US20050211602A1 - Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds - Google Patents

Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds Download PDF

Info

Publication number
US20050211602A1
US20050211602A1 US11/131,167 US13116705A US2005211602A1 US 20050211602 A1 US20050211602 A1 US 20050211602A1 US 13116705 A US13116705 A US 13116705A US 2005211602 A1 US2005211602 A1 US 2005211602A1
Authority
US
United States
Prior art keywords
temperature
reactor
gas
feed
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/131,167
Inventor
Pierre Jorgensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WESCO ENERGY Corp
Original Assignee
World Energy Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9812983A external-priority patent/FR2785289B1/en
Application filed by World Energy Systems Corp filed Critical World Energy Systems Corp
Priority to US11/131,167 priority Critical patent/US20050211602A1/en
Publication of US20050211602A1 publication Critical patent/US20050211602A1/en
Assigned to WESCO ENERGY CORPORATION reassignment WESCO ENERGY CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: WORLD ENERGY SYSTEMS CORPORATION
Priority to US12/824,362 priority patent/US7967954B2/en
Priority to US13/136,042 priority patent/US20120055847A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/02Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents with two or more solvents, which are introduced or withdrawn separately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/14Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with ozone-containing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/922Reactor fluid manipulating device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/922Reactor fluid manipulating device
    • Y10S585/923At reactor inlet

Definitions

  • the present invention relates generally to the conversion of hydrocarbons and more particularly to converting heavy hydrocarbons laden with impurities into light hydrocarbons that can be separated into cuts of conventional products.
  • regenerator that burns the coke formed imposes a minimum temperature of the order of 700° C. so that the combustion may occur.
  • the catalyst exiting the regenerator, sent into the reactor at this excessive temperature leads to an abundant production of gaseous products, as well as highly aromatic heavy products that lost a significant quantity of hydrogen during the first contact with the catalyst that was too hot.
  • it is impossible to change the spectrum of distribution of liquid conversion products which, moreover, are accompanied by a significant quantity of gas C1 C2 and LPG C3, C4.
  • the FCC only rearranges the distribution of the carbon and hydrogen in the molecules: it samples hydrogen in the high molecular weight molecules (high boiling temperature) to create light molecules, but the C4, C3, C2 and, in particular, C1 (CH4) take a large portion of the hydrogen. There is even a discharge of pure hydrogen. As a result, the heavy cuts knows as HCO are poor in hydrogen and cannot be recycled for a new conversion. Therefore, the conservation during the conversion of a good Hydrogen/Carbon ratio is vital.
  • the purpose of hydrocracking is precisely to increase the H/C ratio by adding hydrogen to the feed in an efficient manner.
  • This process that consumes hydrogen requires the use of a hydrogen production unit which uses a lot of power and gaseous hydrocarbon containing matter (generally with a discharge of CO2 if CnH (2n+2)) is used as the starting point.
  • the hydrogen becomes reactive only at pressures greater than 100 bars; this imposes a construction with very high thicknesses.
  • H. active hydrogen
  • one embodiment comprises a process for the conversion into liquids (gasolines, gas oil, fuels) of hydrocarbons that are solid or have a high boiling temperature, laden with metals, sulfur, sediments, with the help of water or oxygenated gas properly superheated between 600 and 800° C.
  • the process comprises preheating a feed 5 in a heater 8 to a temperature below the selected-temperature of a reactor 10 .
  • This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.)
  • the feed is treated with a jet of gas or superheated steam from superheater 2 to activate the feed.
  • the activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed.
  • Useful products appearing in the form of water/hydrocarbon emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities.
  • the light phase containing the final hydrocarbons is heated in heater 98 and is separated into cuts of conventional products, according to the demand for refining by an extractor 18 similar to 13 .
  • FIG. 1 is an illustration of the process layout of a unit according to one embodiment of our process for the steam conversion of hydrocarbon containing products.
  • FIG. 2 is an illustration of an extractor/separator employed in one embodiment.
  • FIG. 3 is an illustration of a reactor employed in one embodiment.
  • FIG. 4 is an illustration of the process layout of a unit according to our process for the steam conversion of hydrocarbon containing products, in a non-arid country.
  • FIG. 5 is an illustration of the same layout implemented in a desert area poor in water resources.
  • FIG. 6 is an illustration of the same layout implemented in order to convert the excess gases of a drilling well or a refinery into liquids.
  • FIG. 7 is an illustration of an industrial pilot for converting heavy distillates and oils into light distillates, wherein the pilot works at a total supply rate of 5 kg/h, or 2 kg/h atmospheric residue or 1.5 kg/h residue under vacuum.
  • FIG. 8 is an illustration of a process layout in another embodiment.
  • FIG. 9 is an illustration of a process layout in another embodiment.
  • FIG. 10 is an illustration of an industrial pilot in another embodiment.
  • the most favorable gases or vapors will contain oxygen and/or hydrogen.
  • These components can be bound or mixed, such as, for example: X—OH, H2OC, CO2, CO2+H2, CO+H2O CO2+H2O, CO+2H2 —CH2- +H2O or still CO2+H2 resulting from a Bensfiel unit after shift conversion and before decarbonation in a hydrogen production unit.
  • Pure N2 is acceptable but not very beneficial. It may be selected only accompanied with CO2 originating preferably in the combustion fumes.
  • O2 requires special injection precautions. For example, it is possible to inject 2CH4+O2 2CO+4H2+Heat with a pre-injector. (In this case, pure O2 is not required. The air (O2+4N2) is sufficient.)
  • This alternative may be considered to resorb excess light gases (C1, C2) into primary chemical energy, the matter being partially recovered in a special extractor towards 200° C.-220° C., 20-30 bars.
  • C1, C2 excess light gases
  • the feed is injected into the reactor by an injector that creates an intimate contact between the preheated feed and a jet of gases, during the expansion, properly preheated (or superheated in the case of pure steam).
  • This injector also attempts to create a free jet of matter and gas that does not come into contact with any material wall, in order to facilitate the initiation of the reactions.
  • the energy supply determined by the temperature, the flow rate and the expansion rate in the injector releases a usable quantity of mechanical energy that provides for the supply of the energy that is necessary and barely sufficient to initiate the reactions without tearing the peripheral hydrogen of the molecules and without creating an energy such that the molecule may be broken into very small fragments, as may occur in a FCC.
  • the soaking reactor is an empty container. No catalyst was used. This reactor enables the reactions initiated by the injector to achieve the equilibrium. The pressure reduces the volume necessary and increases the speed of the process to achieve equilibrium. The absence of any matter in the reactor presents the advantage of not having any stagnation points for the reactants, leading to a soaking time that is too long and, consequently, causes carbon deposits.
  • CO+H2 can also provide a functional block: —C: ⁇ H′ ‘H which adds itself to the unsaturated bonds to give aldehydes, the simplest example being: H2C:CH2+CO+H2 3HC—CH2—C: ⁇ ‘H All of these reactions contribute to creating liquids and eliminating or blocking the creation of gas. The products are then expanded at the atmospheric pressure.
  • the useful products may be either hydrated and composed by the emulsion mentioned in 11; or anhydrous and obtained by a dehydration with extraction.
  • None of the above-mentioned processes is critical by itself and may be compensated by the others to the detriment of reduced outputs, conversion rates, a higher energy consumption or a greater production of solid carbon.
  • the heat in its thermal aspect, is stored in the form of mechanical vibrations of the molecules.
  • the vibrations generate mechanical constraints that, due to the inertia related to the mass, are the highest in the middle of the molecule, if the vibrations are moderate. These constraints then cause a break in the middle of the molecule.
  • Another characteristic of one embodiment consists in introducing oxygen in the conversion process.
  • the measurement of the physical characteristics and, in particular, the refractive index makes it possible to follow the direction of the evolution of the conversion products and to direct said conversion.
  • the fusion temperature goes from ⁇ 95° C. to +6° C. with only 6 carbons.
  • Closing a cycle releases energy (and reduces &S by approximately 20.5).
  • one embodiment makes it possible to initiate and activate the reactions while complying with the preceding rules and the orders of magnitude that should not be exceeded.
  • the heavy crudes contain very few simple and straight molecules; they contain numerous complex polyaromatic molecules that are more or less bound to each other, as may be observed in the following molecule that condenses readily and goes from 2 to 3 nuclei, according to the following layout:
  • thermodynamic and physical property data of which an extract is provided below for information purposes, for the families of 1 and 10 carbons per molecule:
  • Another characteristic of one embodiment is that it makes it possible to control the rate of conversion into liquid without creating excess quantities of light gas such as methane or ethane.
  • One of the characteristics of our process is basically the fact that it splits the molecules in two and begins anew in order to remain master of the process.
  • C′′ may be carried out only with side reactions that produce C2H2, in particular.
  • PRACTICAL CONCLUSION first of all, the generation of gases must be avoided, which is precisely what our process does.
  • reaction (24) indicates that, above 565° C., CH4 decomposes with slow kinetics, (approximately 1 hour towards 800° C.), as it is necessary to go through the gaseous state summarized by the reaction (25).
  • One of the characteristics of our process is that is uses oxygenated intermediaries which, when converted to steam, naturally produce stable water/hydrocarbon emulsions.
  • the “mayonnaise” (of which 8 year old samples have not moved) is easily broken by different mechanical means such as a forced run through a series of crossworked pieces of fabric (an operation referred to as extrusion).
  • extrusion an operation referred to as extrusion.
  • the dry sand breaks the emulsion immediately, there are additional mechanical possibilities such as balls rolling in the emulsion, etc.
  • Flask 202.78
  • Flask + Support 214.21
  • Feed 309.95 g
  • This water has an acid pH indicating that it has absorbed SH2 or any other acid element of the feed. All this constitutes a whole of favorable elements brought by our process, which implements steam of which the extractive activity increased with the injection temperature and the successive scrubbing operations in the extraction zone.
  • the principle is as follows: the properly preheated or cooled products are sent into a double shell cylinder containing satiating water with steam, which sets the temperature of said shell simply by setting the pressure of the chamber, steam is produced when heat is released; steam is consumed when heat is absorbed; the presence of saturating water provides for significant transfers of heat with the inner container of the reactor-extract.
  • the upper section is empty. It acts as a baffle-decanter by selecting a low speed of ascent of light product or gases, enabling the heavy or liquid products in the form of mist or rain to fall back to the bottom. For this purpose, the falling speed of the heavy or liquid products only needs to be greater than the rising speed of the lighter products. Furthermore, this space acts as relief for any sudden inrush of water or violent release that could not be properly controlled. Since it is empty (no packing in this zone), there is no material risk. The heavy products or liquids remain at the bottom of the shell, between the shell and the vertical tubes. When the entire space between the shell and the tubes is filled, the heavy products overflow inside the vertical tubes and are collected at their lower outlet. Therefore, this extraction is automatic and natural.
  • the incoming products, liquids or gases, are injected at the bottom of the double shell in the heavy or liquid phase at a very moderate speed. Therefore, they are dispersed in the heavy phase, mixing therewith under local conditions of temperature and pressure; the mass transfers thus occur through the surfaces in contact and are governed by the differences of concentration in relation to the equilibrium of the stationary heavy phase and the incoming dispersed phase. These equilibriums are defined both by the physical separation of the phases in presence of each other and by the licit chemical equilibriums under the existing local conditions.
  • the incoming products enrich the heavy phase and are drained of the heavy compounds transferred.
  • the light compounds that may be created they reappear in the light phase that fills the top of the shell, where they are decanted, being separated from the liquid portions or heavy mists that fall back to the bottom.
  • This device is especially beneficial because it is capable of performing the equivalent of a distillation while operating as if in a liquid-liquid extraction for oils or asphalts, or a chemical reactor.
  • aromatic products such as furfural have widely known extracting powers for the extraction of aromatic products in the preparation of lubricants. In any case, it allows us to separate the effluents exiting the reactor at our convenience, in a safe and risk-free manner.
  • This technological device can thus fulfill several purposes, in particular chemical conversions. We will explain its application to conversions of a gas mixture into liquids.
  • Our feeds to be converted thus contain Vanadium, Nickel, Sodium, Iron, Aluminum, Sulfur, etc., which must at least be taken into account in the conversion and should preferably be eliminated.
  • SiO2 is slightly extracted by dry H2O steam (see table below). Solubility SiO2/H2O SiO2/H2O ppm P H2O liq., sat. H2O steam, sat. Dry H2O steam Temp. atm. Concent. SiO2/H2O ppm @ Tsat. 400° C. 500° C. 600° C. 100° C. 1 500 0.02 0.2 0.5 0.9 200 15 1000 0.2 1.5 5.0 10.0 235 30 1300 1.1 4.5 11.0 40.0
  • Oxides such as V2O5 of a yellow red color or V2O3 of a darker color have a significant solubility in water, which contributes to their extraction in our extractor.
  • the Vanadium-Sodium compounds such as NaVO4 or Na3VO4 are also soluble in water, the same is true for yellow NiSO4 or green NiCL3 and FeCL2.
  • the role of the injector was to transfer the maximum usable energy contained in the vapors or the gases, the feed to be converted, on one hand, and, on the other hand, to create a close contact between the steam and the feed, preferably without any material contact with the metal wails.
  • the feed that in fact is a heavy phase in relation to the gases or vapors is divided into pairs of mechanically sprayed jets, set sideways in opposite directions, arranged in accordance with FIG. 3 , flowing from top to bottom and meeting on the axis of the injector. By mutual deviation, they then flow axially at a moderate speed, without any material contact.
  • the purpose of the mechanical spraying is to create fine droplets, preferably some mist, which thus develops a maximum surface of the hydrocarbon containing feed.
  • the spraying may be supported by approximately 5% of overheated HP steam which contributes to the nebulization of the feed (as is well known in the injector heads of boiler and furnace burners).
  • the vapor or gas jet is placed during the expansion, its energy being primarily transformed into kinetic energy to the fullest extent possible, thus with great speed.
  • the reactor is empty. Most of the solid carbon formed is carried away by the effluents exiting the reactor, which constitutes a great benefit of our process. However, a small portion is deposited on the walls and tends to accumulate. Therefore, these carbonaceous deposits or metal oxide compounds contained in the feed must be eliminated at appropriate intervals.
  • the presence of noncombustible oxides requires the use of mechanical means such as scrubbing, sandblasting, or another means. To this end, it is necessary to open the reactor while avoiding any inner part or jutting edge.
  • the injectors are arranged sideways, opposite one another, to the outside of the reactor, in pairs, so that the reactor, once opened, may keep its walls totally free. By laying the top of the reactor, followed by the bottom, the naked ring of the reactor remains, which can be easily cleaned by any mechanical means.
  • This device is particularly beneficial, especially when compared to the problems presented by reactors fitted with packings (Visbreaker Soaker) or filled with catalysts with or without circulation.
  • the ratio between water (18 g/mol) and hydrocarbons (CHx 13 14) must ideally be in the order of 181(2 ⁇ 13) by weight, or approximately 0.7.
  • our objective is to break a molecule in two during each run. This requires a net value of 20 kcal/mol as indicated previously. If we supply 40 kcal/mol for the activation, it is sufficient to start from a feed preheated under 470° C. to obtain the desired result.
  • the preheating will be approximately 20° C. or 25° C. less than the temperature of the soaking tank, or approximately 445-450° C. This is particularly beneficial for the operation of the residue preheating furnace and prevents any coking problems. In fact, we know that visbreaker furnaces must heat this same type of residue towards 460° C., and that the coking risks appear above this temperature. With these operating conditions, we never encountered any coking in our furnace.
  • the superheating of the steam and the preheating of the feed are adjusted to achieve the thermal balance defined by the temperature of the soaking drum
  • the preheating of the feed being set at 20 or 25° C. below the temperature at the outlet of the reactor, the flow rate of the heating fuel of the steam furnace is adjusted by the reactor's outlet temperature.
  • the example that we provided above for the residue under vacuum can be generalized regardless of the feed.
  • the main key parameter is the temperature of the reactor, which increases when the products are lighter.
  • temperatures in the order of 500° C. which will increase to 520° C. for light distillates under vacuum or very heavy atmospheric gas oils.
  • FIG. 4 represents the process layout of a unit according to our process for the steam conversion of hydrocarbon containing products, in a non-arid country.
  • FIG. 5 represents the same layout implemented in a desert area poor in water resources.
  • FIG. 6 represents the same layout implemented in order to convert the excess gases of a drilling well or a refinery into liquids.
  • FIG. 7 represents an industrial pilot working at a total supply rate of 5 kg/h, or 2 kg/h atmospheric residue or 1.5 kg/h residue under vacuum. This pilot also converted heavy distillates and oils into light distillates.
  • the water is introduced in [ 0 ] by the pump [ 1 ], in a single tube furnace [ 2 ] heated by a burner [ 3 ]; the superheated steam is sent to the injector [ 4 ].
  • the injector [ 4 ] operating as previously described, injects the whole in the reactor [ 10 ].
  • valve [ 12 ] discharges the effluents of the reactor by releasing them in the extractor system [ 13 ], operating at a pressure similar to the atmospheric pressure.
  • This extractor system which was described elsewhere, comprises a series of extractions ⁇ 13 . 1 to 13 . 5 ⁇ , which are set from the ambient temperature to 360° C.
  • [ 13 . 1 ] is at the local ambient temperature, [ 13 . 2 ] is set towards 100° C., [ 13 . 3 ] is used to separate the useful products (generally atmospheric distillates) of the atmospheric residues that were not fully converted
  • the outlet [ 13 . 4 ] can also fulfill this purpose and, in all cases, it breaks down the final separation of [ 13 . 3 ].
  • the outlet [ 13 . 5 ] extracts the heaviest products that are heavily loaded with polyaromatics and solid carbon precursor metals.
  • a portion [ 13 . 52 ] is extracted in order to prevent its accumulation in the facility, and is used to constitute heavy fuels as long as they are still acceptable in this fuel, while the remaining portion [ 13 . 51 ] is recycled in [ 14 ], in preparation for a new conversion.
  • the useful products [ 13 . 2 ] and [ 13 . 1 ] appear in the form of highly stable emulsions. They are usually bound (but they could be separated if light products are desired) and sent to the system [ 15 ] which breaks the emulsions mechanically. These broken emulsions are sent to a classic decanter which separates Hydrocarbons [ 16 . 1 ] from water [ 16 . 2 ] and the heavier phases extracted (mud and sediments) [ 16 . 3 ].
  • the hydrocarbons fraction [ 16 . 1 ] is sent to the extractor [ 18 ], which separates the hydrocarbons that may be oxygenated or hydrated. (A classic distillation would run the risk of dangerous “water inrush”)
  • the normal outputs are:
  • the cut points may be changed by modifying the temperature of the extractors, as explained elsewhere.
  • the heavy fuels are constituted by the output products [ 18 . 6 ] (atmospheric residue) and the extracts [ 13 . 52 ].
  • the carbonaceous residues (laden with metals) [ 15 ] are used as fuels to feed preferably the burner [ 9 ] of the furnace [ 8 ] and the noncondensable gases are sent as primary fuel to the different burners of the furnace, the remainder being taken from the heavy fuel.
  • the small quantity of noncondensable gas and the small carbonaceous deposits produced by the autoconsumption of the unit are resorbed in this manner, which leaves the maximum quantity of liquid products demanded by the users.
  • the hold-up (quantity of matter retained in the reactors) is relatively modest, which provides for quick starts and shutdowns of the unit.
  • the unit is automatically stabilized and self-regulating pursuant to the operating technique adopted, in particular the extractors that operate through the natural overflow of the extracts. All these qualities provide for an extreme ease of operation and conduct (especially when compared with the units that it can replace, such as an FCC with its catalyst circulation problems between the RISER reactor and its air supply regenerator under a pressure of approximately 3 bars, with its hydrocyclone problems in order to eliminate the fines of the catalyst, etc.).
  • the furnace [ 2 ] of FIG. 4 is replaced by the furnace [ 68 ] of FIG. 5 .
  • This furnace receives the liquid (or gaseous) fuel [ 61 ], which is pumped or compressed by [ 60 ], sent to the burner [ 64 ] which also receives air [ 63 ] compressed by the compressor [ 62 ], and is then sent as a fuel to the burner [ 64 ].
  • the temperature of the produced gases (fumes) is adjusted to the value required by bypassing more or less the convection zone that cools these gases mixed with the gas exiting the radiation towards 900° C., if it is properly charged thermically.
  • the fuel flow rate is set according to the desired quantity of gas.
  • An oxygen meter sets the oxidizer-air necessary so as to avoid any excess, while the preset temperature [ 54 ] of the gases to be supplied controls the bypass valve [ 67 ] that regulates said temperature.
  • the quantity of water implemented is reduced compared to the case of FIG. 4 , which operates completely with steam.
  • the devices [ 15 ] and [ 16 ] are reduced but, in return, it is necessary to provide an air compressor that is more complex and less cost-effective in terms of consumed power than a supply pump of a water furnace.
  • the rest of the facility remains identical to the previous one. This application is very simple and very safe.
  • the generation of the gases is the same as in the case of FIG. 5 . Only the regulation of the combustion changes.
  • the oxygen meter is fitted with a device to measure CO2 which will ultimately regulate the oxygen (or air) fed to the burner.
  • the facility remains identical to the previous ones and the only difference is the outlet of the reactor [ 10 ].
  • the effluents exiting the reactor are not expanded and are maintained under a pressure of the order of 25 bars. They are cooled by an exchanger [ 82 ], after which they go through an extractor [ 84 ] which operates in the same manner as [ 23 ] and [ 24 ].
  • [ 84 ] is under optimal temperature and pressure conditions to carry out the useful reactions and will be sized accordingly.
  • the valve [ 85 ] With the pressure being regulated [ 74 ], the valve [ 85 ] is operated, discharging the reactor [ 84 ], returning partially to the initial process [ 13 ] here in [ 83 ] at the atmospheric pressure, and provided with the outlets [ 13 . 3 ], [ 13 . 2 ] and [ 13 . 1 ], which operate as provided previously in the case of FIG. 4 .
  • a more advanced gas or fuel oxidation may be adopted in order to obtain CO2+H2O (total oxidation) or CO2+H2O+CO+H2 (partial oxidation) mixtures that are favorable in order to improve the rate of conversion into light products and the octane number of the gasolines.
  • the safety requirement of the facilities is once again total, with the usual refining techniques.
  • the stabilization (some kind of reactive distillation) giving final products was performed as a retreatment and on a continuous basis in our facility according to the layout of FIG. 9 .
  • the reactor atmospheric pressure constitutes only a transfer line between the furnace [ 8 ] and the extractor [ 13 ], which replaces the whole [ 18 ] of a facility completely in line according to FIGS. 4, 5 and 6 .
  • the pilot comprises a manifold that provides for the charging of the gases H2, CO2, N2, air or CH4.
  • the pilot is illustrated in FIG. 10 in the form that is its simplest and closest to the industrial applications. It converts the feeds only with steam.
  • [ 2 ] is the single tube furnace for the water.
  • [ 1 ] is its booster pump that collects from a tank of which the level is measured in order to determine the water injected
  • [ 3 ] is the single tube furnace that heats the feed injected by the pump [ 7 ].
  • [ 6 ] is the fresh feed and recycling tank (which must be carefully monitored in order to keep the products liquid so that they may be pumped). This tank is measured with bubbles, which provides the weight of the treated feed.
  • [ 4 ] is the injector that we described and defined previously.
  • [ 10 ] is the reactor sized according to the method described in the patent.
  • [ 12 ] is the discharge valve of the reactor, regulating its pressure.
  • [ 13 ] is a set of extractors as we defined the same. Their temperature is set as needed from one extractor to the other.
  • [ 28 ] is a Positive-Displacement Meter of outlet GAS placed behind a “devesiculator”.
  • [ 39 ] is another condensate collector.
  • [ 13 . 1 to 13 . 5 ] are the extract discharge outlets.
  • the temperatures are measured by mercury thermometers placed in deep wells.
  • the pressures are measured by conventional pressure gages.
  • the gases exiting [ 13 ] after being “devesiculated” and cooled at the ambient temperature, go into a precision positive-displacement meter followed by a gas sampling system in flexible bladders of 11.2 liters (previously emptied by a vane pump that creates a very good vacuum).
  • the density of the gas can be determined by simply weighing the bladder (taking the taring into account), which, based on the volume of the gases produced, directly indicates the mass of the outlet gases.
  • the composition of the gases sampled is obtained by any appropriate technique. In our case, since there may be several large capacity bladders, the gases may be extracted, cooled by liquefying them with liquid nitrogen, and distilled naturally during their reheating. If hydrogen was released in our reactions, it would be easy to find because it would not be trapped by the liquid nitrogen and would give permanent gases with a molecular weight of 2. This industrial procedure provides for an uncontestable quantitative analysis of the outlet gases.
  • the flow of gas makes it possible to verify the proper setting of the operating energy conditions of the injector and of the reactor that follows it, since we know that the production of hydrocarbon containing gases must be minimal (target: null). Therefore, the gases consist mainly of SH2, CO2 and CO, which can be easily proportioned through simple means.
  • the proportion of these different phases or emulsions varies according to the feed and the operating conditions.
  • the emulsion phase often prevails and can even be the only phase present In all cases, the emulsion is extruded through previously described means, produces a “clear” phase (resulting from the mayonnaise) and “dirty” water (colored and acid).
  • the direct clear phase and the mayonnaise clear phase constitute the outlet products in [ 16 . 11 ], which contain the useful conversion products (which may be hydrated or oxygenated as previously indicated).
  • the detailed characteristics of the formed products are obtained through classic distillation, without stirring or packing, in order to observe the dehydration phenomena of these products, which may release water.
  • the refractive index and density measurements inform us of the structure of the formed products and, consequently, on the good execution of the conversion. This is especially important for recycling, by making sure not to polymerize any polyaromatics which would degenerate into massive coke.
  • Dp/v is the Weight/Volume quotient density
  • da is the same density taken on a densitometer.
  • the cut [ 13 . 4 ] contains a RsV portion and (250-300) DsV which extracted metals and polyaromatics. A portion thereof is eliminated to purge the reactor. The 3.5% adopted gave us good results.
  • the equilibrium temperature of these reactions is achieved specifically at 1b towards 200° C. for heavy alcohols, and at 200° C. for light alcohols.
  • the presence of hydrated and oxygenated products is favorable for the quality of the products formed, in particular gasolines.
  • This oxygenation or hydration is also favorable for the combustion both in furnaces and in diesel engines. Furthermore, because of their polar characteristics due to the function ⁇ H, these products act as third-party solvents between the water and the hydrocarbon skeleton of the hydrocarbons, thus making it possible to obtain emulsions that are highly stable in time (Our samples of more than 8 years have not moved).
  • Some units such as the decarbonation unit of the BENFIEL unit in a hydrogen production complex, reject large quantities of CO2 that we may Consider using eventually.
  • H2O tends to slow down the appearance of the light fractions, as expected. There are no significant differences separating the performance of these gaseous mixtures.
  • This oil is converted to 30% gasolines PI-200.
  • the polyaromatics that contain said components are coking precursors and, when they are mixed, increase the viscosity of the products to the point that they can no longer be pumped, thus greatly reducing the quality of the fuels used for fuel applications. Due to all of these reasons, it would be necessary to extract them separately.
  • the EXTRACTOR [ 13 . 4 ] demetallizes the feed in an efficient and controlled manner by concentrating the Metals, Salts and Sulfur in a well-defined extract [ 13 . 4 ] which constitutes a new characteristic of one embodiment.
  • the DAO is the product called deasphalted oil
  • ExC4 is the extract with C4
  • ExC5 is the extract with C5
  • Asp C5 is the corresponding residual asphalt obtained.
  • the metals, NaCl and sulfur are concentrated in highly aromatic heavy molecules with a low hydrogen content.

Abstract

A process for the conversion of hydrocarbons that are solid or have a high boiling temperature and may be laden with metals, sulfur or sediments, into liquids (gasolines, gas oil, fuels) with the help of a jet of gas pity superheated between 600 and 800° C. The process comprises preheating a feed 5 in a heater 8 to a temperature below the selected temperature of a reactor 10. This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.) The feed is treated with a jet of gas or superheated stem from superheater 2 to activate the feed. The activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed. Useful products appearing in the form of water/hydrocarbon emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities. The light phase containing the final hydrocarbons is heated in heater 98 and is separated into cuts of conventional products, according to the demand for refining by an extractor 18 similar to 13.

Description

  • This application is a continuation of U.S. patent application Ser. No. 10/428,212, filed May 2, 2003 (Allowed), which is a continuation of U.S. patent application Ser. No. 09/405,934, filed Sep. 27, 1999 (Abandoned), which claims foreign priority benefits under 35 U.S.C. § 119(a)-(d) for French Patent Application No. 9812983, filed Oct. 16, 1998.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to the conversion of hydrocarbons and more particularly to converting heavy hydrocarbons laden with impurities into light hydrocarbons that can be separated into cuts of conventional products.
  • 2. Description of Related Art
  • It is widely known that all refining processes leave heavy residues that are poorly fusible or solid, which find few users and few outlets. It is also widely known that oil wells often encounter deposits containing crudes that are characterized by a very high density and a very high viscosity, thus difficult to transport as such. These crudes are also characterized by a strong metal content such as Nickel and Vanadium, sediments and sludge, sulfur, salt, to mention only the main impurities, which constitute poisons for any type of catalyst. Furthermore, regardless of what is done, it is impossible to completely avoid the deposits of these components on everything that comes into contact with these crudes. Thus it is understood that if any catalyst is used, all of its surface and all its pores will be quickly covered and the catalyst will be totally dead: then it would only occupy space in the reactor, even risking plugging it if grains are accumulated in the catalyst by the cement constituted by the sediments, nickel, vanadium, asphalts, carbon produced, etc.
  • We know processes such as the FCC, which attempt to adjust to carbon deposits by burning them in a regenerator, but this requires a complex circulation of the catalyst between the reactor and the regenerator. Furthermore, the circulation of said catalyst creates delicate problems of erosion, through both the actual wear of the matter itself, which is sometimes perforated, and that of the catalyst which, once worn, produces dangerous dusts for any human being that no filter, no matter how large and advanced, will be able to stop. Following all the constraints encountered and compromises to be made, this type of unit can only treat distillates under vacuum (DsV), that is by eliminating from the feed the residues under vacuum (RsV) in which the metals, sediments, etc. are concentrated. Furthermore, the regenerator that burns the coke formed imposes a minimum temperature of the order of 700° C. so that the combustion may occur. The catalyst exiting the regenerator, sent into the reactor at this excessive temperature, leads to an abundant production of gaseous products, as well as highly aromatic heavy products that lost a significant quantity of hydrogen during the first contact with the catalyst that was too hot. Furthermore, it is impossible to change the spectrum of distribution of liquid conversion products which, moreover, are accompanied by a significant quantity of gas C1 C2 and LPG C3, C4.
  • The FCC only rearranges the distribution of the carbon and hydrogen in the molecules: it samples hydrogen in the high molecular weight molecules (high boiling temperature) to create light molecules, but the C4, C3, C2 and, in particular, C1 (CH4) take a large portion of the hydrogen. There is even a discharge of pure hydrogen. As a result, the heavy cuts knows as HCO are poor in hydrogen and cannot be recycled for a new conversion. Therefore, the conservation during the conversion of a good Hydrogen/Carbon ratio is vital.
  • The purpose of hydrocracking is precisely to increase the H/C ratio by adding hydrogen to the feed in an efficient manner. This process that consumes hydrogen requires the use of a hydrogen production unit which uses a lot of power and gaseous hydrocarbon containing matter (generally with a discharge of CO2 if CnH (2n+2)) is used as the starting point. Furthermore, the hydrogen becomes reactive only at pressures greater than 100 bars; this imposes a construction with very high thicknesses. The conjunction of the presence of hydrogen at temperatures of the order of 450° C. under 150 bars, in order to illustrate the ideas, presents delicate problems of realization and technology, in particular regarding the nature of the special alloy steels that are appropriate for these applications. Moreover, the conversion products saturated with hydrogen are highly paraffinic and, therefore, give gasolines with a poor octane number. Therefore, it is necessary to use a catalytic reformer that removes hydrogen in order to increase the octane number. It seems paradoxical in these operations to begin by adding hydrogen to the products with great difficulty to then being forced to remove the same. Thus it is easy to understand why it is important to avoid useless operations in all of these operations regarding the hydrogen content.
  • Some research efforts were carried out attempting to create active hydrogen, designated as H., in order to incorporate the same into hydrogen-poor feeds. The creation of said H. requires a great deal of energy that is returned at the time of the final reaction and “blows up” the hydrocarbon molecules in question, possibly releasing the carbon. As a consequence, instead of incorporating hydrogen into the feed, unsaturated gases are created (generally 20 to 40% of the feed) by rejecting hydrogen overall.
  • Other research work was carried out regarding the use of hydrogen superheated at 1100-1200° C. at 40 bars, with soaking times of 60 seconds to hydropyrolize residues of oil and heavy oils, such as those of B. SCHÜTZE and H. HOFMAN reported in Erdöl und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie 1983, 36 No. 10,457-461. The results obtained always comprise high gas proportions (12 to 27%) and a large quantity of coke. From a thermodynamic standpoint, these two approaches are inefficient, as confirmed by all the practical results obtained (excess production of gas and coke).
  • It is widely known that the molecules composing the residue under vacuum may be “shaken” thermally with a VISCOSITY BREAKER (or Visbreaker), in order to “break” the viscosity. This creates a small additional production of feed that is generally converted with the FCC. We then have a visbreaker residue that is generally referred to as flash visbreaker residue (RVR), which can only be used as a heavy industrial fuel if light products such as gas oil or LCO (FCC gas oil) are added thereto in order to achieve a normal viscosity.
  • These examples illustrate the complexity of the refining operations with imbricated treatments and retreatments. The physical state of the matter (liquid, solid or gas) must receive a great deal of attention under normal conditions of temperature close to 20° C., and pressure close to 1 atmosphere.
  • We also know the COKERS that treat the residue to release the liquids while rejecting solid carbon, which will have the same applications as coal (also with the same difficulties).
  • We also know the improvement attempts carried out with the FLEXICOKER, which actually consists in gasifying the coke produced. The gasification requires a facility as large as that required by coking. It saturates the refinery with a fatal combustible gas that must be exported or used for other purposes than those that are strictly required for refining operations (i.e. to produce electrical power).
  • We also know the attempt to hydroconvert the RsV, known as the HYCON PROCESS, which would consume approximately 2.3% hydrogen. The 41% converted must be run through the FCC, with all the consequences that were mentioned in relation thereto, in particular regarding the direct leak of H2 and the loss of hydrogen contained in gases such as CH4 and C2H6.
  • These two processes are too complex and ultimately too difficult to implement in an efficient refining layout.
  • FW and UOP indicated on Oct. 27, 1997, that they implemented a catalytic process called AQUACONVERSION PROCESS in collaboration with UNION CARBIDE, for the catalyst. In practice, the general problems that are specific to catalysts remain intact ELF ANTAR also claimed the preparation of an Aquazole containing 10 and 20% water, stable only from 15 days to one month.
  • SUMMARY OF THE INVENTION
  • One or more of the problems outlined above may be solved by embodiments of the present invention.
  • Referring to FIG. 1, one embodiment comprises a process for the conversion into liquids (gasolines, gas oil, fuels) of hydrocarbons that are solid or have a high boiling temperature, laden with metals, sulfur, sediments, with the help of water or oxygenated gas properly superheated between 600 and 800° C. The process comprises preheating a feed 5 in a heater 8 to a temperature below the selected-temperature of a reactor 10. This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.) The feed is treated with a jet of gas or superheated steam from superheater 2 to activate the feed. The activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed. Useful products appearing in the form of water/hydrocarbon emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities. The light phase containing the final hydrocarbons is heated in heater 98 and is separated into cuts of conventional products, according to the demand for refining by an extractor 18 similar to 13.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
  • FIG. 1 is an illustration of the process layout of a unit according to one embodiment of our process for the steam conversion of hydrocarbon containing products.
  • FIG. 2 is an illustration of an extractor/separator employed in one embodiment.
  • FIG. 3 is an illustration of a reactor employed in one embodiment.
  • FIG. 4 is an illustration of the process layout of a unit according to our process for the steam conversion of hydrocarbon containing products, in a non-arid country.
  • FIG. 5 is an illustration of the same layout implemented in a desert area poor in water resources.
  • FIG. 6 is an illustration of the same layout implemented in order to convert the excess gases of a drilling well or a refinery into liquids.
  • FIG. 7 is an illustration of an industrial pilot for converting heavy distillates and oils into light distillates, wherein the pilot works at a total supply rate of 5 kg/h, or 2 kg/h atmospheric residue or 1.5 kg/h residue under vacuum.
  • FIG. 8 is an illustration of a process layout in another embodiment.
  • FIG. 9 is an illustration of a process layout in another embodiment.
  • FIG. 10 is an illustration of an industrial pilot in another embodiment.
  • While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawing and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Various embodiments may be characterized by the different features that are described below, which may be considered separately or together, this list being given for information purposes, without being all-inclusive.
  • (1) The feeds are taken as they appear. In the refinery, our process, to which we will refer as CPJ, can accept indiscriminately crude oil, atmospheric residue (Rat), residue under vacuum (RsV) or heavy distillates.
  • (2) The process never uses any vacuum processes that require large distillation columns which must also withstand the crushing strength of the atmospheric pressure.
  • (3) The feed introduced is treated with gases or vapors that act as energy vectors.
      • If the process is carried out in a refinery, the vapor is preferably steam.
      • if the process is carried out in an arid or desert area, the gases are preferably N2+CO2 (i.e. taken directly from the fumes exiting the furnaces).
      • Any combination is possible and has been tested. For example:
        • in a refinery that has a hydrogen unit, the CO2 rejected by a Benffield hydrogen decarbonation unit can be used;
        • a CO2 gas+H2O (steam) mixture can be used;
        • a mixture of CO2+xH2 exiting the Benffield hydrogen production unit prior to decarbonation, a mixture that provides some benefits for the octane number of the gasolines produced, can be used;
        • CO2+xH2 or CO2+H2+H2O are appropriate.
  • The most favorable gases or vapors will contain oxygen and/or hydrogen. These components can be bound or mixed, such as, for example:
    X—OH, H2OC, CO2, CO2+H2, CO+H2O
    Figure US20050211602A1-20050929-P00001
    CO2+H2O, CO+2H2
    Figure US20050211602A1-20050929-P00001
    —CH2- +H2O
    or still CO2+H2 resulting from a Bensfiel unit after shift conversion and before decarbonation in a hydrogen production unit. Pure N2 is acceptable but not very beneficial. It may be selected only accompanied with CO2 originating preferably in the combustion fumes.
  • The direct introduction of O2 requires special injection precautions. For example, it is possible to inject 2CH4+O2
    Figure US20050211602A1-20050929-P00002
    2CO+4H2+Heat with a pre-injector. (In this case, pure O2 is not required. The air (O2+4N2) is sufficient.)
  • This alternative may be considered to resorb excess light gases (C1, C2) into primary chemical energy, the matter being partially recovered in a special extractor towards 200° C.-220° C., 20-30 bars. This shows another aspect of the extreme flexibility of the CPJ process. Sulfur does not hinder the process and may even be beneficial (except regarding the resistance to corrosion).
  • (4) The gases are heated, preheated or prepared in classic furnaces.
  • (5) The fresh feed and any recycled components are appropriately preheated in a conventional furnace or by trains of classic heat exchangers.
  • (6) The feed is injected into the reactor by an injector that creates an intimate contact between the preheated feed and a jet of gases, during the expansion, properly preheated (or superheated in the case of pure steam). This injector also attempts to create a free jet of matter and gas that does not come into contact with any material wall, in order to facilitate the initiation of the reactions. The energy supply determined by the temperature, the flow rate and the expansion rate in the injector, releases a usable quantity of mechanical energy that provides for the supply of the energy that is necessary and barely sufficient to initiate the reactions without tearing the peripheral hydrogen of the molecules and without creating an energy such that the molecule may be broken into very small fragments, as may occur in a FCC.
  • (7) The soaking reactor is an empty container. No catalyst was used. This reactor enables the reactions initiated by the injector to achieve the equilibrium. The pressure reduces the volume necessary and increases the speed of the process to achieve equilibrium. The absence of any matter in the reactor presents the advantage of not having any stagnation points for the reactants, leading to a soaking time that is too long and, consequently, causes carbon deposits.
  • (8) The products, vapor and gas are then expanded at a pressure close to the atmospheric pressure, upon exiting the cracking reactor. If 2CH4+O2 or 2CO+4H2 was introduced for the purposes of recovering a carbon of gaseous origin, the outlet of the soaking reactor is cooled towards 200°-220° C. without breaking the pressure, which makes it possible, as a secondary capacity, to establish the equilibrium of the reactions for the addition of CO+H2, giving —CH2—, which attaches to the matter contained in the H2O/hydrocarbon emulsion that is used in this case. CO+H2 can also provide a functional block: —C:Ö
    H′ ‘H
    which adds itself to the unsaturated bonds to give aldehydes, the simplest example being:
    H2C:CH2+CO+H2
    Figure US20050211602A1-20050929-P00002
    3HC—CH2—C:Ö
    ‘H
    All of these reactions contribute to creating liquids and eliminating or blocking the creation of gas. The products are then expanded at the atmospheric pressure.
  • (9) In all cases, they are properly cooled and separated by a series of special devices that provide for the separation of heavy liquid phases from light gaseous phases at temperatures properly selected according to the physical characteristics of the products.
  • (10) The heavy products not complying with the selected norm are recycled with the fresh feed.
  • (11) The light products that comply with the selected norm are extracted. In the presence of steam, they appear in the form of very stable water/hydrocarbon emulsions that can be broken easily.
  • (12) The Breakdown of the heavy molecules occurs in a controlled manner in all of these processes. Roughly, it is possible to say that the weight of the molecules is divided by 2 upon each run in the injector, with a conversion rate of (1-1/e=0.63). Therefore, this process barely changes the H/C ratio of the products.
  • (13) The control of the breakdown of the molecules makes it possible to avoid producing gases by never implementing the energy required for their formation and by selecting conditions for the equilibrium of the molecules in the reactor that do not favor the appearance of such gases.
  • (14) The useful products may be either hydrated and composed by the emulsion mentioned in 11; or anhydrous and obtained by a dehydration with extraction.
  • None of the above-mentioned processes is critical by itself and may be compensated by the others to the detriment of reduced outputs, conversion rates, a higher energy consumption or a greater production of solid carbon.
  • According to another series of characteristics of one embodiment, a great deal of attention is given to the constraints of the matter during the treatment.
  • Although this only constitutes a very rough and imperfect explanation attempt, it is possible to imagine that the heat, in its thermal aspect, is stored in the form of mechanical vibrations of the molecules. The vibrations generate mechanical constraints that, due to the inertia related to the mass, are the highest in the middle of the molecule, if the vibrations are moderate. These constraints then cause a break in the middle of the molecule. The more the molecule is heated (or more generally, the more energy of any kind it must store), the more it will vibrate. In this respect, it will vibrate according to harmonic modes with several vibration antinodes and troughs such as those that can be observed on a piano chord or the halyard of a flag waving in strong winds, or also on a long rod being shaken. Since the troughs of the vibration constitute the seat of the maximum constraints, the molecule will break at these points, at one-third, one-fourth, etc. of its length. This explains that if a molecule is heated excessively (if too much energy is transmitted thereto), it will break into very small fragments, stopping at CH4 and even carbon C.
  • With this brief explanation, it is also possible to understand that as the length of the molecule increases (thus the more massive and the heavier it becomes), it will have more vibrating elements, and the central elements that hold together the lateral elements being agitated will be subject to higher constraints to hold said lateral elements. When the constraints are too great, the molecules break.
  • This example makes it possible to explain that the heavier the molecule becomes, the less it is capable of withstanding the heat without cracking. To illustrate the concept, the CH4 cannot withstand temperatures greater than 700° C., and the heavy residues cannot withstand temperatures greater than 430° C. Regarding the selection of the devices, these constraints are also reflected by the maximum acceptable heat flows expressed in Kcal/hour/square meter, or also by the acceptable differences of temperature between the hot wall and the cold fluid. The critical values depend on the considered products characterized by their physical state (liquid, solid, vapor) under operating conditions. It is thus very important to obtain a practical knowledge of what may occur with the products treated.
  • The following example will explain the stakes with simply molecules as common as C10H8, constituted by two aromatic nuclei.
  • Note each cycle of 6 aromatic carbons Ä, A for the cycle . . . for the double bonds in each nucleus. Ä:Ä here indicates two Ä carbons are bound.
  • If Ä:Ä is heated excessively, it loses hydrogen and becomes highly reactive, thus producing:
    Ä:Ä Ä:Ä
    + ′ ′
    Ä:Ä Ä:Ä
    C10H8 + C10H8 ===> C20H12 + 2H2
    tf = 80° C. tf = 278° C.
    Téb = 218° C. Téb = 350(sublime)
    d = 0.963 d = 1.36
    n = 1.60(liq) n = 1.88
  • We go from a solid/liquid to a very hard solid. (By the same token, it is necessary to note that the molecules with 20 carbons constitute the products that are generally referred to as gas oil or light domestic fuel.) Another characteristic of one embodiment thus consists in preventing such situations from appearing.
  • It was observed that the freshly broken chains were naturally very reactive at right angles with the break, and that the polar molecule HÖH (water) attached itself readily on said breaks, just like ÖCÖ (carbon dioxide).
  • Another characteristic of one embodiment consists in introducing oxygen in the conversion process.
  • In order to better understand the uniqueness and highly inventive nature of our process, we will attempt to provide an explanation of what should be done and what must be avoided. To this effect, we will again select an example from the family of C20:
    C20H14Ö2 Tf = 300° C. Téb = Sub Hö,Ä:Ä-Ä:Ä,öH
    C20H14 Tf = 188° C. Téb = 452Sub Ä:Ä—Ä:A
    C20H14Ö Tf = 81° C. Téb = 264/15 mm Ä:Ä-ö-Ä:Ä
  • Replacing hydrogen with a lateral OH is not good (the fusion temperature goes from 188° C. to 300° C.). If O eliminates a C—C bond, a beneficial effect is obtained (the fusion temperature goes from 188° C. to 81° C.).
  • We will now consider the case where the molecule C20H14 is weakened by an appropriate temperature that causes its vibration, and we send a molecule HÖH (H2O) to the central bond.
    C20H14 + H2O C10H7öH + C10H8
    H H
    Ö
    Ä:Ä—Ä:Ä Ä:Ä-öH + Ä:Ä
    Tf = 188° C. Tf = 123° C. Tf = 80° C.
    Téb = 452sub Téb = 295° C. Téb = 218° C.
    d = 1.30 d = 1.01 d = 0.963
    n = 1.76 n = 1.62 n = 1.60 liq
  • The presence of water is highly beneficial on the products formed. Let's reconsider the highly compact molecule C20H12, attached by 2 H2O; we have:
    C20H12 + 2H2O C10H7öH + C10H7oH
    H H
    Ö
    Ä _ Ä
    Ä—Ä Ä:Ä-öH + Ä:Ä-öH
    o
    H′ ′H
    Tf = 278° C. Tf = 123° C. Tf = 123° C.
    Téb = 350Sub Téb = 295° C. Téb = 295° C.
    d = 1.36 d = 1.01 d = 1.01
    n = 1.88 n = 1.62 n = 1.62
  • This example clearly shows all the benefits that may be obtained from steam.
  • Through thermodynamic considerations, it is also possible to determine that the free solid carbon that may form is oxidized towards 600-700° C., according to the following reactions:
    CO2 + Cs 2CO AS = 42.14 AH = 41.23 Téq = 705° C.
    H2O + Cs CO + H2 AS = 33.04 AH + 31.40 Téq = 677° C.

    where AS is the entropy variation, AH the enthalpy, and Teq the equilibrium temperature under a pressure of 1 bar.
  • We have another possible explanation for the beneficial effect of H2O and CO2 which, when implemented correctly in the injector, tend to eliminate the solid carbon that may form inadvertently.
  • As may be seen in these examples, the measurement of the physical characteristics and, in particular, the refractive index, makes it possible to follow the direction of the evolution of the conversion products and to direct said conversion.
  • It will be easier to understand the purpose of one embodiment, which consists in operating under conditions that avoid hydrogen losses, as this hydrogen loss creates unsaturated components that evolve towards low fusibility nuclei.
  • If we consider the straight chain described below, when it is heated to a high temperature, it begins to lose hydrogen according to the following layout:
    Figure US20050211602A1-20050929-C00001
  • Then, the unsaturated chain folds and closes:
    Figure US20050211602A1-20050929-C00002
  • The fusion temperature goes from −95° C. to +6° C. with only 6 carbons. We thus realized that, on one hand, we should never have come close to these temperatures of the order of 650° C. and, on the other hand, the energy required in this case should not have been supplied; the thermodynamic values indicated above provide orders of magnitudes Furthermore, it is observed that when the dehydrogenation process begins, the reaction runs away because the cyclization releases energy.
  • Here is what could occur if there is a more violent supply of energy
    Figure US20050211602A1-20050929-C00003
  • The highly dehydrogenated chain closes:
    Figure US20050211602A1-20050929-C00004

    Extracting a H2 from a Straight Chain:
  • Creates approximately: &S/H2=+30.19 and requires approximately: &H/H2=+32.18
  • Closing a cycle releases energy (and reduces &S by approximately 20.5).
  • After the initial conditioning of the appropriate products thanks to our injector, one embodiment makes it possible to initiate and activate the reactions while complying with the preceding rules and the orders of magnitude that should not be exceeded.
  • We will know present another benefit of the presence of H2O which behaves somewhat like a blocker of cyclization reactions.
  • The heavy crudes contain very few simple and straight molecules; they contain numerous complex polyaromatic molecules that are more or less bound to each other, as may be observed in the following molecule that condenses readily and goes from 2 to 3 nuclei, according to the following layout:
    Figure US20050211602A1-20050929-C00005
  • By the same token, it is observed that the creation of a third central nucleus increases significantly the density of this molecule.
  • With H2O steam it is possible to operate by steps in order to break this molecule of 14 carbons, and even show how to resorb a light molecule of 3 carbons which would otherwise produce gases.
    1st Step: Weakening of the central unsaturated bond:
    AS/AH
    Ä>—CH:CH—<Ä + H2O Ä>—CHoH—CH2-<Ä −29.96/−12.50
    Tf = 124 Téb = 307° C. Tf = 68 Téb = 170/15
    2nd Step: Central cracking of the molecule:
    Ä>—CHoH—CH2-<Ä Ä>—CHO + H3C—<Ä +26.27/+39.31
    Tf = −26 Téb = 178 Tf = −94 Téb = 110
    3rd Step: Fusion and rejection of H2O (sure to occur)
    Ä>—CHO + C3H8 Ä>—C2-CH:CH2 + H2O  −2.04/−14.36
    Tf = −33 Téb = 190°
    4th Step: Cyclization of unsaturated branch (‘natural’)
    Ä>—C2-CH:CH2 Ä:Cyc6Csat −15.44/−19.90
    Tf = −43 Téb = 195
    Ä>—CH:CH—<Ä + C3H8 Ä:Cy6sat + A>—CH3> −21,17/−7.45 
    “““““v”””” ““““v””” “““v”””
    Tf = 124 Téb = 307° C. Tf = −43 Téb = 195 Tf = −94 Téb = 110
    FOL Light Gas Oil Gasoline
  • It is possible to observe that the intermediate steps of the reaction are executed with moderate energy levels and that the whole reaction occurs as though the water implemented at the beginning is recovered at the end (similar to the action of a catalyst).
  • It is also appropriate to note, being one of our concerns and a characteristic of our process, that the initial fusion temperature of 127° C. after the first step decreased to −26° C., then −33° C.; by the fourth step, the temperature was −43° C. and finally, by the fifth step, products with a fusion temperature of −94° C. were obtained.
  • Thus, there is a continuous decrease of this fusion temperature during the intermediate steps of the overall reaction. The experiment showed that there was a very small production of gas and carbon and that it was possibly to fully convert products such as those referred to as residue under vacuum or asphalts, into liquid hydrocarbons.
  • We will now consider the case of straight chains (with 14 unsaturated carbons for this example):
    AS AH
    Without H2O we have:
    Cé14 C7H16 + C2é7H12 36.04/19.57
    The cracking in the presence of H2O appears to occur
    according to the following layout:
    Cé14 (C147-H28) Cé7-H13). + (C7-H15) 43.71/59.98
    .Cé7-H13 + H2O Cé7H13öH + .H  1.91/37.89
    .C7H15 +.H C7H16 −30.72/−87.3 
    Cé7H13öH C2é7-H12 + H2O 21.14/9.0 
    Which gives, in C7H16 + C2é7H12 36.04/19.57
    total: Cé14
  • It is observed that, in these operations, it was first necessary to: open a C—C bond which required approximately 40 to 60 Kcal (activation); and finally, supply approximately 20 Kcal/cut (net specific energy).
  • Remember that the extraction of one H2 requires approximately: &H/H2=+32 Kcal and that if this is done, poor results are obtained.
  • Therefore, it was necessary to find a set of devices that made it possible to meet as much as possible the different specifications listed above, which was achieved through the adequate preheating of the feed, followed by the activation resulting from an expansion in the injector, in which case the products to be converted could have, in terms of temperature equivalent, a very brief stay in a range where they are unstable, as the break consumes the energy that brings the reactants back into the stable and desired range of the reactor where they then achieve the thermodynamic equilibrium (a cook would say: to allow them to “simmer” properly).
  • These reactions and their mechanisms are provided here only in an attempt to explain why we obtain unexpected conversion results with our process.
  • The in-depth analysis of the results of our tests taught us to define how a given feed could be treated and also what were the problems linked to the structure of the complex matter constituted by these heavy products; all that which has been provided above constitutes only a guideline for the necessary adjustments.
  • We clearly took advantage of all these experiments in order to constitute a database of thermodynamic and physical property data, of which an extract is provided below for information purposes, for the families of 1 and 10 carbons per molecule:
  • Physical and Thermodynamic Properties Family
    (1)
    Name Tf° C. Téb° C. AHf° d n Tc° K Pc Vc zc
    CH4 −186 −165.0 44.49 −17.89 0.415 .gas.. 190.7 45.8 99 0.290
    CO −199 −191.0 47.30  −26.41. 0.793 .gas.. 133.0 34.5 93 0.294
    H2CÖ −92 −21.0 52.26 −28.00 0.815 .gas.. 410.0 57.0 112 0.223
    H3CöH −97.1 64.7 57.00 −48.05 0.812 1.3288 513.2 78.5 118 0.220
    HCÖöH +8.3 100.7 59.40 −90.50 1.220 1.3714 581.0 71.8 117 0.176
  • Physical and Thermodynamic Properties Family
    (10) Pj-Mend
    Units
    ° C. ° C. cal/m Kcal/m <−a 20° C. −> ° K. bar cc/m g/m
    n = 1,
    Names Tf Téb AHf° d (n − 1) Tc Pc Vc PM zc = 0, Str
    C10H8 n14
    80 218 80.5 36.1 0.963 .5898 748 40.0 413 128 .269 Ä:Ä
    C10H12 t98 −36 207 <83.2 4.2 >0.970 .5414 <717 33.0 478 >132 .268 ÄCy6
    C10H14 n189 . . . 200 <84.5 −11.7 >0.934 .5260 <707 30.6 500 >134 .264 2Ä-6H
    C10H18 d6 −43 195 87.1 −43.6 0.897 .4810 687 25.8 543 138 .249 2Cy6
    C10H18 d74 −36 174 125.3 9.85 0.766 .4265 623 25.8 587 138 .297 äC10
    C10H20 d66 −66 171 129.2 −29.3 0.741 .4215 616 25.0 592 140 .292 éC10
    C10H22 d20 −30 174 130.2 −59.7 0.730 .4102 619 20.8 602 142 .246 nC10
    C10H20Ö d18 −5 208 137.7 −78.9 0.830 .4287 636 24.4 605 156 .278 Ald.
    C10H21öH d57 +7 229 142.1 −96.4 0.830 .4372 667 29.8 619 158 .337 alc.
    C10H19ÖöH d42 32 270 142.3 −143. 0.886 .4288 717 29.4 644 172 .322 Acid
    (n − 1)

    Note the ranking: Oxygenated/Alkanes/Alkenes/Alkynes/Cyclo/Aromatics

    The abbreviations are:
      • Tf: fusion temperature, Teb: Boiling temperature
      • S°: Standard entropy, AHF°: Standard formation enthalpy
      • d: Density, n: Refractive index
      • Tc: Critical temperature, Pc: Critical pressure
      • Vc: Critical volume, zc: Compressibility factor
      • Str: Structure, abbreviated.
        • Ä aromatic nucleus, Cy saturated cycle
        • Ä acetylenic, é ethylenic, n normal paraffinic
        • Ö double bond oxygen, öH OH functional group
  • These data help in monitoring, knowing or predicting the state of the matter under the different conditions of its treatment, as well as the possible thermodynamic equilibriums. These data also enable us to predict the chemical irreversibilities that are responsible for the production of carbon and the rejection of hydrogen, in particular. In conclusion, we will describe a guideline that helped us greatly in the analysis of these problems, as seen in a new light, from a mechanical point of view.
  • Let's consider an isoC4 cyclo C6. First, the molecule must be twisted to transform it from the free and natural deployed state to the folded state, which requires energy. If we then strip each end of the folded isoC4 branch, near the nucleus cyclo C6, also by removing the corresponding hydrogen, we establish two new carbon-carbon bonds. The molecule thus formed with only 10 carbons is a true cage that has the surprising physical properties indicated below:
    C10H16 a742 Tf = 268 Teb = Sublime Density = 1.070n = 1.5680
    C10H20 c686 Tf = −94 Teb = 171 Density = 0.795n = 1.4386
  • The references given are from: Handbook of Chemistry and Physics
    Figure US20050211602A1-20050929-C00006
    C10H20 c686 Tf = 94 Teb = 171 Density = 0.795 n = 1.4386
    Figure US20050211602A1-20050929-C00007
    C10H16 a742 Tf = 268 Teb = Sublime Density = 1.070 n = 1.5680
    Figure US20050211602A1-20050929-C00008

    Note that these cage molecules (in particular if they an aromatic) become true “nests” or “sandwiches” for metals and organometallics, which we will describe below.

    Control of the Appearance of Gas, Coke or Solid Carbon Residues
  • One of the surprising characteristics of our process is that it makes it possible to convert asphalt's without generating significant amounts of carbon or gas. We will attempt to explain why this result may be obtained, on the basis of the knowledge that we have acquired while attempting to interpret our observations.
  • With appropriate means (mechanical, thermal, electrical or chemical, etc.), it is always possible to transfer an energy, to which we will refer as AH (enthalpy variation), according to the terms generally used in thermodynamics. Our experience in monitoring the state of the matter led us to adopt, on a continuous basis, a variation key for said state that may be summarized by AS, the entropy variation. In fact, by referring to the tables that we have already presented it is possible to observe the existence of very strong correlations between SXL and the physical fusion and boiling parameters and, more generally, the parameters pertaining to the change of state or the organization of the matter. In order to explain the ideas, we will select an unsaturated molecule containing 14 carbons.
    OUTPUTS
    INPUT Liquid GAS AS AH Téq° C.
    Cé14H28 Cé7H14 +Cé7H14 . . . 36.06 19.18
    v −v v  269°
    Tf = −13 Téb = 251° Tf = −119 Téb = 94° Liq
    d = 0.771 n = 1.4335 d = 0.697 n = 1.400
    Cé14H28 Cé12H24 +Cé2H4 33.83 22.33
    v v v  387°
    Tf = −35 Téb = 213° Gas
    d = 0.755 n = 1.430
    Cé14H28 Cä13H24 +CH4 36.39 26.54
    v v v  456°
    Tf = −5° Téb = 234 Gas
    d = 0.784 n = 1.437
    Cé14H28 Cä14H26 +H2 27.41 39.50
    v v v 1168°
    Tf = −0° Téb = 252 Gas
    d = 0.789 n = 1.439
    Cé14H28 Cä7H12 +Cé7H14 +H2 63.48 64.02
    v v v v  720°
    Tf = −81° Téb = 93.8° Liq. Gas
  • This table shows that, as the level of applied energy increases, so does the number of molecules broken, as well as the amount of fragments generated, which means that the greater the disorder created (which increases the AS), the greater the quantity of CH4 generated and the greater the quantity of hydrogen rejected. Furthermore, the AH/AS ratio gives the temperature Tee, at which the reactants reach a natural equilibrium under a pressure of 1 bar. If only liquids are desired, the entire process occurs as if it were limited to 20 kcal/molecule, as previously indicated elsewhere. (By the same token, this also explains why an FCC with its catalyst regenerated at more than 700° C. will reject hydrogen and CH4. No catalyst may change this state de facto. It may only favor intermediary stages and their speed, enabling the reactants to achieve the thermodynamic equilibrium depending on the temperature of the reactor.)
  • Another characteristic of one embodiment is that it makes it possible to control the rate of conversion into liquid without creating excess quantities of light gas such as methane or ethane. We will attempt to provide an explanation that came to us during the different tests that we performed, in relation to the chemical irreversibilities (which, it appears, are not mentioned very often).
  • One of the characteristics of our process is basically the fact that it splits the molecules in two and begins anew in order to remain master of the process.
  • Some people may think that, in order to speed up the process, the solution is simply to implement more energy, which would actually generate a greater number of light molecules, as indicated in the preceding table, including a great quantity of gas, assuming that it would then be always possible to polymerize the same in order to return to liquids. However, it would be impossible to perform this operation in an appropriate manner due to the chemical irreversibilities (which no catalyst will be able to overcome).
  • In order to present the ideas, let's assume that we are considering the generation of liquids from methane, ethane, etc. In this case, our intention would be to carry out reactions such as:
    A) CH4 + CH4 ==??==> C2H6 + H2 AS = −1.95 AH = +15.54 Téq = −7669° K
    B) C2H6 + C2H6 ==??==> C4H10 + H2 AS = −3.38 AH = +10.33 Téq = −3056° K
    C) C4H10 + C4H10 ==??==> C8H18 + H2 AS = −0.54 AH = +10.48 Téq = −19400° K
  • THESE REACTIONS ARE IRREVERSIBLE since Teq NEGATIVE DOES NOT EXIST. It will never be possible to carry out the follow-up reactions in a reversible manner:
    (A) (B) (C)
    Cnl = ? => H2 + Cn2 = ? => H2 + Cn4 = ? => H2 + Cn8
    Téb 117° K. 184° K. 272° K. ! 399° K.
    Normal state GAS GAS GAS 298° K. LIQUID

    Consequences:
    (1) It is necessary to accept the unavoidable creation of CH4 in this process, summarized by the overall reaction C′:
    C′) C4H10+C4H10
    Figure US20050211602A1-20050929-P00002
    C7H16+CH4 AS=−1.53 AH=−2.48 Teq=1620° K or: 2 Cn4
    Figure US20050211602A1-20050929-P00002
    Cn7 and Cn1 Keq(600° C.)=1.93
      • (This reaction is possible because Teq is positive)
        (2) if the thermodynamic reversibility is violated with energy: according to the reaction C″: hydrogen must be rejected
        C″) C4H10+C4H10
        Figure US20050211602A1-20050929-P00002
        C8H18+H2 AS=−0.54 AH=+10.48 Teq=−19400° K
      • (This reaction is irreversible because Teq is negative)
        C″/Even the transition through the synthesis gas, which begins with the following reaction:
        CH4+½ O2
        Figure US20050211602A1-20050929-P00002
        CO+2H2 AS=+42.7 AH=−8.52,
      • (reaction that may be explosive)
        is irreversible and will lead to a poor efficiency overall in the liquefaction by methanol or Fischer-Tropsch.
  • C″ may be carried out only with side reactions that produce C2H2, in particular.
  • PRACTICAL CONCLUSION: first of all, the generation of gases must be avoided, which is precisely what our process does.
  • Carbon Deposits
  • Our experience in controlling the appearance of coke led us to assume that there were two main sources: massive deposits through the polyaromatic nuclei; and pulverulent carbon through the gases.
  • It is quite easy to visualize that if the matter is polymerized into numerous contiguous polyaromatic nuclei, since the carbons are directly bound to each other and comprise few or no hydrogen links as previously seen, the fusion temperature increases with the number of nuclei and the reduction of the H/C ratio (C10H8 Tf=80° C., C20H12 Tf=278° C., etc.); we are getting increasingly closer to a solid coal.
  • This can also be examined, for informational purposes, with our method for the study of chemical irreversibilities.
  • In order to present the ideas, let's take some benzene and attempt to crack it. A fusion of molecules is observed, accompanied once again by a rejection of H2, according to the following reaction:
    Ä+Ä
    Figure US20050211602A1-20050929-P00002
    Ä>-<Ä+H2 −1.17 3.46   [1]
  • This reaction is irreversible since Teq cannot be negative. The following fatal side reaction must be added:
    Ä
    Figure US20050211602A1-20050929-P00002
    6Cgas+3B2+259.4 +1010   [2]
  • To obtain AS=0.0, it is necessary to take 1.17/259 from reaction (2), or
    0.0045 Ä
    Figure US20050211602A1-20050929-P00002
    0.0045 6Cgas+0,013H2 +1.17 +4.55   [3]
  • Resulting in the global reaction:
    Ä+Ä
    Figure US20050211602A1-20050929-P00002
    Ä>-<Ä+H2 −1.17 +3.46   [1]
    +
    0.0045 Ä
    Figure US20050211602A1-20050929-P00002
    0.00456Cgas+0.013H2 +1.17 +4.55   [3]
    2.0045 Ä
    Figure US20050211602A1-20050929-P00002
    Ä<-<Ä+1.01.H2+0.004(6Cgas) 0.00 +8.01
    and the return of 6Cgas in Csol=Coke
    0.0046Cgas
    Figure US20050211602A1-20050929-P00002
    0.004.Coke −1.16 −4.55
    2.0045 Ä
    Figure US20050211602A1-20050929-P00002
    Ä>-<Ä+1.01.H2 +0.004.Coke −1.16 +3.46
  • Experimental data 750° C. with 50% conversion in 40 s confirm the projected values found above and thus reinforce our belief regarding what must be avoided.
  • The notion of irreversibility provides for a good projection of the production of coke considered as the hardest side reaction.
  • The second way of appearance of pulverulent deposits of carbon is the acetylene way, of which some of the data are indicated below for informational purposes for 4CH4 engaged
    Téq° C.
    (21) 4CH4 ===> 2 C2H6 + 2H2 AS = −3.84 AH = +31.08 −///° K
    (22) 4CH4 ===> C2H4 + 2H2 + 2CH4 AS = +27.89 AH = +48.66 1472° C.
    (23) 4CH4 ===> C2H2 + 3H2 + 2CH4 AS = +55.65 AH = +89.95 1343° C.
    (24) 4CH4 ===> 4Csol + 8H2 AS = +85.2 AH = +71.4 565° C.
    (25) 4CH4 ===> 4Cgas + 8H2 AS = 230.76 AH = 793.16 3164° C.

    Note:

    TfdeC: sublimed at . . . 3379° C.

    Thermal Decomposition of CH4:
  • The reaction (24) indicates that, above 565° C., CH4 decomposes with slow kinetics, (approximately 1 hour towards 800° C.), as it is necessary to go through the gaseous state summarized by the reaction (25).
  • Therefore, the filiation that causes the appearance of the pulverulent carbon seems to be:
    CH4
    Figure US20050211602A1-20050929-P00002
    C2H4
    Figure US20050211602A1-20050929-P00002
    C2H2
    Figure US20050211602A1-20050929-P00002
    Pulverulent Csol C6H6
    Figure US20050211602A1-20050929-P00002
    Polymerization CSol Massive
  • In any case and in practice:
      • (1) In all cases, the creation of saturated light gases must be avoided.
      • (2) The appearance of free hydrogen is a bad sign.
      • (3) The creation of unsaturated light gases and hydrogen constitutes an alarm.
      • (4) The creation of acetylene is a serious alarm
      • (5) The monitoring of the aromatization through the refractive index is very useful in order to determine whether the processes are running correctly.
        Emulsions
  • One of the characteristics of our process is that is uses oxygenated intermediaries which, when converted to steam, naturally produce stable water/hydrocarbon emulsions.
  • It has long been known that the combustion of difficult fuels is greatly improved by the addition of 5 to 10% of water. This addition, during the first stages of the combustion, provides for the cracking of heavy molecules while avoiding their polymerization into polyaromatics, which would produce nodules of soot or pulverulent carbon.
  • On Aug. 5, 1997, ELF presented to the press a product called Aquazole, containing 10 to 20% water, indicating that the main problem was guaranteeing the stability of the mixture. Currently, this stability can only be guaranteed for 15 days to one month, despite resorting to a special mixing procedure and, in particular, thanks to special additives.
  • The interest presented directly by the intermediary emulsions produced by our process is understood, as these emulsions may become the main objective for these applications.
  • We have emulsions that are already 8 years old and are still stable: this shows that we control the difficulties encountered by ELF.
  • These benefits may be explained by internal molecular links that, at the anhydrous state, would be unsaturated and remained partially bound to water. It would also be possible to put forward all the oxygenated intermediaries that we presented previously in the control of the cracking operations towards 440-600 x, which have a favorable equilibrium towards 200°-220° C., the operating temperature of our extractor.
  • In any case:
      • (1) We obtain stable water/hydrocarbon emulsions whose water content can be determined simply by setting, in our conversions, the ratio H2O/(X), in the gases used in our conversion, X being preferably CO2+Y; Y may be any gas N2, H2, etc. This means that the dry smoke (taken before 200° C. under 1 bar) resulting from a combustion is appropriate.
      • (2) The products formed (gasolines, especially kerosine) contain bound water.
      • (3) Limited to using only steam for reasons of simplicity and ease of implementation, our process makes it possible to obtain, depending on the settings selected: oxygenated and hydrated products; or primarily anhydrous products.
  • In fact, the useful recipes appear, when steam is used, in the form of emulsions that produce:
      • a light emulsion referred to as “clear”: d=0.89 to 0.92
      • a heavier “mayonnaise” emulsion: d=0.93 to 0.96
      • which are clearly separated from an excess of process water d=1.0 (if this excess exists, which is not the case in the example below).
  • The “mayonnaise” (of which 8 year old samples have not moved) is easily broken by different mechanical means such as a forced run through a series of crossworked pieces of fabric (an operation referred to as extrusion). The dry sand breaks the emulsion immediately, there are additional mechanical possibilities such as balls rolling in the emulsion, etc.
  • Below is an example of evaluation of the characteristics of these emulsions, with annotations:
    P Weight in g V Volume in Cm3
    Dp/V Density = Weight/Volume da Density (read by densitometer)
    dn Deviation read by refractometer indicating the retractive index n.
    MAYONNAISE Ptotal Ptare Net Weight Dp/V da dn n
    Total Mayonnaise 1700.0 −  698.31 = 1001.69  0.9656 3.5 1.50625
    Extruded water 1163.8 −  444.13 = 719.67
    Clear HC extruded 282.02 13.0 1.50099
    Direct clear HC  731.36 − 311.412 = 419.95 0.8916 0.902 13.3 1.50310
    Total HC 701.97

    WATER/HCtotal ratio 719.67/701.97=1.02
  • With the operating conditions selected, which will be described elsewhere, the useful products did not contain any free water (aqueous phase d=1.0).
  • The distillation of the direct and extruded clear phase gave the following results:
    DISTILLATION 1 Summary
    WITHOUT SAND and without stirring
    Recipes Volumes Weight
    Cut Ptot Ptar P. g V. t V. water V. HC HC. sec Dp/V dn N
    PI - 115 74.95 73.01 1.94 2.4 0.9 1.5 1.04 0.693 8.2 1.44963
    Regurgitate 93.11 15.02 18.09 20.2 3.0 17.2 15.09 0.877 12.3 1.49360
    200-250 84.43 78.06 6.37 8.2 . . . 8.2 6.37 0.777 9.5 1.46368
    250-300 91.86 76.73 15.13 17.4 4.0 13.4 11.13 0.830 11.3 1.48297
    300-360 115.28 77.01 38.27 43.8 . . . 43.8 38.27 0.874 12.4 1.49466
    360+ 89.15 75.44 13.96 15.5 . . . 15.5 13.96 0.901 19.3 1.56567
    93.76 7.9 85.86
  • DISTILLATION 2 Summary
    IN SAND and without stirring
    Flask: 202.78
    Flask + Support: 214.21
    Flask + Support + Feed: 309.95 g
    Feed:  95.74 g
    Sand 300μ: 610.34 g to cover the liquids
    (total weight engaged)
    Recipes Volumes Weight
    Cut Ptot Ptar P. g V. t V. water V. HC HC. sec Dp/V dn N
    PI-120 72.50 70.06 2.44 3.25 0.9 2.25 1.54 0.684 6.5 1.43112
    120 72.8 72.50 0.3 0.3 0.3 --.- -.--
    120-200 81.17 76.99 4.18 5.6 -.- 5.6 4.18 0.746 8.2 1.44963
    200-250 85.44 78.06 7.38 9.1 1.0 8.1 6.38 0.790 9.5 1.46368
    250-300 95.14 72.87 22.27 26.1 -.- 26.1 22.27 0.853 11.2 1.48191
    300-360 119.05 72.99 46.06 53.0 -.- 53.0 46.06 0.869 12.6 1.49677
    Total 82.63 2.2 80.43
    Residue: 95.74 − 82.63 = 13.11 0.901 19.0
  • The abundant regurgitation in the first case, accompanied by a significant quantity of violently released water, shows that there is water bound with moderate chemical forces. During the distillation of the liquids submerged under the sand, there is a weaker “depolymerization” and a smaller release of water. In any case, this shows that: (1) The 262 g of hydrocarbons of the “mayonnaise” are capable of binding with the 719 g of extruded water, or 2.5 times its weight in water, and (2) The “clear and extruded” hydrocarbons already contain, in this case, from 3 to 9% bound H2O. Therefore, it can be seen that our process can naturally provide oxygenated compounds or stable water/hydrocarbon emulsions.
  • We checked that the exiting process water did not contain any alcohol or any other carbon compound, by processing its distillation summarized below:
  • Process Water Analysis by Distillation with 15 Trays
    • Feed 100 cc: 97.81 g
    • The traffic begins at 99° C.
    • distills between 100° C. and 101° C. in clear water containing a small milky flocculating haze
    • Residue 225.93−224.89=1.04 g Dark brown
      • Non-combustible
      • With small black nodules
  • It is also observed that the water extracts different elements from the treated feed.
  • This water has an acid pH indicating that it has absorbed SH2 or any other acid element of the feed. All this constitutes a whole of favorable elements brought by our process, which implements steam of which the extractive activity increased with the injection temperature and the successive scrubbing operations in the extraction zone.
  • Control of Oxygenation or Hydration of Products
  • Other characteristics of the present system may include: controlling the hydration of the emulsions, or preventing the same; and controlling the oxygenation of the products, or preventing the same. We will indicate how these results can be obtained with our device. It should be noted that thanks to our extractor, we can select the norm of useful products and recycle those that are standout. Therefore, let's consider the norm case (selected objective) of oxygenated gasolines or gas oil and emulsion hydrated without free water.
  • It is clear that it is necessary to avoid sending too much process water to treat the feed, although a sufficient quantity must be sent. It was found that a good water/feed ratio (treated atmospheric residue) was in the order of 1 in weight. (Which is what was found in the evaluation of the results presented above.) If the objective is to move towards oxygenated compounds, it is clear that if said compounds are not oxygenated, they are considered standout, especially if the objective is to produce gasoline or automotive gas oil type cuts.
  • Therefore, we had the idea, which is a characteristic of one embodiment, to perform a first conversion of the atmospheric residue into distillates PI-360, with our extractor-contactor-decantor set around 200° C., and then rerun all these raffinates (200−) in their current state, through our facility.
  • In fact, during this recycling, equivalents of heavy but atmospheric distillates were converted into lighter gas oil, gasoline type products. The steam that provides for these operations is also sufficiently reactive to create the chemical additions that are shown in the distillation of the products (direct distillation or distillation under sand).
  • Let us now consider the reverse norm, for example to meet the refining specification of an existing site, which requires non-hydrated standard products (referred to as dry). Therefore, our process will void recycling the anhydrous products formed (200−), which would tend to hydrate them and create oxygenated compounds. In this case, we will operate by recycling only the extracts (200+) with the fresh feed that consists of residues or any other feed to be converted (200 being a value that may vary depending on the desired recycling).
  • In order to properly understand this, let's take a residue under vacuum that will not produce any atmospheric distillate during the first generation. It is appropriate to note that a very rough scheme is constituted by the following relationship:
    RsV
    Figure US20050211602A1-20050929-P00002
    DsV
    DsV
    Figure US20050211602A1-20050929-P00002
    Rat
  • A total RsV (art) conversion test that gives a DsV (first generation), followed by a Rat (second generation) is detailed below. With this type of recycling and the selected settings, the conversion products were not hydrated as indicated by their distillation carried out after the separation of water/hydrocarbon of the emulsions. Here, the distillation does not pac any water (contrary to the previous case, where an attempt was made to establish the same). This indicates that this problem is under control.
  • Conversion with Extinction of Recycling:
    End Conversion during Flow total depletion of resources
    Useful Global Reference (3)-(4) Summary:
    Atm. Cut Wt. Dp/v % Wt. &% Wt. dn n
    PI-150 = 1.70 0.6872 3.49 3.49 6.5 1.43112
    150-200 = 3.89 0.7720 7.98 11.46 7.7 1.44420
    200-250 = 8.07 0.8200 16.55 28.01 8.2 1.44963
    250-300 = 24.96  0.8692 51.19 79.20 9.8 1.46691
    300-320 = 5.44 0.8685 11.16 90.36 11.5 1.48511
    Residue = 4.70 9.63 100%
    Total 48.76
    (Losses: 1.24)
  • The minutes of the distillation of the conversion products contained in the clear and extruded phase (see table I) show that there is no measurable release of water. The releases of white vapors or sputtering towards 80° C., 130° C., 150° C., 250° C., 290° C., clearly show the key points of water release that were readily encountered in the treatment that was aimed at achieving hydration and oxygenated products; but here they are quantitatively negligible. Their total may be evaluated by excess by stating that they are, at the most, equal to the losses observed, or 3.8%, for the explanation of the ideas. (It should also be noted that the transfer of samples from the recipe cylinder to the appropriate cylinder in order to take a more accurate measurement of the volume and weight to obtain the density Dp/v, is performed with losses of 0.3 g for highly liquid lights, reaching 0.75 g for the atmospheric cut 300+, and 2.15 g for the atmospheric residues, due to flow problems associated with the increase of viscosity and surface tensions. This gives an idea of the binding effect of the products on the walls, which increases with the density and the refractive index).
  • Finally, for information purposes, regarding these tests, it should be noted that the main characteristics of the residue under vacuum were: density 1.01, refractive index 1.594, solid state.
  • Reactors-Extractors and Product Distillation Devices
  • Our reports on the distillation of conversion products mention the “Regurgitation of products, inrush of released water, sputtering, etc., which, if they should occur in a classic distillation unit, would cause the “blowout” of all distillation trays and their packing. According to a new characteristic of one embodiment, we imagined a device that was not only capable of performing said distillation work without the above-mentioned problems, but also operated as a true reactor-extractor of the mixer-decanter type.
  • Referring to FIG. 2, the principle is as follows: the properly preheated or cooled products are sent into a double shell cylinder containing satiating water with steam, which sets the temperature of said shell simply by setting the pressure of the chamber, steam is produced when heat is released; steam is consumed when heat is absorbed; the presence of saturating water provides for significant transfers of heat with the inner container of the reactor-extract.
  • In this double vertical shell that is quasi-isothermal to the temperature defined by the temperature of the saturating water, we install a tube or a series of vertical tubes, which rise, in order to explain the ideas, to the middle of the height of the double shell. Therefore, the upper section is empty. It acts as a baffle-decanter by selecting a low speed of ascent of light product or gases, enabling the heavy or liquid products in the form of mist or rain to fall back to the bottom. For this purpose, the falling speed of the heavy or liquid products only needs to be greater than the rising speed of the lighter products. Furthermore, this space acts as relief for any sudden inrush of water or violent release that could not be properly controlled. Since it is empty (no packing in this zone), there is no material risk. The heavy products or liquids remain at the bottom of the shell, between the shell and the vertical tubes. When the entire space between the shell and the tubes is filled, the heavy products overflow inside the vertical tubes and are collected at their lower outlet. Therefore, this extraction is automatic and natural.
  • The incoming products, liquids or gases, are injected at the bottom of the double shell in the heavy or liquid phase at a very moderate speed. Therefore, they are dispersed in the heavy phase, mixing therewith under local conditions of temperature and pressure; the mass transfers thus occur through the surfaces in contact and are governed by the differences of concentration in relation to the equilibrium of the stationary heavy phase and the incoming dispersed phase. These equilibriums are defined both by the physical separation of the phases in presence of each other and by the licit chemical equilibriums under the existing local conditions. The incoming products enrich the heavy phase and are drained of the heavy compounds transferred. With the light compounds that may be created, they reappear in the light phase that fills the top of the shell, where they are decanted, being separated from the liquid portions or heavy mists that fall back to the bottom. This device is especially beneficial because it is capable of performing the equivalent of a distillation while operating as if in a liquid-liquid extraction for oils or asphalts, or a chemical reactor. In fact, aromatic products such as furfural have widely known extracting powers for the extraction of aromatic products in the preparation of lubricants. In any case, it allows us to separate the effluents exiting the reactor at our convenience, in a safe and risk-free manner.
  • When several of these devices are arranged in series, a series of separations is performed which define perfectly the nature of the products extracted by the tubes, as the refined products are sent to the next device for the definition of another extract.
  • It should be noted that, with the working conditions used, the separation of atmospheric distillates from the atmospheric residue is carried out at 200° C. under 1 bar, while in a classic distillation column it would be performed at 360° C.
  • The configuration provided is for information purposes only and should not be limited thereto, as it could be carried out with numerous variations. For example, for our pilot of 2 kg/h, since the heat losses were very high, we adopted die electrical heating of the extractors, where the temperature was regulated by the intensity of the heater for a given rate and a given feed. The same system enabled us to perform the process extractions and the associated atmospheric distillations of our finished products in order to treat quantities of up to 50 kg.
  • This technological device can thus fulfill several purposes, in particular chemical conversions. We will explain its application to conversions of a gas mixture into liquids.
  • We just saw that our emulsions were stable and that the clear products could be oxygenated or hydrated, and that they were also in relation with the temperature (and operating pressure) of the key reactor-extractor separating the useful products from “the norm” of recycling. This unexpected effect motivated us to seek an explanation that could help us size the equipment and set the operating conditions while minimizing practical experimentation.
  • The Action of Steam on Unsaturated Double Bonds
  • Let's consider a chain containing a double carbon-carbon bond noted CeC. In the presence of steam, the following reaction may occur:
    Figure US20050211602A1-20050929-C00009
  • It is especially remarkable to note that, under these conditions, it is possible to convert ethylene into alcohol, which explains why we can limit the production of gases. It is also noted that heavy alcohols form naturally under the operating conditions of the reactor-extractor, which operates specifically at the temperature that is favorable to achieve this type of conversion.
  • It is thus easier to understand why our emulsions are stable and why our process can produce oxygenated compounds. In fact, regarding the stability of the emulsions, the heavy alcohols behave like third-party solvents between the water and the hydrocarbons, since alcohols are miscible with water through their function öH, and with hydrocarbons through the basic hydrocarbon skeleton. When we consider the fact that the binding forces involved in the emulsion are weak because their origin is more physical than chemical, it is easy to understand that the emulsion can be easily “broken” by the simple mechanical means that we have discovered.
  • Metals with Inorganic Deposits/Complex Emulsions
  • The residue under vacuum that we converted contained the impurities summarized in the following table, which also indicates their distribution.
  • Fractionation of RsV, Kuwait by Extraction C3-C5
  • POSITION DAO C3 ExC4 Ex C5 AspC5 ″″″″″″RsV
    % RsV FEED 18.7 33.7 30.4 17.5 100% RsV
    Density 20° C. 0.896 1.000 1.047 1.067 1.010
    Refrac. n 20° C. 1.519 1.592 1.624 1.641 1.59415
    TF° C. 50 60 100 146 +41° C.
    Sediments 0.096% Pds
    Res. Carb. % RsV 0.62 2.96 8.09 8.23 19.9
    Sulfur % RsV 0.53 1.62 1.62 1.23 5.0
    Nickel ppmRsV 0.2 10.2 14.4 17.2 42
    Vanadium 1.0 32.3 47.2 55.5 136
    ppmRsV 0.0003 0.0107 0.0110
    NaCl % Wt. 1402 Cst
    VISC. Cst 100° C. 1.64 1.35 1.22 1.18 H/C = 1.33
    H/C
  • The combustion of heavy fuels gives ashes that typically have the following relative composition (off SO4):
      • SiO2:32, Fe2O3:25, Na:16, Va:14, Ni:6, Al:6,
  • Our feeds to be converted thus contain Vanadium, Nickel, Sodium, Iron, Aluminum, Sulfur, etc., which must at least be taken into account in the conversion and should preferably be eliminated.
  • We observed that one of the first negative effects of the metals was the generation of solid compounds due to the formation of eutectics between 520 x and 600° C., such as: SiO2+Na2O, V2O5+Na2O, V2O5+NiO2, the most fusible acting as fluxing agent of the less fusible that follow.
  • It appears that the free compounds such as those indicated below are evacuated by the effluents of the reactor at the solid state.
    Compounds Tf Teb D n
    SiO2 1700 2230 2.32 1.4840
    SiS2 >1090 2.020 . . .
  • In any case, if the operation is carried out with a reactor at a temperature that is too high, deposits are observed containing the eutectics that formed, which will deposit on the walls of the reactor. Therefore, this limitation has nothing to do with the chemistry of the conversion; it is only related to the nature of the impurities of the feed. In fact, it is not the presence of said impurities that constitutes a hindrance; it is their accumulation in the reactor or the extractor on duty that would tend to plug them, thus blocking any possible operation so long as they are not eliminated. Thus we have a new characteristic of one embodiment, which limits the operating temperature of the reactor depending on the impurity content, in the case of residue under vacuum below 500° C.
  • The SiO2 is slightly extracted by dry H2O steam (see table below).
    Solubility SiO2/H2O SiO2/H2O ppm
    P H2O liq., sat. H2O steam, sat. Dry H2O steam
    Temp. atm. Concent. SiO2/H2O ppm @ Tsat. 400° C. 500° C. 600° C.
    100° C. 1 500 0.02 0.2 0.5 0.9
    200 15 1000 0.2 1.5 5.0 10.0
    235 30 1300 1.1 4.5 11.0 40.0
  • Oxides such as V2O5 of a yellow red color or V2O3 of a darker color have a significant solubility in water, which contributes to their extraction in our extractor. The Vanadium-Sodium compounds such as NaVO4 or Na3VO4 are also soluble in water, the same is true for yellow NiSO4 or green NiCL3 and FeCL2. By extracting the different oxides, the water counters the formation of the eutectics mentioned above and also reduces the rate of their deposits in the reactor. The presence of water and the oxygenation of the hydrocarbons in our reactor contribute to the formation of compounds such as: C6H5SO3>2Fe, 3H2O (brown) or C6H5SO3>2Ni, 6H2O or C2H3Öö>2Ni (Green), which also have a partial, but significant, solubility in water.
  • All this explains the color of the water collected after the separation of water/hydrocarbons, as well as the appearance of flocs of a density greater than that of the water. After avoiding the deposits due to metals in the reactor, it was observed that they were concentrated in the heavy polyaromatic hydrocarbons that tended to form “cages”, as shown clearly by the analysis of the residue under vacuum.
  • The following table describes a few compounds of Si and Fe exiting primarily in DsV and RsV.
    Compounds PM Tf Teb d n
    H5C2)3,Si,C6H5 192 149 230 . . . . . . . . . 1.5617
    H2CéCH,Si,(öC6H5)3 334 . . . 210/ 7 mmHg . . . 1.130 . . .
    C6H5ö>4,Si 400 47 417/ 7 mmHg . . . . . . . . .
    C6H5)2,Si,(C6H4C6H5)2 488 170 570 . . . . . . 1.140 1.100
    C6H5>3,Si,C6H4C6H5 412 174 580 . . . . . . . . . . . .
    C6H5>-<C6H4>)4,Si 640 283 600 . . . . . . . . . . . .
    H3C)3,Si,C5H4>2,Fe 330 16  88/ 0.06 . . . 1.5454
    H3C)3,Si,C5H4>FeC5H5 258 23  65/ 0.5 . . . . . . 1.5696
  • This property is thus exploited to extract them at point 13.4 of our process, which constitutes another characteristic of one embodiment.
  • We also observed that even the light components that may have formed remained attached primarily to the silica or free carbon to form liquids with a boiling temperature PI-150° C., as indicated in the table below:
    Compound Tf Teb D n
    H3C)4,C −17 +9 0.613 1.3476
    H3C)4,Si . . . +26 0.652 . . .
    H3CCH2)4,C −33 146 0.754 1.4206
    H3CCH2)4,Si . . . 152 0.762 1.4246

    TETRAETHYLLEAD FOR GASOLINE (for informational purposes, we point out the remarkable physical properties of the tetraethyllead.)
  • These are some additional organometallic compounds of iron:
    Tf
    Compound PM ° C. Teb N Color
    C4H6Fe(CO)3 193 19 . . . . . . . . . . . . Yellow
    C6H4SFe(CO)2 220 51 Subl. . . . . . . . . . Light
    red
    C5H9C5H4)FeC5H5 254 16 . . . Red
    Liq.
    H3CÖC5H4)FeC5H5 228 85 87 . . . . . . . . .
    H3CCO2C5H4)2,Fe 302 . . . 114 . . . . . . . . .
    C6H5C5H5>FeC5H5 236 110 . . . . . . . . . . . . Red
    ÖHCC5H4>FeC5H5 214 121 . . . . . . . . . . . . Gold
    HöÖCH2C5H4>2Fe 302 140 . . . . . . . . . . . . Brown-
    ish
    Red
    C6H5C5H4>2,Fe 338 154 . . . . . . . . . . . . Yellow
    HöC6H4C5H4>FeC5H5 278 165 . . . . . . . . . . . . Gold
    Fluorescent Green Yellow
    C6H5>2,C5H3>2,Fe 490 220 . . . . . . . . . . . . Red/
    Yellow
  • They are normally liquid and extracted according to our processes, at 100 or 200° C.
  • All these explanations are provided only for informational purposes, in order to have an idea of the phenomena observed.
  • It was also observed that the highly polyaromatic molecules that could form cages, which would translate into a very high refractive index, had a strong solvent power capable of extracting the unwanted molecules. This explains our technique, which consists in maintaining in 13.4 a strong stationary liquid phase of which the activity is increased by the temperature; this phase also results from components of the residue under vacuum.
  • Observations Regarding the Final Stabilisation of the Products Formed
  • There is always a residue of products at low boiling temperature in the useful products such as:
    Compound PM Tf Teb d n color
    H3CÖC5H4)FeC5H5 228 85 87 . . . . . . . . . . . .
    H3CCO2C5H4)2,Fe 302 . . . 114 . . . . . . . . . Red
  • Alcohols are added to these compounds, reacting according to the following scheme:
      • —CeC—+H2⇄Alcohol AS=−32 AH=−15 Teq 200° C.
  • As a result, the final separation cannot be a simple distillation due to solid-dissolved/gas phase changes or when it follows a dehydration. In fact, what refiners refer to as a “water inrush” could occur, which destroys the packings of a classic distillation unit. In our reference distillations, we observed these effects at the above-mentioned temperatures, in the form of violent regurgitations, sudden dehydrations, sputtering accompanying releases of white vapors, etc. That is why we adopt our extracting device to carry out this final stabilization operation in total safety. This device enabled us to separate all of our products, or approximately one hundred kg, without encountering any problems.
  • Description and Performance of the Injection Associated with the Reactor
  • It was previously indicated that the role of the injector was to transfer the maximum usable energy contained in the vapors or the gases, the feed to be converted, on one hand, and, on the other hand, to create a close contact between the steam and the feed, preferably without any material contact with the metal wails.
  • These results are obtained as follows:
  • The feed that in fact is a heavy phase in relation to the gases or vapors, is divided into pairs of mechanically sprayed jets, set sideways in opposite directions, arranged in accordance with FIG. 3, flowing from top to bottom and meeting on the axis of the injector. By mutual deviation, they then flow axially at a moderate speed, without any material contact.
  • The purpose of the mechanical spraying is to create fine droplets, preferably some mist, which thus develops a maximum surface of the hydrocarbon containing feed. The spraying may be supported by approximately 5% of overheated HP steam which contributes to the nebulization of the feed (as is well known in the injector heads of boiler and furnace burners).
  • In this flow, the vapor or gas jet is placed during the expansion, its energy being primarily transformed into kinetic energy to the fullest extent possible, thus with great speed.
  • By injecting the high speed vapor jet in the sprayed jet of the feed, the mechanical shearing of said jet is obtained, with the transfer of energy that contributes to the activation of the reactions, all these operations being carried out at very high speeds, without contact with the material walls and practically at the desired temperature of the reactor.
  • The calculation of chokes and nozzles is easily performed, according to techniques that are specific to steam turbines or hydraulic turbines, taking into account the polyphasic state of the feed.
  • Arrangement of the Injectors on the Reactor to Facilitate its Mechanical Cleaning
  • The reactor is empty. Most of the solid carbon formed is carried away by the effluents exiting the reactor, which constitutes a great benefit of our process. However, a small portion is deposited on the walls and tends to accumulate. Therefore, these carbonaceous deposits or metal oxide compounds contained in the feed must be eliminated at appropriate intervals. The presence of noncombustible oxides requires the use of mechanical means such as scrubbing, sandblasting, or another means. To this end, it is necessary to open the reactor while avoiding any inner part or jutting edge.
  • Therefore, the injectors are arranged sideways, opposite one another, to the outside of the reactor, in pairs, so that the reactor, once opened, may keep its walls totally free. By laying the top of the reactor, followed by the bottom, the naked ring of the reactor remains, which can be easily cleaned by any mechanical means.
  • This device is particularly beneficial, especially when compared to the problems presented by reactors fitted with packings (Visbreaker Soaker) or filled with catalysts with or without circulation.
  • Injector and Soaking Drum
  • A critical problem is knowing how to define the conditions for the injection of products so as to facilitate the proper initiation of the useful reactions, and define the required conditions in order to achieve the equilibrium of the stable products exiting the soaking drum This practical definition, which constitutes a unique concept of one embodiment, consists mainly in defining the key parameters that govern said process in a practical manner. We will describe an example where the residue under vacuum is treated for the purpose of obtaining a light gas oil, kerosine production.
  • We will first consider the residue under vacuum. Its density and refractive index provide us with valuable information regarding its structure, thanks to our know-how. An extraction of asphalts at C3, C4, C5 specifies this structure in terms of molecules to be treated. We will preferably take a global sample and perform a thermal stability test (or conversion by thermal cracking) that is moderate and easy to perform.
  • If RsV is the quantity of residue involved and operating at the temperature T, we observed that RsV disappeared, forming other products according to the following relationship:
    d(RsV)/dt=RsV e −t/Ts Ts being a time unit
  • For example, for the residue for which all conversion results will be given below, we found
    Temperature T° C. 430 460 490
    Ts seconds 700 140 40
  • Our experience led us to think that this reaction speed was related to the disequilibrium between the composition of the products and that which would exist if things were left to develop without any time restrictions.
  • If RsVeq is the residue that would remain in equilibrium with all the products generated, we would obtain: ( RsV ) / t ( RsVeq - RsV ) = Ts To
  • To being a time unit specific to each product.
  • Furthermore, the conditions of mechanical breakdown of the molecules that we have already explained in detail, are related to the interatomic cohesive forces of the component molecules and to the fact that the matter in question exceeds the acceptable maximum deformation.
  • This results in an effort E equal to: E=force×deformation. We believe that there is a general relationship between Ts and the temperature T, with R universal constant of perfect gases, in the form of:
    Ts=To e −T(R/E)
    Thus we have a simple means of evaluating the value E, which we assign to our residue under vacuum. In fact, according to our hypotheses and considering two pairs of temperature measurements Ts(1), T1; Ts(2), T2, we obtain: E = R ( T1 - T2 ) with : £ Neper logarithm
  • In our case, with T1=430° C., Ts(1)=700 s, T2=490° C., Ts(2)=40 s, we find that the value of E is approximately 42 kcal/mol. This means that if we are not capable of engaging this energy, nothing will occur instantaneously in the reactor (it also means that if a much greater energy is transferred to the molecule, this molecule will be shattered).
  • We will now examine the preheating of the feed and the temperature of the reactor.
  • Having provided an effort of 42 kcal/mol without converting it into heat, the average molecule of RsV is broken into only 2 fragments due to the lack of energy. First of all, it is necessary to prevent the two fragments produced from immediately rejoining. Again, this is the role of the injector, which inserts gaseous molecules during the expansion between the fragments formed. This insertion is facilitated by the fact that the Steam H2O or gas CO2 can react chemically with the broken ends of the molecules.
  • According to one embodiment, in order to achieve this with almost total certainty, it is necessary to have as many gaseous molecules as there are pairs of carbon, so as to create this situation. If steam is the only element used, the ratio between water (18 g/mol) and hydrocarbons (CHx 13 14) must ideally be in the order of 181(2×13) by weight, or approximately 0.7.
  • Since the molecules of RsV are fragmented, it is necessary to place them in a stable thermodynamic equilibrium. To this end, a period of time Ts is required, which depends primarily of the temperature. Based on the experimental data Ts, it would be preferable to adopt the highest possible temperature in order to reduce the duration of the operations, but we found out that this cannot be done without incurring risks.
  • Thus, from 460° C. we have: Ce14H28→Cä13H24+CH4
      • 565° C.:CH4→4Csol+8H2
        • the polyaromatic polymerize towards massive carbon.
  • Thanks to the reactants used, primarily steam, these side reactions can be blocked partially but never completely. The final choice thus becomes a compromise based primarily on the solid carbon accepted. In practice, it is negligible at 440° C. At 520° C., its accumulation in the reactor requires frequent scrubbing for its elimination; otherwise it can become a hindrance if nothing is done, possibly filling the reactor completely.
  • A temperature of 460-470° C. was adopted, which gave good results. It was observed that the pressure had a very beneficial effect on the speed of the reaction. Very important at the beginning, going from 1 to 20 or 30 b, this effect subsides thereafter, peaking towards 150 b and decreasing above 200 bars. That is why we adopted pressures of 20 or 30 bars, which enabled us to divide approximately by 2 the times Ts that we would have at 1 bar. Therefore, at 470° C., we should have approximately 25 seconds to achieve the equilibrium in the reactor.
  • Regarding the control of the reactions, our objective is to break a molecule in two during each run. This requires a net value of 20 kcal/mol as indicated previously. If we supply 40 kcal/mol for the activation, it is sufficient to start from a feed preheated under 470° C. to obtain the desired result.
  • In fact, starting from this temperature which is slightly lower than the desired temperature of the soaking drum, when the activation energy is added the molecule would have a thermal temperature that is greater than that which it would have in its normal state, but it breaks upon absorbing 20 kcal/mol, finally leaving it at the temperature desired for the remaining operations necessary to achieve the equilibrium.
  • Once that this is well understood, taking into account the previously defined flow rate of steam (or gas) that is necessary to effectively close the broken ends, it is possible to deduce the value of the enthalpy of the steam that is sent to the injector.
  • In order to achieve 470° C. in the soaking tank, taking into account the recirculations and the different energy transfer values achieved, it is necessary to consider superheating temperatures of the steam in the order of 600-650° C. for the RsV.
  • Once that the energy balance is achieved and the matter recycling is completed, it would be beneficial to adopt a steam pressure of the order of 60 b, superheated at 600° C. Our injection nozzle then relieves adiabatically the steam from 60 bars to 30 bars at 470° C., and placed 60 kcal/kg available mechanically as kinetic energy in the steam jet of the order of 700 m/s. Thus we obtain a steam at the desired temperature of the reactor. At this temperature, there is absolutely no risk of “roasting” the hydrocarbons, which receive the energy usable as kinetic energy, which will “shear” the hydrocarbons mechanically.
  • Typically, the preheating will be approximately 20° C. or 25° C. less than the temperature of the soaking tank, or approximately 445-450° C. This is particularly beneficial for the operation of the residue preheating furnace and prevents any coking problems. In fact, we know that visbreaker furnaces must heat this same type of residue towards 460° C., and that the coking risks appear above this temperature. With these operating conditions, we never encountered any coking in our furnace.
  • In any case, once that the steam flow rate and the operating rate of the unit have been set, the superheating of the steam and the preheating of the feed are adjusted to achieve the thermal balance defined by the temperature of the soaking drum In practice, the preheating of the feed being set at 20 or 25° C. below the temperature at the outlet of the reactor, the flow rate of the heating fuel of the steam furnace is adjusted by the reactor's outlet temperature.
  • The example that we provided above for the residue under vacuum can be generalized regardless of the feed. The main key parameter is the temperature of the reactor, which increases when the products are lighter. For example, with very heavy distillates under vacuum, we will have temperatures in the order of 500° C., which will increase to 520° C. for light distillates under vacuum or very heavy atmospheric gas oils.
  • EXAMPLES OF APPLICATIONS
  • FIG. 4 represents the process layout of a unit according to our process for the steam conversion of hydrocarbon containing products, in a non-arid country.
  • FIG. 5 represents the same layout implemented in a desert area poor in water resources.
  • FIG. 6 represents the same layout implemented in order to convert the excess gases of a drilling well or a refinery into liquids.
  • FIG. 7 represents an industrial pilot working at a total supply rate of 5 kg/h, or 2 kg/h atmospheric residue or 1.5 kg/h residue under vacuum. This pilot also converted heavy distillates and oils into light distillates.
  • Steam Conversion
  • In this version, see FIG. 4, the water is introduced in [0] by the pump [1], in a single tube furnace [2] heated by a burner [3]; the superheated steam is sent to the injector [4].
  • The fresh feed [5] that is stored in the tank [6], which receives the recycling [14] into which it is mixed, is pumped by the pump [17], which sends it to the furnace [8], which preheats the whole and sends it to the inlet of the injector [4]. The injector [4], operating as previously described, injects the whole in the reactor [10].
  • Under the control of the pressure measurement [20], the valve [12] discharges the effluents of the reactor by releasing them in the extractor system [13], operating at a pressure similar to the atmospheric pressure.
  • This extractor system, which was described elsewhere, comprises a series of extractions {13.1 to 13.5}, which are set from the ambient temperature to 360° C.
  • [13.1] is at the local ambient temperature, [13.2] is set towards 100° C., [13.3] is used to separate the useful products (generally atmospheric distillates) of the atmospheric residues that were not fully converted The outlet [13.4] can also fulfill this purpose and, in all cases, it breaks down the final separation of [13.3].
  • The outlet [13.5] extracts the heaviest products that are heavily loaded with polyaromatics and solid carbon precursor metals.
  • A portion [13.52] is extracted in order to prevent its accumulation in the facility, and is used to constitute heavy fuels as long as they are still acceptable in this fuel, while the remaining portion [13.51] is recycled in [14], in preparation for a new conversion.
  • The useful products [13.2] and [13.1] appear in the form of highly stable emulsions. They are usually bound (but they could be separated if light products are desired) and sent to the system [15] which breaks the emulsions mechanically. These broken emulsions are sent to a classic decanter which separates Hydrocarbons [16.1] from water [16.2] and the heavier phases extracted (mud and sediments) [16.3].
  • The hydrocarbons fraction [16.1] is sent to the extractor [18], which separates the hydrocarbons that may be oxygenated or hydrated. (A classic distillation would run the risk of dangerous “water inrush”)
  • The normal outputs are:
    • [18.1] PI-100
    • [18.2] 150-200
    • [18.3] 200-250
    • [18.4] 250-300
    • [18.5] 300-350
    • [18.6] 350+ (Atmospheric Residue)
  • The cut points may be changed by modifying the temperature of the extractors, as explained elsewhere. The heavy fuels are constituted by the output products [18.6] (atmospheric residue) and the extracts [13.52]. The carbonaceous residues (laden with metals) [15] are used as fuels to feed preferably the burner [9] of the furnace [8] and the noncondensable gases are sent as primary fuel to the different burners of the furnace, the remainder being taken from the heavy fuel. Finally, the small quantity of noncondensable gas and the small carbonaceous deposits produced by the autoconsumption of the unit are resorbed in this manner, which leaves the maximum quantity of liquid products demanded by the users.
  • In principle, this facility presents no danger. All prevailing reactions are endothermic, thus stable. The presence of process water steam makes it possible to smother any potential risk of fire. The small production of gas does not give rise to any significant degassing, in the event of any incident.
  • The hold-up (quantity of matter retained in the reactors) is relatively modest, which provides for quick starts and shutdowns of the unit. The unit is automatically stabilized and self-regulating pursuant to the operating technique adopted, in particular the extractors that operate through the natural overflow of the extracts. All these qualities provide for an extreme ease of operation and conduct (especially when compared with the units that it can replace, such as an FCC with its catalyst circulation problems between the RISER reactor and its air supply regenerator under a pressure of approximately 3 bars, with its hydrocyclone problems in order to eliminate the fines of the catalyst, etc.).
  • Installation for Arid Areas
  • If no water is available, its absence can easily be compensated for through the use of hot gases issued from a simple combustion involving CO2+H2O+N2.
  • In this case, the furnace [2] of FIG. 4 is replaced by the furnace [68] of FIG. 5. This furnace receives the liquid (or gaseous) fuel [61], which is pumped or compressed by [60], sent to the burner [64] which also receives air [63] compressed by the compressor [62], and is then sent as a fuel to the burner [64]. The temperature of the produced gases (fumes) is adjusted to the value required by bypassing more or less the convection zone that cools these gases mixed with the gas exiting the radiation towards 900° C., if it is properly charged thermically. In fact, the fuel flow rate is set according to the desired quantity of gas. An oxygen meter sets the oxidizer-air necessary so as to avoid any excess, while the preset temperature [54] of the gases to be supplied controls the bypass valve [67] that regulates said temperature. In this version, the quantity of water implemented is reduced compared to the case of FIG. 4, which operates completely with steam. The devices [15] and [16] are reduced but, in return, it is necessary to provide an air compressor that is more complex and less cost-effective in terms of consumed power than a supply pump of a water furnace. The rest of the facility remains identical to the previous one. This application is very simple and very safe.
  • It requires the constant monitoring of the combustion in the furnaces (flame detector) to prevent any untimely, uncontrolled combustion in the event that the flame goes out, which could cause the fusion of the reactor. (Note that the reactor may be decoked from time to time by the controlled air combustion of the carbonaceous deposits, as the solid deposits would then be easily removed by hammering or sandblasting.)
  • Resorption of Light Gases in the Refinery or in an Oil Field or to Maximize the Production of Gasolines
  • This case is illustrated in FIG. 6. As we saw previously, the process goes through Oxygenating and Hydrating phases that are favorable towards 200° in the extractor. Instead of grafting H2O on the unsaturated bonds of the conversion products, it is possible to graft, under the same conditions, —CH2- resulting from the initial high temperature reaction:
    2 CH4+O2
    Figure US20050211602A1-20050929-P00002
    2CO+4H2
    which, at 200° C., produces at a low temperature:
    2 CO+4 H2
    Figure US20050211602A1-20050929-P00002
    2 —CH2- +2 H2O
  • Since the nature of the gas is less important at high temperatures than the energy that is carries, this mixture is appropriate for the projected conversions of heavy products and, as was previously mentioned, their unsaturated skeletons constitute a good base for the attachment of the —CH2- that form favorably towards 200° C., under a pressure of 20 to 30 bars, in reactors that already contain hydrocarbons. A facility of this type is illustrated in FIG. 6.
  • From a schematic point of view, the generation of the gases is the same as in the case of FIG. 5. Only the regulation of the combustion changes. The oxygen meter is fitted with a device to measure CO2 which will ultimately regulate the oxygen (or air) fed to the burner.
  • The facility remains identical to the previous ones and the only difference is the outlet of the reactor [10]. The effluents exiting the reactor are not expanded and are maintained under a pressure of the order of 25 bars. They are cooled by an exchanger [82], after which they go through an extractor [84] which operates in the same manner as [23] and [24]. [84] is under optimal temperature and pressure conditions to carry out the useful reactions and will be sized accordingly. With the pressure being regulated [74], the valve [85] is operated, discharging the reactor [84], returning partially to the initial process [13] here in [83] at the atmospheric pressure, and provided with the outlets [13.3], [13.2] and [13.1], which operate as provided previously in the case of FIG. 4.
  • The partial autothermic oxidation of the Gases requires the continuous monitoring of this combustion, as well as quick degassing means in the event of an incident (hydraulic protection and significant flare to handle any contingency). Our experience in this field leads us to think that this technique will be reserved for large units where all the required safety measures and precautions may be fully and efficiently taken.
  • In the gasoline target case, a more advanced gas or fuel oxidation may be adopted in order to obtain CO2+H2O (total oxidation) or CO2+H2O+CO+H2 (partial oxidation) mixtures that are favorable in order to improve the rate of conversion into light products and the octane number of the gasolines. In this case, the safety requirement of the facilities is once again total, with the usual refining techniques.
  • These three variations illustrate the flexibility of the possible adaptation of our process and the equipment that it implements, depending on the needs that must be fulfilled and the restrictions imposed.
  • Examples of Results Obtain with our Industrial Pilot
  • Our pilot, of which an illustration is provided in FIG. 7, makes it possible to carry out all the operations that we have considered. For reasons of space and cost, the operations [15] and [16] for the separation and extrusion of hydrocarbons from the emulsions were not carried out on a continuous basis, but rather as a retreatment at the end of a controlled run according to the process layout in FIG. 8.
  • Likewise, the stabilization (some kind of reactive distillation) giving final products was performed as a retreatment and on a continuous basis in our facility according to the layout of FIG. 9. In this case, the reactor (atmospheric pressure) constitutes only a transfer line between the furnace [8] and the extractor [13], which replaces the whole [18] of a facility completely in line according to FIGS. 4, 5 and 6.
  • The pilot comprises a manifold that provides for the charging of the gases H2, CO2, N2, air or CH4.
  • The pilot is illustrated in FIG. 10 in the form that is its simplest and closest to the industrial applications. It converts the feeds only with steam. [2] is the single tube furnace for the water. [1] is its booster pump that collects from a tank of which the level is measured in order to determine the water injected [3] is the single tube furnace that heats the feed injected by the pump [7]. [6] is the fresh feed and recycling tank (which must be carefully monitored in order to keep the products liquid so that they may be pumped). This tank is measured with bubbles, which provides the weight of the treated feed. [4] is the injector that we described and defined previously. [10] is the reactor sized according to the method described in the patent. [12] is the discharge valve of the reactor, regulating its pressure. [13] is a set of extractors as we defined the same. Their temperature is set as needed from one extractor to the other. [28] is a Positive-Displacement Meter of outlet GAS placed behind a “devesiculator”. [39] is another condensate collector. [13.1 to 13.5] are the extract discharge outlets.
  • The temperatures are measured by mercury thermometers placed in deep wells. The pressures are measured by conventional pressure gages.
  • Treatment and Measurement of Conversion Products Formed
  • Outlet Gases:
  • The gases exiting [13], after being “devesiculated” and cooled at the ambient temperature, go into a precision positive-displacement meter followed by a gas sampling system in flexible bladders of 11.2 liters (previously emptied by a vane pump that creates a very good vacuum).
  • The density of the gas can be determined by simply weighing the bladder (taking the taring into account), which, based on the volume of the gases produced, directly indicates the mass of the outlet gases. The composition of the gases sampled is obtained by any appropriate technique. In our case, since there may be several large capacity bladders, the gases may be extracted, cooled by liquefying them with liquid nitrogen, and distilled naturally during their reheating. If hydrogen was released in our reactions, it would be easy to find because it would not be trapped by the liquid nitrogen and would give permanent gases with a molecular weight of 2. This industrial procedure provides for an uncontestable quantitative analysis of the outlet gases.
  • From a practical point of view, the flow of gas makes it possible to verify the proper setting of the operating energy conditions of the injector and of the reactor that follows it, since we know that the production of hydrocarbon containing gases must be minimal (target: null). Therefore, the gases consist mainly of SH2, CO2 and CO, which can be easily proportioned through simple means.
  • Liquid Products Formed:
  • These products appear after a very brief decantation, in the form of: a light mobile phase referred to as “Clear,” a stable emulsion referred to as “Mayonnaise;” and a free water phase which sometimes covers the sediments or the flocculating sludge referred to as “flocs”.
  • The proportion of these different phases or emulsions varies according to the feed and the operating conditions. The emulsion phase often prevails and can even be the only phase present In all cases, the emulsion is extruded through previously described means, produces a “clear” phase (resulting from the mayonnaise) and “dirty” water (colored and acid). The direct clear phase and the mayonnaise clear phase constitute the outlet products in [16.11], which contain the useful conversion products (which may be hydrated or oxygenated as previously indicated).
  • These products are then separated on a continuous basis, according to the process layout of FIG. 9. They are heated in the furnace [8] to 360 x under approximately 1 bar, after which they go into [10], which acts as a transfer line, to finally produce in: [13.5-18.5], the atmospheric residue; [13.4-18.4], the cut 300-360; [13.3-18.3], the cut 200-300; [13.2-18.2], the cut 100-200; [13.1-18.1], the cut PI-100. The cut points can be changed by modifying the temperature of the extractors. We intentionally limited the cuts to 5 because they were sufficient in the first conversion phase of FIG. 7. Thus we obtain significant quantities of products on which all the evaluations and measurements desired may be performed.
  • The detailed characteristics of the formed products are obtained through classic distillation, without stirring or packing, in order to observe the dehydration phenomena of these products, which may release water. The refractive index and density measurements inform us of the structure of the formed products and, consequently, on the good execution of the conversion. This is especially important for recycling, by making sure not to polymerize any polyaromatics which would degenerate into massive coke.
  • Examples of Results Obtained
    CONVERSION OF RESIDUE UNDER VACUUM. RsV
    [5] Feed RsV, feed 100.0 d = 1.01 SOLID n = 1.594
    [15] Csol 3.0 solid fuel  3%
    [41] Cgas 4.0 2 fuel gas  2%
    [16.3] +Miscellaneous 4.0
    [13.52] Purges 3.5 \Heavy
    [18.5] 8.5 /FUEL 12%
    [18.1 to 18.4] Dat 77.0 0.839 Atmos. DISTILLATES
    CONVERSION Atm. Cut % Wt. Dp/V n
    [−18.1] PI-150 2.57 0.687 1.43112
    [−18.2] 150-200 3.77 0.772 1.45504
    [ 200-250 4.61 0.825 1.46368
    −18.3] 250-300 46.68 0.8536 1.47443
    [−18.4] 300-360 19.37 0.8535 1.48936
  • Dp/v is the Weight/Volume quotient density, da is the same density taken on a densitometer.
  • The key points of this conversion are listed below:
    Process Reference Nature d: density n: refraction
    [0] H2O natural 1.00
    Feed:
    [5] Feed RsV 1.01 1.594 SOLID
    [13.1-13.2]
    [50] Dv/P da n
    [16.1] Clear 0.893 0.906 1.51671
    [16.2] Mayonnaise 0.977 . 1.51252
    Clear Extruded 0.925 0.933 1.51567
    [16.11: Clear + Clear Extruded from [13.1-13.2]
    % in the cut
    CONVERSION Atm. Cut % Wt. Dp/V n
    [18.1] PI-150 3.03 0.687 1.43112
    [18.2] 150-200 4.44 0.772 1.45504
    [18.3] 200-250 5.43 0.825 1.46368
    [18.4] 250-300 55.00 0.8536 1.47443
    [18.5] 300-360 22.82 0.8535 1.48936
    Atm. Residue: 9.28
    % in the cut
    DsV Cut % Wt. Dp/v n
    RECYCLING:
    MAIN FLOW
    [13.3] 200° C. PI-200 8.24 0.831 1.50099
    200-250 29.21 0.903 1.50835
    250-330 52.18 0.932 1.51879
    RsV.3 10.37 1.595
    VERY LOW FLOW:
    RECYCLING + PURGE
    [13.4] 360° C. PI-195 Nothing . . .
    195-250 8.63 0.859 1.49888
    250-300 43.33 0.904 1.53737
    RsV.4 48.04 1.625
    [13.5] 470° C. NOTHING . . .
  • It is observed that the cut [13.4] contains a RsV portion and (250-300) DsV which extracted metals and polyaromatics. A portion thereof is eliminated to purge the reactor. The 3.5% adopted gave us good results.
  • 2 Conversions of Atmospheric Residue Reactor 470° C.
    [5] Feed Rat., 100.0 d = 0.97 Fixed n =
    feed 1.5576
    [15] Csol 1.5 solid fuel
    [41] Cgas 3.0 2 fuel gas 1.5%
    [16.3] +Miscel- 3.0
    laneous
    [13.52] Purges 2.0 \Heavy
    [18.5] 9.5 /FUEL 11.5%
    Total Atmos. Dist.: 81.0 on feed
    [16.11: Clear + Clear Extruded from [13.1-13.2]
    % on feed
    CONVERSION Atm. Cut % Wt. Dp/V n
    [−18.1] PI-150 2.7 0.69 1.432
    [−18.2] 150-200 10.6 0.77 1.452
    [−18.3] 200-250 19.0 0.82 1.462
    [−18.4] 250-300 33.2 0.86 1.484
    [−18.5] 300-360 15.5 0.88 1.497
    Atm. Residue: 9.50
    [5] Feed: Rat., feed 100.0 d = 0.97 Fixed n = 1.5576
    [5] Rat DsV Cut % Wt. Dp/V n
    % in the cut
    QQQ QQQ DsV Cut % Wt. Dp/v D
    RECYCLING: MAIN FLOW
    [13.3] 200° C. PI-200  6.95 1.503
    200-250 28.14 0.867 1.509
    250-330 49.45 0.923 1.530
    RsV.3 15.46 1.599
    VERY LOW FLOW:
    RECYCLING + PURGE
    [13.4] 360° C. PI-195  0.0 . . .
    195-250 10.5 1.509
    250-325 39.8 0.934 1.530
    RsV.4 48.04 1.06 1.630
    [13.5] 470° C. NOTHING . . .
  • It is clearly observed that the metals and heavy polyaromatics are concentrated in the RsV of the extract [13.4], which is why a portion of this extract is purged. The recycling decreases compared to the case where only RsV is treated; therefore, the treatment capacity is its nominal value of 2 kg/h of atmospheric residue.
  • 3 Production of Oxygenated Compounds or Hydrated Emulsion
  • By performing a first conversion run of the Atmospheric Residue, direct clear products+emulsions are obtained. It was thought to run them again through our pilot in order to oxygenate or hydrate them during this new conversion.
  • The distillation under sand of the direct clear and extruded phase after this second conversion gave the following results:
    Recipes: Weight refractive index
    Section V. t Steam V. HC HC, dry density Dp/V n
    PI-120 3.25 0.9 2.25 1.54 0.684 1.43112
    120 0.3 0.3 --.- -.--
    120-200 5.6 -.- 5.6 4.18 0.746 1.44963
    200-250 9.1 1.0 8.1 6.38 0.790 1.46368
    250-300 26.1 -.- 26.1 22.27 0.853 1.48191
    300-360 53.0 -.- 53.0 46.06 0.869 1.49677

    H2O = 2.2 g for 80.43 g of Dry HC
  • The distillation without sand of the same feed produced: H2O=7.9 g for: 85.86 g of Dry HC
  • This clearly shows that hydrated and oxygenated products were formed, which depolymerize in the first place at similar temperatures comprised between 120 and 250° C. at 1 bar. Moreover, it is well known that water attaches to the ethylenic bonds according to reactions of the following type:
    Figure US20050211602A1-20050929-C00010
  • The equilibrium temperature of these reactions is achieved specifically at 1b towards 200° C. for heavy alcohols, and at 200° C. for light alcohols.
  • The experience clearly shows that we have oxygenated and hydrated hydrocarbons, which is confirmed by the chemical equilibrium temperatures of the water with the corresponding alcohols.
  • The presence of hydrated and oxygenated products is favorable for the quality of the products formed, in particular gasolines.
  • This oxygenation or hydration is also favorable for the combustion both in furnaces and in diesel engines. Furthermore, because of their polar characteristics due to the function ÖH, these products act as third-party solvents between the water and the hydrocarbon skeleton of the hydrocarbons, thus making it possible to obtain emulsions that are highly stable in time (Our samples of more than 8 years have not moved).
  • 4 CONVERSION OF THE LAST HEAVY DISTILLATED UNDER VACUUM referred to as 80, Kuwait, from the Oil Plan BP Dunkerque Reactor 500° C.
  • These controlled operating conditions were selected in order to verify the productivity increase and test the control of the speed of deposits in the reactor. Furthermore, the techniques for the furfural liquid-liquid extraction of the feed and the effluents enable us to analyze the structure of the products formed and to confirm our operating and sizing practices for the units designed according to our process.
    Feed: 80, K 100.0 d = 0.936 SOLID n = 1.530
    [15] Csol 3.0 solid fuel 3%
    [41] Cgas 4.0 2 fuel gas 2%
    [16.3] +Miscellaneous 0.5
    [13.52]Purges 3.5 Heavy
    [18.5] 11.2 FUEL 14.7%  
    Total Atmos. Dist.: 77.8 on feed
    [16.11: Clear + Clear Extruded from [13.1-13.2]
    % on feed
    CONVERSION Atm. Cut % Wt. Dp/V n
    [−18.1] PI-150 10.49 0.692 1.429
    [−18.2] 150-200 17.06 0.746 1.443
    [ 200-250 17.26 0.786 1.465
    −18.3] 250-300 17.56 0.841 1.485
    [−18.4] 300-360 15.43 0.878 1.509
    [−18.5] Atm. Residue: 11.20
    [5] Feed: 80, K 100.0 d = 0.936 SOLID n = 1.530
    Extractive Separation with Furfural
    Cut P. AR PA A-N N-B
    Dp/V 1.058 1.008 0.943 0.866
    n. 1.610 1.575 1.529 1.489
    % Wt. 13 21 21 46
    d n
    RECYCLING: MAIN FLOW
    [13.3] 200° C. 0.972 1.568
    VERY LOW FLOW: RECYCLING + PURGE
    [13.4] 360° 1.02 1.591
    A few Polyaromatics: non-extracted [13.5] 470° C. (returned in [13.4])
  • It is clearly observed that the heavy metals and polyaromatics are concentrated in the extract [13.4], which is why a portion of this extract is purged. The conversion is performed with a low recycling, thanks to the operating conditions adopted, in particular a reactor towards 500° C. Note that there is a very significant production of gasoline (27.55% weight PI-200° C., which compares very favorably with the FCC gasolines).
  • 5 Conversion with Mixtures of Miscellaneous Gases and Effect of the Nature of the Feed on the Temperature of the Reactor
  • In order to be able to work in arid areas where water is rare, or in order to improve the quality of the gasolines, we studied the alternative offered by our process, which consists of operating with miscellaneous permanent gases or mixtures that are easy to produce, such as furnace fumes, for example.
  • Some units, such as the decarbonation unit of the BENFIEL unit in a hydrogen production complex, reject large quantities of CO2 that we may Consider using eventually.
  • Another one of our concerns was verifying our knowledge and our experience in working with light Distillated under Vacuum or heavy atmospheric Gas Oils in order to obtain lighter Gas Oils and Gasolines or, in other words, in order to satisfy the unbalanced market demand for these products. In fact, our unit makes it possible to favor the production of either gas oil or gasoline as desired, which cannot be achieved by the existing conversion units which have a fixed distribution of the products that they generate.
  • Therefore, we selected an ELF brand MOTOR OIL as the feed to be converted, which is popular and easy to find in all hypermarkets and has a density of 0.885 and an index n=1.488 (mean values).
  • We know that CO2 was a good candidate for the conversions; that CO2 +H2O presented potential benefits; that CO2+H2 could be beneficial but H2 risked being poorly reactive and would participate in the reactions only through its physical attributes; that N2 could be adequate but, when it is used alone, would not protect against coking. All of these combinations were explored.
  • We were able to verify that it was very practical to adopt a reactor temperature of 520-530° C.
  • Without recycling, the conversions observed were as follows:
    CONVERSION OF OIL TO PURE CO2 WITHOUT RECYCLING
    [5] Feed: Oil 100.00 d = 0.885 n = 1.488
    [16.11]
    CONVERSION Cut % Wt. Dp/v n
    PI-150 6.74 0.700 1.432
    150-200 8.62 0.750 1.448
    200-250 8.99 0.807 1.464
    250-300 9.35 0.824 1.476
    300-360 9.49 0.836 1.487
    Total Atm. Distillate 43.10
    Rat 3.11 0.860
    [13.3] 52.79 0.878
    [13.4] 0.91 0.861
    [13.5]
    CONVERSION OF OIL TO CO2 + H2 WITHOUT RECYCLING
    [5] Feed: Oil 100.00 0.885 1.488
    CONVERSION Cut % Wt. Dp/v n
    PI-150 8.53 0.727 1.433
    150-200 8.93 0.760 1.447
    200-250 11.56 0.798 1.463
    250-300 8.34 0.816 1.474
    300-360 7.70 0.832 1.487
    45.06
    Rat 1.74 0.848
    [13.3] 52.63 0.880
    [13.4] 0.91 0.915
    [13.5]
    CONVERSION OF OIL TO CO2 + H2O WITHOUT RECYCLING
    [5] Feed: Oil 100.00 0.885 1.488
    [16.11]
    CONVERSION Cut % wt. Dp/v n
    PI-150 3.91 0.762 1.441
    150-200 7.54 0.732 1.450
    200-250 10.14 0.789 1.464
    250-300 9.58 0.812 1.475
    300-360 14.56 0.828 1.484
    45.73
    Rat 13.67 0.848
    [13.3] 38.30 0.880
    [13.4] 1.40 0.686
    [13.5] 0.9 0.885
  • H2O tends to slow down the appearance of the light fractions, as expected. There are no significant differences separating the performance of these gaseous mixtures.
  • From the octane number's standpoint, the classification is made in ascending order of CO2, CO2+H2O, CO2+H2, without any major distinctions. Care must be taken to avoid an excess of gaseous flow CO2+H2O, which would reduce the conversions as pure losses.
    CONVERSION OF OIL TO CO2 + H2O WITH RECYCLING
    [5] Feed MOTOR 100.00 d = 0.886 n = 1.49148
    OIL
    [15] Csol 0.5 solid fuel 0.5%
    [41] Cgas 3.2 fuel gas 1.6%
    [16.3] +Miscel- 0.0
    laneous
    [13.52] Purges 0.5 \HEAVY
    [18.5] 6.3 /FUEL 6.8%
    [18.1-18.4] Dat 89.5 Atm. DISTILLATES
    CONVERSION Atm. Cut % Wt. Dp/V n
    [ −18.1] PI-150 16.79 0.721 1.427
    [ −18.2] 150-200 13.24 0.763 1.445
    [ 200-250 18.43 0.811 1.462
    −18.3] 250-300 18.24 0.831 1.478
    [ −18.4] 300-360 21.80 0.868 1.489
    [13.3] 0.882 1.507
    [13.4] 0.897 1.511
    [13.5] . . . . . .
  • This oil is converted to 30% gasolines PI-200.
  • These different examples show that very different feeds may be converted in a very safe manner and with excellent outputs. (The tests with pure N2 showed that there was a significant coking tendency.)
  • 10 Deposits in the Reactor
  • We selected the ELF Motor Oils as test feeds in examples 6, 7, 8 and 9, thinking in particular that we would be only limited by chemical considerations for an analysis of the conversion of light cuts. We essentially performed the conversions with permanent gases, in particular the CO2 and hydrogen supplied by Air Liquide, and Demineralized Water available commercially, with a furnace temperature of 530° C.
  • We began proportioning the deposits by controlled combustion according to the technique that is specific to hydrocarbons, while closely monitoring the combustion front. Unexplained problems remained regarding local feed losses in the reactor.
  • Therefore, we decided, after a long controlled run: (1) to carry out a careful combustion; and (2) to open the reactor and its injector. The injector was clean.
  • We then extracted deposit scales from the reactor, through the well-known hammering technique, and a gray powder by spinning with a deep-hole drill. Neither the scales nor the powder were combustible.
  • 151.2 g of solids were collected for a feed of 62300 g, which gives solid deposit/feed ratio of 0.24%. The origin of these deposits can only be the oil treated and they appeared only as an accumulation.
  • (In our residue conversion tests, we adopted the mechanical scrubbing technique to extract carbonaceous and solid residues from the reactor, which constituted a more difficult but more accurate operation that indicated the weighted quantity of deposits formed. These deposits can then be analyzed for all practical purposes.)
  • 11 Demetallization by Extraction of Residues or Feeds
  • These are the properties of a Kuwait RsV that we would use as the reference feed in our conversions.
  • A fractionation by extraction with Propane C3, Butane C4 and Pentane C5 makes it possible to separate the components of this residue under vacuum according to their nature, ranging from DAO (for deasphalted Oils) to very hard Asphalts (Asp C5).
    FRACTIONATION OF RsV BY EXTRACTION C3-C5 6/1
    POSITION
    DAO C3 ExC4 Ex C5 Asp C5 RsV
    % RsV Feed 18.7 33.7 30.4 17.5 100% RsV
    Density 20° C. 0.896 1.000 1.047 1.067 1.010
    Refractive index 20° C. 1.519 1.592 1.624 1.641 1.59415
    Tf° C. 50 60 100 146 +41° C.
    Sediments 0.09% Pds
    Res. Carb. % RsV 0.62 2.96 8.09 8.23 19.9
    Sulfur % RsV 0.53 1.62 1.62 1.23 5.0
    Nickel ppmRsV 0.2 10.2 14.4 17.2 42
    Vanadium ppmRsV 1.0 32.3 47.2 55.5 136
    NaCl % Wt. 0.0003 0.0107 0.0110
    VISC. Cst 100° C. 1402 Cst
    H/C 1.64 1.35 1.22 1.18 H/C = 1.33
  • It is observed that the metals (Nickel, Vanadium) arc concentrated in the most polyaromatic products with a high refractive index n and with the highest density. The same applies to salts and sulfur.
  • These components constitute a hindrance because they are poisons for any subsequent catalytic refining treatments that may be performed. The polyaromatics that contain said components are coking precursors and, when they are mixed, increase the viscosity of the products to the point that they can no longer be pumped, thus greatly reducing the quality of the fuels used for fuel applications. Due to all of these reasons, it would be necessary to extract them separately.
  • The conversion of this residue under vacuum (RsV) described in example No. 1 provided us with the following extract on the extraction [13.4]:
    VERY LOW FLOW: RECYCLING + PURGE
    % in the Cut
    DsV Cut % Wt. Dp/v n
    [13.4] 360° C. PI-195 Nothing . . .
    195-250  8.63 0.859 1.49888
    250-300 43.33 0.904 1.53737
    RsV.4 48.04 1.625
  • By referring to the densities and refractive indexes, it is observed that the extract [13.4] is practically and exclusively composed of EXC4, EXC5 and AspC5.
  • However, the analysis of extract [13.3] shows that it contains practically no components laden with. Metals, Salts, Sulfur, etc., as its heaviest fraction is a DAO and 10% of RV.3 is equivalent to a EXC3.
    RECYCLING: MAIN FLOW
    % in the Cut
    DsV Cut % Wt. Dp/v n
    [13.3] 200° C. PI-200 8.24 0.831 1.50099
    200-250 29.21 0.903 1.50835
    250-330 52.18 0.932 1.51879
    RsV.3 10.37 1.595
    [13.5] 470° C. NOTHING

    (The extractor [13.5] operates as a safety device.)
  • At 360° C. and at the atmospheric pressure, the EXTRACTOR [13.4] demetallizes the feed in an efficient and controlled manner by concentrating the Metals, Salts and Sulfur in a well-defined extract [13.4] which constitutes a new characteristic of one embodiment.
  • Content of Metals and Other Impurities of Crudes and Residues
  • By fractionating a typical residue under vacuum through well known refining techniques with propane C3, butane C4, pentane C5, the following extracts and raffinates are obtained:
    POSITION
    DAO C3 Ex C4 Ex C5 Asp C5 ″″″″″″RsV
    % RsV FEED 18.7 33.7 30.4 17.5 100% RsV
    Sediments 0.096% Pds
    Sulfur % RsV 0.53 1.62 1.62 1.23 5.0% Pds
    Nickel ppmRsV 0.2 10.2 14.4 17.2 42
    Vanadium ppmRsV 1.0 32.3 47.2 55.5 136
    NaCl % Wt. 0.0003 0.0107 0.0110
    H/C 1.64 1.35 1.22 1.18 H/C = 1.33
  • The DAO is the product called deasphalted oil; ExC4 is the extract with C4; ExC5 is the extract with C5 and Asp C5 is the corresponding residual asphalt obtained.
  • The metals, NaCl and sulfur are concentrated in highly aromatic heavy molecules with a low hydrogen content.
  • Upon combustion, these residues give ashes that have a typical relative composition, as indicated below:
      • Ashes: SiO2:32 Fe2O3:25 Na:16 Va:14 Ni:6 Al:6
  • Furthermore, we know that eutectics (Glass) appear towards 550°-660° C.
    Silica+Soda
    Figure US20050211602A1-20050929-P00002
    Classic Glass (Silicate)
    Silica+V2O5
    Figure US20050211602A1-20050929-P00002
    Vanadium Glass
    Silica+Nickel
    Figure US20050211602A1-20050929-P00002
    Nickel Glass
    Silica+Ashes
    Figure US20050211602A1-20050929-P00002
    Glass with Iron, Ni, etc.
  • Therefore, it is observed that any catalyst is fatally “encumbered with glass” by the metals.
  • Since our soaking reactor is empty, it can withstand long runs without quick deposits on its walls, as it was also observed, for other considerations, that it should operate in this case towards 460-480° C. Therefore, the metals are carried and extracted by the heaviest liquid products.
  • Motor oils were converted which require a reactor at 500-520° C. It was actually observed that there were few noncombustible deposits on the walls of the soaking reactor. This led as to generalize the technique for the mechanical cleaning of the extraction of carbonaceous residues accompanied by metal deposits, preferably by burning (which leaves metal deposits and ashes on the walls). Here also, since the soaking reactor is empty, no problems were encountered in conducting this mechanical scrubbing and scaling operation. The sulfur does not present any problems.
  • While the present invention has been described with reference to particular embodiments, it will be understood that the embodiments are illustrative and that the invention scope is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described are possible. These variations, modifications, additions and improvements may fall within the scope of the invention as detailed within the following claims.

Claims (28)

1. A process comprising the steps of:
(a) superheating water to a form of steam;
(b) feeding a crude hydrocarbon into furnace;
(c) preheating the crude hydrocarbon feed in said furnace;
(d) mixing a jet of the superheated steam and a jet of the preheated crude hydrocarbon feed into a mixing head/injector at a non-reactive temperature;
(e) injecting the crude hydrocarbon feed and steam mixture into a reactor vessel at a high velocity;
(f) maintaining said reactor vessel at an internal pressure not exceeding 200 bar and a reactive temperature maintained between 445° C.-450° C.; and
(g) releasing effluent products from said reactor vessel to an extractor system comprising a series of extraction devices set at decreasing temperature levels ranging from 360° C. to ambient.
2. The process of claim 1, wherein the reactor temperature is about 20° C.-25° C. more than said non-reactive temperature.
3. The process of claim 1, wherein the extractor system separates the products comprising useful properties in the form of stable emulsions.
4. The process of claim 3, wherein the product emulsions are broken mechanically and decanted to separate hydrocarbons from water and/or sludge.
5. A process comprising the steps of:
(a) generating a hot gas by burning a hydrocarbon fuel in a first furnace;
(b) mixing the hot gas with air or oxygen in mixing head;
(c) preheating a crude hydrocarbon feed in a second furnace;
(d) mixing a jet of the hot oxygen-containing gas and a jet of the preheated crude hydrocarbon feed into an injector device at a non-reactive temperature;
(e) injecting the heated mixture of crude hydrocarbon feed and oxygenated gas into a reactor vessel at a high velocity;
(f) maintaining the reactor vessel at an internal pressure not exceeding 200 bar and a reaction temperature between 445° C.-450° C.; and
(g) releasing effluent products from the reactor vessel to an extractor system comprising a series of extraction devices set at decreasing temperature levels ranging from 360° C. to ambient.
6. The process of claim 5, wherein the reactor temperature is about 20° C.-25° C. more than said non-reactive temperature.
7. The process of claim 5, wherein the extractor system separates the products comprising useful properties in the form of stable emulsions.
8. The process of claim 7, wherein the product emulsions are broken mechanically and decanted to separate hydrocarbons from water and/or sludge.
9. A process comprising the steps of:
(a) spraying preheated heavy hydrocarbon to form fine droplets of said hydrocarbon at a first pressure and at a first temperature that is insufficient for said conversion;
(b) contacting the sprayed heavy hydrocarbon with a jet of preheated gas to form a free jet of hydrocarbon and gas in order to facilitate initiation of reaction;
(c) supplying the sprayed hydrocarbon after contact with the preheated gas to a reactor that is empty and without catalyst to achieve thermodynamic equilibrium; and
(d) recovering the resulting light product;
wherein in step (c) said jet is formed by adiabatic expansion of said gas from a second pressure greater than said first pressure and from a second temperature greater than said first temperature to said first pressure and to a third temperature, the first temperature being lower than the temperature of said reactor and the third temperature being the temperature of the reactor, whereby said jet acquires kinetic energy that becomes transferred to the heavy hydrocarbon to cause at least a portion of the molecules of the heavy hydrocarbon to break into two to form lighter molecules and thereby bring about said conversion, whereby molecules of gas become inserted between the lighter molecule fragments formed and inhibit immediate rejoining of the lighter molecules, and the energy supplied to said hydrocarbon by preheating and by the kinetic energy of said jet being barely sufficient to initiate said breakage and to promote the formation of light product molecules of about half the molecular weight of the heavy hydrocarbon molecules, but insufficient to promote formation of hydrogen, light gaseous hydrocarbons or carbon.
10. The process of claim 9, wherein the heavy hydrocarbon is crude oil.
11. The process of claim 9, wherein the heavy and nitrogen is atmospheric residue.
12. The process of claim 9, wherein the heavy carbon is residue under vacuum.
13. The process of claim 9, wherein the heavy hydrocarbon is a heavy oil or heavy distillate.
14. The process of claim 9, wherein the first pressure is 20-30 bar.
15. The process of claim 9, wherein the first temperature is 445-450° C.
16. The process of claim 9, wherein the second pressure is about 60 bar
17. The process of claim 9, wherein the second temperature is in the range 600-800° C.
18. The process of claim 9, wherein said first pressure minimizes soaking time and a volume of said reactor.
19. The process of claim 9, wherein the preheated gas is an oxygen-containing gas.
20. The process of claim 19, wherein the oxygen-containing gas is steam.
21. The process of claim 19, wherein the oxygen-containing gas is carbon dioxide.
22. The process of claim 19, wherein the oxygen-containing gas is carbon dioxide and steam.
23. The process of claim 19, wherein the oxygen-containing gas is carbon dioxide and hydrogen.
24. The process of claim 19, wherein the oxygen-containing gas is carbon dioxide and nitrogen.
25. The process of claim 19, wherein the oxygen-containing gas is carbon monoxide and hydrogen or steam.
26. The process of claim 19, wherein the oxygen-containing gas is carbon dioxide, steam, carbon monoxide and hydrogen.
27. The process of claim 19, wherein the oxygen-containing gas is oxygen and methane.
28. The process of claim 19 wherein the third temperature is about 20° C.-25° C. more than said first temperature.
US11/131,167 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds Abandoned US20050211602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/131,167 US20050211602A1 (en) 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US12/824,362 US7967954B2 (en) 1998-10-16 2010-06-28 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US13/136,042 US20120055847A1 (en) 1998-10-16 2011-07-21 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9812983A FR2785289B1 (en) 1998-10-16 1998-10-16 DEEP CONVERSION TWINNING THE DEMETALLIZATION AND CONVERSION OF RAW, RESIDUES OR OILS USING PURE OR IMPRESSIVE OXYGEN COMPOUNDS (H20 C02 CO ACCOMPANIED BY N2 H2 SH2 ...)
FR981283 1998-10-16
US40593499A 1999-09-27 1999-09-27
US10/428,212 US6989091B2 (en) 1998-10-16 2003-05-02 Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds
US11/131,167 US20050211602A1 (en) 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/428,212 Continuation US6989091B2 (en) 1998-10-16 2003-05-02 Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/824,362 Continuation US7967954B2 (en) 1998-10-16 2010-06-28 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US13/136,042 Continuation US20120055847A1 (en) 1998-10-16 2011-07-21 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds

Publications (1)

Publication Number Publication Date
US20050211602A1 true US20050211602A1 (en) 2005-09-29

Family

ID=26234605

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/428,212 Expired - Fee Related US6989091B2 (en) 1998-10-16 2003-05-02 Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds
US11/131,167 Abandoned US20050211602A1 (en) 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US11/130,988 Abandoned US20050276735A1 (en) 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US12/824,362 Expired - Fee Related US7967954B2 (en) 1998-10-16 2010-06-28 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US13/136,042 Abandoned US20120055847A1 (en) 1998-10-16 2011-07-21 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/428,212 Expired - Fee Related US6989091B2 (en) 1998-10-16 2003-05-02 Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/130,988 Abandoned US20050276735A1 (en) 1998-10-16 2005-05-17 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US12/824,362 Expired - Fee Related US7967954B2 (en) 1998-10-16 2010-06-28 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US13/136,042 Abandoned US20120055847A1 (en) 1998-10-16 2011-07-21 Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds

Country Status (25)

Country Link
US (5) US6989091B2 (en)
EP (2) EP1342773A3 (en)
JP (1) JP4080162B2 (en)
KR (1) KR100684141B1 (en)
CN (1) CN100489066C (en)
AP (1) AP1341A (en)
AT (1) ATE324422T1 (en)
AU (1) AU773537B2 (en)
BR (1) BR9915551B1 (en)
CA (1) CA2346181C (en)
CU (1) CU23154A3 (en)
CY (1) CY1106094T1 (en)
DE (1) DE69931064T2 (en)
DK (1) DK1129153T3 (en)
EA (1) EA003082B1 (en)
ES (1) ES2258341T3 (en)
GE (1) GEP20043409B (en)
ID (1) ID29093A (en)
NO (1) NO20011828L (en)
NZ (1) NZ510706A (en)
OA (1) OA12680A (en)
PL (1) PL191375B1 (en)
PT (1) PT1129153E (en)
UA (1) UA66875C2 (en)
WO (1) WO2000023540A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089797A1 (en) * 2008-10-15 2010-04-15 Sudhakar Chakka Devices And Processes For Deasphalting And/Or Reducing Metals In A Crude Oil With A Desalter Unit
US20110067305A1 (en) * 2009-09-22 2011-03-24 Martin Allan Morris Hydrocarbon synthesizer
CN106698589A (en) * 2016-12-31 2017-05-24 杭州路弘科技有限公司 Cutting fluid recovering and processing system and method

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID29093A (en) 1998-10-16 2001-07-26 Lanisco Holdings Ltd DEEP CONVERSION THAT COMBINES DEMETALIZATION AND CONVERSION OF CRUDE OIL, RESIDUES OR HEAVY OILS BECOME LIGHTWEIGHT LIQUID WITH COMPOUNDS OF OXYGENATE PURE OR PURE
US6852215B2 (en) 2001-04-20 2005-02-08 Exxonmobil Upstream Research Company Heavy oil upgrade method and apparatus
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
EP2395016A3 (en) 2003-05-30 2012-12-19 Merus B.V. Design and use of paired variable regions of specific binding molecules
AU2005216696B2 (en) * 2004-02-26 2011-07-07 Tyco Fire & Security Gmbh Improvements in or relating to a method and apparatus for generating a mist
WO2005082546A1 (en) * 2004-02-26 2005-09-09 Pursuit Dynamics Plc Method and apparatus for generating a mist
US20080103217A1 (en) 2006-10-31 2008-05-01 Hari Babu Sunkara Polyether ester elastomer composition
US8337482B2 (en) * 2004-04-19 2012-12-25 The Invention Science Fund I, Llc System for perfusion management
US8419378B2 (en) * 2004-07-29 2013-04-16 Pursuit Dynamics Plc Jet pump
US8101067B2 (en) * 2004-10-13 2012-01-24 Marathon Oil Canada Corporation Methods for obtaining bitumen from bituminous materials
US8257580B2 (en) * 2004-10-13 2012-09-04 Marathon Oil Canada Corporation Dry, stackable tailings and methods for producing the same
CA2592950C (en) 2005-01-03 2013-01-22 Western Oil Sands, Inc. Nozzle reactor and method of use
US7927565B2 (en) 2005-01-03 2011-04-19 Marathon Oil Canada Corporation Nozzle reactor and method of use
US8696888B2 (en) 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing
US7622033B1 (en) 2006-07-12 2009-11-24 Uop Llc Residual oil coking scheme
GB0618196D0 (en) 2006-09-15 2006-10-25 Pursuit Dynamics Plc An improved mist generating apparatus and method
ES2372890T3 (en) * 2007-05-02 2012-01-27 Pursuit Dynamics Plc. BIOMASS LICUEFACTION BASED ON ALMIDÓN.
US8375701B2 (en) 2008-07-30 2013-02-19 Ford Global Technologies, Llc Hydrocarbon retaining and purging system
US8449763B2 (en) * 2009-04-15 2013-05-28 Marathon Canadian Oil Sands Holding Limited Nozzle reactor and method of use
BRPI1013887A2 (en) * 2009-04-29 2016-07-19 Dsm Ip Assets Bv powder coating composition comprising a polyester and an oxirane group crosslinker providing improved corrosion resistance to a substrate coated therewith
WO2010135380A1 (en) * 2009-05-20 2010-11-25 Xyleco, Inc. Processing hydrocarbon-containing materials
RU2467053C2 (en) * 2009-11-20 2012-11-20 Василий Иванович Рева Method of separating liquid and heterogeneous gas systems and mechanical fractionator to this end
US20110017642A1 (en) * 2009-07-24 2011-01-27 Duyvesteyn Willem P C System and method for converting material comprising bitumen into light hydrocarbon liquid product
US8663462B2 (en) * 2009-09-16 2014-03-04 Shell Canada Energy Cheveron Canada Limited Methods for obtaining bitumen from bituminous materials
US20110084000A1 (en) * 2009-10-14 2011-04-14 Marathon Oil Canada Corporation Systems and methods for processing nozzle reactor pitch
US8864982B2 (en) * 2009-12-28 2014-10-21 Shell Canada Energy Cheveron Canada Limited Methods for obtaining bitumen from bituminous materials
US8877044B2 (en) * 2010-01-22 2014-11-04 Shell Canada Energy Cheveron Canada Limited Methods for extracting bitumen from bituminous material
US20110180454A1 (en) * 2010-01-28 2011-07-28 Marathon Oil Canada Corporation Methods for preparing solid hydrocarbons for cracking
US8435402B2 (en) 2010-03-29 2013-05-07 Marathon Canadian Oil Sands Holding Limited Nozzle reactor and method of use
US10100258B2 (en) 2010-07-01 2018-10-16 Ignite Resources Pty Ltd Ballistic heating process
US8586515B2 (en) 2010-10-25 2013-11-19 Marathon Oil Canada Corporation Method for making biofuels and biolubricants
US8968556B2 (en) 2010-12-09 2015-03-03 Shell Canada Energy Cheveron Canada Limited Process for extracting bitumen and drying the tailings
US9567533B2 (en) * 2011-02-02 2017-02-14 Basf Se Process for separation of water from pyrolysis gasoline
PL406629A1 (en) 2011-03-29 2014-07-21 Fuelina, Inc. Hybrid fuel and a method for its preparation
RU2458967C1 (en) * 2011-04-07 2012-08-20 Сергей Витальевич Демьянов Method for thermal-oxidative cracking of black oil
RU2456331C1 (en) * 2011-05-24 2012-07-20 Светлана Александровна Леонтьева Heavy oil stock processing method
US8920636B2 (en) 2011-06-28 2014-12-30 Shell Canada Energy and Chervon Canada Limited Methods of transporting various bitumen extraction products and compositions thereof
RU2518080C2 (en) * 2011-07-08 2014-06-10 Общество с ограниченной ответственностью "Премиум Инжиниринг" Heavy oil stock processing method and device
US9023197B2 (en) 2011-07-26 2015-05-05 Shell Oil Company Methods for obtaining bitumen from bituminous materials
US8636958B2 (en) 2011-09-07 2014-01-28 Marathon Oil Canada Corporation Nozzle reactor and method of use
RU2502785C2 (en) * 2012-04-11 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Thermal-oxidative cracking method of heavy oil residues
CA2885398A1 (en) 2012-10-10 2014-04-17 Xyleco, Inc. Processing materials
NZ747168A (en) 2012-10-10 2019-12-20 Xyleco Inc Treating biomass
US9249972B2 (en) 2013-01-04 2016-02-02 Gas Technology Institute Steam generator and method for generating steam
US8715488B1 (en) 2013-01-07 2014-05-06 Clean Global Energy, Inc. Method and apparatus for making hybrid crude oils and fuels
NZ706072A (en) 2013-03-08 2018-12-21 Xyleco Inc Equipment protecting enclosures
BR112017011857B1 (en) 2014-12-03 2022-05-17 Drexel University Method for incorporating a gaseous hydrocarbon into a liquid hydrocarbon
US10125324B2 (en) 2015-12-18 2018-11-13 Praxair Technology, Inc. Integrated system for bitumen partial upgrading
US10011784B2 (en) 2015-12-18 2018-07-03 Praxair Technology, Inc. Integrated method for bitumen partial upgrading
US10358610B2 (en) 2016-04-25 2019-07-23 Sherritt International Corporation Process for partial upgrading of heavy oil
RU2622291C1 (en) * 2016-06-16 2017-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Thermal-oxidative cracking method of oil tar
CN107129827B (en) * 2017-07-06 2018-10-02 中国石油大学(华东) A kind of glutinous modification intensifying method of thick oil hydrothermal drop
CN112239700B (en) * 2020-10-23 2022-06-07 泉州市欧美润滑油制品有限公司 Device and method for efficiently processing long-service-life high-definition high-pressure hydraulic oil

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1415232A (en) * 1913-10-04 1922-05-09 Standard Oil Co Process of cracking oils under pressure
US1428311A (en) * 1918-06-25 1922-09-05 Texas Co Oil-converting process for the conversion and transformation of oils
US1430977A (en) * 1919-03-17 1922-10-03 Gartlan Stephen Louis Process for the treatment of petroleum oils
US1811195A (en) * 1927-02-09 1931-06-23 Pure Oil Co Method of treating petroleum oil
US1830963A (en) * 1923-03-17 1931-11-10 Standard Oil Co Distilling petroleum residuum
US1935148A (en) * 1927-07-30 1933-11-14 Universal Oil Prod Co Hydrocarbon oil conversion
US2347805A (en) * 1939-12-26 1944-05-02 Kenyon F Lee Method of converting oil
US2928460A (en) * 1956-07-13 1960-03-15 Texaco Inc Annulus type burner assembly with face cooling and replaceable inner tip
US2977299A (en) * 1957-10-15 1961-03-28 Allied Chem Production of chemical products from coal products
US3774846A (en) * 1969-12-31 1973-11-27 Sonic Dev Corp Pressure wave atomizing apparatus
US3816332A (en) * 1971-04-07 1974-06-11 Texaco Development Corp Synthesis gas production
US3998726A (en) * 1975-06-25 1976-12-21 Universal Oil Products Company Hydrocarbon deasphalting process and solvent extractor therefor
US4097366A (en) * 1975-03-01 1978-06-27 Mitsubishi Petrochemical Company Limited Method for preventing the formation of coke deposits in a fluidized bed reactor
US4136015A (en) * 1977-06-07 1979-01-23 Union Carbide Corporation Process for the thermal cracking of hydrocarbons
US4256565A (en) * 1979-11-13 1981-03-17 Rockwell International Corporation Method of producing olefins from hydrocarbons
US4264332A (en) * 1978-07-31 1981-04-28 Veb Mansfield Kombinat Wilhelm Pieck Process for the preparation of pure aluminum chloride hexahydrate
US4265732A (en) * 1977-07-05 1981-05-05 Kinetics Technology Intl. B.V. Process and apparatus for endothermic reactions
US4406793A (en) * 1980-08-14 1983-09-27 Jan Kruyer Use of free bodies to increase size of dispersed phase particles
US4426278A (en) * 1981-09-08 1984-01-17 The Dow Chemical Company Process and apparatus for thermally cracking hydrocarbons
US4482453A (en) * 1982-08-17 1984-11-13 Phillips Petroleum Company Supercritical extraction process
US4520217A (en) * 1981-12-10 1985-05-28 Kinetics Technology International Corp. Pyrolysis of natural gas liquids to aromatic hydrocarbons using a hot recycled gas
US4543177A (en) * 1984-06-11 1985-09-24 Allied Corporation Production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating
US4692237A (en) * 1985-04-01 1987-09-08 Exxon Chemical Patents Inc. Process for the removal of solids from an oil
US4724272A (en) * 1984-04-17 1988-02-09 Rockwell International Corporation Method of controlling pyrolysis temperature
US4737265A (en) * 1983-12-06 1988-04-12 Exxon Research & Engineering Co. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils
US4832822A (en) * 1983-05-20 1989-05-23 Rhone-Poulenc Chimie De Base Steam cracking of hydrocarbons
US4959160A (en) * 1987-04-15 1990-09-25 Iscor Limited Process for the treatment of contaminated emulsion
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
US5096566A (en) * 1988-10-04 1992-03-17 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Process for reducing the viscosity of heavy hydrocarbon oils
US5405283A (en) * 1993-11-08 1995-04-11 Ford Motor Company CO2 cleaning system and method
US5553784A (en) * 1994-12-09 1996-09-10 Hago Industrial Corp. Distributed array multipoint nozzle
US5785582A (en) * 1995-12-22 1998-07-28 Flow International Corporation Split abrasive fluid jet mixing tube and system
US6132596A (en) * 1997-01-24 2000-10-17 Yu; Heshui Process and apparatus for the treatment of waste oils
US6989091B2 (en) * 1998-10-16 2006-01-24 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049851B (en) * 1959-02-03 Heinrich Koppers Gesellschaft mit beschränkter Haftung, Essen Process for the production of gaseous hydrocarbons
US2790838A (en) * 1952-01-16 1957-04-30 Eastman Kodak Co Process for pyrolysis of hydrocarbons
BE793036A (en) * 1971-12-21 1973-04-16 Pierrefitte Auby Sa HYDROGEN PRESSURE CRACKING PROCESS FOR THE PRODUCTION OF OLEFINS
JPS57159883A (en) * 1981-03-30 1982-10-02 Toyo Eng Corp Heat treatment of heavy mineral oil
US4707265A (en) * 1981-12-18 1987-11-17 Cuno Incorporated Reinforced microporous membrane
AU570439B2 (en) 1983-03-28 1988-03-17 Compression Labs, Inc. A combined intraframe and interframe transform coding system
US4454018A (en) * 1983-04-14 1984-06-12 Mobil Oil Corporation Simultaneous crushing and retorting of oil shale with fluid jets
US4523986A (en) * 1983-12-16 1985-06-18 Texaco Development Corporation Liquefaction of coal
US4536603A (en) * 1983-12-22 1985-08-20 Rockwell International Corporation Production of acetylene from coal by contact with a combustion gas
JPS61261391A (en) * 1985-05-13 1986-11-19 東洋エンジニアリング株式会社 Production of thermal cracking modified oil
GB8828335D0 (en) * 1988-12-05 1989-01-05 Shell Int Research Process for conversion of heavy hydrocarbonaceous feedstock
US5134944A (en) * 1991-02-28 1992-08-04 Keller Leonard J Processes and means for waste resources utilization
US5759159A (en) 1996-09-25 1998-06-02 Ormco Corporation Method and apparatus for apical detection with complex impedance measurement
CA2592950C (en) * 2005-01-03 2013-01-22 Western Oil Sands, Inc. Nozzle reactor and method of use
US20060183953A1 (en) * 2005-02-15 2006-08-17 Fina Technology, Inc. Method and apparatus for addition of aqueous solutions to high temperature processes

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1415232A (en) * 1913-10-04 1922-05-09 Standard Oil Co Process of cracking oils under pressure
US1428311A (en) * 1918-06-25 1922-09-05 Texas Co Oil-converting process for the conversion and transformation of oils
US1430977A (en) * 1919-03-17 1922-10-03 Gartlan Stephen Louis Process for the treatment of petroleum oils
US1830963A (en) * 1923-03-17 1931-11-10 Standard Oil Co Distilling petroleum residuum
US1811195A (en) * 1927-02-09 1931-06-23 Pure Oil Co Method of treating petroleum oil
US1935148A (en) * 1927-07-30 1933-11-14 Universal Oil Prod Co Hydrocarbon oil conversion
US2347805A (en) * 1939-12-26 1944-05-02 Kenyon F Lee Method of converting oil
US2928460A (en) * 1956-07-13 1960-03-15 Texaco Inc Annulus type burner assembly with face cooling and replaceable inner tip
US2977299A (en) * 1957-10-15 1961-03-28 Allied Chem Production of chemical products from coal products
US3774846A (en) * 1969-12-31 1973-11-27 Sonic Dev Corp Pressure wave atomizing apparatus
US3816332A (en) * 1971-04-07 1974-06-11 Texaco Development Corp Synthesis gas production
US4097366A (en) * 1975-03-01 1978-06-27 Mitsubishi Petrochemical Company Limited Method for preventing the formation of coke deposits in a fluidized bed reactor
US3998726A (en) * 1975-06-25 1976-12-21 Universal Oil Products Company Hydrocarbon deasphalting process and solvent extractor therefor
US4136015A (en) * 1977-06-07 1979-01-23 Union Carbide Corporation Process for the thermal cracking of hydrocarbons
US4265732A (en) * 1977-07-05 1981-05-05 Kinetics Technology Intl. B.V. Process and apparatus for endothermic reactions
US4264332A (en) * 1978-07-31 1981-04-28 Veb Mansfield Kombinat Wilhelm Pieck Process for the preparation of pure aluminum chloride hexahydrate
US4256565A (en) * 1979-11-13 1981-03-17 Rockwell International Corporation Method of producing olefins from hydrocarbons
US4406793A (en) * 1980-08-14 1983-09-27 Jan Kruyer Use of free bodies to increase size of dispersed phase particles
US4426278A (en) * 1981-09-08 1984-01-17 The Dow Chemical Company Process and apparatus for thermally cracking hydrocarbons
US4520217A (en) * 1981-12-10 1985-05-28 Kinetics Technology International Corp. Pyrolysis of natural gas liquids to aromatic hydrocarbons using a hot recycled gas
US4482453A (en) * 1982-08-17 1984-11-13 Phillips Petroleum Company Supercritical extraction process
US4832822A (en) * 1983-05-20 1989-05-23 Rhone-Poulenc Chimie De Base Steam cracking of hydrocarbons
US4737265A (en) * 1983-12-06 1988-04-12 Exxon Research & Engineering Co. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils
US4724272A (en) * 1984-04-17 1988-02-09 Rockwell International Corporation Method of controlling pyrolysis temperature
US4543177A (en) * 1984-06-11 1985-09-24 Allied Corporation Production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4692237A (en) * 1985-04-01 1987-09-08 Exxon Chemical Patents Inc. Process for the removal of solids from an oil
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating
US4959160A (en) * 1987-04-15 1990-09-25 Iscor Limited Process for the treatment of contaminated emulsion
US5082985A (en) * 1988-05-30 1992-01-21 Crouzet Pierre G Process for controlling hydrocarbon steam cracking system using a spectrophotometer
US5096566A (en) * 1988-10-04 1992-03-17 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Process for reducing the viscosity of heavy hydrocarbon oils
US5405283A (en) * 1993-11-08 1995-04-11 Ford Motor Company CO2 cleaning system and method
US5553784A (en) * 1994-12-09 1996-09-10 Hago Industrial Corp. Distributed array multipoint nozzle
US5785582A (en) * 1995-12-22 1998-07-28 Flow International Corporation Split abrasive fluid jet mixing tube and system
US6132596A (en) * 1997-01-24 2000-10-17 Yu; Heshui Process and apparatus for the treatment of waste oils
US6989091B2 (en) * 1998-10-16 2006-01-24 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089797A1 (en) * 2008-10-15 2010-04-15 Sudhakar Chakka Devices And Processes For Deasphalting And/Or Reducing Metals In A Crude Oil With A Desalter Unit
US8147678B2 (en) 2008-10-15 2012-04-03 Bp Corporation North America Inc. Devices and processes for deasphalting and/or reducing metals in a crude oil with a desalter unit
US8444849B2 (en) 2008-10-15 2013-05-21 Bp Corporation North America Inc. Devices and processes for deasphalting and/or reducing metals in a crude oil with a desalter unit
EP4049738A1 (en) 2008-10-15 2022-08-31 BP Corporation North America Inc. Processes for deasphalting and/or reducing metals in a crude oil with a desalter unit
US20110067305A1 (en) * 2009-09-22 2011-03-24 Martin Allan Morris Hydrocarbon synthesizer
US8858783B2 (en) 2009-09-22 2014-10-14 Neo-Petro, Llc Hydrocarbon synthesizer
CN106698589A (en) * 2016-12-31 2017-05-24 杭州路弘科技有限公司 Cutting fluid recovering and processing system and method
CN106698589B (en) * 2016-12-31 2023-08-04 杭州路弘科技有限公司 Cutting fluid recycling system and method

Also Published As

Publication number Publication date
CA2346181C (en) 2007-06-26
PL191375B1 (en) 2006-05-31
EP1129153A1 (en) 2001-09-05
CY1106094T1 (en) 2011-06-08
US20120055847A1 (en) 2012-03-08
US20100260649A1 (en) 2010-10-14
ES2258341T3 (en) 2006-08-16
KR100684141B1 (en) 2007-02-20
US20050276735A1 (en) 2005-12-15
EP1342773A2 (en) 2003-09-10
CN100489066C (en) 2009-05-20
US20040065589A1 (en) 2004-04-08
OA12680A (en) 2006-06-20
BR9915551A (en) 2001-07-31
EA200100399A1 (en) 2001-10-22
BR9915551B1 (en) 2011-07-26
CU23154A3 (en) 2006-07-18
NO20011828L (en) 2001-06-11
CN1323338A (en) 2001-11-21
ATE324422T1 (en) 2006-05-15
JP4080162B2 (en) 2008-04-23
US7967954B2 (en) 2011-06-28
NZ510706A (en) 2003-09-26
EP1342773A3 (en) 2003-11-19
DK1129153T3 (en) 2006-05-29
PT1129153E (en) 2006-07-31
GEP20043409B (en) 2004-07-12
CA2346181A1 (en) 2000-04-27
AP1341A (en) 2004-12-13
EA003082B1 (en) 2002-12-26
DE69931064T2 (en) 2006-08-31
AU6418599A (en) 2000-05-08
DE69931064D1 (en) 2006-06-01
KR20010089310A (en) 2001-09-29
AU773537B2 (en) 2004-05-27
JP2003525310A (en) 2003-08-26
UA66875C2 (en) 2004-06-15
US6989091B2 (en) 2006-01-24
ID29093A (en) 2001-07-26
PL347248A1 (en) 2002-03-25
NO20011828D0 (en) 2001-04-10
WO2000023540A1 (en) 2000-04-27
EP1129153B1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US6989091B2 (en) Deep conversion combining the demetallization and the conversion of crudes, residues, or heavy oils into light liquids with pure or impure oxygenated compounds
US4543177A (en) Production of light hydrocarbons by treatment of heavy hydrocarbons with water
CA2490403C (en) Process for steam cracking heavy hydrocarbon feedstocks
US4883582A (en) Vis-breaking heavy crude oils for pumpability
US5110447A (en) Process and apparatus for partial upgrading of a heavy oil feedstock
US5506365A (en) Process and apparatus for fluidized-bed hydrocarbon conversion
WO2014106298A1 (en) Method and apparatus for upgrading heavy oil
AU2004201428B2 (en) System for the conversion of hydrocarbons
RU2518080C2 (en) Heavy oil stock processing method and device
MXPA01003801A (en) Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
RU2700689C1 (en) Method of heavy hydrocarbons refining and installation for its implementation
US2461932A (en) Process and apparatus for the treatment of hydrocarbon oil with catalysts
US1046683A (en) Apparatus for distilling hydrocarbon oil.
US2130596A (en) Method for treating a plurality of heavy hydrocarbon oils for subsequent cracking
JPS62232490A (en) Continuous production of fuel of diesel range
Egloff The Cracking of Petroleum Oil in the Gas-Liquid Phase.
US1709874A (en) Distillation of oils
WO1997016506A2 (en) Single stage oil refining process
FR2785289A1 (en) Hydrocarbon conversion into distillable light products for oil refinery, comprises load treating with jet having energy causing it to reach activation energy for its molecules to split

Legal Events

Date Code Title Description
AS Assignment

Owner name: WESCO ENERGY CORPORATION, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:WORLD ENERGY SYSTEMS CORPORATION;REEL/FRAME:020349/0168

Effective date: 20060913

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION