Systems Inc.Methods for modulating the release rate of a drug-coated stent
US8309521Jun 19, 2007Nov 13, 2012Zimmer, Inc.Spacer with a coating thereon for use with an implant device
US8323676Jun 30, 2008Dec 4, 2012Abbott Cardiovascular Systems Inc.Poly(ester-amide) and poly(amide) coatings for implantable medical devices for controlled release of a protein or peptide and a hydrophobic drug
US8431665Feb 23, 2010Apr 30, 2013Abbott Cardiovascular Systems Inc.Zwitterionic terpolymers, method of making and use on medical devices
US8465758May 4, 2010Jun 18, 2013Abbott LaboratoriesDrug delivery from stents
US8475822Feb 2, 2011Jul 2, 2013Abbott LaboratoriesRoom temperature-curable polymers
US8562669Jun 26, 2008Oct 22, 2013Abbott Cardiovascular Systems Inc.Methods of application of coatings composed of hydrophobic, high glass transition polymers with tunable drug release rates
US8575229 *Nov 7, 2008Nov 5, 2013Hyung Il KimBioabsorbable blend for temporary scaffolding of the blood vessel wall
US8591936 *Jun 24, 2011Nov 26, 2013Abbott Cardiovascular Systems Inc.Coating designs with a differentially permeable topcoat for the tailored release of dual drugs
US8597673 *Dec 13, 2006Dec 3, 2013Advanced Cardiovascular Systems, Inc.Coating of fast absorption or dissolution
US8602290Apr 22, 2011Dec 10, 2013Zimmer, Inc.Method for bonding a tantalum structure to a cobalt-alloy substrate
US8608049Oct 10, 2007Dec 17, 2013Zimmer, Inc.Method for bonding a tantalum structure to a cobalt-alloy substrate
US8637111Sep 6, 2012Jan 28, 2014Abbott Cardiovascular Systems Inc.Methods for modulating the release rate of a drug-coated stent
US8663337Mar 6, 2012Mar 4, 2014Zimmer, Inc.Process for forming a ceramic layer
US8668919Mar 3, 2009Mar 11, 2014Abbott Cardiovascular Systems Inc.Polymer for creating hemocompatible surface
US8679519Oct 23, 2007Mar 25, 2014Abbott Cardiovascular Systems Inc.Coating designs for the tailored release of dual drugs from polymeric coatings
US8685430 *Jul 13, 2007Apr 1, 2014Abbott Cardiovascular Systems Inc.Tailored aliphatic polyesters for stent coatings
US8722826Apr 15, 2013May 13, 2014Abbott Cardiovascular Systems Inc.Zwitterionic terpolymers, method of making and use on medical devices
US8753659May 20, 2013Jun 17, 2014Abbott LaboratoriesDrug delivery from stents
US8765162Jun 30, 2008Jul 1, 2014Abbott Cardiovascular Systems Inc.Poly(amide) and poly(ester-amide) polymers and drug delivery particles and coatings containing same
US8772368 *Sep 11, 2013Jul 8, 2014Hyung Il KimBioabsorbable blend for temporary scaffolding of the blood vessel wall
US8871238 *Aug 9, 2006Oct 28, 2014Medtronic Vascular, Inc.Medical devices and coatings therefore comprising biodegradable polymers with enhanced functionality
US8900619 *Jul 11, 2007Dec 2, 2014Boston Scientific Scimed, Inc.Medical devices for the release of therapeutic agents
US9011831Sep 30, 2004Apr 21, 2015Advanced Cardiovascular Systems, Inc.Methacrylate copolymers for medical devices
US9034357Aug 16, 2005May 19, 2015Covidien LpAnti-adhesion barrier
US9067002 *Feb 20, 2014Jun 30, 2015Abbott Cardiovascular Systems Inc.Tailored aliphatic polyesters for stent coatings
US9101697 *Apr 11, 2014Aug 11, 2015Abbott Cardiovascular Systems Inc.Hyaluronic acid based copolymers
US9138511 *Jun 30, 2014Sep 22, 2015Hyung Il KimBioabsorbable blend for temporary scaffolding of the blood vessel wall
US9180225Aug 29, 2012Nov 10, 2015Abbott LaboratoriesImplantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties
US9295663Jul 14, 2010Mar 29, 2016Abbott Cardiovascular Systems Inc.Drug coated balloon with in-situ formed drug containing microspheres
US9345814Apr 3, 2015May 24, 2016Advanced Cardiovascular Systems, Inc.Methacrylate copolymers for medical devices
US9358096Jun 3, 2013Jun 7, 2016Abbott LaboratoriesMethods of treatment with drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
US20060067908 *Sep 30, 2004Mar 30, 2006Ni DingMethacrylate copolymers for medical devices
US20070280990 *Aug 16, 2005Dec 6, 2007Stopek Joshua BAnti-Adhesion Barrier
US20080050418 *Jul 11, 2007Feb 28, 2008Boston Scientific Scimed, Inc.Medical devices for the release of therapeutic agents
US20080233168 *Aug 9, 2006Sep 25, 2008Medtronic Vascular, Inc.Medical Devices And Coatings Therefore Comprising Biodegradable Polymers With Enhanced Functionality
US20080286326 *May 15, 2007Nov 20, 2008Boston Scientific Scimed, Inc.Medical devices having antifouling character
US20080286332 *May 14, 2007Nov 20, 2008Pacetti Stephen DImplantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties
US20090036645 *Jul 30, 2007Feb 5, 2009Stopek Joshua BCarbonate copolymers
US20090048423 *Jun 25, 2008Feb 19, 2009Tyco Healthcare Group LpPhospholipid Copolymers
US20090137406 *Jun 1, 2007May 28, 2009Kenji KinoshitaRNA Detection Method
US20090177280 *Oct 12, 2006Jul 9, 2009Schoemig AlbertImplant With Multiple Coating
US20090258028 *Apr 15, 2009Oct 15, 2009Abbott Cardiovascular Systems Inc.Methods Of Forming Coatings For Implantable Medical Devices For Controlled Release Of A Peptide And A Hydrophobic Drug
US20090324671 *Jun 30, 2008Dec 31, 2009Michael Huy NgoPoly(Amide) And Poly(Ester-Amide) Polymers And Drug Delivery Particles And Coatings Containing Same
US20090324672 *Jun 30, 2008Dec 31, 2009Florencia LimPoly(Ester-Amide) And Poly(Amide) Coatings For Implantable Medical Devices For Controlled Release Of A Protein Or Peptide And A Hydrophobic Drug
US20090326645 *Jun 26, 2008Dec 31, 2009Pacetti Stephen DMethods Of Application Of Coatings Composed Of Hydrophobic, High Glass Transition Polymers With Tunable Drug Release Rates
US20100226955 *Mar 3, 2009Sep 9, 2010Ludwig Florian NPolymer for creating hemocompatible surface
US20110123702 *May 26, 2011Abbott LaboratoriesRoom temperature-curable polymers
US20110129514 *Sep 6, 2007Jun 2, 2011Hossainy Syed F AHygroscopic coating on a balloon device
US20110137243 *Jun 9, 2011Abbott Cardiovascular Systems Inc.Coating On A Balloon Device
US20110178201 *Jul 21, 2011Tyco Healthcare Group LpPhospholipid Copolymers
US20110178594 *Nov 7, 2008Jul 21, 2011Hyung Il KimBioabsorbable blend for temporary scaffolding of the blood vessel wall
US20110251677 *Oct 13, 2011Abbott Cardiovascular Systems Inc.Coating Designs For The Tailored Release Of Dual Drugs From Polymeric Coatings
US20140147485 *Jan 29, 2014May 29, 2014Abbott Cardiovascular Systems Inc.Polymer for creating hemocompatible surface
US20140186417 *Feb 20, 2014Jul 3, 2014Abbott Cardiovascular Systems Inc.Tailored Aliphatic Polyesters for Stent Coatings
US20140221418 *Apr 11, 2014Aug 7, 2014Abbott Cardiovascular Systems Inc.Hyaluronic acid based copolymers
US20140371395 *Jun 30, 2014Dec 18, 2014Hyung-il KimBioabsorbable blend for temporary scaffolding of the blood vessel wall
CN102210890A *May 26, 2011Oct 12, 2011浙江大学Endothelial cell selective composite coating material used for cardiovascular stent and preparation method thereof
CN104045531A *Jun 27, 2014Sep 17, 2014湖南海利常德农药化工有限公司Preparation method of p-hydroxy cyclohexanone
CN104272174A *Mar 2, 2012Jan 7, 2015日油株式会社Contact lens care preparation and packaging solution
EP1776970A1 *Oct 12, 2005Apr 25, 2007Albert Sch÷migImplant with multiple coating
EP2028208A1 *Aug 14, 2008Feb 25, 2009Tyco Healthcare Group LPPhospholipid copolymers
WO2007042294A1 *Oct 12, 2006Apr 19, 2007Schoemig AlbertImplant with multiple coating
WO2007076288A3 *Dec 14, 2006Dec 6, 2007Abbott LabRoom temperature-curable polymers
WO2008045961A2 *Oct 10, 2007Apr 17, 2008Abbott LaboratoriesCompositions and methods of administering rapamycin analogs with paclitaxel using medical devices
WO2008045961A3 *Oct 10, 2007Aug 28, 2008Abbott LabCompositions and methods of administering rapamycin analogs with paclitaxel using medical devices
WO2010101722A2 *Feb 19, 2010Sep 10, 2010Abbott Cardiovascular Systems Inc.Polymer for creating hemocompatible surface
WO2010101722A3 *Feb 19, 2010Apr 7, 2011Abbott Cardiovascular Systems Inc.Polymer for creating hemocompatible surface
Classifications
U.S. Classification424/423, 424/78.3, 525/54.2, 525/54.1
International ClassificationA61L31/10, C08G63/91, A61L27/34
Cooperative ClassificationA61L27/34, A61L2400/18, A61L31/148, A61L33/0011, A61L33/08, A61L31/16, A61L2300/40, A61L31/10, A61L2300/42, A61L2300/606, A61L2300/604
European ClassificationA61L27/34, A61L31/10
Legal Events
DateCodeEventDescription
Mar 22, 2004ASAssignment
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLAUSER, THIERRY;PACETTI, STEPHEN D.;HOSSAINY, SYED F.A.;AND OTHERS;REEL/FRAME:015133/0335;SIGNING DATES FROM 20040311 TO 20040319
Jul 1, 2015ASAssignment
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:036046/0932
Effective date: 20070213